WorldWideScience

Sample records for silica nanoparticles induces

  1. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Adam Pluskota

    Full Text Available While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the 'bag of worms' phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production.

  2. In vitro cell transformation induced by synthetic amorphous silica nanoparticles.

    Science.gov (United States)

    Fontana, Caroline; Kirsch, Anaïs; Seidel, Carole; Marpeaux, Léa; Darne, Christian; Gaté, Laurent; Remy, Aurélie; Guichard, Yves

    2017-11-01

    Synthetic amorphous silica nanoparticles (SAS) are among the most widely produced and used nanomaterials, but little is known about their carcinogenic potential. This study aims to evaluate the ability of four different SAS, two precipitated, NM-200 and NM-201, and two pyrogenic, NM-202 and NM-203, to induce the transformation process. For this, we used the recently developed in vitro Bhas 42 cell transformation assay (CTA). The genome of the transgenic Bhas 42 cells contains several copies of the v-Ha-ras gene, making them particularly sensitive to tumor-promoter agents. The Bhas 42 CTA, which includes an initiation assay and a promotion assay, was validated in our laboratory using known soluble carcinogenic substances. Its suitability for particle-type substances was verified by using quartz Min-U-Sil 5 (Min-U-Sil) and diatomaceous earth (DE) microparticles. As expected given their known transforming properties, Min-U-Sil responded positively in the Bhas 42 CTA and DE responded negatively. Transformation assays were performed with SAS at concentrations ranging from 2μg/cm 2 to 80μg/cm 2 . Results showed that all SAS have the capacity to induce transformed foci, interestingly only in the promotion assay, suggesting a mode of action similar to tumor-promoter substances. NM-203 exhibited transforming activity at a lower concentration than the other SAS. In conclusion, this study showed for the first time the transforming potential of different SAS, which act as tumor-promoter substances in the Bhas 42 model of cell transformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation

    Directory of Open Access Journals (Sweden)

    Nemmar A

    2014-06-01

    Full Text Available Abderrahim Nemmar,1 Sulayma Albarwani,2 Sumaya Beegam,1 Priya Yuvaraju,1 Javed Yasin,3 Samir Attoub,4 Badreldin H Ali5 1Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman; 3Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 4Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 5Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman Abstract: Amorphous silica nanoparticles (SiNPs are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg. Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane

  4. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  5. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  6. Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death.

    Science.gov (United States)

    Marquardt, Clarissa; Fritsch-Decker, Susanne; Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten

    2017-03-15

    Although the technological and economic benefits of engineered nanomaterials are obvious, concerns have been raised about adverse effects if such material is inhaled, ingested, applied to the skin or even released into the environment. Here we studied the cytotoxic effects of the most abundant nanomaterial, silica nanoparticles (SiO 2 -NPs), in murine RAW264.7 macrophages. SiO 2 -NPs dose-dependently induce membrane leakage and cell death without obvious involvement of reactive oxygen species. Interestingly, at low concentrations SiO 2 -NPs trigger autophagy, evidenced by morphological and biochemical hallmarks such as autophagolysosomes or increased levels of LC3-II, which serves to protect cells from cytotoxicity. Hence SiO 2 -NPs initiate an adaptive stress response which dependent on dose serve to balance survival and death and ultimately dictates the cellular fate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Block-copolymer-induced long-range depletion interaction and clustering of silica nanoparticles in aqueous solution

    Science.gov (United States)

    Kumar, Sugam; Lee, M.-J.; Aswal, V. K.; Choi, S.-M.

    2013-04-01

    Small-angle neutron scattering (SANS) has been carried out to examine the block-copolymer-induced depletion interaction of charged silica nanoparticles in aqueous solution. The measurements have been performed on fixed concentrations (1 and 10 wt. %) of anionic Ludox silica nanoparticles having sizes of 8 and 16 nm in the presence of 0.1M NaCl and varying concentration of polyethylene oxide-polypropylene oxide-polyethylene oxide P85 [(EO)26(PO)39(EO)26] block copolymer. The presence of the block copolymer induces an attractive depletion interaction between charge-stabilized nanoparticles. The effective interaction of silica nanoparticles is modeled by a combination of two Yukawa potentials accounting for attractive depletion and repulsive electrostatic forces. The depletion interaction is found to be a long-range attraction whose magnitude and range increase with block-copolymer concentration. The depletion interaction is further enhanced by tuning the self-assembly of the block copolymer through the variation of temperature. The increase of the depletion interaction ultimately leads to clustering of nanoparticles and is confirmed by the presence of a Bragg peak in the SANS data. The positioning of the Bragg peak suggests simple-cubic-type packing of particles within the clusters. The scattering from the clusters in the low-Q region is governed by the Porod scattering, indicating that clusters are quite large (order of microns). The depletion interaction is also found to be strongly dependent on the size of the nanoparticles.

  8. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK signalling

    Directory of Open Access Journals (Sweden)

    Verena Christen

    Full Text Available Humans may be exposed to engineered silica nanoparticles (SiO2-NPs but potential adverse effects are poorly understood, in particular in relation to cellular effects and modes of action. Here we studied effects of SiO2-NPs on cellular function in human hepatoma cells (Huh7. Exposure for 24 h to 10 and 50 μg/ml SiO2-NPs led to induction of endoplasmic reticulum (ER stress as demonstrated by transcriptional induction of DNAJB9, GADD34, CHOP, as well as CHOP target genes BIM, CHAC-1, NOXA and PUMA. In addition, CHOP protein was induced. In addition, SiO2-NPs induced an inflammatory response as demonstrated by induction of TNF-α and IL-8. Activation of MAPK signalling was investigated employing a PCR array upon exposure of Huh7 cells to SiO2-NPs. Five of 84 analysed genes, including P21, P19, CFOS, CJUN and KSR1 exhibited significant transcriptional up-regulation, and 18 genes a significant down-regulation. Strongest down-regulation occurred for the proto-oncogene BRAF, MAPK11, one of the four p38 MAPK genes, and for NFATC4. Strong induction of CFOS, CJUN, FRA1 and CMYC was found after exposure to 50 μg/ml SiO2-NPs for 24 h. To analyse for effects derived from up-regulation of TNF-α, Huh7 cells were exposed to SiO2-NPs in the presence of the TNF-α inhibitor sauchinone, which reduced the induction of the TNF-α transcript by about 50%. These data demonstrate that SiO2-NPs induce ER stress, MAPK pathway and lead to inflammatory reaction in human hepatoma cells. Health implications of SiO2-NPs exposure should further be investigated for a risk assessment of these frequently used nanoparticles. Keywords: Silica nanoparticles, Endoplasmic reticulum stress, MAPK, TNF-α, Huh7 cells

  9. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line.

    Science.gov (United States)

    Petrache Voicu, Sorina Nicoleta; Dinu, Diana; Sima, Cornelia; Hermenean, Anca; Ardelean, Aurel; Codrici, Elena; Stan, Miruna Silvia; Zărnescu, Otilia; Dinischiotu, Anca

    2015-12-10

    This study evaluated the in vitro effects of 62.5 µg/mL silica nanoparticles (SiO NPs) on MRC-5 human lung fibroblast cells for 24, 48 and 72 h. The nanoparticles' morphology, composition, and structure were investigated using high resolution transmission electron microscopy, selected area electron diffraction and X-ray diffraction. Our study showed a decreased cell viability and the induction of cellular oxidative stress as evidenced by an increased level of reactive oxygen species (ROS), carbonyl groups, and advanced oxidation protein products after 24, 48, and 72 h, as well as a decreased concentration of glutathione (GSH) and protein sulfhydryl groups. The protein expression of Hsp27, Hsp60, and Hsp90 decreased at all time intervals, while the level of protein Hsp70 remained unchanged during the exposure. Similarly, the expression of p53, MDM2 and Bcl-2 was significantly decreased for all time intervals, while the expression of Bax, a marker for apoptosis, was insignificantly downregulated. These results correlated with the increase of pro-caspase 3 expression. The role of autophagy in cellular response to SiO₂NPs was demonstrated by a fluorescence-labeled method and by an increased level of LC3-II/LC3-I ratio. Taken together, our data suggested that SiO₂ NPs induced ROS-mediated autophagy in MRC-5 cells as a possible mechanism of cell survival.

  10. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    Science.gov (United States)

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Assembly of functional gold nanoparticle on silica microsphere.

    Science.gov (United States)

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    International Nuclear Information System (INIS)

    Gu Jinlou; Fan Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-01-01

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15. - Graphical abstract: A facile and novel strategy has been developed to incorporate gold nanoparticles into the pore channels of mesoporous SBA-15 assisted by microwave radiation (MR) with mild reaction condition and rapid reaction speed. Due to the rapid and homogeneous nucleation, simultaneous propagation and termination by MR, the size of gold nanoparticles are effectively controlled

  13. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    Science.gov (United States)

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  14. Core-shell silica nanoparticles synthesized for quantitative study of DNA cleavage by laser-induced fluorescence microscopy.

    Science.gov (United States)

    Ko, Jungaa; Lim, H B

    2011-02-01

    Dye-doped silica nanoparticles (C dots) were synthesized in reverse microemulsions and used to quantitatively examine DNA cleavage in the presence of transition metal ions. The cores were synthesized as fluorescein isothiocyanate (FITC)-doped silica nanoparticles and the shells' surfaces were modified with single-stranded DNA oligomers tagged with Cy5 fluorophores. DNA cleavage induced by heavy metal ions was estimated by comparing the fluorescence of Cy5 before and after reaction with metal ions. For this, a lab-built laser-induced fluorescence microscope equipped with a charge coupled device (CCD) camera, for imaging, and photomultiplier tube, for photon counting, was used. FITC fluorescence from the core was measured as an internal standard to compensate for possible loss of the beads during the treatment. The cleavage of DNA in air in the presence of Pb(2+), Cd(2+), and Hg(2+) at 1 ng/mL was found to be 14%, 6%, and 20%, respectively, and was significantly reduced to below 9% under N(2) gas, indicating that the main cleavage source was oxygen in air. The most significant DNA cleavage was observed with the addition of hydrogen peroxide. This analytical method using dye-doped C dots provided convenient handling and quantification of the estimation of metal-DNA interaction with a detection limit of 34.9 pmol/mL.

  15. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating

    Energy Technology Data Exchange (ETDEWEB)

    Kaman, O; Pollert, E; Veverka, P; Veverka, M; Hadova, E; KnIzek, K; Marysko, M [Institute of Physics, AS CR, v.v.i., Cukrovarnicka 10/112, 162 53, Prague 6 (Czech Republic); Kaspar, P [Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 166 27, Prague 6 (Czech Republic); Klementova, M [Institute of Inorganic Chemistry, AS CR, v.v.i., 250 68, Rez u Prahy (Czech Republic); Gruenwaldova, V [Zentiva a.s., U kabelovny 130, 102 37, Prague 10 (Czech Republic); Vasseur, S; Epherre, R; Mornet, S; Goglio, G; Duguet, E [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS/Universite Bordeaux, 87 Avenue du Docteur Schweitzer, 33608, Pessac (France)], E-mail: kaman@fzu.cz

    2009-07-08

    Nanoparticles of manganese perovskite of the composition La{sub 0.75}Sr{sub 0.25}MnO{sub 3} uniformly coated with silica were prepared by encapsulation of the magnetic cores (mean crystallite size 24 nm) using tetraethoxysilane followed by fractionation. The resulting hybrid particles form a stable suspension in an aqueous environment at physiological pH and possess a narrow hydrodynamic size distribution. Both calorimetric heating experiments and direct measurements of hysteresis loops in the alternating field revealed high specific power losses, further enhanced by the encapsulation procedure in the case of the coated particles. The corresponding results are discussed on the basis of complex characterization of the particles and especially detailed magnetic measurements. Moreover, the Curie temperature (335 K) of the selected magnetic cores resolves the risk of local overheating during hyperthermia treatment.

  16. Harvesting silica nanoparticles from rice husks

    International Nuclear Information System (INIS)

    Wang Weixing; Martin, Jarett C.; Zhang Ning; Ma Chao; Han Aijie; Sun Luyi

    2011-01-01

    Biogenic silica nanoparticles were synthesized using rice husks (RHs) as the raw material via controlled pyrolysis. The characterization results showed that the morphology of the synthesized silica was highly related to the pretreatment of RHs and the pyrolysis conditions. Particularly, potassium cations in RHs were found to catalyze the melting of silica, during which the amorphous silica were converted to crystalline phase. Two hours of pyrolysis at 700 °C appeared to be ideal to synthesize silica nanoparticles with a diameter of ca. 20–30 nm. Higher temperature and longer duration of pyrolysis led to undesired melting of silica nanoparticles, while too low a temperature cannot effectively remove carbonous residues. Such amorphous silica nanoparticles with narrow size distribution and high purity are expected to replace silica gel and fumed silica for various applications.

  17. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    Silica coated ionic liquid templated mesoporous silica nanoparticles. E.D.M. Isa, M. B. A. Rahman, H. Ahmad. Abstract. A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated ...

  18. Ion beam-induced shaping of Ni nanoparticles embedded in a silica matrix: from spherical to prolate shape

    Directory of Open Access Journals (Sweden)

    Avasthi Devesh

    2011-01-01

    Full Text Available Abstract Present work reports the elongation of spherical Ni nanoparticles (NPs parallel to each other, due to bombardment with 120 MeV Au+9 ions at a fluence of 5 × 1013 ions/cm2. The Ni NPs embedded in silica matrix have been prepared by atom beam sputtering technique and subsequent annealing. The elongation of Ni NPs due to interaction with Au+9 ions as investigated by cross-sectional transmission electron microscopy (TEM shows a strong dependence on initial Ni particle size and is explained on the basis of thermal spike model. Irradiation induces a change from single crystalline nature of spherical particles to polycrystalline nature of elongated particles. Magnetization measurements indicate that changes in coercivity (Hc and remanence ratio (Mr/Ms are stronger in the ion beam direction due to the preferential easy axis of elongated particles in the beam direction.

  19. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  20. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Angela L. [Federal University of Ouro Preto (UFOP), Department of Chemistry (Brazil); Fabris, Jose D., E-mail: jdfabris@ufmg.br [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM) (Brazil); Pereira, Marcio C. [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Institute of Science, Engineering and Technology (Brazil); Domingues, Rosana Z. [Federal University of Minas Gerais (UFMG), Department of Chemistry (Brazil); Ardisson, Jose D. [Development Center of Nuclear Technology (CNEN/CDTN), Laboratory of Applied Physics (Brazil)

    2013-04-15

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Moessbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  1. Ar{sup +} ion irradiation-induced reorganization of colloidal silica nanoparticles in Langmuir–Blodgett monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Lugomer, S., E-mail: lugomer@irb.hr [Rudjer Boskovic» Institute, Bijenicka c. 54, 10001 Zagreb (Croatia); Zolnai, Z.; Tóth, A.L.; Deák, A.; Nagy, N. [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science, Hungarian Academy of Sciences, 1121 Budapest, Konkoly Thege M. út 29-33 (Hungary)

    2015-01-01

    The Ar{sup +} ion irradiation-induced reorganization of Langmuir–Blodgett monolayers of colloidal silica nanoparticles with a diameter of 220 nm and 450 nm deposited on silicon substrate is investigated in a wide range of ion fluences. The cluster formation, average cluster size, ion beam-induced charging and discharging of particles, heating effects, the ion beam-induced viscous flow as well as the swelling of the Si substrate as a function of the ion fluence are discussed. Inhomogeneous particle distribution causes strong nonlinear Si swelling inside wide defect-channels between the clusters and linear Si swelling inside narrow channels between the particles. At low ion fluences particle charging and Coulomb repulsion forces govern the particle reorganization process, while at high ion fluences ion beam-induced viscous flow and hydrodynamic forces between the particles and the underlying substrate play major role. Two different types of patterns: smaller compact clusters of few particles and longer chain-like clusters of dozens of particles are observed. The dynamics of the reorganization process in both cases is treated analogous to the dynamics of colloidal suspensions based on the Tanaka–Araki model. The results of the model are comparable to the experimentally observed cluster characteristics. - Highlights: • Reorganization of LB layers under low energy Ar{sup +} ion irradiation • Low fluence: the particles move as solid particles on solid substrate. • High fluence: the solid particles move on the soft fluid-like substrate. • Very high fluence: the soft particles move on the soft fluid-like substrate. • Reorganization is modeled by dynamics of colloidal suspensions.

  2. Diffusion of coloured silica nanoparticles into human hair

    OpenAIRE

    Gomes, Jaime Rocha; Sampaio, Sandra; Maia, Frederico

    2011-01-01

    A novel method for dyeing human hair fibres using coloured silica nanoparticles of 206 nm has been developed. Diffusion of coloured silica nanoparticles into hair fibres has been investigated; silica nanoparticles do not penetrate at all, or do so only sparingly, into the structure of Caucasian virgin hair. However, coloured silica nanoparticles diffused readily into bleached hair fibres. Scanning electron microscopy showed that coloured silica nanoparticles were present mainly in...

  3. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy

    NARCIS (Netherlands)

    Zecevic, J.; Hermannsdorfer, Justus; Schuh, Tobias; de Jong, Krijn P.; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of

  4. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  5. Nonporous Silica Nanoparticles for Nanomedicine Application

    OpenAIRE

    Tang, Li; Cheng, Jianjun

    2013-01-01

    Nanomedicine, the use of nanotechnology for biomedical applications, has potential to change the landscape of the diagnosis and therapy of many diseases. In the past several decades, the advancement in nanotechnology and material science has resulted in a large number of organic and inorganic nanomedicine platforms. Silica nanoparticles (NPs), which exhibit many unique properties, offer a promising drug delivery platform to realize the potential of nanomedicine. Mesoporous silica NPs have bee...

  6. Silica Nanoparticle-induced Cytokine Responses in BEAS-2B and HBEC3-KT Cells: Significance of Particle Size and Signalling Pathways in Different Lung Cell Cultures.

    Science.gov (United States)

    Låg, Marit; Skuland, Tonje; Godymchuk, Anna; Nguyen, Thu H T; Pham, Hang L T; Refsnes, Magne

    2018-01-15

    We have previously reported that silica nanoparticles (SiNPs) of nominal size 50 nm (Si50) induce the pro-inflammatory cytokines CXCL8 and IL-6 in BEAS-2B cells, via mechanisms involving MAPK p38, TACE-mediated TGF-α release and the NF-κB pathway. In this study, we examined whether these findings are cell specific or might be extended to another epithelial lung cell model, HBEC3-KT, and also to SiNPs of a smaller size (nominal size of 10 nm; Si10). The TEM average size of Si10 and Si50 was 10.9 and 34.7 nm, respectively. The surface area (BET) of Si10 was three times higher than for Si50 per mass unit. With respect to hydrodynamic size (DLS), Si10 in exposure medium showed a higher z-average for the main peak than Si50, indicating more excessive agglomeration. Si10 strongly induced CXCL8 and IL-6, as assessed by ELISA and RT-PCR, and was markedly more potent than Si50, even when adjusted to equal surface area. Furthermore, Si10 was far more cytotoxic, measured as lactate dehydrogenase (LDH) release, than Si50 in both epithelial cell cultures. With respect to signalling pathways, Western analysis and experiments with and without inhibition of MAPK, TACE and NF-κB (synthetic inhibitors) revealed that p38-phosphorylation, TACE-mediated TGF-α release and NF-κB activation seem to be important triggering mechanisms for both Si50 and Si10 in the two different lung epithelial cell cultures. In conclusion, the identified signalling pathways are suggested to be important in inducing cytokine responses in different epithelial cell types and also for various sizes of silica nanoparticles. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Silica Nanoparticles Sensitize Human Multiple Myeloma Cells to Snake (Walterinnesia aegyptia Venom-Induced Apoptosis and Growth Arrest

    Directory of Open Access Journals (Sweden)

    Douaa Sayed

    2012-01-01

    Full Text Available Background. Multiple myeloma (MM, an almost incurable disease, is the second most common blood cancer. Initial chemotherapeutic treatment could be successful; however, resistance development urges the use of higher toxic doses accompanied by hematopoietic stem cell transplantation. The establishment of more effective treatments that can overcome or circumvent chemoresistance has become a priority. We recently demonstrated that venom extracted from Walterinnesia aegyptia (WEV either alone or in combination with silica nanoparticles (WEV+NPs mediated the growth arrest and apoptosis of prostate cancer cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on proliferation and apoptosis of MM cells. Methods. The impacts of WEV alone and WEV+NP were monitored in MM cells from 70 diagnosed patients. The influences of WEV and WEV+NP were assessed with flow cytometry analysis. Results. WEV alone and WEV+NP decreased the viability of MM cells. Using a CFSE proliferation assay, we found that WEV+NP strongly inhibited MM cell proliferation. Furthermore, analysis of the cell cycle using the propidium iodide (PI staining method indicated that WEV+NP strongly altered the cell cycle of MM cells and enhanced the induction of apoptosis. Conclusions. Our data reveal the biological effects of WEV and WEV+NP on MM cells that enable these compounds to function as effective treatments for MM.

  8. Plasmon-less surface enhanced Raman spectra induced by self-organized networks of silica nanoparticles produced by femtosecond lasers.

    Science.gov (United States)

    Bellouard, Yves; Block, Erica; Squier, Jeff; Gobet, Jean

    2017-05-01

    Raman spectroscopy is the workhorse for label-free analysis of molecules. It relies on the inelastic scattering of incoming monochromatic light impinging molecules of interest. This effect leads to a very weak emission of light spectrum that provides a signature of the molecules being observed. Considerable efforts have been made over the last decades, in particular with the development of Surface Enhanced Raman Spectroscopy (SERS), to enhance the intensity of the emitted signal so that ultimately, traces of molecules can be detected. Here, we show that dense self-organized networks of quasi-monodisperse nanoparticles redepositing during femtosecond laser ablation of trenches in fused silica can lead to a significant field enhancement effect, enabling the Raman detection of a single-molecule layer deposited on the surface (so called monolayer). Unlike previously reported for SERS experiments, here, there is no metal layer promoting plasmonics effects causing localized field enhancement. The method for producing SERS substrates is therefore quite straightforward and low cost.

  9. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  10. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    International Nuclear Information System (INIS)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles

  11. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  12. Mesoporous silica nanoparticles for active corrosion protection.

    Science.gov (United States)

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  13. Crystallization of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.

  14. Green synthesis of silica nanoparticles using sugarcane bagasse

    Science.gov (United States)

    Mohd, Nur Kamilah; Wee, Nik Nur Atiqah Nik; Azmi, Alyza A.

    2017-09-01

    Silica nanoparticles have been great attention as it being evaluated for used in abundant fields and applications. Due to this significance, this research was conducted to synthesis silica nanoparticles using local agricultural waste, sugarcane bagasse. We executed extraction and precipitation process as it involved low cost, less toxic and low energy process compared to other methods. The Infrared (IR) spectra showed the vibration peak of Si-O-Si, which clearly be the evidence for the silica characteristics in the sample. In this research, amorphous silica nanoparticles with spherical morphology with an average size of 30 nm, and specific surface area of 111 m2/g-1 have been successfully synthesized. The XRD patterns showed the amorphous nature of silica nanoparticles. As a comparison, the produced silica nanoparticles from sugarcane bagasse are compared with the respective nanoparticles synthesized using Stöber method.

  15. Silica nanoparticles induce multinucleation through activation of PI3K/Akt/GSK-3β pathway and downregulation of chromosomal passenger proteins in L-02 cells

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Weijia; Li, Yang; Yu, Yongbo; Yu, Yang; Duan, Junchao; Jiang, Lizhen; Li, Qiuling; Sun, Zhiwei, E-mail: zwsun@ccmu.edu.cn, E-mail: zwsun@hotmail.com [Capital Medical University, School of Public Health (China)

    2016-04-15

    Silica nanoparticles (SNPs) are applicable in various fields due to their unique physicochemical characteristics. However, concerns over their potential adverse effects have been raised. In our previous studies, we reported that SNPs could induce abnormal high incidence of multinucleation. The aim of this study is to further investigate the mechanisms of multinucleation induced by SNPs (68 nm) in human normal liver L-02 cells (L-02 cells). In order to determine the cytotoxicity of SNPs, MTT assay was performed, and the cell viability was decreased in a dose-dependent manner. The intracellular reactive oxygen species (ROS) detected by flow cytometry and multinucleation observed by Giemsa stain showed that ROS generation and rate of multinucleated cells increased after SNPs exposure. N-acetyl-cysteine (NAC), a glutathione precursor against SNP-induced toxicity, was used as a ROS inhibitor to elucidate the relationship between ROS and multinucleation. The presence of NAC resulted in inhibition of both ROS generation and rate of multinucleation. Moreover, Western blot analysis showed that the protein levels of Cdc20, Aurora B, and Survivin were down-regulated, and the PI3K/Akt/GSK-3β pathway was activated by SNPs. In conclusion, our findings strongly suggested that multinucleation induced by SNPs was related to PI3K/Akt/GSK-3β signal pathway activation and downregulation of G2/M phase-related protein and chromosomal passenger proteins.

  16. Luminescent silica nanoparticles for cancer diagnosis.

    Science.gov (United States)

    Arap, W; Pasqualini, R; Montalti, M; Petrizza, L; Prodi, L; Rampazzo, E; Zaccheroni, N; Marchiò, S

    2013-01-01

    Fluorescence imaging techniques are becoming essential for preclinical investigations, necessitating the development of suitable tools for in vivo measurements. Nanotechnology entered this field to help overcome many of the current technical limitations, and luminescent nanoparticles (NPs) are one of the most promising materials proposed for future diagnostic implementation. NPs also constitute a versatile platform that can allow facile multi-functionalization to perform multimodal imaging or theranostics (simultaneous diagnosis and therapy). In this contribution we have mainly focused on dye doped silica or silica-based NPs conjugated with targeting moieties to enable imaging of specific cancer cells. We also cite and briefly discuss a few non-targeted systems for completeness. We summarize common synthetic approaches to these materials, and then survey the most recent imaging applications of silica-based nanoparticles in cancer. The field of theranostics is particularly important and stimulating, so, even though it is not the central topic of this paper, we have included some significant examples. We conclude with a short section on NP-based systems already in clinical trials and examples of specific applications in childhood tumors. This review aims to describe and discuss, through focused examples, the great potential of these materials in the medical field, with the aim to encourage further research to implement applications, which today are still rare.

  17. Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoyan; Tian Yu; Zhao Qinqin; Jin Tingting; Xiao Shun; Fan Xiaohui, E-mail: fanxh@zju.edu.cn [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China)

    2011-02-04

    Understanding the underlying properties-dependent interactions of nanostructures with biological systems is essential to nanotoxicological research. This study investigates the relationship between particle size and toxicity, and further reveals the mechanism of injury, using silica particles (SP) with diameters of 30, 70, and 300 nm (SP30, SP70, and SP300) as model materials. The biochemical compositions of liver tissues and serum of mice treated with SP30, SP70, and SP300 were analyzed by integrated metabonomics analysis based on gas chromatography-mass spectrometry (GC-MS) and in combination with pattern recognition approaches. Histopathological examinations and serum biochemical analysis were simultaneously performed. The toxicity induced by three different sizes of SP mainly involved hepatocytic necrosis, increased serum aminotransferase, and inflammatory cytokines. Moreover, the toxic effects of SP were dose-dependent for each particle size. The doses of SP30, SP70, and SP300 that were toxic to the liver were 10, 40, and 200 mg kg{sup -1}, respectively. In this study, surface area has a greater effect than particle number on the toxicity of SP30, SP70, and SP300 in the liver. The disturbances in energy metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism may be attributable to the hepatotoxicity induced by SP. In addition, no major differences were found in the response of biological systems caused by the different SP sizes among the metabolite profiles. The results suggest that not only nano-sized but also submicro-sized SP can cause similar extents of liver injury, which is dependent on the exposure dose, and the mechanism of toxicity may be almost the same.

  18. Robust, ultrasmall organosilica nanoparticles without silica shells

    Science.gov (United States)

    Murray, Eoin; Born, Philip; Weber, Anika; Kraus, Tobias

    2014-07-01

    Traditionally, organosilica nanoparticles have been prepared inside micelles with an external silica shell for mechanical support. Here, we compare these hybrid core-shell particles with organosilica particles that are robust enough to be produced both inside micelles and alone in a sol-gel process. These particles form from octadecyltrimethoxy silane as silica source either in microemulsions, resulting in water-dispersible particles with a hydrophobic core, or precipitate from an aqueous mixture to form particles with both hydrophobic core and surface. We examine size and morphology of the particles by dynamic light scattering and transmission electron microscopy and show that the particles consist of Si-O-Si networks pervaded by alkyl chains using nuclear magnetic resonance, infrared spectroscopy, and thermogravimetric analysis.

  19. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  20. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  1. Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution

    Science.gov (United States)

    Jiang, Zhong-Jie; Liu, Chun-Yan; Liu, Yun

    2004-06-01

    In a weak basic, weak acidic or neutral water-alcohol solution, silver nanoparticles were generated by the reduction of Ag + ions in the present of colloidal silica. Silica as a substrate played an important role in the formation of Silver particles. The plasmon band of silver particles supported on the surface of silica was considerably shifted to longer wavelength compared with the pure silver sol. The shift in absorption spectra was explained in terms of surface effects induced by the interaction of silver and silica, as well as size effects and irregular shape.

  2. Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors

    Directory of Open Access Journals (Sweden)

    Fatima Abi-Ghaida

    2015-01-01

    Full Text Available A new class of multifunctional silica nanoparticles carrying boron clusters (10-vertex closo-decaborate and incorporating luminescent centers (fluorescein has been developed as potential probes/carriers for potential application in boron neutron capture therapy (BNCT. These silica nanoparticles were charged in situ with silylated-fluorescein fluorophores via the Stöber method and their surface was further functionalized with decaborate-triethoxysilane precursors. The resulting decaborate dye-doped silica nanoparticles were characterized by TEM, solid state NMR, DLS, nitrogen sorption, elemental analysis, and fluorescence spectroscopy.

  3. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  4. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Tridib Kumar; Yoon, Diana [University of Maryland, Department of Chemical and Biomolecular Engineering (United States); Patel, Minal; Fisher, John [University of Maryland, Fischell Department of Bioengineering (United States); Ehrman, Sheryl, E-mail: sehrman@umd.ed [University of Maryland, Department of Chemical and Biomolecular Engineering (United States)

    2010-10-15

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m{sup 2}/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  5. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    International Nuclear Information System (INIS)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-01-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m 2 /g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  6. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    Science.gov (United States)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-04-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0-5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  7. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Indresh, E-mail: vkaswal@barc.gov.in; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 PSI Villigen Switzerland (Switzerland)

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  8. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    International Nuclear Information System (INIS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-01-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4

  9. Modifications in interaction and structure of silica nanoparticle-BSA protein system in aqueous electrolyte solution

    Science.gov (United States)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS measurements have been carried out to examine the modifications in interaction and structure of anionic silica nanoparticle with anionic BSA protein in presence of an electrolyte. The phase behaviour of anionic silica nanoparticle and anionic BSA protein is governed by the protein induced depletion interaction between nanoparticles. Both nanoparticle and protein coexist individually at low protein concentrations as electrostatic repulsion dominates over the depletion interaction. However, depletion induced fractal aggregates of nanoparticles are formed at higher protein concentrations. These aggregates can be formed at much smaller protein concentration in presence of an electrolyte. We show that both the electrostatic (decrease) and depletion interaction (increase) are modified with an electrolyte. The range of the depletion interaction is found to be significantly larger than the electrostatic interaction.

  10. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  11. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  12. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  13. Preparation and Surface Modification of Silica Nanoparticles for Superhydrophopic Coating

    Directory of Open Access Journals (Sweden)

    Noor Hadi Aysa

    2017-12-01

    Full Text Available Silica  nanoparticles are well-known to be one of the multifunctional inorganic compounds which are widely used in medical applications. The aim of this study is to prepare the particles of nano silica oxide with particle size ranging from 20-25 nm. In the present study, surface modification of Silica nanoparticles was performed, and influence of modification on the structure and morphological properties was investigated. The resulting  nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscopy (AFM.  Silica nanoparticles with the average diameter of about 20 nm were modified with oleic acid, as coupling agents, in order to modify their surface properties and make them more waterproof dispersible in the organic area. Among the results is that the  surface modification of the   Silica nano-particles leads to more dispersion in the organic medium which indicates better organic synthesis.One of the results obtained,is that modified silica-nanoparticles can be used effectively in environmental and safety applications and can be used in future medical applications as wound stick that prevent water from reaching the wound and then prevent  an inflamation.

  14. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  15. Polymeric Nanocapsule from Silica Nanoparticle@Cross-linked Polymer Nanoparticles via One-Pot Approach

    Directory of Open Access Journals (Sweden)

    Shen Ruoping

    2009-01-01

    Full Text Available Abstract A facile strategy was developed here to prepare cross-linked polymeric nanocapsules (CP nanocapsules with silica nanoparticles as templates. The silica nanoparticle@cross-linked polymer nanoparticles were prepared by the encapsulation of the silica nanoparticles by the one-pot approach via surface-initiated atom transfer radical polymerization of hydroxyethyl acrylate in the presence ofN,N′-methylenebisacrylamide as a cross-linker from the initiator-modified silica nanoparticles. After the silica nanoparticle templates were etched with hydrofluoric acid, the CP nanocapsules with particle size of about 100 nm were obtained. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis and transmission electron microscopy.

  16. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  17. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles.

    Science.gov (United States)

    Jadav, Ghanshyam L; Aswal, Vinod K; Singh, Puyam S

    2010-11-01

    Silica nanoparticles produced from organically functionalized silicon alkoxide precursors were incorporated into polyamide film to produce a silica-polyamide nanocomposite membrane with enhanced properties. The dispersion of the silica nanoparticles in the nanocomposite membrane was characterized by performing small-angle neutron scattering (SANS) measurements on dilute reactant systems and dilute solution suspensions of the final product. Clear scattering of monodisperse spherical particles of 10-18 A R(g) were observed from dilute solutions of the initial reactant system. These silica nanoparticles initially reacted with diamine monomers of polyamide and subsequently were transformed into polyamide-coated silica nanoparticles; finally nanoparticle aggregates of 27-45 A R(g) were formed. The nanoparticle dispersion of the membrane as the nanosized aggregates is in corroboration with ring- or chain-like assemblies of the nanoparticles dispersed in the bulk polyamide phase as observed by transmission electron microscopy. It is demonstrated that dispersions of silica nanoparticles as the nanosized aggregates in the polyamide phase could be achieved in the nanocomposite membrane with a silica content up to about 2 wt.%. Nanocomposite membranes with higher silica loading approximately 10 wt.% lead to the formation of large aggregates of sizes over 100 A R(g) in addition to the nanosized aggregates. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  19. In vitro evaluation of cytotoxic and inflammatory properties of silica nanoparticles of different sizes in murine RAW 264.7 macrophages

    International Nuclear Information System (INIS)

    Park, Margriet V. D. Z.; Lynch, Iseult; Ramírez-García, Sonia; Dawson, Kenneth A.; Fonteyne, Liset de la; Gremmer, Eric; Slob, Wout; Briedé, Jacob J.; Elsaesser, Andreas; Howard, C. Vyvyan; Loveren, Henk van; Jong, Wim H. de

    2011-01-01

    The biological response to four well-characterized amorphous silica nanoparticles was investigated in RAW 264.7 macrophages in view of their potential application as drug carriers to sites of inflammation. All silica nanoparticles-induced cell membrane damage, reduced metabolic activity, generated ROS and released various cytokines, but to different extents. Two silica nanoparticles of 34 nm (A and B) with different zetapotentials were more cytotoxic than (aggregated) 11 and 248 nm nanoparticles, while cytokines were mostly induced by the (aggregated) 11 nm and only one of the 34 nm nanoparticles (34A). The results indicate that specific silica nanoparticles may have counterproductive effects, for example when used as carriers of anti-inflammatory drugs. The physicochemical properties determining the response of nanoparticles vary for different responses, implying that a screening approach for the safe development of nanoparticles needs to consider the role of combinations of (dynamic) physicochemical properties and needs to include multiple toxicity endpoints.

  20. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  1. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    Science.gov (United States)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  2. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhou, Xianguang [National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016 (China); Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Wang, Jiandong [Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Longjiang [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Teng, Zhaogang, E-mail: tzg@fudan.edu.cn [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Lu, Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2015-03-30

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  3. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Farda Barandeh

    Full Text Available The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.

  4. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    Science.gov (United States)

    Kumar, Rajiv; Iacobucci, Gary J.; Kuznicki, Michelle L.; Kosterman, Andrew; Bergey, Earl J.; Prasad, Paras N.; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications. PMID:22238611

  5. Toxicity of silica nanoparticles and the effect of protein corona

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Jespersen, Lars Vesterby; Wang, Jing

    2010-01-01

      The cytotoxicity of silica nanoparticles (NPs) was investigated in the human lung cell line, A549. Silica NPs of different sizes (DLS size; 16-42 nm) were used to determine appropriate dose metrics whereas the effect of the NP corona was tested by coating the NPs with bovine serum albumin (BSA......). The NPs were characterized by TEM and DLS as monodisperse and non-aggregated in solution and the NP suspensions were free of metal and endotoxin impurities as tested by ICP-MS and the LAL test. Cellular uptake and binding of the silica NPs was indirectly assessed by flow cytometry side scatter and SEM...... upon silica NP exposure. The silica NP surface area was found to be the best dose metric for predicting cytotoxicity and IL-8 release. Generally, the NPs were only cytotoxic at high concentrations and BSA-coating of the NPs significantly decreased the cytotoxicity and cellular IL-8 secretion. All...

  6. Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells.

    Science.gov (United States)

    Bertucci, Alessandro; Prasetyanto, Eko Adi; Septiadi, Dedy; Manicardi, Alex; Brognara, Eleonora; Gambari, Roberto; Corradini, Roberto; De Cola, Luisa

    2015-11-11

    Mesoporous silica nanoparticles (MSNPs), 100 nm in size, incorporating a Cy5 fluorophore within the silica framework, are synthesized and loaded with the anti-cancer drug temozolomide (TMZ), used in the treatment of gliomas. The surface of the particles is then decorated, using electrostatic interactions, with a polyarginine-peptide nucleic acid (R8-PNA) conjugate targeting the miR221 microRNA. The multi-functional nanosystem thus obtained is rapidly internalized into glioma C6 or T98G cells. The anti-miR activity of the PNA is retained, as confirmed by reverse transcription polymerase chain reaction (RT-PCR) measurements and induction of apoptosis is observed in temozolomide-resistant cell lines. The TMZ-loaded MSNPs show an enhanced pro-apoptotic effect, and the combined effect of TMZ and R8-PNA in the MSNPs shows the most effective induction of apoptosis (70.9% of apoptotic cells) thus far achieved in the temozolomide-resistant T98G cell line. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Recent progress on silica coating of nanoparticles and related nanomaterials.

    Science.gov (United States)

    Guerrero-Martínez, Andrés; Pérez-Juste, Jorge; Liz-Marzán, Luis M

    2010-03-19

    In recent years, new strategies for silica coating of inorganic nanoparticles and organic nanomaterials, which differ from the classical methodologies, have emerged at the forefront of materials science. Silica as a coating material promises an unparalleled opportunity for enhancement of colloidal properties and functions by using core-shell rational designs and profiting from its synthetic versatility. This contribution provides a brief overview of recent progress in the synthesis of silica-coated nanomaterials and their significant impact in different areas such as spectroscopy, magnetism, catalysis, and biology.

  8. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Lee S

    2013-01-01

    Full Text Available Soyoung Lee,1,* Mi-Sun Kim,1,* Dakeun Lee,2 Taeg Kyu Kwon,3 Dongwoo Khang,4 Hui-Suk Yun,5 Sang-Hyun Kim11CMRI, Laboratory of Immunotoxicology, Department of Pharmacology,School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 2Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 3Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea; 4School of Nano and Advanced Materials Science and Engineering, Gyeongsang National University, Jinju, Republic of Korea; 5Engineering Ceramics Department, Powder and Ceramics Division, Korea Institute of Materials Science, Changwon, Republic of Korea*These authors contributed equally to this workBackground: Mesoporous silica (MPS nanoparticles (NPs, which have a unique pore structure and extremely large surface area and pore volume, have received much attention because of their biomedical application potential. Using MPS NPs for biomedical devices requires the verification of their biocompatibility because the surface area of NPs is one of the most important determinants of toxicity, including the cellular uptake and immune response. We have previously reported that the cytotoxicity and inflammation potential of MPS NPs have been shown to be lower than those of general amorphous colloidal silica (Col NPs in macrophages, but the low cytotoxicity does not guarantee high biocompatibility in vivo. In this study, we compared the in vivo immunotoxicity of MPS and Col NPs in the mouse model to define the effects of pore structural conditions of silica NPs.Materials and methods: Both MPS and Col NPs (2, 20, and 50 mg/kg/day were intraperitoneally administered in female BALB/c mice for 4 weeks, and clinical toxicity, lymphocyte population, serum IgG/IgM levels, and histological changes were examined.Results: There was no overt sign of clinical toxicity in either MPS- or Col-treated mice. However, MPS NPs led to

  9. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  10. Thiol-functionalized silica colloids, grains, and membranes for irreversible adsorption of metal(oxide) nanoparticles

    NARCIS (Netherlands)

    Claesson, E.M.; Philipse, A.P.

    2007-01-01

    Thiol-functionalization is described for silica surfaces from diverging origin, including commercial silica nanoparticles and St¨ober silica as well as silica structures provided by porous glasses and novel polymer-templated silica membranes. The functionalization allows in all cases for the

  11. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  12. Synthesis and characterization of silica nanoparticles from clay

    Directory of Open Access Journals (Sweden)

    Usama Zulfiqar

    2016-03-01

    Full Text Available We report a method to synthesize silica nanoparticles from bentonite clay. A series of thermal and acid treatment processes was performed on bentonite clay to lower the alumina and increase the silica content. The obtained silica rich clay was treated in two different concentrations (10 wt% and 40 wt% with sodium hydroxide solution to form sodium silicate solutions (SSS. One type of SSS was hydrolyzed with three different concentrations (5 M, 10 M and 15 M of nitric acid in the presence of ethanol as cosolvent while the other SSS was hydrolyzed with nitric acid in the presence of three different quantities (10 ml, 20 ml and 30 ml of ethanol as cosolvent. A range of silica particle sizes from nanometer to micrometer was obtained by varying the contents of silica rich clay, HNO3, and ethanol. It was observed that the concentration of silica rich clay and HNO3 had a direct effect on the particle size. The increase in the quantity of ethanol from 10 ml to 20 ml produced bimodal particles of nanometer and micrometer size, which maintained at 30 ml. Inductively coupled plasma optical emission spectroscopy, atomic absorption spectroscopy, X-ray fluorescence, scanning electron microscopy and X-ray diffraction were utilized to characterize the clay, SSS and nanoparticles.

  13. Interaction of surface-modified silica nanoparticles with clay minerals

    Directory of Open Access Journals (Sweden)

    Cigdem Omurlu

    2016-05-01

    Full Text Available Abstract In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate, cationic (quaternary ammonium (quat, and nonionic (polyethylene glycol (PEG surfactant. We employed ultraviolet–visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  14. Radiosensitizing Silica Nanoparticles Encapsulating Docetaxel for Treatment of Prostate Cancer.

    Science.gov (United States)

    Belz, Jodi; Castilla-Ojo, Noelle; Sridhar, Srinivas; Kumar, Rajiv

    2017-01-01

    The applications of nanoparticles in oncology include enhanced drug delivery, efficient tumor targeting, treatment monitoring, and diagnostics. The "theranostic properties" associated with nanoparticles have shown enhanced delivery of chemotherapeutic drugs with superior imaging capabilities and minimal toxicities. In conventional chemotherapy, only a fraction of the administered drug reaches the tumor site or cancer cells. For successful translation of these formulations, it is imperative to evaluate the design and properties of these nanoparticles. Here, we describe the design of ultra-small silica nanoparticles to encapsulate a radiosensitizing drug for combined chemoradiation therapy. The small size of nanoparticles allows for better dispersion and uptake of the drug within the highly vascularized tumor tissue. Silica nanoparticles are synthesized using an oil-in-water microemulsion method. The microemulsion method provides a robust synthetic route in which the inner hydrophobic core is used to encapsulate chemotherapy drug, docetaxel while the outer hydrophilic region provides dispersibility of the synthesized nanoparticles in an aqueous environment. Docetaxel is commonly used for treatment of resistant or metastatic prostate cancer, and is known to have radiosensitizing properties. Here, we describe a systematic approach for synthesizing these theranostic nanoparticles for application in prostate cancer.

  15. Silica-supported Preyssler Nanoparticles as New Catalysts in the ...

    African Journals Online (AJOL)

    A new and efficient method for the preparation of 4(3H)-quinazolinones from the condensation of anthranilic acid, orthoester and substituted anilines, in the presence of catalytic amounts of silica-supported Preyssler nanoparticles is reported. The catalyst performs very well in comparison with other catalysts reported before.

  16. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  17. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  18. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Seyed Reza Akherati Sany

    2017-04-01

    Full Text Available An epoxy resin was modified by silica nanoparticles and cured with an anhydride. The particles with different batches of 12, 20, and 40 nm sizes were each distributed into the epoxy resin ultrasonically. Electron microscopy images showed that the silica particles were well dispersed throughout the resin. Tensile test results showed that Young’s modulus and tensile strength increased with the volume fraction and surface area of the silica particles. The simultaneous use of two average sizes of 20 and 40 nm diameter silica particles still increased these mechanical properties but other combinations of silica particles were unsuccessful. A three-point bending test on each pre-cracked specimen was performed to measure the mode I fracture toughness energy. The fracture energy increased from 283 J/m2 for the unmodified epoxy to about 740 J/m2 for the epoxy with 4.5 wt% of 12 nm diameter silica nanoparticles. The fracture energy of smaller particles was greater because of their higher surface to volume ratio. The fracture energy results showed also that the combined nanoparticles has a synergic effect on the fracture toughness of nanocomposites. Simultaneous use of 10 and 20 nm particles increased the fracture energy to about 770 J/m2. Finally, crack-opening displacement was calculated and found to be in the range of several micrometers which was much larger than the sizes of particles studied. Thus, the toughening mechanisms of crack pinning and crack deflection have a negligible effect on improvement of toughness, nevertheless, the plastic deformation and plastic void growth are dominant mechanisms in epoxy toughening by nanoparticles.

  19. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells

    Directory of Open Access Journals (Sweden)

    Lu X

    2011-09-01

    Full Text Available Xun Lu2,3, Jiangchao Qian1, Huanjun Zhou2,3, Qi Gan2,3, Wei Tang1, Jingxiong Lu3, Yuan Yuan1,2, Changsheng Liu1–31State Key Laboratory of Bioreactor Engineering, 2Key Laboratory for Ultrafine Materials of Ministry of Education, 3Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of ChinaBackground: Silica nanoparticles have been discovered to exert cytotoxicity and induce apoptosis in normal human cells. However, until now, few studies have investigated the cytotoxicity of silica nanoparticles in tumor cells.Methods: This study investigated the cytotoxicity of 7–50 nm silica nanoparticles in human HepG2 hepatoma cells, using normal human L-02 hepatocytes as a control. Cell nucleus morphology changes, cellular uptake, and expression of procaspase-9, p53, Bcl-2, and Bax, as well as the activity of caspase-3, and intracellular reactive oxygen species and glutathione levels in the silica nanoparticle-treated cells, were analyzed.Results: The antitumor activity of the silica nanoparticles was closely related to particle size, and the antiproliferation activity decreased in the order of 20 nm > 7 nm > 50 nm. The silica nanoparticles were also cytotoxic in a dose- and time-dependent manner. However, the silica nanoparticles showed only slight toxicity in the L-02 control cells, Moreover, in HepG2 cells, oxidative stress and apoptosis were induced after exposure to 7–20 nm silica nanoparticles. Expression of p53 and caspase-3 increased, and expression of Bcl-2 and procaspase-9 decreased in a dose-dependent manner, whereas the expression of Bax was not significantly changed.Conclusion: A mitochondrial-dependent pathway triggered by oxidative stress mediated by reactive oxygen species may be involved in apoptosis induced by silica nanoparticles, and hence cytotoxicity in human HepG2 hepatic cancer cells.Keywords: silica nanoparticles

  20. Porous silica nanoparticles as carrier for curcumin delivery

    Science.gov (United States)

    Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby

    2018-04-01

    Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.

  1. Magnetic heating of silica-coated manganese ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Yousaf; Bae, Hongsub [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of)

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C. - Highlights: • Controllable heating at 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field.

  2. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  3. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  4. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  5. Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach

    Directory of Open Access Journals (Sweden)

    Xiao Xiangheng

    2009-01-01

    Full Text Available Abstract The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm with high surface area by using cetyltrimethylammmonium bromide (CTAB and sodium bis(2-ethylhexyl sulfosuccinate (AOT as co-templates and subsequent annealing treatment. When the hollow magnetite nanoparticles were introduced into the reaction, the ultrafine magnetic hollow silica nanoparticles with the diameter of ca. 32 nm were obtained correspondingly. Transmission electron microscopy studies confirm that the nanoparticles are composed of amorphous silica and that the majority of them are hollow.

  6. Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach.

    Science.gov (United States)

    Wu, Wei; Xiao, Xiangheng; Zhang, Shaofeng; Fan, Lixia; Peng, Tangchao; Ren, Feng; Jiang, Changzhong

    2009-10-10

    The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates and subsequent annealing treatment. When the hollow magnetite nanoparticles were introduced into the reaction, the ultrafine magnetic hollow silica nanoparticles with the diameter of ca. 32 nm were obtained correspondingly. Transmission electron microscopy studies confirm that the nanoparticles are composed of amorphous silica and that the majority of them are hollow.

  7. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    OpenAIRE

    González-Castillo, JR; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-01-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redo...

  8. Fluorescent Silica Nanoparticles in the Detection and Control of the Growth of Pathogen

    International Nuclear Information System (INIS)

    Chitra, K.; Annadurai, G.

    2013-01-01

    In this present study the bio conjugated fluorescent silica nanoparticles give an efficient fluorescent-based immunoassay for the detection of pathogen. The synthesized silica nanoparticles were poly dispersed and the size of the silica nanoparticles was in the range of 114-164 nm. The energy dispersive X-ray spectrophotometer showed the presence of silica at 1.8 keV and the selected area diffractometer showed amorphous nature of silica nanoparticles. The FTIR spectrum confirmed the attachment of dye and carboxyl group onto the silica nanoparticles surface. The fluorescent silica nanoparticles showed highly efficient fluorescence and the fluorescent emission of silica nanoparticles occurred at 536 nm. The SEM image showed the aggregation of nanoparticles and bacteria. The growth of the pathogenic E. coli was controlled using silica nanoparticles; therefore silica nanoparticles could be used in food packaging material, biomedical material, and so forth. This work provides a rapid, simple, and accurate method for the detection of pathogen using fluorescent-based immunoassay.

  9. Europium polyoxometalates encapsulated in silica nanoparticles - characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Cristina S.; Granadeiro, Carlos M.; Cunha-Silva, Luis; Eaton, Peter; Balula, Salete S.; Pereira, Eulalia [REQUIMTE/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto (Portugal); Ananias, Duarte [CICECO, Departamento de Quimica, Universidade de Aveiro (Portugal); Gago, Sandra [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Feio, Gabriel [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Carvalho, Patricia A. [ICEMS/Departamento de Bioengenharia, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-06-15

    The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW{sub 11}){sub x} (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, {sup 31}P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW{sub 11}){sub x} rate at SiO{sub 2} nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  11. Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles

    Science.gov (United States)

    Higashisaka, Kazuma; Yoshioka, Yasuo; Yamashita, Kohei; Morishita, Yuki; Pan, Huiyan; Ogura, Toshinobu; Nagano, Takashi; Kunieda, Akiyoshi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-10-01

    Practical uses of nanomaterials are rapidly spreading to a wide variety of fields. However, potential harmful effects of nanomaterials are raising concerns about their safety. Therefore, it is important that a risk assessment system is developed so that the safety of nanomaterials can be evaluated or predicted. Here, we attempted to identify novel biomarkers of nanomaterial-induced health effects by a comprehensive screen of plasma proteins using two-dimensional differential in gel electrophoresis (2D-DIGE) analysis. Initially, we used 2D-DIGE to analyze changes in the level of plasma proteins in mice after intravenous injection via tail veins of 0.8 mg/mouse silica nanoparticles with diameters of 70 nm (nSP70) or saline as controls. By quantitative image analysis, protein spots representing >2.0-fold alteration in expression were found and identified by mass spectrometry. Among these proteins, we focused on hemopexin as a potential biomarker. The levels of hemopexin in the plasma increased as the silica particle size decreased. In addition, the production of hemopexin depended on the characteristics of the nanomaterials. These results suggested that hemopexin could be an additional biomarker for analyzing the biological responses associated with exposure to silica nanoparticles. We believe that this study will contribute to the development of biomarkers to ensure the safety of silica nanoparticles.

  12. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    Science.gov (United States)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  13. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  14. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Heidegger, Simon; Gössl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2016-01-14

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.

  15. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    Science.gov (United States)

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  16. Interactions between Food Additive Silica Nanoparticles and Food Matrices

    Directory of Open Access Journals (Sweden)

    Mi-Ran Go

    2017-06-01

    Full Text Available Nanoparticles (NPs have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food

  17. Fabrication, Light Emission, and Magnetism of Silica Nanoparticles Hybridized with AIE Luminogens and Inorganic Nanostructures

    Science.gov (United States)

    Faisal, Mahtab

    Much research efforts have been devoted in developing new synthetic approaches for fluorescent silica nanoparticles (FSNPs) due to their potential high-technological applications. However, light emissions from most of the FSNPs prepared so far have been rather weak. This is due to the emission quenching caused by the aggregation of fluorophores in the solid state. We have observed a novel phenomenon of aggregation-induced emission (AIE): a series of propeller-shaped molecules such as tetraphenylethene (TPE) and silole are induced to emit efficiently by aggregate formation. Thus, they are ideal fluorophors for the construction of FSNPs and my thesis work focuses on the synthesis of silica nanoparticles containing these luminogens and magnetic nanostructures. Highly emissive FSNPs with core-shell structures are fabricated by surfactant-free sol-gel reactions of tetraphenylethene- (TPE) and silole-functionalized siloxanes followed by the reactions with tetraethoxysilane. The FSNPs are uniformly sized, surface-charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45--295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non-emissive, the FSNPs emit strong visible lights, thanks to the novel aggregation-induced emission characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells. Applying the same tool in the presence of citrate-coated magnetite nanoparticles, uniform magnetic fluorescent silica nanoparticles (MFSNPs) with smooth surfaces are fabricated. These particles exhibit appreciable surface charges and hence good colloidal stability. They are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of a suspension of MFSNPs in ethanol gives strong blue and green emissions. The MFSNPs can selectively stain the cytoplasmic regions of the living cells

  18. Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach

    OpenAIRE

    Wu, Wei; Xiao, Xiangheng; Zhang, Shaofeng; Fan, Lixia; Peng, Tangchao; Ren, Feng; Jiang, Changzhong

    2009-01-01

    Abstract The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates...

  19. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  20. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  1. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In Ho; Jung, Chong Hun; Yoon, Suk Bon; Kim, Chorong; Jung, Jun Young; Park, Sang Yoon; Moon, Jei Kwon; Choi, Wang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid.

  2. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  3. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications

    Directory of Open Access Journals (Sweden)

    Diego Bracho

    2012-01-01

    Full Text Available Synthetic silica nanospheres of 20 and 100 nm diameter were produced via the sol-gel method to be used as filler in polypropylene (PP composites. Modification of the silica surface was further performed by reaction with organic chlorosilanes in order to improve the particles interaction with the hydrophobic polyolefin matrix. These nanoparticles were characterized using transmission electronic microscopy (TEM, elemental analysis, thermogravimetric analysis (TGA, and solid-state nuclear magnetic resonance (NMR spectroscopy. For unmodified silica, it was found that the 20 nm particles have a greater effect on both mechanical and barrier properties of the polymeric composite. In particular, at 30 wt%, Young's modulus increases by 70%, whereas water vapor permeability (WVP increases by a factor of 6. Surface modification of the 100 nm particles doubles the value of the composite breaking strain compared to unmodified particles without affecting Young's modulus, while 20 nm modified particles presented a slight increase on both Young's modulus and breaking strain. Modified 100 nm particles showed a higher WVP compared to the unmodified particles, probably due to interparticle condensation during the modification step. Our results show that the addition of nanoparticles on the composite properties depends on both particle size and surface modifications.

  4. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook

    Directory of Open Access Journals (Sweden)

    Song Y

    2016-12-01

    Full Text Available Yuanhui Song, Yihong Li, Qien Xu, Zhe Liu Wenzhou Institute of Biomaterials and Engineering (WIBE, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China Abstract: With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment. Keywords: mesoporous silica nanoparticle, drug delivery system, controlled release, stimuli-responsive, chemotherapy

  5. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hak-Sung Jung

    2012-01-01

    Full Text Available Aminofunctional trialkoxysilanes such as aminopropyltrimethoxysilane (APTMS and (3-trimethoxysilylpropyldiethylenetriamine (DETAS were employed as a surface modification molecule for generating monolayer modification on the surface of silica (SiO2 nanoparticles. We were able to quantitatively analyze the number of amine functional groups on the modified SiO2 nanoparticles by acid-base back titration method and determine the effective number of amine functional groups for the successive chemical reaction by absorption measurements after treating with fluorescent rhodamine B isothiocyanate (RITC molecules. The numbers of amine sites measured by back titration were 2.7 and 7.7 ea/nm2 for SiO2-APTMS and SiO2-DETAS, respectively, while the numbers of effective amine sites measured by absorption calibration were about one fifth of the total amine sites, namely, 0.44 and 1.3 ea/nm2 for SiO2-APTMS(RITC and SiO2-DETAS(RITC, respectively. Furthermore, it was confirmed that the reactivity of amino groups on the surface-modified silica nanoparticles could be maintained in ethanol for more than 1.5 months without showing any significant differences in the reactivity.

  6. Observation of adsorption versus depletion interaction for charged silica nanoparticles in the presence of non-ionic surfactant.

    Science.gov (United States)

    Ray, D; Aswal, V K

    2014-01-22

    The interaction of anionic silica nanoparticles (Ludox LS30) with non-ionic surfactant decaethylene glycol monododecylether (C12E10) without and in the presence of an electrolyte has been studied by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The measurements have been carried out for fixed concentrations of nanoparticles (1 wt%), surfactant (1 wt%) and electrolyte (0.1 M NaCl). In SANS, each of these nanoparticle-surfactant systems has been examined for three different contrast conditions where both (nanoparticle and surfactant) as well as individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-surfactant systems behave very differently without and with the electrolyte. In the absence of salt, the C12E10 micelles form micelle decorated core-shell structures by adsorbing on the nanoparticles. On the other hand, the adsorption of surfactant micelles on nanoparticle is completely suppressed in the presence of salt, leading to the depletion-induced aggregation of nanoparticles. These results have also been corroborated by the DLS data. We thus show that the ionic strength of solution can be used to tune the interaction of ionic silica nanoparticles with non-ionic surfactant.

  7. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pore fabrication in various silica-based nanoparticles by controlled etching

    KAUST Repository

    Zhao, Lan

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.

  9. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Hashmath I., E-mail: hashmath.i@deakin.edu.au [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Yi, Zhifeng [Deakin University, Institute for Frontier Materials (Australia); Rookes, James E. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Kong, Lingxue X. [Deakin University, Institute for Frontier Materials (Australia); Cahill, David M. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia)

    2013-06-15

    We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

  10. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Indresh, E-mail: iykumarindresh288@gmail.com; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2016-05-23

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  11. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    Science.gov (United States)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  12. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    International Nuclear Information System (INIS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-01-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  13. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation

    NARCIS (Netherlands)

    van Schooneveld, Matti M.; Vucic, Esad; Koole, Rolf; Zhou, Yu; Stocks, Joanne; Cormode, David P.; Tang, Cheuk Y.; Gordon, Ronald E.; Nicolay, Klaas; Meijerink, Andries; Fayad, Zahi A.; Mulder, Willem J. M.

    2008-01-01

    Silica is a promising carrier material for nanoparticle-facilitated drug delivery, gene therapy, and molecular imaging. Understanding of their pharmacokinetics is important to resolve bioapplicability issues. Here we report an extensive study on bare and lipid-coated silica nanoparticles in mice.

  14. Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles

    Science.gov (United States)

    Xu, Jiarong; Zhang, Yu; Zhao, Yanbao; Zou, Xueyan

    2017-09-01

    N-halamine decorated mesoporous silica nanoparticles (mSiO2/halamine NPs) were prepared by coating mSiO2 NPs with poly (1-allylhydantoin-co-methyl methacrylate) (AH-co-MMA) by the aid of the radical polymerization, followed by chlorination treatment. The sterilizing effect on the bacterial strain is investigated by incubating Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results indicated that the mSiO2/halamine NPs had excellent antibacterial activity and no significant change occurred in antibacterial efficiency after five recycle experiments.

  15. Fractal Aggregation in Silica Nanoparticle and Surfactant Composites

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.

    2011-07-01

    The role of cationic surfactant on particle aggregation of anionic silica nanoparticles has been studied by small-angle neutron scattering (SANS). We show that the aggregation is characterized by the fractal structure. The fractal dimension is found to be same irrespective of varying the surfactant and its concentration. These results are explained on the basis of that the aggregation of particles mediated by the oppositely charged surfactant micelles between them and governed by the diffusion limited aggregation. Both adsorbed and free micelles coexists and the number of adsorbed micelles does not change with varying surfactant concentration however decreases with the increase in the size of the micelle.

  16. Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy.

    Science.gov (United States)

    Feng, Xiaohui; Zhang, Shaokun; Lou, Xia

    2013-07-01

    Photosensitive nanoparticles are useful in developing phototherapeutic agents for targeted cancer therapy. In this paper, core-shell structured titanium dioxide-silica (TiO2-SiO2) nanoparticles, with varying shell thickness, were synthesized. The influence of the silica shell thickness on the photoreactivity, cytotoxicity and photo-killing ability of the TiO2 nanoparticles was investigated. Silica coating reduced the photocatalytic reactivity but improved the cytocompatibility of the TiO2 nanoparticles. This effect was amplified with increasing silica shell thickness. When the silica thickness was about 5.5 nm, the coated TiO2 not only retained a high level photodynamic reactivity, comparable to the non-coated TiO2 nanoparticles, but also demonstrated an improved cell compatibility and effective photo-killing ability upon the mouse fibroblast cells (L929). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Potential of nanoparticles for allergen-specific immunotherapy - use of silica nanoparticles as vaccination platform.

    Science.gov (United States)

    Scheiblhofer, Sandra; Machado, Yoan; Feinle, Andrea; Thalhamer, Josef; Hüsing, Nicola; Weiss, Richard

    2016-12-01

    Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.

  18. The selective interaction between silica nanoparticles and enzymes from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Xiaotian Sun

    Full Text Available Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the interaction mode between the nano-particles and proteins. In this study, we investigate the orientation and adsorption between several enzymes (cytochrome c, RNase A, lysozyme and 4 nm/11 nm silica nanoparticles (SNPs by using molecular dynamics (MD simulation. Our results show that three enzymes are adsorbed onto the surfaces of both 4 nm and 11 nm SNPs during our MD simulations and the small SNPs induce greater structural stabilization. The active site of cytochrome c is far away from the surface of 4 nm SNPs, while it is adsorbed onto the surface of 11 nm SNPs. We also explore the influences of different groups (-OH, -COOH, -NH2 and CH3 coated onto silica nanoparticles, which show significantly different impacts. Our molecular dynamics results indicate the selective interaction between silicon nanoparticles and enzymes, which is consistent with experimental results. Our study provides useful guides for designing/modifying nanomaterials to interact with proteins for their bio-applications.

  19. Safety assessment of silica and zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    An SSA

    2014-12-01

    Full Text Available Seong Soo A An,1 Meyoung-Kon Kim2 1Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, Gyeonggi, Korea; 2Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, KoreaThe current volume is a special issue focusing on a safety assessment of nanoparticles, from their physicochemical properties to government regulations. It features twenty-five papers, discussing general issues with the possible harmfulness of two different types of nanoparticles (NPs; silica (SiO2 and zinc oxide (ZnO. Six papers describe detailed analyses from 90-day repeated administrations of NPs, and finally there is a series of technical reports, formatted by the National Toxicology Program (NTP, dealing with safety issues regarding international cooperation with the OECD (Organisation for Economic Co-operation and Development Working Party on Manufactured Nanomaterials (WPMN.

  20. Synthesis and characterization of silica-coated nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R. V., E-mail: robertavia@gmail.com; Pereira, I. L. S.; Cavalcante, L. C. D. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Gamarra, L. F. [Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE (Brazil); Carneiro, S. M. [Instituto Butantan (Brazil); Amaro, E. [Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE (Brazil); Fabris, J. D.; Domingues, R. Z. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Andrade, A. L., E-mail: angelala01@hotmail.com [Universidade Federal de Minas Gerais, Departamento de Quimica/s10 (Brazil)

    2010-01-15

    Magnetic nanoparticles coated with silica have been subjected of extensive, and, in many aspects, also intensive investigations because of their potential application in different technological fields, particularly in biomedicine. This work was conceived and is being carried out in two main parts: (1) synthesis of the ferrimagnetic nanoparticles, specifically magnetite, and (2) coating these particles with tetraethyl orthosilicate (TEOS). The nanosized magnetite sample was prepared by the reduction-precipitation and the nanomagnetite particles were coated by the sol-gel method, based on the hydrolysis of tetraethyl orthosilicate (TEOS). The so obtained materials were characterized with powder X-ray diffraction (XRD), FTIR spectroscopy, saturation magnetization measurements, and {sup 57}Fe Moessbauer spectroscopy at room temperature.

  1. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications.

    Science.gov (United States)

    Picco, Agustin S; Ferreira, Larissa F; Liberato, Michelle S; Mondo, Gabriela B; Cardoso, Mateus B

    2018-01-01

    To study freeze-drying of silica nanoparticles (SiO 2 NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage. SiO 2 NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO 2 NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants. Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO 2 NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage. Carbohydrates can be used during SiO 2 NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.

  2. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Giret, Simon; Wong Chi Man, Michel; Carcel, Carole

    2015-09-28

    The ever-growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multifunctional EuYVO4 nanoparticles coated with mesoporous silica

    International Nuclear Information System (INIS)

    Justino, Larissa G.; Nigoghossian, Karina; Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M.; Ribeiro, Sidney J.L.; Caiut, José Maurício A.

    2016-01-01

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO 4 nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO 4 :Eu 3+ nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  4. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles

    Science.gov (United States)

    Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong

    2017-06-01

    Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.

  5. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    Science.gov (United States)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  6. Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2012-06-26

    The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles.

  7. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery

    Science.gov (United States)

    Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2015-12-01

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized

  8. Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials.

    Science.gov (United States)

    Kaizer, M R; Almeida, J R; Gonçalves, A P R; Zhang, Y; Cava, S S; Moraes, R R

    2016-11-01

    This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al 2 O 3 , TiO 2 , and ZrO 2 ). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials.

  9. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel

    Directory of Open Access Journals (Sweden)

    Khosravian P

    2016-12-01

    Full Text Available Pegah Khosravian,1 Mehdi Shafiee Ardestani,2 Mehdi Khoobi,3 Seyed Naser Ostad,4 Farid Abedin Dorkoosh,1 Hamid Akbari Javar,1,* Massoud Amanlou5,6,* 1Department of Pharmaceutics, 2Department of Radiopharmacy, 3Department of Pharmaceutical Biomaterials, 4Department of Pharmacology and Toxicology, 5Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, 6Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran *These authors contributed equally to this work Abstract: Mesoporous silica nanoparticles (MSNs are known as carriers with high loading capacity and large functionalizable surface area for target-directed delivery. In this study, a series of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles (DTX/MSN-FA or DTX/MSN-Met with large pores and amine groups at inner pore surface properties were prepared. The results showed that the MSNs were successfully synthesized, having good pay load and pH-sensitive drug release kinetics. The cellular investigation on MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice proved that bare MSN-NH2 are mostly accumulated in the liver but MSN-FA or MSN-Met are more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug delivery for breast cancer. Keywords: targeted delivery, mesoporous silica nanoparticle, folic acid, methionine, docetaxel

  10. Preparation of Silica Nanoparticles and Its Beneficial Role in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    S. Ahalawat

    2011-07-01

    Full Text Available Spherical silica nanoparticles (n‐SiO2 with controllable size have been synthesized using tetraethoxysilane as starting material and ethanol as solvent by sol‐gel method. Morphology and size of the particles was controlled through surfactants. Sorbitan monolaurate, sorbitain monopalmitate and sorbitain monostearate produced silica nanoparticles of varying sizes (80‐150 nm, indicating the effect of chain length of the surfactant. Increase in chain length of non‐ionic surfactant resulted in decreasing particle size of silica nanoparticles. Further, the size of silica particles was also controlled using NH3 as base catalyst. These silica nanoparticles were incorporated into cement paste and their role in accelerating the cementitious reactions was investigated. Addition of silica nanoparticles into cement paste improved the microstructure of the paste and calcium leaching is significantly reduced as n‐SiO2 reacts with calcium hydroxide and form additional calcium‐ silicate‐hydrate (C‐S‐H gel. It was found that calcium hydroxide content in silica nanoparticles incorporated cement paste reduced ~89% at 1 day and up to ~60% at 28 days of hydration process. Synthesized silica particles and cement paste samples were characterized using scanning electron microscopy (SEM, powder X‐ray diffraction (XRD, infrared spectroscopy (IR and thermogravimetric analysis (TGA.

  11. Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application

    Science.gov (United States)

    Peedikakkandy, Lekha; Kalita, Laksheswar; Kavle, Pravin; Kadam, Ankur; Gujar, Vikas; Arcot, Mahesh; Bhargava, Parag

    2015-12-01

    This paper describes synthesis of spherical and highly mono-dispersed ceria coated silica nanoparticles of size ∼70-80 nm for application as abrasive particles in Chemical Mechanical Planarization (CMP) process. Core silica nanoparticles were initially synthesized using micro-emulsion method. Ceria coating on these ultrafine and spherical silica nanoparticles was achieved using controlled chemical precipitation method. Study of various parameters influencing the formation of ceria coated silica nanoparticles of size less than 100 nm has been undertaken and reported. Ceria coating over silica nanoparticles was varied by controlling the reaction temperature, pH and precursor concentrations. Characterization studies using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Energy Dispersive X-ray analysis show formation of crystalline CeO2 coating of ∼10 nm thickness over silica with spherical morphology and particle size slurry of ceria coated silica abrasive was prepared and employed for polishing of oxide and nitride films on silicon substrates. Polished films were studied using ellipsometry and an improvement in SiO2:SiN selective removal rates up to 12 was observed using 1 wt% ceria coated silica nanoparticles slurry.

  12. Strain induced anisotropies in silica polydimethylsiloxane composites.

    Science.gov (United States)

    Schneider, G J; Göritz, D

    2010-07-14

    Structural changes of silica in polydimethylsiloxane rubber induced by external forces were studied by means of small-angle X-ray scattering experiments. The silica fraction varies from 9 up to 23 vol% and the elongation ratio from 1 to 3. Within the q-range of 0.02 nm(-1)elliptic. A model independent analysis of the intensity as a function of the q-vector perpendicular and parallel to the deformation axis revealed that the microscopic cluster size is systematically increased by the macroscopic external deformation. In particular, the deformation ratio at the microscopic and the macroscopic length scale is very similar. The mass fractal dimension, as obtained by the slope of the scattering curve, increases significantly with growing deformation ratio, but is the same in vertical and horizontal directions. A simple relation derived for the crossover from self-similar to self-affine fractals can be used to relate the cluster sizes perpendicular and parallel to the deformation and the mass fractal dimension. By that means, it is demonstrated that the mean number of particles within each aggregate is constant, although the rubber was stretched up to a factor of 3.

  13. Observation of adsorption versus depletion interaction for charged silica nanoparticles in the presence of non-ionic surfactant

    International Nuclear Information System (INIS)

    Ray, D; Aswal, V K

    2014-01-01

    The interaction of anionic silica nanoparticles (Ludox LS30) with non-ionic surfactant decaethylene glycol monododecylether (C12E10) without and in the presence of an electrolyte has been studied by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The measurements have been carried out for fixed concentrations of nanoparticles (1 wt%), surfactant (1 wt%) and electrolyte (0.1 M NaCl). In SANS, each of these nanoparticle–surfactant systems has been examined for three different contrast conditions where both (nanoparticle and surfactant) as well as individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle–surfactant systems behave very differently without and with the electrolyte. In the absence of salt, the C12E10 micelles form micelle decorated core–shell structures by adsorbing on the nanoparticles. On the other hand, the adsorption of surfactant micelles on nanoparticle is completely suppressed in the presence of salt, leading to the depletion-induced aggregation of nanoparticles. These results have also been corroborated by the DLS data. We thus show that the ionic strength of solution can be used to tune the interaction of ionic silica nanoparticles with non-ionic surfactant. (paper)

  14. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride.

    Science.gov (United States)

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P

    2017-05-24

    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  15. Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants.

    Science.gov (United States)

    Zhao, Pengyue; Cao, Lidong; Ma, Dukang; Zhou, Zhaolu; Huang, Qiliang; Pan, Canping

    2017-05-16

    Mesoporous silica nanoparticles are used as pesticide carries in plants, which has been considered as a novel method to reduce the indiscriminate use of conventional pesticides. In the present work, mesoporous silica nanoparticles with particle diameters of 200-300 nm were synthesized in order to obtain pyrimethanil-loaded nanoparticles. The microstructure of the nanoparticles was observed by scanning electron microscopy. The loading content of pyrimethanil-loaded nanoparticles was investigated. After treatment on cucumber leaves, the concentrations of pyrimethanil were determined in different parts of cucumber over a period of 48 days using high performance liquid chromatography tandem mass spectrometry. It was shown that the pyrimethanil-loaded mesoporous silica nanoparticles might be more conducive to acropetal, rather than basipetal, uptake, and the dosage had almost no effect on the distribution and dissipation rate in cucumber plants. The application of the pesticide-loaded nanoparticles in leaves had a low risk of pyrimethanil accumulating in the edible part of the plant.

  16. Reducing ZnO nanoparticles toxicity through silica coating

    Directory of Open Access Journals (Sweden)

    Sing Ling Chia

    2016-10-01

    Full Text Available ZnO NPs have good antimicrobial activity that can be utilized as agents to prevent harmful microorganism growth in food. However, the use of ZnO NPs as food additive is limited by the perceived high toxicity of ZnO NPs in many earlier toxicity studies. In this study, surface modification by silica coating was used to reduce the toxicity of ZnO NPs by significantly reducing the dissolution of the core ZnO NPs. To more accurately recapitulate the scenario of ingested ZnO NPs, we tested our as synthesized ZnO NPs in ingestion fluids (synthetic saliva and synthetic gastric juice to determine the possible forms of ZnO NPs in digestive system before exposing the products to colorectal cell lines. The results showed that silica coating is highly effective in reducing toxicity of ZnO NPs through prevention of the dissociation of ZnO NPs to zinc ions in both neutral and acidic condition. The silica coating however did not alter the desired antimicrobial activity of ZnO NPs to E. coli and S. aureus. Thus, silica coating offered a potential solution to improve the biocompatibility of ZnO NPs for applications such as antimicrobial agent in foods or food related products like food packaging. Nevertheless, caution remains that high concentration of silica coated ZnO NPs can still induce undesirable cytotoxicity to mammalian gut cells. This study indicated that upstream safer-by-design philosophy in nanotechnology can be very helpful in a product development.

  17. Ostwald Ripening of Platinum Nanoparticles Confined in a Carbon Nanotube/Silica-Templated Cylindrical Space

    Directory of Open Access Journals (Sweden)

    Cintia Mateo-Mateo

    2012-01-01

    Full Text Available Sintering of nanoparticles mediated by an Ostwald ripening mechanism is generally assessed examining the final particle size distributions. Based on this methodology, a general approach for depositing platinum nanoparticles onto carbon nanotubes in solution has been employed in order to evaluate the sintering process of these metallic nanoparticles at increasing temperatures in a carbon nanotube/silica-templated confined space.

  18. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  19. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    Science.gov (United States)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  20. Theoretical Insight into Dispersion of Silica Nanoparticles in Polymer Melts.

    Science.gov (United States)

    Wei, Zhaoyang; Hou, Yaqi; Ning, Nanying; Zhang, Liqun; Tian, Ming; Mi, Jianguo

    2015-07-30

    Silica nanoparticles dispersed in polystyrene, poly(methyl methacrylate), and poly(ethylene oxide) melts have been investigated using a density functional approach. The polymers are regarded as coarse-grained semiflexible chains, and the segment sizes are represented by their Kuhn lengths. The particle-particle and particle-polymer interactions are calculated with the Hamaker theory to reflect the relationship between particles and polymer melts. The effects of particle volume fraction and size on the particle dispersion have been quantitatively determined to evaluate their dispersion/aggregation behavior in these polymer melts. It is shown that theoretical predictions are generally in good agreement with the corresponding experimental results, providing the reasonable verification of particle dispersion/agglomeration and polymer depletion.

  1. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-04-07

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.

  2. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  3. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells

    Science.gov (United States)

    Morelli, Catia; Maris, Pamela; Sisci, Diego; Perrotta, Enrico; Brunelli, Elvira; Perrotta, Ida; Panno, Maria Luisa; Tagarelli, Antonio; Versace, Carlo; Casula, Maria Francesca; Testa, Flaviano; Andò, Sebastiano; Nagy, Janos B.; Pasqua, Luigi

    2011-08-01

    Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae

  4. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  5. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  6. Bioactive silica nanoparticles reverse age-associated bone loss in mice.

    Science.gov (United States)

    Weitzmann, M Neale; Ha, Shin-Woo; Vikulina, Tatyana; Roser-Page, Susanne; Lee, Jin-Kyu; Beck, George R

    2015-05-01

    We recently reported that in vitro, engineered 50nm spherical silica nanoparticles promote the differentiation and activity of bone building osteoblasts but suppress bone-resorbing osteoclasts. Furthermore, these nanoparticles promote bone accretion in young mice in vivo. We have now investigated the capacity of these nanoparticles to reverse bone loss in aged mice, a model of human senile osteoporosis. Aged mice received nanoparticles weekly and bone mineral density (BMD), bone structure, and bone turnover were quantified. Our data revealed a significant increase in BMD, bone volume, and biochemical markers of bone formation. Biochemical and histological examinations failed to identify any abnormalities caused by nanoparticle administration. Our studies demonstrate that silica nanoparticles effectively blunt and reverse age-associated bone loss in mice by a mechanism involving promotion of bone formation. The data suggest that osteogenic silica nanoparticles may be a safe and effective therapeutic for counteracting age-associated bone loss. Osteoporosis poses a significant problem in the society. Based on their previous in-vitro findings, the authors' group investigated the effects of spherical silica nanoparticles in reversing bone loss in a mouse model of osteoporosis. The results showed that intra-peritoneal injections of silica nanoparticles could increase bone mineral density, with little observed toxic side effects. This novel method may prove important in future therapy for combating osteoporosis. Published by Elsevier Inc.

  7. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Science.gov (United States)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-09-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil-water interface properties and oil recovery is examined. Oil-water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  8. Breakable mesoporous silica nanoparticles for targeted drug delivery

    Science.gov (United States)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  9. Optical properties of silica-coated Y2O3:Er,Yb nanoparticles in the presence of polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Fujii, Kunio; Kitamoto, Yoshitaka; Hara, Masahiko; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    The optical properties of polyvinylpyrrolidone (PVP)-adsorbed and silica-coated Y 2 O 3 :Er,Yb nanoparticles produced by using PVP were studied for potential bio-applications of upconversion nanoparticles. We utilized PVP to better disperse Y 2 O 3 :Er,Yb nanoparticles in solution and to prepare silica-coated Y 2 O 3 :Er,Yb nanoparticles. The fluorescent intensity of PVP-adsorbed Y 2 O 3 :Er,Yb nanoparticles was 1.25 times higher than non-adsorbed Y 2 O 3 :Er,Yb nanoparticles, which was probably due to surface defects in Y 2 O 3 :Er,Yb nanoparticles being covered by the PVP. However, the fluorescent intensity of silica-coated Y 2 O 3 :Er,Yb nanoparticles decreased as silica layer thickness increased. This could be ascribed to the higher vibrational energy of PVP than that of the silica structure. Therefore, the optimum silica layer thickness is important in bio-applications to avoid deterioration of the optical properties of Y 2 O 3 :Er,Yb nanoparticles. - Highlights: • We prepared the silica-coated upconversion nanoparticles by using PVP. • We showed that PVP played an important role in coating nanoparticles. • PL intensity of silica-coated nanoparticles decreased as silica layer thickness increased

  10. Ultraviolet-light-induced processes in germanium-doped silica

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2001-01-01

    A model is presented for the interaction of ultraviolet (UV) light with germanium-doped silica glass. It is assumed that germanium sites work as gates for transferring the excitation energy into the silica. In the material the excitation induces forbidden transitions to two different defect states...

  11. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  12. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    Science.gov (United States)

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  13. Surface Modification of Silica Nanoparticles with Titanium Tetraisopropoxide and Evaluation of their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Leila Mazaheri

    2012-12-01

    Full Text Available Silica nanoparticles were modified with titanium tetraisopropoxide (TTIP via atwo-step sol-gel route. The modified silica nanoparticles were characterized using FTIR spectroscopy, thermal gravimetric analysis (TGA and EDAX elemental analysis. Photocatalytic activity of the modified nanocomposites was evaluated by photo-activated degradation of Rhodamine B (Rh.B dyestuff, as a colorant model, in distilled water. Reduction in Rh.B concentration in aqueous solution was evaluated by UV-visible spectroscopy and with the aid of visual observations. The FTIR spectroscopy results confirmed the formation of Ti-O-Si chemical bond on the surfaceof silica nanoparticles. TGA test results showed that the weight loss of the modified sample is due to deterioration of the alkoxy groups of the SiO2 surface. According to the results of EDAX elemental analysis, the presence of carbon and titanium in the structure of the modified samples and also reduction in oxygen levels are attributed to the chemical interactions due to surface chemical modification. Carbon detection in the composition can be attributed to the presence of isopropoxide in titanium tetraisopropoxide compound. The results also revealed that, with TiO2 grafting on the silica nanoparticles surface, absorption in UV region is increased and that the silica nanoparticles modified with titanate compound show photocatalytic characteristics and degradation ability of Rh.B dyestuff under UV light irradiation. It became also evident that the photocatalytic activity of the modified nanoparticles is less than TiO2 nanoparticles. However, by inclusion of modified silica nanoparticles into the polymeric coating, the photocatalytic properties of the coating can be established. Although modified silica nanoparticles have less photocatalytic activity compared to TiO2 nanoparticles, but they cause less damage to the polymer matrix.

  14. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    DEFF Research Database (Denmark)

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea

    2017-01-01

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA)....

  15. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Jambhrunkar, Manasi; Yang, Yannan; Liu, Yang; Lu, Yao; Yu, Chengzhong

    2018-02-20

    Asymmetric mesoporous silica nanoparticles with a head-tail structure are potent immunoadjuvants for delivering a peptide antigen, generating a higher antibody immune response in mice compared to their symmetric counterparts.

  16. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    OpenAIRE

    Jeseung Yoo; Yongbeom Kim; Suyong Kwon; Joohyun Lee; Young-Soo Seo

    2015-01-01

    We developed polyesterimide (PEI) nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was co...

  17. Scattering of ultrasonic shock waves in suspensions of silica nanoparticles.

    Science.gov (United States)

    Baudoin, Michael; Thomas, Jean-Louis; Coulouvrat, François; Chanéac, Corinne

    2011-03-01

    Experiments are carried out to assess, for the first time, the validity of a generalized Burgers' equation, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331-1342 (1973)] to compute the nonlinear propagation of finite amplitude acoustical waves in suspensions of "rigid" particles. Silica nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water-ethanol mixture and precisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1 MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steepening. The signal is then measured after propagation in a cylinder containing either a reference solution or suspensions of nanoparticles. In this way, a "nonlinear attenuation" is obtained and compared to the numerical solution of a generalized Burgers' equation adapted to the case of hydrosols. An excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due to the value of the specific heat ratio of water-ethanol mixture which significantly differs from unity. © 2011 Acoustical Society of America

  18. Engineered silica nanoparticles as additives in lubricant oils.

    Science.gov (United States)

    López, Teresa Díaz-Faes; González, Alfonso Fernández; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO 2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO 2 NP surface. The hybrid SiO 2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO 2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  19. Delivery of Gemcitabine Prodrugs Employing Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alessio Malfanti

    2016-04-01

    Full Text Available In this paper, mesoporous silica nanoparticles (MSNs were studied as vehicles for the delivery of the antitumoral drug gemcitabine (GEM and of its 4-(N-acyl derivatives, (4-(N-valeroyl-(C5GEM, 4-(N-lauroyl-(C12GEM and 4-(N-stearoyl-gemcitabine (C18GEM. The loading of the GEM lipophilic prodrugs on MSNs was explored with the aim to obtain both a physical and a chemical protection of GEM from rapid plasmatic metabolization. For this purpose, MSNs as such or with grafted aminopropyl and carboxyethyl groups were prepared and characterized. Then, their different drug loading capacity in relation to the nature of the functional group was evaluated. In our experimental conditions, GEM was not loaded in any MSNs, while C12GEM was the most efficiently encapsulated and employed for further evaluation. The results showed that loading capacity increased with the presence of functional groups on the nanoparticles; similarly, the presence of functional groups on MSNs’ surface influenced the drug release profile. Finally, the cytotoxicity of the different preparations was evaluated and data showed that C12GEM loaded MSNs are less cytotoxic than the free drug with an activity that increased with the incubating time, indicating that all these systems are able to release the drug in a controlled manner. Altogether, the results demonstrate that these MSNs could be an interesting system for the delivery of anticancer drugs.

  20. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  1. In vivo toxicologic study of larger silica nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Chan WT

    2017-04-01

    Full Text Available Wai-Tao Chan,1–3 Cheng-Che Liu,4 Jen-Shiu Chiang Chiau,5 Shang-Ting Tsai,6 Chih-Kai Liang,6 Mei-Lien Cheng,5 Hung-Chang Lee,7,8 Chun-Yun Yeung,1,3,9 Shao-Yi Hou2,6 1Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children’s Hospital, 2Graduate Institute of Engineering Technology, National Taipei University of Technology, 3Mackay Medicine, Nursing, and Management College, 4Institute of Preventive Medicine, National Defense Medical Center, Taipei, 5Department of Medical Research, MacKay Memorial Hospital, Hsinchu, 6Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 7Department of Pediatrics, MacKay Memorial Hospital, Hsinchu, 8Department of Pediatrics, Taipei Medical University, Taipei, 9Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China Abstract: Silica nanoparticles (SiNPs are being studied and used for medical purposes. As nanotechnology grows rapidly, its biosafety and toxicity have frequently raised concerns. However, diverse results have been reported about the safety of SiNPs; several studies reported that smaller particles might exhibit toxic effects to some cell lines, and larger particles of 100 nm were reported to be genotoxic to the cocultured cells. Here, we investigated the in vivo toxicity of SiNPs of 150 nm in various dosages via intravenous administration in mice. The mice were observed for 14 days before blood examination and histopathological assay. All the mice survived and behaved normally after the administration of nanoparticles. No significant weight change was noted. Blood examinations showed no definite systemic dysfunction of organ systems. Histopathological studies of vital organs confirmed no SiNP-related adverse effects. We concluded that 150 nm SiNPs were biocompatible and safe for in vivo use in mice. Keywords: in vivo, mice, silica nanoparticle, nanotoxicity

  2. Anti-Biofilm Efficacy of Nitric Oxide-Releasing Silica Nanoparticles

    OpenAIRE

    Hetrick, Evan M.; Shin, Jae Ho; Paul, Heather S.; Schoenfisch, Mark H.

    2009-01-01

    The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability experiments revealed that ≥ 99% of cells from each type of biofilm were killed via NO release, with the greatest efficacy (≥ 99.999% killing) against gram-negative...

  3. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jianhuang; Chen, Jianjun [C711, Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen High-Tech Industrial Park, Shenzhen, Guangdong 518057 (China); Lee, Jim Yang [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2008-10-01

    This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10-20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica: Pt=1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1. (author)

  4. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles

    Science.gov (United States)

    Zeng, Jianhuang; Chen, Jianjun; Lee, Jim Yang

    This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10-20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica:Pt = 1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1.

  5. Cytotoxicity evaluation of silica nanoparticles using fish cell lines.

    Science.gov (United States)

    Vo, Nguyen T K; Bufalino, Mary R; Hartlen, Kurtis D; Kitaev, Vladimir; Lee, Lucy E J

    2014-01-01

    Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.

  6. Improvement of thermal stability of polypropylene using DOPO-immobilized silica nanoparticles.

    Science.gov (United States)

    Dong, Quanxiao; Ding, Yanfen; Wen, Bin; Wang, Feng; Dong, Huicong; Zhang, Shimin; Wang, Tongxin; Yang, Mingshu

    2012-09-01

    After the surface silylation with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles were further modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The immobilization of DOPO on silica nanoparticles was confirmed by Fourier transform infrared spectroscopy, UV-visible spectroscopy, magic angle spinning nuclear magnetic resonance, and thermogravimetric analysis. By incorporating the DOPO-immobilized silica nanoparticles (5 wt%) into polypropylene matrix, the thermal oxidative stability exhibited an improvement of 62 °C for the half weight loss temperature, while that was only 26 °C increment with incorporation of virgin silica nanoparticles (5 wt%). Apparent activation energies of the polymer nanocomposites were estimated via Flynn-Wall-Ozawa method. It was found that the incorporation of DOPO-immobilized silica nanoparticles improved activation energies of the degradation reaction. Based on the results, it was speculated that DOPO-immobilized silica nanoparticles could inhibit the degradation of polypropylene and catalyze the formation of carbonaceous char on the surface. Thus, thermal stability was significantly improved.

  7. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins.

    Science.gov (United States)

    Mohanraj, Vellore J; Barnes, Timothy J; Prestidge, Clive A

    2010-06-15

    A hybrid silica-liposome nanocapsule system containing insulin has been developed and the encapsulation, protection and release properties are evaluated. The formulation strategy is based on using insulin-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and cholesterol liposomes as a template for the deposition of inert silica nanoparticles. The influence of formulation and process variables on particle size, zeta potential and liposome entrapment of insulin is reported. The ability to protect against lipolytic degradation and sustain insulin release in vitro in simulated GI conditions is also reported. Depending on the concentration and charge ratio of liposomes and silica nanoparticles, nanoparticle coated liposomes with varied size and zeta potential were obtained with an insulin entrapment efficiency of 70%. The silica nanoparticle coating protected liposomes against degradation by digestive enzymes in vitro; the release rate of insulin from silica coated liposomes was reduced in comparison to uncoated liposomes. Thus the liposomal release kinetics and stability can be controlled by including a specifically engineered nanoparticle layer. Silica nanoparticle-liposomes hybrid nanocapsules show promise as a delivery vehicle for proteins and peptides. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  8. Preparation and Surface Modification of SilicaNanoparticles for Superhydrophopic Coating

    Directory of Open Access Journals (Sweden)

    Noor Hadi Aysa

    2017-12-01

    Full Text Available Silica  nanoparticles are well-known to be one of the multifunctional inorganic compounds which are widely used in medical applications. The aim of this study is to prepare the particles of nano silica oxide with particle size ranging from 20-25  nm. In the present study, surface modification of Silica nanoparticles was performed, and influence of modification on the structure and morphological properties was investigated. The resulting  nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscopy (AFM.  Silica nanoparticles with the average diameter of about 20 nm were modified with oleic acid, as coupling agents, in order to modify their surface properties and make them more waterproof  dispersible in the organic area. Among the results is that the  surface modification of the   Silica nano-particles leads to more dispersion in the organic medium which indicates better organic synthesis.  One of the results obtained, is that modified silica-nanoparticles can be used effectively in environmental and safety applications and can be used in future medical applications as wound stick that prevent water from reaching the wound and then prevent  an inflamation

  9. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Galagudza M

    2012-04-01

    Full Text Available Michael Galagudza1, Dmitry Korolev1, Viktor Postnov2, Elena Naumisheva2, Yulia Grigorova3, Ivan Uskov1, Eugene Shlyakhto11Institute of Experimental Medicine, VA Almazov Federal Heart, Blood and Endocrinology Center, 2Chemical Faculty, St Petersburg State University, 3Department of Pathophysiology, IP Pavlov State Medical University, St Petersburg, Russian FederationAbstract: Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery.Keywords: silica nanoparticles, targeted drug delivery, myocardium, ischemia, reperfusion

  10. Preparation and characteristics of core-shell structure cobalt/silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fu Wuyou [National Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Yang Haibin [National Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China) and Henan Polytechnic University, Hennan Jiaozuo 454000 (China)]. E-mail: yanghb@jlu.edu.cn; Hari-Bala [College of Chemistry, Jilin University, Changchun 130023 (China); Liu Shikai [Henan Polytechnic University, Hennan Jiaozuo 454000 (China); Li, Minghui [National Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zou Guangtian [National Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2006-12-10

    The silica nanolayer with different thickness was coated on the spherical cobalt nanoparticles (an average diameter of 67 nm) to form core-shell structure by the controlled hydrolysis and condensation of tetraethyl orthosilicate (TEOS). This coating process was based on the use of silane coupling agent 3-mercaptopropyltrimethoxysilane (HS-(CH{sub 2}){sub 3}Si(OCH{sub 3}){sub 3}, MPTS) as a primer to render the cobalt surface vitreophilic, thus rendering cobalt surface compatible with silica. The control over the silica coating layer thickness can be achieved by varying the reaction time. The cobalt nanoparticles and the cobalt coated with silica shell were confirmed by transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) was used to gain insight into the way in which the MPTS is bound to the surface of the cobalt nanoparticles. Result of the thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicate that the thermal stability of cobalt/silica is better than that of pure cobalt nanoparticles. Magnetic properties of these powders have been evaluated. These cobalt/silica core-shell nanoparticles can be utilized as precursors for making property-tunable magnetic nanoparticles, thin films, and multilayered core-shell structure nanocomposites.

  11. Preparation of silica nanoparticles through microwave-assisted acid-catalysis.

    Science.gov (United States)

    Lovingood, Derek D; Owens, Jeffrey R; Seeber, Michael; Kornev, Konstantin G; Luzinov, Igor

    2013-12-16

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces.

  12. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  14. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution.

    Science.gov (United States)

    Li, Xu; Zhang, Jixi; Gu, Hongchen

    2012-02-07

    Among the numerous adsorption strategies for DNA adsorption into mesopores, the salt-solution-induced adsorption method has a great application potential in nucleic acids science; thus, it is important to understand the adsorption mechanism. This work demonstrates the mechanistic aspects underlying the adsorption behaviors of DNA with mesoporous silica nanoparticles (MSNs) in aqueous solution. The driving forces for the adsorption process can be categorized into three parts: the shielded electrostatic force, the dehydration effect, and the intermolecular hydrogen bonds. Compared to the adsorption behaviors of DNA with a solid silica nanosphere, we find some unique features for DNA adsorption into the mesopores, such as increasing the salt concentration or decreasing the pH value can promote DNA adsorption into the mesoporous silica. Further analysis indicates that the entrance of DNA into mesopores is probably controlled by the Debye length in solution and DNA can generate direct and indirect hydrogen bonds in the pores with different diameters. The following desorption study depicts that such types of hydrogen bonds result in different energy barriers for the desorption process. In summary, our study depicts the mechanism of DNA adsorption within mesopores in aqueous solution and sets the stage for formulating MSNs as carriers of nucleic acids.

  15. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation.

    Science.gov (United States)

    Wang, Zhuyuan; Hong, Xuehua; Zong, Shenfei; Tang, Changquan; Cui, Yiping; Zheng, Qingdong

    2015-07-27

    Photodynamic therapy (PDT) is a promising modality for cancer treatment. The essential element in PDT is the photosensitizer, which can be excited by light of a specific wavelength to generate cytotoxic oxygen species (ROS) capable of killing tumor cells. The effectiveness of PDT is limited in part by the low yield of ROS from existing photosensitizers and the unwanted side effects induced by the photosensitizers toward normal cells. Thus the design of nanoplatforms with enhanced PDT is highly desirable but remains challenging. Here, we developed a heavy atom (I) containing dipyrromethene boron difluoride (BODIPY) dye with a silylated functional group, which can be covalently incorporated into a silica matrix to form dye-doped nanoparticles. The incorporated heavy atoms can enhance the generation efficiency of ROS. Meanwhile, the covalently dye-encapsulated nanoparticles can significantly reduce dye leakage and subsequently reduce unwanted side effects. The nanoparticles were successfully taken up by various tumor cells and showed salient phototoxicity against these cells upon light irradiation, demonstrating promising applications in PDT. Moreover, the incorporated iodine atom can be replaced by a radiolabeled iodine atom (e.g., I-124, I-125). The resulting nanoparticles will be good contrast agents for positron emission tomography (PET) imaging with their PDT functionality retained.

  16. Size dependent fractal aggregation mediated through surfactant in silica nanoparticle solution

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2012-06-01

    Small-angle neutron scattering (SANS) has been used to study aggregation of anionic silica nanoparticles in presence of cationic surfactant (DTAB) in aqueous solution. The measurements were carried out for different sizes of nanoparticles (8.2, 16.4 and 26.4 nm) at fixed (1 wt%) nanoparticles and surfactant concentration. It is found that the adsorption of surfactant micelles on the silica nanoparticles leads to the aggregation of nanoparticles, which is characterized by a fractal structure. The number of adsorbed micelles on nanoparticle increases from 7 to 152 with the increase in the size of the nanoparticle from 8.2 to 26.4 nm, whereas interestingly the fractal dimension remains same. The aggregate morphology in these systems is expected to be governed by the diffusion limited aggregation.

  17. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape.

    Science.gov (United States)

    Li, Linlin; Liu, Tianlong; Fu, Changhui; Tan, Longfei; Meng, Xianwei; Liu, Huiyu

    2015-11-01

    Mesoporous silica nanoparticles (MSNs) have been proven to be effective drug carriers for oral delivery. However, little attention has been paid to their in vivo biodistribution and toxicity after oral administration. The effect of particle shape on their in vivo behavior is also unknown. In this study, we systematically studied the acute toxicity and biodistribution of three types of MSNs with aspect ratios (ARs) of 1, 1.75 and 5 after oral administration. The effect of particle shape as a key physicochemical parameter of MSNs was discussed. With the increase of AR, MSNs showed decreased in vivo biodegradation, systematic absorption and excretion, especially decreased liver distribution and urinal excretion. During the period of urinal excretion, MSNs induced a shape-dependent renal damage including hemorrhage, vascular congestion and renal tubular necrosis. These findings will enrich the knowledge to rationally engineer bionanomaterials, and bring new insights into nanotoxicity. Advances in nanotechnology have resulted in improvement in drug delivery, of which mesoporous silica nanoparticles have been used as carriers for oral drugs. Nonetheless, studies on their absorption, distribution, metabolism, excretion (ADME) and toxicity still need to be performed. In this article, authors evaluated the effects of particle size and shape on in vivo behavior. The findings would shine light on future design of future drug delivery systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Hierarchical Mesoporous Organosilica/Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release.

    Science.gov (United States)

    Anwander, Reiner; Liang, Yucang; Luo, Leilei; Erichsen, Egil

    2018-03-23

    A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot two-step strategy allows for a rational control over the core/shell chemical composition, topology and pore/particle size, simply by adjusting the reaction conditions in the presence of CTAB as a structure directing agent under basic conditions. The spherical ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm-3n) depending on the organosilica precursor. The hexagonal MS shell was obtained by an n-hexane-induced controlled hydrolysis of TEOS followed by a directional co-assembly/condensation process of silicate/CTAB composites at the PMO cores. The HSMSCSN feature a hierarchical pore structure with pore diameters in the range of ca. 2.7 nm and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the range of 90-275 nm and 15-50 nm, respectively, and the surface areas (max. 1300 m2/g) and pore volumes (1.83 cm3/g) belong to highest ones reported for core-shell nanoparticles. The adsorption and controlled release of fungicide propiconazole on the HSMSCSN revealed a three-stage release profile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of silica nanoparticles on the phase inversion of liquid-liquid dispersions

    International Nuclear Information System (INIS)

    Asadabadi, Maliheh Raji; Abolghasemi, Hossein; Nasab, Payman Davoodi; Maragheh, Mohammad Ghannadi

    2013-01-01

    The effect of silica nanoparticles on phase inversion of liquid-liquid dispersions in a stirred vessel was investigated. The studied systems were toluene dispersed in water and vice versa. In the first set of experiments, phase inversion behavior of systems without Silica nanoparticles was evaluated and subsequent experiments were conducted in the presence of the nanoparticles. For this purpose, Silica nanoparticles of different concentrations (0.01, 0.03, 0.05, 0.07 wt%) were dispersed in water. The nanofluid stability was examined using an ultraviolet-visible (UV-vis) spectrophotometer. The results indicated that increase in silica nanoparticle concentrations up to 0.07 wt% led to increase in agitation speed of phase inversion 43-53.5% and 38.5-45% in the case of O/W and W/O dispersions, respectively. Consequently, the tendency of dispersions to inversion diminished as nanoparticle concentrations increased. Finally, 0.05 wt% of silica nanoparticle was selected as the optimum on the range studied

  20. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  1. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  2. Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Ekkapongpisit M

    2012-04-01

    Full Text Available Maneerat Ekkapongpisit1,*, Antonino Giovia1,*, Giuseppina Nicotra1, Matteo Ozzano1, Giuseppe Caputo2,3, Ciro Isidoro1 1Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; 2Department of Chemistry, University of Turin, Turin, 3Cyanine Technology SpA, Torino, Italy *These authors contributed equally to this workBackground: For a safe ‘in vivo’ biomedical utilization of nanoparticles, it is essential to assess not only biocompatibility, but also the potential to trigger unwanted side effects at both cellular and tissue levels. Mastocytes (cells having secretory granules containing cytokines, vasoactive amine, and proteases play a pivotal role in the immune and inflammatory responses against exogenous toxins. Mastocytes are also recruited in the tumor stroma and are involved in tumor vascularization and growth.Aim and methods: In this work, mastocyte-like rat basophilic leukemia (RBL cells were used to investigate whether carboxyl-modified 30 nm polystyrene (PS nanoparticles (NPs and naked mesoporous silica (MPS 10 nm NPs are able to label the secretory inflammatory granules, and possibly induce exocytosis of these granules. Uptake, cellular retention and localization of fluorescent NPs were analyzed by cytofluorometry and microscope imaging.Results: Our findings were that: (1 secretory granules of mastocytes are accessible by NPs via endocytosis; (2 PS and MPS silica NPs label two distinct subpopulations of inflammatory granules in RBL mastocytes; and (3 PS NPs induce calcium-dependent exocytosis of inflammatory granules.Conclusion: These findings highlight the value of NPs for live imaging of inflammatory processes, and also have important implications for the clinical use of PS-based NPs, due to their potential to trigger the unwanted activation of mastocytes.Keywords: secretory lysosomes, inflammation, nanoparticles, vesicular traffic

  3. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.

    Science.gov (United States)

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-06-07

    The advantages of using magnetic mesoporous silica nanoparticles (M-MSNs) in biomedical applications have been widely recognized. However, poor uptake efficiency may hinder the potential of M-MSNs in many applications, such as cell tracking, drug delivery, fluorescence and magnetic resonance imaging. An external magnetic field may improve the cellular uptake efficiency. In this paper, we evaluated the effect of a magnetic field on the uptake of M-MSNs. We found that the internalization of M-MSNs by A549 cancer cells could be accelerated and enhanced by a magnetic field. An endocytosis study indicated that M-MSNs were internalized by A549 cells mainly through an energy-dependent pathway, namely clathrin-induced endocytosis. Transmission electron microscopy showed that M-MSNs were trafficked into lysosomes. With the help of a magnetic field, anticancer drug-loaded M-MSNs induced elevated cancer cell growth inhibition.

  4. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development.

    Science.gov (United States)

    de Mel, Achala; Ramesh, Bala; Scurr, David J; Alexander, Morgan R; Hamilton, George; Birchall, Martin; Seifalian, Alexander M

    2014-03-01

    Replacement of irreversibly damaged organs due to chronic disease, with suitable tissue engineered implants is now a familiar area of interest to clinicians and multidisciplinary scientists. Ideal tissue engineering approaches require scaffolds to be tailor made to mimic physiological environments of interest with specific surface topographical and biological properties for optimal cell-material interactions. This study demonstrates a single-step procedure for inducing biomimicry in a novel nanocomposite base material scaffold, to re-create the extracellular matrix, which is required for stem cell integration and differentiation to mature cells. Fumed silica nanoparticle mediated procedure of scaffold functionalization, can be potentially adapted with multiple bioactive molecules to induce cellular biomimicry, in the development human organs. The proposed nanocomposite materials already in patients for number of implants, including world first synthetic trachea, tear ducts and vascular bypass graft. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  6. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  7. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ekta; Ritu,; Kumar, Sacheen, E-mail: sacheen3@gmail.com [Department of Electronics science, Kurukshetra University, Kurukshetra, Haryana, India-136119 (India); Kumar, Dinesh

    2016-05-06

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  8. Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: a facile and green approach for biotechnological applications.

    Science.gov (United States)

    Show, Shilpi; Tamang, Abiral; Chowdhury, Trinath; Mandal, Dipankar; Chattopadhyay, Brajadulal

    2015-02-01

    A green technique of silica nanoparticles (SiO2-NPs) formation by using a thermophilic bacterium (BKH1) as biological template is demonstrated here. SiO2-NPs are synthesized from inorganic (magnesium tri-silicate), and organic (tetraethyl orthosilicate) precursor with the help of BKH1 bacteria. BKH1 derived SiO2-NPs are subjected to Atomic Force Microscopy, Transmission Electron Microscopy, and Field Emission Scanning Electron Microscopy equipped with Energy Dispersive X-ray Analyzer to establish nanoparticle morphology. In addition, Infrared Spectroscopy reveals the presence of chemical and functional groups in SiO2-NPs samples and X-ray diffraction, the amorphous nature. The Zeta potential (ζ) reveals substantial stability of bacteria derived SiO2-NPs in the aqueous environment. Presence of two intense luminescence peaks in the UV and visible regions merits the bacteria derived SiO2-NPs for use as an optical probe in biomedical applications. This novel mode of bacteria derived SiO2-NPs formation is eco-friendly and ambient temperature synthesis approach. It avoids the complex protocol of multi-steps synthesis of silica nanoparticles, hence likely to be cost-effective. In-depth translation research is suggested for the synthesis of silica nanoparticles in large quantities using thermophilic BKH1 template. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    Science.gov (United States)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  10. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    Science.gov (United States)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human

  11. Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization.

    Science.gov (United States)

    Wang, Wenxing; Wang, Peiyuan; Tang, Xueting; Elzatahry, Ahmed A; Wang, Shuwen; Al-Dahyan, Daifallah; Zhao, Mengyao; Yao, Chi; Hung, Chin-Te; Zhu, Xiaohang; Zhao, Tiancong; Li, Xiaomin; Zhang, Fan; Zhao, Dongyuan

    2017-08-23

    The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles' rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60-160 nm), tubular length (∼6-70 nm), and outer diameter (∼6-10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, internalization pathways, and extended blood circulation duration ( t 1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core-shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications.

  12. Copper (0) nanoparticles onto silica: A stable and facile catalyst for ...

    Indian Academy of Sciences (India)

    Abstract. Solid supported copper (0) nanoparticles were prepared by physical adsorption of copper (0)nanoparticles (synthesized through bottom-up approach) on the solid supports such as silica, HAP, cellulose andbasic alumina. Studies comparing these supported catalysts were done with the synthesis of ...

  13. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Callow, P

    2014-02-18

    Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.

  14. Toxic effects of silica nanoparticles on zebrafish embryos and larvae.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles (SiNPs have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL during 4-96 hours post fertilization (hpf. Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.

  15. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  17. Evaporation induced self-assembly of nanoparticles in realizing hollow microcapsules

    Science.gov (United States)

    Sen, D.; Bahadur, J.; Mazumder, S.

    2012-06-01

    Hollow spherical microcapsules are realized using evaporation induced self assembly of silica nanoparticles by spray drying method. Nanoparticles in spray droplets get jammed, during water evaporation, in an anisotropic fashion, at droplet air-water interface by the action of attractive capillary force. Two levels of structural hierarchy of the microcapsules are investigated using small-angle neutron scattering and scanning electron microscopy.

  18. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modeling the self-assembly of silica-templated nanoparticles in the initial stages of zeolite formation.

    Science.gov (United States)

    Chien, Szu-Chia; Auerbach, Scott M; Monson, Peter A

    2015-05-05

    The reaction ensemble Monte Carlo method was used to model the self-assembly and structure of silica nanoparticles found in the initial stages of the clear-solution synthesis of the silicalite-1 zeolite. Such nanoparticles, which comprise both silica and organic structure-directing agents (OSDAs), are believed to play a crucial role in the formation of silica nanoporous materials, yet very limited atomic-level structural information is available for these nanoparticles. We have modeled silica monomers as flexible tetrahedra with spring constants fitted in previous work to silica bulk moduli and OSDAs as spheres attracted to anionic silica monomers. We have studied one-step and two-step formation mechanisms, the latter involving the initial association of silica species and OSDAs driven by physical solution forces, followed by silica condensation/hydrolysis reactions simulated with reaction ensemble Monte Carlo. The two-step process with preassociation was found to be crucial for generating nearly spherical nanoparticles; otherwise, without preassociation they exhibited jagged, ramified structures. The two-step nanoparticles were found to exhibit a core-shell structure with mostly silica in the core surrounded by a diffuse shell of OSDAs, in agreement with SANS and SAXS data. The Qn distribution, quantifying silicon atoms bound to n bridging oxygens, found in the simulated nanoparticles is in broad agreement with (29)Si solid-state NMR data on smaller, 2 nm nanoparticle populations. Ring-size distributions from the simulated nanoparticles show that five-membered rings are prevalent when considering OSDA/silica mole fractions (∼0.2) that lead to silicalite-1, in agreement with a previous IR and modeling study. Nanoparticles simulated with higher OSDA concentrations show ring-size distributions shifted to smaller rings, with three-membered silica rings dominating at an OSDA/silica mole fraction of 0.8. Our simulations show no evidence of long-range silicalite-1

  20. Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates

    International Nuclear Information System (INIS)

    Orts-Gil, Guillermo; Natte, Kishore; Drescher, Daniela; Bresch, Harald; Mantion, Alexandre; Kneipp, Janina; Österle, Werner

    2011-01-01

    The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity.

  1. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2) g(-1) and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  2. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  3. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    Directory of Open Access Journals (Sweden)

    Lee JA

    2014-12-01

    Full Text Available Jeong-A Lee,1 Mi-Kyung Kim,1 Hee-Jeong Paek,1 Yu-Ri Kim,2 Meyoung-Kon Kim,2 Jong-Kwon Lee,3 Jayoung Jeong,3 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea; 3Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk–do, Republic of Korea Purpose: The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods: Silica nanoparticles of two different sizes (20 nm and 100 nm were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results: The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion: The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ

  4. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  5. Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: a new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions.

    Science.gov (United States)

    Salavati-Niasari, Masoud; Javidi, Jaber

    2012-11-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by sonochemical method. The feeding rate of percipiteting agent and time of sonication were investigated. The nanostructure of the synthesized powder was realized by the FE-SEM photomicrograph, FT-IR spectroscopy, XRD and XRF analyses. These analytical observations have revealed that the nano-sized amorphous silica particles are formed and they are spheroidal in shape. The average particle size of the silica powders is found to be around 50 nm. The as-synthesized silica nanoparticles were subsequently modified with chlorosulfonic acid and prepared silica sulfuric acid nanoparticles, which were employed as an efficient catalyst for the acylation of alcohols and phenols with acetic anhydride in excellent yields under solvent-free conditions at room temperature. This reported method is simple, mild, and environmentally viable and catalyst can be simply recovered and reused over 9 times without any significant loss of its catalytic activity.

  6. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yanyan; Zhang Peng [Department of Chemistry, New Mexico Tech, Socorro, NM 87801 (United States); Rogelj, Snezna, E-mail: pzhang@nmt.edu [Department of Biology, New Mexico Tech, Socorro, NM 87801 (United States)

    2010-02-10

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO{sub 2}-NH{sub 2}-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO{sub 2}-NH{sub 2}-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  7. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco

    2016-01-20

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  8. Modification of silica nanoparticles by dichlorodimethylsilane for foam stability and decontamination efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In Ho; Kim, Cho Rong; Jung, Chong Hun; Choi, Man Soo; Moon, Jei Kwon; Choi, Wang Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Silica NPs increase the foam stability in the foam formulation. These particles can be specifically hydrophobized for optimal adsorption at the liquid/gas interface, which creates armor for the bubbles and prevents coalescence by reducing the internal gas transfer. Conversely, hydrophilic particles remain confined in the liquid phase, and to enhance the foam stability. Kruglyakov and Taube studied the drainage of foams generated from a non-ionic surfactant suspension of pyrogenic silica. Their results showed that the loss of liquid is slightly slowed down when particles are present because of the steric hindrance to the liquid flow. In this study, we aimed to modify the surface of silica nanoparticles with dichlorodimethylsilane (DCDMS) reagents using methods proposed in previous studies. Modified silica nanoparticles are an effective stabilizer of decontamination foam by controlling their hydrophobicity, resulting in a foam stable against collapse. In future studies, decontamination tests will be conducted on a surface contaminated with radionuclides such as cesium and cobalt.

  9. Regenerable antimicrobial N-halamine/silica hybrid nanoparticles

    Science.gov (United States)

    Zhao, Lianhong; Yan, Xiufang; Jie, Zhiqiang; Yang, Hong; Yang, Shiping; Liang, Jie

    2014-07-01

    Regenerable antimicrobial N-halamine/silica hybrid nanoparticles (NPs) containing chlorinated 5,5-dimethylhydantoinyl (Cl-DMH) groups, Cl-DMH/SiO2 hybrid NPs, have been prepared by a co-condensation reaction between N-(3-triethoxysilylpropyl)-5,5-dimethylhydantoin (TS-DMH) and tetraethoxysilane (TEOS) and then a chlorination reaction in NaClO solution. The as-synthesized Cl-DMH/SiO2 NPs were characterized by transmission electron microscopy, Scanning electron microscopy, X-ray photoelectron spectra, Specific surface area, Differential scanning calorimetry, and Fourier transform infrared. Experimental results showed that the size of the as-synthesized Cl-DMH/SiO2 NPs could be well adjusted by changing the mass ratio of TS-DMH/TEOS and the volume ratio of 28 % NH4OH/H2O. Antimicrobial tests showed that the as-prepared Cl-DMH/SiO2 hybrid NPs had excellent antimicrobial activities against both Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration values of the as-prepared Cl-DMH/SiO2 hybrid NPs are 15 and 20 μg/mL for S. aureus, 25 and 30 μg/mL for E. coli, respectively. Paper disk diffusion assay showed that smaller-sized Cl-DMH/SiO2 hybrid NPs have bigger inhibition zone diameters, indicating stronger antimicrobial efficacies. Also, the storage stability and regenerability of Cl-DMH/SiO2 hybrid NPs were investigated.

  10. Lung toxicities of core–shell nanoparticles composed of carbon, cobalt, and silica

    Science.gov (United States)

    Al Samri, Mohammed T; Silva, Rafael; Almarzooqi, Saeeda; Albawardi, Alia; Othman, Aws Rashad Diab; Al Hanjeri, Ruqayya SMS; Al Dawaar, Shaikha KM; Tariq, Saeed; Souid, Abdul-Kader; Asefa, Tewodros

    2013-01-01

    We present here comparative assessments of murine lung toxicity (biocompatibility) after in vitro and in vivo exposures to carbon (C–SiO2-etched), carbon–silica (C–SiO2), carbon–cobalt–silica (C–Co–SiO2), and carbon–cobalt oxide–silica (C–Co3O4–SiO2) nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content). Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C–SiO2-etched or C–SiO2 nanoparticles. C–SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C–SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C–Co–SiO2 and C–Co3O4–SiO2 impaired lung tissue bioenergetics. C–Co–SiO2, however, increased caspase activity and altered lung structure more than C–Co3O4–SiO2. The results indicate that silica shell is essential for biocompatibility. Furthermore, cobalt oxide is the preferred phase over the zerovalent Co(0) phase to impart biocompatibility to cobalt-based nanoparticles. PMID:23658487

  11. In vitro and in vivo characteristics of biogenic high surface silica nanoparticles in A549 lung cancer cell lines and Danio rerio model systems for inorganic biomaterials development.

    Science.gov (United States)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-08-24

    Silica based organic-inorganic hybrids are turned over the most necessitate biomaterial due to their exotic biomedical properties. Colloidal silica nanoparticles (SNPs) of high surface area are synthesized from the bamboo wastes (leave biomass) as a viable and promising alternative to synthetic silica sol through alkaline extraction process. Physico-chemical properties of the prepared silica powders are examined employing extensive characterization tools. The characteristic results of the silica sol demonstrate amorphous particles (average size: 25 nm) with relatively high surface area (428 m 2  g -1 ) and spherical morphology. The teratogenicity of the surface and size dependant SNPs is evaluated using an alternative animal model, zebrafish (Danio rerio) in comparison with micron sized particles. LDH based cytotoxicity assay reveals non-significant cell damage in all the tested silica particles. Less mortality, uptake and dysfunctionalities of the organs during the developmental stages of zebrafish treated with bulk and nanoparticles confirm their biocompatibility. The least DNA strand breakage during genotoxic assay and teratogenic parameters are found to exhibit desirable bioactivity of SNPs for clinical applications even at higher concentrations. For the first time, bamboo derived silica sol induced genotoxicity is assessed at molecular level to understand the interaction mechanism with the fish genome.

  12. Chitosan-coated Silica Nanoparticles - A Potential Support for Metal Particles used as Heterogeneous Catalyst

    International Nuclear Information System (INIS)

    Haghighizadeh, A.; Abu Bakar, M.; Ghani, S.A.; Abu Bakar, N.H.H.

    2011-01-01

    In this work a strategy to immobilize noble metal nanoparticles on silica microspheres is proposed. In order to achieve this, monodispersed silica nanoparticles of an average size of 63.5±6.7 nm were synthesized via sol-gel method. Then chitosan was coated onto the silica to create a core/ shell composite with the size range of 66.56±9.78 nm to 79.18±11.87 nm. The noble metal nanoparticles were then synthesized on the shell of the composite through coordination of the respective metal ions to the polymer followed by the subsequent reduction. In this way, the silver particles of average size 6.17±1.83 nm, 9.85±2.60 nm, and 11.80±4.26 nm have been synthesized on the shell successfully. The optimized supported metal particles can be used as a potential heterogeneous catalyst. (author)

  13. Ultraviolet radiation and nanoparticle induced intracellular free radicals generation measured in human keratinocytes by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C

    2014-05-01

    Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil

    Energy Technology Data Exchange (ETDEWEB)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [K. S. Rangasamy College of Technology, Centre for Nano Science and Technology (India); Kannan, N. [K. S. Rangasamy College of Arts and Science, Department of Biotechnology (India)

    2012-12-15

    The present study aims to explore the effect of high surface area (360.85 m{sup 2} g{sup -1}) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha{sup -1}) in comparison with bulk silica (15-20 kg ha{sup -1}). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha{sup -1} whereas at 20 kg ha{sup -1}, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha{sup -1} (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha{sup -1} compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha{sup -1} has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  15. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  16. Castor oil polyurethane containing silica nanoparticles as filling material of bone defect in rats.

    Science.gov (United States)

    Nacer, Renato Silva; Poppi, Rodrigo Ré; Carvalho, Paulo de Tarso Camilo de; Silva, Baldomero Antonio Kato da; Odashiro, Alexandre Nakao; Silva, Iandara Schettert; Delben, José Renato Jurkevicz; Delben, Angela Antonia Sanches Tardivo

    2012-01-01

    To evaluate the biologic behavior of the castor polymer containing silica nanoparticles as a bone substitute in diafisary defect. Twenty seven male Rattus norvegicus albinus Wistar lineage were submitted to bone defect filled with castor oil polymer. Three experimental groups had been formed with nine animals each: (1) castor oil polymer containing only calcium carbonate; (2) castor oil polymer with calcium carbonate and doped with 5% of silica nanoparticles; (3) castor polymer with calcium carbonate doped with 10% of silica nanoparticles; 3 animals of each group were submitted to euthanasia 15, 30 and 60 days after experimental procedure, and their femurs were removed to histological evaluation. there was bone growth in all the studied groups, with a greater tendency of growth in the group 1. After 30 days all the groups presented similar results. After 60 days a greater amount of fibroblasts, osteoblasts, osteocytes and osteoclasts in group 3 was observed, with integrated activity of 3 kinds of cells involved in the bone activation-reabsorption-formation. The castor polymer associated to the silica nanoparticles is biocompatible and allows osteoconduction. The presence of osteoprogenitors cells suggests silica osteoinduction capacity.

  17. Fabrication of Uniform Wrinkled Silica Nanoparticles and Their Application to Abrasives in Chemical Mechanical Planarization.

    Science.gov (United States)

    Ryu, Jaehoon; Kim, Wookhwan; Yun, Juyoung; Lee, Kisu; Lee, Jungsup; Yu, Haejun; Kim, Jae Hyun; Kim, Jae Jeong; Jang, Jyongsik

    2018-03-27

    A simple one-pot method is reported for the fabrication of uniform wrinkled silica nanoparticles (WSNs). Rapid cooling of reactants at the appropriate moment during synthesis allowed the separation of nucleation and growth stages, resulting in uniform particles. The factors affecting particle size and interwrinkle distance were also investigated. WSNs with particle sizes of 65-400 nm, interwrinkle distances of 10-33 nm, and surface areas up to 617 m 2 g -1 were fabricated. Furthermore, our results demonstrate the advantages of WSNs over comparable nonporous silica nanospheres and fumed silica-based products as an abrasive material in chemical mechanical planarization processes.

  18. Mass fabrication of homogeneously Yb-doped silica nanoparticles and their spectroscopic properties

    International Nuclear Information System (INIS)

    Xiong Liangming; Sekiya, Edson H; Saito, Kazuya

    2009-01-01

    A large number of homogeneously Yb-doped silica nanoparticles were continually fabricated in a vapor synthesis route, in which the Yb doping level can be well controlled by varying either the heating temperature or the carrier gas flow rate of the Yb precursor. The sizes, shapes, and morphologies of the nanoparticles were examined, and no crystallites and no Yb 2 O 3 clusters were observed in the nanoparticles. These nanoparticles exhibit a clear Yb 3+ -derived absorption at around 973-975 nm and a dependence of the emission intensity and decay time on the doping level, much different from that of sintered pellets.

  19. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  20. Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2015-01-01

    Full Text Available Novel nanocomposite containing fullerenol nanoparticles (FNP and porous silica nanoparticles (PSNs was constructed and characterized. The capability of FNP to serve as a pore-capping agent and for entrapping 9-aminoacridine (9-AA inside the pores of the PSN material was also demonstrated. Nitrogen sorption measurements evidence the successful capping of the silica pores while thermogravimetric analysis of FNP loaded PSN indicates the existence of pore-loaded fullerenol molecules. Higher amount of the drug release was noted by exposing the material to weakly acidic conditions in comparison to physiological pH, which may find application in targeted treatment of weakly acidic tumor tissues.

  1. Synthesis and characterization of magnetic nanoparticles coated with a uniform silica shell

    International Nuclear Information System (INIS)

    Bonini, Massimo; Wiedenmann, Albrecht; Baglioni, Piero

    2006-01-01

    Magnetic nanoparticles with a proper surface coating are of outstanding interest for several applications, especially in the biomedical field. In this paper we present the synthesis of CoFe 2 O 4 magnetic nanoparticles covered by a uniform silica shell. These particles were characterized by means of Transmission Electron Microscopy (TEM) and Small Angle Scattering of Polarized Neutrons (SANSPOL). This newly developed technique, taking advantage from the variation of magnetic contrast, allowed us to verify that the thickness of the silica shell can be accurately tailored through a very simple synthetic approach

  2. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  3. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    Science.gov (United States)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  4. Coating thickness and coverage effects on the forces between silica nanoparticles in water.

    Science.gov (United States)

    Salerno, K Michael; Ismail, Ahmed E; Lane, J Matthew D; Grest, Gary S

    2014-05-21

    The structure and interactions of coated silica nanoparticles have been studied in water using molecular dynamics simulations. For 5 nm diameter amorphous silica nanoparticles, we studied the effects of varying the chain length and grafting density of polyethylene oxide on the nanoparticle coating's shape and on nanoparticle-nanoparticle effective forces. For short ligands of length n = 6 and n = 20 repeat units, the coatings are radially symmetric while for longer chains (n = 100) the coatings are highly anisotropic. This anisotropy appears to be governed primarily by chain length, with coverage playing a secondary role. For the largest chain lengths considered, the strongly anisotropic shape makes fitting to a simple radial force model impossible. For shorter ligands, where the coatings are isotropic, we found that the force between pairs of nanoparticles is purely repulsive and can be fit to the form (R/2r(core) - 1)(-b) where R is the separation between the center of the nanoparticles, r(core) is the radius of the silica core, and b is measured to be between 2.3 and 4.1.

  5. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay

    Directory of Open Access Journals (Sweden)

    Eşref Demir

    Full Text Available Synthetic amorphous silica nanoparticles (SAS NPs have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/Tk+/− assay (MLA was used to evaluate the mutagenic effect for five different concentrations (from 0.01 to 150 μg/mL of two different sizes of SAS NPs (7.172 and 7.652 nm and a fine collodial form of silicon dioxide (SiO2. This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the two selected SAS NPs are mutagenic in the MLA assay, showing a concentration-dependent effect. The relative mutagenic potencies according to the induced mutant frequency (IMF are as follows: SAS NPs (7.172 nm (IMF = 705.5 × 10−6, SAS NPs (7.652 nm (IMF = 575.5 × 10−6, and SiO2 (IMF = 57.5 × 10−6. These in vitro results, obtained from mouse lymphoma cells, support the genotoxic potential of NPs as well as focus the discussion of the benefits/risks associated with their use in different areas. Keywords: Synthetic amorphous silica nanoparticles, Mouse lymphoma assay, Mutagenic agents, Thymidine kinase (Tk gene, In vitro mutagenicity

  6. Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration.

    Science.gov (United States)

    Marucco, Arianna; Turci, Francesco; O'Neill, Luke; Byrne, Hugh J; Fubini, Bice; Fenoglio, Ivana

    2014-04-01

    An increasing interest in the interaction between blood serum proteins and nanoparticles has emerged over the last years. In fact, this process plays a key role in the biological response to nanoparticles. The behavior of proteins at the biofluid/material interface is driven by the physico-chemical properties of the surface. However, much research is still needed to gain insight into the process at a molecular level. In this study, the effect of silanol density on the interaction of fibrinogen at physiological concentrations with silica nanoparticle/flat surfaces has been studied. Silica nanoparticles and silica wafers were modified and characterized to obtain a set of samples with different silanols density. The interaction with fibrinogen has been studied by evaluating the extent of coverage (bicinchoninic acid assay) and the irreversibility of adsorption (shift of the ζ potential). To clarify the molecular mechanism of fibrinogen/surface interactions, confocal micro-Raman spectroscopy (nanoparticles) and atomic force microscopy (wafers) were used. Finally the effect of fibrinogen on the agglomeration of nanoparticles has been evaluated by Flow Particle Image Analysis. The data reported here show that a minimal variation in the state of the silica surface modifies the adsorption behavior of fibrinogen, which appears mediated by a competition between protein/protein and protein/surface interactions. By comparing the data obtained on nanoparticles and silicon-supported silica layers, we found that hydrophilicity increases the tendency of fibrinogen molecules to interact with the surface rather than with other molecules, thus inhibiting fibrinogen self-assembly. This study contributes to the knowledge of the processes occurring at the surface/biological fluids interface, needed for the design of new biocompatible materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  8. Robust antireflection coatings By UV cross-linking of silica nanoparticles and diazo-resin polycation

    Science.gov (United States)

    Ridley, Jason I.; Heflin, James R.; Ritter, Alfred L.

    2007-09-01

    Antireflection coatings have been fabricated by self-assembly using silica nanoparticles. The ionic self-assembled multilayer (ISAM) films are tightly packed and homogeneous. While the geometric properties of a matrix of spherical particles with corresponding void interstices are highly suitable to meet the conditions for minimal reflectivity, it is also a cause for the lack of cohesion within the constituent body, as well as to the substrate surface. This study investigates methods for improving the interconnectivity of the nanoparticle structure. One such method involves UV curing of diazo-resin (DAR)/silica nanoparticle films, thereby converting the ionic interaction into a stronger covalent bond. Factorial analysis and response surface methods are incorporated to determine factors that affect film properties, and to optimize their optical and adhesive capabilities. The second study looks at the adhesive strength of composite multilayer films. Films are fabricated with silica nanoparticles and poly(allylamine hydrochloride) (PAH), and dipped into aqueous solutions of PAH and poly(methacrylic acid, sodium salt) (PMA) to improve cohesion of silica nanoparticles in the matrix, as well as binding strength to the substrate surface. The results of the two studies are discussed.

  9. Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes.

    Science.gov (United States)

    Shaffer, Travis M; Wall, Matthew A; Harmsen, Stefan; Longo, Valerie A; Drain, Charles Michael; Kircher, Moritz F; Grimm, Jan

    2015-02-11

    Chelator-free nanoparticles for intrinsic radiolabeling are highly desirable for whole-body imaging and therapeutic applications. Several reports have successfully demonstrated the principle of intrinsic radiolabeling. However, the work done to date has suffered from much of the same specificity issues as conventional molecular chelators, insofar as there is no singular nanoparticle substrate that has proven effective in binding a wide library of radiosotopes. Here we present amorphous silica nanoparticles as general substrates for chelator-free radiolabeling and demonstrate their ability to bind six medically relevant isotopes of various oxidation states with high radiochemical yield. We provide strong evidence that the stability of the binding correlates with the hardness of the radioisotope, corroborating the proposed operating principle. Intrinsically labeled silica nanoparticles prepared by this approach demonstrate excellent in vivo stability and efficacy in lymph node imaging.

  10. Silica Nanoparticles as Substrates for Chelator-free Labeling of Oxophilic Radioisotopes

    Science.gov (United States)

    2016-01-01

    Chelator-free nanoparticles for intrinsic radiolabeling are highly desirable for whole-body imaging and therapeutic applications. Several reports have successfully demonstrated the principle of intrinsic radiolabeling. However, the work done to date has suffered from much of the same specificity issues as conventional molecular chelators, insofar as there is no singular nanoparticle substrate that has proven effective in binding a wide library of radiosotopes. Here we present amorphous silica nanoparticles as general substrates for chelator-free radiolabeling and demonstrate their ability to bind six medically relevant isotopes of various oxidation states with high radiochemical yield. We provide strong evidence that the stability of the binding correlates with the hardness of the radioisotope, corroborating the proposed operating principle. Intrinsically labeled silica nanoparticles prepared by this approach demonstrate excellent in vivo stability and efficacy in lymph node imaging. PMID:25559467

  11. Stable Poly(methacrylic acid Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation

    Directory of Open Access Journals (Sweden)

    Marcello Iacono

    2015-08-01

    Full Text Available The synthesis of polymer brush decorated silica nano-particles is demonstrated by activator regeneration by electron transfer atom transfer radical polymerization (ARGET ATRP grafting of poly(tert-butyl methacrylate. ATRP initiator decorated silica nano-particles were obtained using a novel trimethylsiloxane derivatised ATRP initiator obtained by click chemistry. Comparison of de-grafted polymers with polymer obtained from a sacrificial initiator demonstrated good agreement up to 55% monomer conversion. Subsequent mild deprotection of the tert-butyl ester groups using phosphoric acid yielded highly colloidal and pH stable hydrophilic nano-particles comprising approximately 50% methacrylic acid groups. The successful bio-conjugation was achieved by immobilization of Horseradish Peroxidase to the polymer brush decorated nano-particles and the enzyme activity demonstrated in a conversion of o-phenylene diamine dihydrochloride assay.

  12. Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide films.

    Science.gov (United States)

    Singh, Puyam S; Aswal, Vinod K

    2008-10-01

    Polyamide nanocomposite films were prepared from nanometer sized silica particles and trimesoyl chloride-m-phenylene diamine based polyamides. The type of silica nanoparticles used is commercial LUDOX HS-40 and the particle size characterized by the radius of gyration (R(g)) is about 66 A. The immediately prepared films were easily broken into particles to form colloidal-like dilute suspension of the silica-polyamide composite particles in D(2)O-H(2)O solutions for SANS measurements, that in this dilute system SANS data the complication of scattering data from the interacting particles is minimized. At about 60% D(2)O of the sample solution, the silica is contrasted out, therefore the SANS profiles are predominantly from the organic polyamide scattering. The SANS profile of the sample solutions measured at 90% D(2)O clearly indicates scattering from both silica and polymer. The scattering heterogeneities for two-phase system were evident from the validity of the Debye-Bueche expression in case of the nanocomposite with high silica loading. At limited silica loading of the nanocomposite, interaction between the silica and polymer chains forming core-shell morphology was observed. The transport properties of the membranes made from the nanocomposite films were measured on a batch type test kit with an aqueous solution of 500 ppm dioxane concentration at pressures ranging from 50 to 200 psig, and correlated to their composite structure.

  13. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    International Nuclear Information System (INIS)

    Stępnik, Maciej; Arkusz, Joanna; Smok-Pieniążek, Anna; Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.; Gromadzińska, Jolanta; De Jong, Wim H.; Rydzyński, Konrad

    2012-01-01

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows

  14. Epigenetic changes in the early stage of silica-induced cell transformation.

    Science.gov (United States)

    Seidel, Carole; Kirsch, Anaïs; Fontana, Caroline; Visvikis, Athanase; Remy, Aurélie; Gaté, Laurent; Darne, Christian; Guichard, Yves

    2017-09-01

    The increasing use of nanomaterials in numerous domains has led to growing concern about their potential toxicological properties, and the potential risk to human health posed by silica nanoparticles remains under debate. Recent studies proposed that these particles could alter gene expression through the modulation of epigenetic marks, and the possible relationship between particle exposure and these mechanisms could represent a critical factor in carcinogenicity. In this study, using the Bhas 42 cell model, we compare the effects of exposure to two transforming particles, a pyrogenic amorphous silica nanoparticle NM-203 to those of the crystalline silica particle Min-U-Sil ® 5. Short-term treatment by Min-U-Sil ® 5 decreased global DNA methylation and increased the expression of the two de novo DNMTs, DNMT3a and DNMT3b. NM-203 treatment affected neither the expression of these enzymes nor DNA methylation. Moreover, modified global histone H4 acetylation status and HDAC protein levels were observed only in the Min-U-Sil ® 5-treated cells. Finally, both types of particle treatment induced strong c-Myc expression in the early stage of cell transformation and this correlated with enrichment in RNA polymerase II as well as histone active marks on its promoter. Lastly, almost all parameters that were modulated in the early stage were restored in transformed cells suggesting their involvement mainly in the first steps of cell transformation.

  15. Silica Nanoparticles for Intracellular Protein Delivery: a Novel Synthesis Approach Using Green Fluorescent Protein

    Science.gov (United States)

    Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette

    2017-09-01

    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.

  16. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Science.gov (United States)

    Dalavi, Shankar B.; Raja, M. Manivel; Panda, Rabi. N.

    2015-06-01

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  17. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, BITS-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa-403726 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  18. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection

    International Nuclear Information System (INIS)

    Shi Yupeng; Zhang Heng; Zhang Zhaomin; Yi Changqing; Yue Zhenfeng; Teng, Kar-Seng; Li Meijin; Yang Mengsu

    2013-01-01

    Advances in the controlled assembly of nanoscale building blocks have resulted in functional devices which can find applications in electronics, biomedical imaging, drug delivery etc. In this study, novel covalent nanohybrid materials based upon [Ru(bpy) 3 ] 2+ -doped silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs), which could be conditioned as OFF–ON probes for glutathione (GSH) detection, were designed and assembled in sequence, with the disulfide bonds as the bridging elements. The structural and optical properties of the nanohybrid architectures were characterized using transmission electron microscopy, UV–vis spectroscopy and fluorescence spectroscopy, respectively. Zeta potential measurements, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were employed to monitor the reaction processes of the SiNPs–S–S–COOH and SiNPs–S–S–AuNPs synthesis. It was found that the covalent nanohybrid architectures were fluorescently dark (OFF state), indicating that SiNPs were effectively quenched by AuNPs. The fluorescence of the OFF–ON probe was resumed (ON state) when the bridge of the disulfide bond was cleaved by reducing reagents such as GSH. This work provides a new platform and strategy for GSH detection using covalent nanohybrid materials. (paper)

  19. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Virginia [Hospital Universitario La Paz-IdiPAZ (Spain); Yaguee, Clara; Arruebo, Manuel, E-mail: arruebom@unizar.es [University of Zaragoza, Aragon Nanoscience Institute (INA), C/Mariano Esquillor, Edif. I-D (Spain); Martin-Saavedra, Francisco M. [Hospital Universitario La Paz-IdiPAZ (Spain); Santamaria, Jesus [CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ (Spain)

    2011-09-15

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle-plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  20. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    Science.gov (United States)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  1. Room temperature phosphorescence of five PAHs in a synergistic mesoporous silica nanoparticle-deoxycholate substrate

    Science.gov (United States)

    Qin, Jun; Li, Xiaomei; Feng, Feng; Pan, Qiliang; Bai, Yunfeng; Zhao, Jianguo

    2017-05-01

    A synergistic mesoporous silica nanoparticle-sodium deoxycholate (mPS-NaDC) substrate was developed for room temperature phosphorimetry. The synergistic substrate exhibited rapid and strong RTP-inducing ability against temperature variation. NaDC might adsorb on the inner surface of mPS pore by possible hydrogen bonding and protected the triplet state of polycyclic aromatic hydrocarbons (PAHs) with different molecular sizes. Two mPSs named LPMS1 and LPMS2 with pore size of 3.05 and 3.83 nm were synthesized and optimized in inducing RTP, and the latter, LPMS2, was selected as an ideal substrate because of its stronger protection ability to the triplet and good stability. Dibromopropane and cyclohexane were also used as assistant phosphorescence-inducers. All results demonstrated the feasibility and application potential of synergistic mPS-NaDC substrate in phosphorimetry. The interaction detail of NaDC and inner surface of selected mPS still needs to be explored in future.

  2. PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging.

    Science.gov (United States)

    Pan, Jie; Wan, Dong; Gong, Jinlong

    2011-03-28

    This paper describes the synthesis and application of PEGylated liposome-coated quantum dots (QDs)/mesoporous silica core-shell nanoparticles (NPs) for molecular imaging. This system increases biocompatibility and stability of QDs, thus improving the imaging effects in labeling of cancer cells.

  3. Multifunctional magnetite and silica-magnetite nanoparticles: Synthesis, surface activation and applications in life sciences

    International Nuclear Information System (INIS)

    Campo, Aranzazu del; Sen, Tapas; Lellouche, Jean-Paul; Bruce, Ian J.

    2005-01-01

    A method for the introduction of amine groups onto the surface of magnetite and silica-coated magnetite nanoparticles has been established based on the condensation of aminopropyltriethoxysilane. Amine-modified particles were grafted with an oligonucleotide and used in the capture of a complimentary sequence. The particles' efficiency at capture was observed to correlate directly with amine group surface density

  4. Organic-inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles.

    Science.gov (United States)

    El-Safty, Sherif A; Mekawy, Moataz; Yamaguchi, Akira; Shahat, Ahmed; Ogawa, Kazuyuki; Teramae, Norio

    2010-06-14

    We report a protocol for the direct synthesis of hexagonal silica nanostrands inside anodic alumina membranes using cationic surfactants as templates. When coated with layers of trimethylsilyl moieties, the nanostrands were a powerful tool for the ultrafine filtration of noble metal and semiconductor nanoparticles.

  5. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    Directory of Open Access Journals (Sweden)

    Lee H

    2015-08-01

    Full Text Available Haisung Lee,1 Dongkyung Sung,2 Jinhoon Kim,3 Byung-Tae Kim,3 Tuntun Wang,4 Seong Soo A An,5 Soo-Won Seo,6 Dong Kee Yi4 1Molecular Diagnostics, In Vitro Diagnostics Unit, New Business Division, SK Telecom, 2Department of Life Sciences, Graduate School of Korea University, 3Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, 4Department of Chemistry, Myongji University, Seoul, 5Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, 6Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea Abstract: In this study, fluorescent dye-conjugated magnetic resonance (MR imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. Keywords: dual bioimaging, MR imaging, silica colloid, T1 contrast imaging, nanohybrid

  6. Silica nanoparticles as a highly efficient catalyst for the one-pot ...

    African Journals Online (AJOL)

    The ease of work-up, green chemistry conditions and high yields of the products make this procedure a useful addition to modern synthetic methods. The silica nanoparticles that used in this reaction as a catalyst were prepared by thermal decomposition of rice hulls. Simple, green and cheap method for the preparation of ...

  7. Catalytic signal amplification using [Fe(III)(biuret-amide)]-mesoporous silica nanoparticles: visual cyanide detection.

    Science.gov (United States)

    Panda, Chakadola; Dhar, Basab B; Malvi, Bharmana; Bhattacharjee, Yudhajit; Gupta, Sayam Sen

    2013-03-18

    Catalytic signal amplification was used for the colorimetric detection of CN(-) in aqueous media by using the enzyme catalase in tandem with mesoporous silica nanoparticle based synthetic HRP enzyme mimic Fe-MSNs. Signal amplification up to a maximum of eight fold was observed for the reporter "oxidized TMB" with respect to the added CN(-) ion.

  8. Copper (0) nanoparticles onto silica: A stable and facile catalyst for ...

    Indian Academy of Sciences (India)

    Vol. 128, No. 5, May 2016, pp. 849–854. c Indian Academy of Sciences. DOI 10.1007/s12039-016-1080-6. Copper (0) nanoparticles onto silica: A stable and facile catalyst ... Studies comparing these supported catalysts were done with the synthesis of arylmethylene-bis- ... organic synthesis is gaining much attention but the.

  9. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  10. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  11. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Alshatwi, Ali A.; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-01-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120 °C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. - Highlights: • Simple, rapid and convenient process • Amorphous and spherical with 10–30 nm size SiO 2 nanoparticles were fabricated. • Biogenic silica nanoparticles showed biocompatibility. • bSNPs are an alternative to synthetic forms of silica

  12. Aggregation in charged nanoparticles solutions induced by different interactions

    Science.gov (United States)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  13. Aggregation in charged nanoparticles solutions induced by different interactions

    International Nuclear Information System (INIS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-01-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  14. Aggregation in charged nanoparticles solutions induced by different interactions

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2016-05-23

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  15. Evolution of structure and interaction during aggregation of silica nanoparticles in aqueous electrolyte solution

    Science.gov (United States)

    Chinchalikar, A. J.; Aswal, V. K.; Kohlbrecher, J.; Wagh, A. G.

    2012-07-01

    Aggregation behavior of silica nanoparticles in aqueous electrolyte solution has been studied by small-angle neutron scattering. It is found that there is local crowding of nanoparticles with increase in electrolyte concentration followed by the formation of permanent clusters above the critical salt concentration. The formation of these structures is explained on the basis of two minima observed in DLVO theory with secondary minimum and primary minimum resulting in local crowding and particle clustering, respectively. The role of varying nanoparticle size and counterions has also been examined, where aggregation follows similar behavior but can be tuned by varying these parameters.

  16. Growth of gold nanoparticles at gelatin-silica bio-interfaces

    Science.gov (United States)

    Bensaid, Imen; Masse, Sylvie; Selmane, Mohamed; Fessi, Shemseddine; Coradin, Thibaud

    2016-01-01

    The growth of gold nanoparticles via chemical reduction of HAuCl4 dispersed in gelatin-silicate mixtures was studied. Gelatin leads to densely packed nanoparticles whereas open colloidal aggregates with tight boundaries are formed within silica. Within the bio-hybrid systems, gold species are located within the gelatin-silicate particles and/or within the gelatin phase, depending on the preparation conditions. These various localizations and their impact on the final nanoparticle structure are discussed considering attractive and repulsive electrostatic interactions existing between the three components. These data suggest that bio-hybrid systems are interesting and versatile interfaces to study crystallization processes in confined environments.

  17. Self-cleaning behavior in polyurethane/silica coatings via formation of a hierarchical packed morphology of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: Gsadeghi@aut.ac.ir [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Seyfi, Javad [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Jafari, Seyed-Hassan [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Graphical abstract: - Highlights: • Self-cleaning behavior was imparted to the hydrophilic polyurethane. • A hierarchical packed morphology is responsible for the superhydrophobicity. • Prolonged pressing process cannot lead to superhydrophobicity due to migration of TPU. • Samples exhibited excellent stability against media with a wide range of pH values. - Abstract: In the current research, a hierarchical morphology comprising of packed assembly of nanoparticles was induced in thermoplastic polyurethane (TPU)/silica nanocomposite coatings in order to achieve self-cleaning behavior. Moderately hydrophilic behavior of TPU hinders its transforming to a superhydrophobic material. In the presented method, a very thin layer of silica nanoparticles is applied to the surface of TPU sheets under elevated temperature and pressure. As temperature and pressure of the process remain unchanged, processing time was considered as a main variable. Based on scanning electron microscopy and confocal microscopy results, it was found that at a certain processing time, nanoparticles can form an utterly packed morphology leading to a self-cleaning behavior. Once the process was prolonged, TPU macromolecules found the chance to migrate onto the coating's top layer due to the enhanced mobility of chains at high temperature. This observation was further proved by X-ray photoelectron spectroscopy analysis and cross-sectional morphology. The presented method has promising potentials in transforming intrinsically hydrophilic polymers into superhydrophobic materials with self-cleaning behavior.

  18. Water-borne pressure-sensitive adhesives acrylics modified using amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-12-01

    Full Text Available The application of water-borne pressure-sensitive adhesives (PSA based on acrylics is increasing in a variety of industrial areas. The have been used for manufacturing of double sided and carrier free mounting tapes, splicing tapes, marking and sign films, self-adhesive labels, packaging tapes, protective films and diverse high quality medical materials. Nano-sized inorganic fillers can modify diverse adhesive and self-adhesive coating properties such as tack, peel adhesion, shear strength at 20°C and 70°C, and removability Amorphous synthetic silica nanoparticles in form of water dispersions: Ludox PX-30 (30 wt.% silica stabilizing with counter ion sodium, Ludox PT-40 (40 wt.% silica stabilizing with counter ion sodium, Ludox PT-40AS (40 wt.% silica stabilizing with counter ion ammonium, and Ludox PW-50 (50 wt.% silica stabilizing with counter ion sodium (from Grace in concentrations between 1 and 5wt.% were used for modifying of water-born pressure-sensitive adhesive acrylics: Acronal 052, Acronal CR 516 (both BASF and Plextol D273 (Synthomer properties. It has been found in this study that the nano-technologically reinforced system containing of Acronal 052 and amorphous silica Ludox PX-30 showed a great enhancement in tack, peel adhesion and shear strength. In this paper we evaluate the performance of Acronal 052 modified with amorphous silica Ludox PX-30.

  19. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    Science.gov (United States)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  20. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports

    Science.gov (United States)

    Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.

    2017-12-01

    Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.

  1. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  2. Controlling the formation of silver nanoparticles on silica by photochemical deposition and other means.

    Science.gov (United States)

    Vinci, John Cody; Bilski, Piotr; Kotek, Richard; Chignell, Colin

    2010-01-01

    Silver nanoparticles (Ag-NP) on silica were produced in aqueous solution by deposition of silver on colloidal silica in a small cuvette using radiation from a xenon-mercury lamp. Ag-NP were also synthesized on a much larger scale with low-level, long-term visible light irradiation for several months. In both cases, the nanoparticle production was monitored by the appearance of the surface plasmon resonance (SPR) band at around 410 nm. The growth of the nanoparticles was directly related to the time exposed to radiation, which could be tracked spectrophotometrically over time. We also investigated the possibilities of rapid nanoparticle production without the assistance of radiation though silver oxide by adding alkali hydroxide, which is a relatively unexplored approach for syntheses of Ag-NP on silica. The SPR absorption of Ag-NP was used as a tool in evaluating the size and shape of the resulting nanoparticles along with dynamic light scattering and transmission electron microscopy data. In order to better utilize and understand Ag-NP, we present various ways to control their production through initial concentration adjustments, irradiation effects, gravitational fractionation, sonication and silver oxide formation.

  3. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

    International Nuclear Information System (INIS)

    Park, Margriet V.D.Z.; Annema, Wijtske; Salvati, Anna; Lesniak, Anna; Elsaesser, Andreas; Barnes, Clifford; McKerr, George; Howard, C. Vyvyan; Lynch, Iseult; Dawson, Kenneth A.; Piersma, Aldert H.; Jong, Wim H. de

    2009-01-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 μg/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis.

  4. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    José de Jesús Figueroa-Lara

    2017-09-01

    Full Text Available This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA with silica (SiO2 nanoparticles plus zirconia (ZrO2 nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS. The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM, and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR.

  5. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application

    International Nuclear Information System (INIS)

    Sun Yongkang; Duan Lei; Guo Zhirui; Duanmu Yun; Ma Ming; Xu Lina; Zhang Yu; Gu Ning

    2005-01-01

    This paper describes an improved approach for the coating of superparamagnetic magnetite nanoparticles with shells of amorphous silica. Magnetite (Fe 3 O 4 ) nanoparticles are prepared by partial reduction coprecipitation method and modified by adding citric acid. The silica coating is conveniently controlled by a dilute silicate solution pretreatment and subsequent Saboteur process directly in ethanol. Transmission electron microscopy, photon correlation spectroscopy and zeta-potential analysis results show that the attractions between the superparamagnetic nanoparticles are screened by the silica coating. With enough tetraethyl orthosilicate added, the stable core-shell colloid was obtained. Vibrating sample magnetometer characterization shows that the magnetic core-shell structure is superparamagnetic

  6. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing

    2012-03-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene oxide) oligomers were also simulated to clarify the effect of grafting on the dynamics of nanoparticles and chains. The model approximates nanoparticles as solid spheres and uses a united-atom representation for chains, including torsional and bond-bending interactions. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental data but show a smaller activation energy relative to real NOHMs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted ones at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of particles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that NOHMs have liquidlike behavior in the absence of a solvent. For both grafted and ungrafted systems at low temperatures, increasing chain length reduces the volume fraction of nanoparticles and accelerates the dynamics. However, at high temperatures, longer chains slow down nanoparticle diffusion. From the Stokes-Einstein relationship, it was determined that the coarse-grained treatment of nanoparticles leads to slip on the nanoparticle surfaces. Grafted systems obey the Stokes-Einstein relationship over the temperature range simulated, but ungrafted systems display deviations from it. © 2012 American Chemical Society.

  7. Synthesis Of Silver Nanoparticles Supported On Silica Using As Antifungal Agent By Gamma Irradiation

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Nguyen Tue Anh; Dang Van Phu; Vo Kim Lang; Nguyen Thuy Khanh; Nguyen Quoc Hien

    2011-01-01

    Silver nanoparticles supported on silica (Ag nano/SiO 2 ) were prepared by gamma Co-60 irradiation method. The formation of Ag nano doped on silica particles was confirmed by the UV-Vis spectroscopy. The size of silver nanoparticles was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) which showed the particle size of Ag nano to be in range of 15-30 nm for Ag + concentration 10 mM. In addition, antifungal activity of Ag nano/SiO 2 was tested against Aspergillus niger var Tieghn by plate count method. The results indicated that the antifungal efficiency of Ag nano/SiO 2 was about 64, 71, 81, 82 and 96% at the concentrations of Ag nanoparticles of 30, 50, 70, 100 and 150 ppm respectively. (author)

  8. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    Science.gov (United States)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  9. Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core-shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors.

    Science.gov (United States)

    Hayashi, Koichiro; Nakamura, Michihiro; Miki, Hirokazu; Ozaki, Shuji; Abe, Masahiro; Matsumoto, Toshio; Ishimura, Kazunori

    2013-06-11

    Owing to the surface plasmon resonance-enhanced electromagnetic field, clustered gold nanoparticles-fluorescent silica core-shell nanoparticles became excited within the therapeutic window and fluoresced strongly in this window. The nanoparticles enabled tumor detection using fluorescence imaging and X-ray computed tomography.

  10. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers.

    Science.gov (United States)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In this work, Caco-2 intestinal epithelial cells were used as a well-established model for the intestinal barrier, and the uptake, trafficking and translocation of model silica nanoparticles of different sizes were investigated using a combination of imaging, flow cytometry and transport studies. Compared to typical observations in standard cell lines commonly used for in vitro studies, silica nanoparticle uptake into well-developed Caco-2 cellular barriers was found to be very low. Instead, nanoparticle association to the apical outer membrane was substantial and these particles could easily be misinterpreted as internalised in the absence of imaging. Passage of nanoparticles through the barrier was very limited, suggesting that the low amount of internalised nanoparticles was due to reduced uptake into cells, rather than a considerable transport through them.

  11. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores

    International Nuclear Information System (INIS)

    Yoo, Hyojong; Pak, Joonsung

    2013-01-01

    Water-soluble, highly fluorescent double-layered silica nanoparticles (FL-DLSN) have been successfully synthesized through a reverse (water-in-oil) microemulsion method. The microemulsion was prepared by mixing a surfactant (Brij35), co-surfactant, organic solvent, water, and fluorescein as an organic fluorophore. The sizes of the silica nanoparticles were successfully controlled in the reverse microemulsion using Brij35 by changing the water-to-Brij35 ratio and by adding HCl. Initially, tetraethylorthosilicate was hydrolyzed by adding NH 4 OH as a catalyst and then polymerized to generate core fluorescent silica nanoparticles with fluorescein. 3-(Aminopropyl)triethoxysilane (APTS) was sequentially added into the reaction mixture, and reacted on the surface of pre-generated core silica nanoparticles to form the second layer in the form of a shell. The second silica layer that was derived from the condensation of APTS effectively protected the fluorescein dye within the silica matrix. This is a novel and simple synthetic approach to generate highly fluorescent, monodispersed silica nanoparticles by doping organic molecules into a silica matrix.Graphical Abstract

  12. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    International Nuclear Information System (INIS)

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-01-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  13. Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers

    NARCIS (Netherlands)

    Trzaskus, Krzystof; Zdeb, Aneta; de Vos, Wiebe Matthijs; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.

    2016-01-01

    Nanotechnology applications give rise to new forms of water pollution, resulting in a need for reliable technologies that can remove nanoparticles from water. Membrane filtration is an obvious candidate. The tendency of nanoparticles to become instable in suspension and form aggregates strongly

  14. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    International Nuclear Information System (INIS)

    Cebrián, Virginia; Yagüe, Clara; Arruebo, Manuel; Martín-Saavedra, Francisco M.; Santamaría, Jesus; Vilaboa, Nuria

    2011-01-01

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle–plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  15. Mesoporous silica supported Pd/Ag bimetallic nanoparticles as a ...

    Indian Academy of Sciences (India)

    Priyanka Verma

    2017-09-19

    Sep 19, 2017 ... bUnit of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520,. Japan. cJST, PRESTO, 4-1-8 Honcho, Kawaguchi, ... Silver-based bimetallic Pd/Ag plasmonic catalysts supported on mesoporous silica catalyze the chemoselective reduction of nitrostyrene (NS) to ...

  16. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    International Nuclear Information System (INIS)

    Mnasri, Najib; Charnay, Clarence; Ménorval, Louis-Charles de; Elaloui, Elimame; Zajac, Jerzy

    2016-01-01

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO 3 reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. 129 Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by 129 Xe NMR and UV–Vis.

  17. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    Energy Technology Data Exchange (ETDEWEB)

    Mnasri, Najib [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Charnay, Clarence; Ménorval, Louis-Charles de [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Elaloui, Elimame [Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Zajac, Jerzy, E-mail: jerzy.zajac@umontpellier.fr [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France)

    2016-11-15

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.

  18. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics

    Directory of Open Access Journals (Sweden)

    Gobi Nallathambi

    2011-12-01

    Full Text Available Silica nanoparticles particles were synthesized from rice hulls and characterized. The particles were found to be amorphous in nature, ranging in size from 50 to 100 nm. The concentration of silica nanoparticles, pH and curing time were taken as independent variables to design the experiment. Box-Behnken method has been used to derive the experimental plan and fifteen experiments were conducted. Regression equations have been formed with the dependent and independent variables and the results of all possible combinations have been derived. The combination of optimized concentration of BTCA and SHP were used as crosslinking agent and catalyst respectively and silica nano particles were used to enhance the physical properties of the cotton fabric. The effect of pH and curing time on physical properties were analysed by FTIR studies. By ranking method the best combination of process parameters were identified. From this study, it was observed that higher concentration of silica nanoparticles with BTCA improve the crease recovery angle and tensile strength. FTIR studies revealed that the increase of pH and curing time increases the ester carbonyl band intensity ratio.

  19. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Caterina Fede

    2014-08-01

    Full Text Available Silica (SiO2 nanoparticles (NPs have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30 having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  20. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications

    KAUST Repository

    Croissant, Jonas G.

    2017-11-30

    Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer\\'s disease therapy.

  1. Gold Nanoparticle Coated Silica Nanorods for Sensitive Visual Detection of microRNA on a Lateral Flow Strip Biosensor.

    Science.gov (United States)

    Takalkar, Sunitha; Xu, Hui; Chen, Jiao; Baryeh, Kwaku; Qiu, Wanwei; Zhao, Julia X; Liu, And Guodong

    2016-01-01

    We present a rapid and highly sensitive approach for visual detection of microRNA (miRNA) using a gold nanoparticles coated silica nanorod label and lateral flow strip biosensor. Gold nanoparticles were decorated on the silica nanorod surface by a seeding and growth procedure. A single strand DNA probe was immobilized on the gold nanoparticles-silica nanorod surface by a self-assembling process, and the formed DNA-gold nanoparticles-silica nanorod conjugate was used to construct the lateral flow nucleic acid biosensor for detecting miRNA. The captured gold nanoparticles-silica nanorods by sandwich-type hybridization reactions (DNA-RNA-DNA) on the test zone of the lateral flow nucleic acid biosensor produced the characteristic color bands, enabling visual detection of miRNA. After systematic optimization, the new lateral flow nucleic acid biosensor was capable of detecting 10 pM of the miRNA target without instrumentation, which is six times lower than that obtained with the gold nanoparticle-based lateral flow nucleic acid biosensor. The gold nanoparticles coated silica nanorod thus provides a new and sensitive nanolabel for visual detection of biological molecules on the lateral flow biosensor.

  2. An in vitro toxicity evaluation of gold-, PLLA- and PCL-coated silica nanoparticles in neuronal cells for nanoparticle-assisted laser-tissue soldering.

    Science.gov (United States)

    Koch, Franziska; Möller, Anja-M; Frenz, Martin; Pieles, Uwe; Kuehni-Boghenbor, Kathrin; Mevissen, Meike

    2014-08-01

    The uptake of silica (Si) and gold (Au) nanoparticles (NPs) engineered for laser-tissue soldering in the brain was investigated using microglial cells and undifferentiated and differentiated SH-SY5Y cells. It is not known what effects NPs elicit once entering the brain. Cellular uptake, cytotoxicity, apoptosis, and the potential induction of oxidative stress by means of depletion of glutathione levels were determined after NP exposure at concentrations of 10(3) and 10(9)NPs/ml. Au-, silica poly (ε-caprolactone) (Si-PCL-) and silica poly-L-lactide (Si-PLLA)-NPs were taken up by all cells investigated. Aggregates and single NPs were found in membrane-surrounded vacuoles and the cytoplasm, but not in the nucleus. Both NP concentrations investigated did not result in cytotoxicity or apoptosis, but reduced glutathione (GSH) levels predominantly at 6 and 24h, but not after 12 h of NP exposure in the microglial cells. NP exposure-induced GSH depletion was concentration-dependent in both cell lines. Si-PCL-NPs induced the strongest effect of GSH depletion followed by Si-PLLA-NPs and Au-NPs. NP size seems to be an important characteristic for this effect. Overall, Au-NPs are most promising for laser-assisted vascular soldering in the brain. Further studies are necessary to further evaluate possible effects of these NPs in neuronal cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Ion beam induced effects on the ferromagnetism in Pd nanoparticles

    International Nuclear Information System (INIS)

    Kulriya, P. K.; Mehta, B. R.; Agarwal, D. C.; Agarwal, Kanika; Kumar, Praveen; Shivaprasad, S. M.; Avasthi, D. K.

    2012-01-01

    Present study demonstrates the role of metal-insulator interface and ion irradiation induced defects on the ferromagnetic properties of the non-magnetic materials. Magnetic properties of the Pd nanoparticles(NPs) embedded in the a-silica matrix synthesized using atom beam sputtering technique, were determined using SQUID magnetometry measurements which showed that ferromagnetic response of Pd increased by 3.5 times on swift heavy ion(SHI) irradiation. The ferromagnetic behavior of the as-deposited Pd NPs is due to strain induced by the surrounding matrix and modification in the electronic structure at the Pd-silica interface as revealed by insitu XRD and XPS investigations, respectively. The defects created by the SHI bombardment are responsible for enhancement of the magnetization in the Pd NPs.

  4. Magnetoliposomes based on nickel/silica core/shell nanoparticles: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ana Rita O.; Gomes, I.T.; Almeida, Bernardo G. [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Araújo, J.P. [IFIMUP/IN – Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto (Portugal); Castanheira, Elisabete M.S. [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Coutinho, Paulo J.G., E-mail: pcoutinho@fisica.uminho.pt [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2014-12-15

    In the present work, nickel magnetic nanoparticles with diameters lower than 100 nm, with and without silica shell, were synthesized by microheterogeneous templating. The magnetic properties of the nanoparticles show a typical ferromagnetic behavior with a coercive field of 80 Oe. Dry magnetoliposomes (DMLs) with diameter between 58 nm and 76 nm were obtained from the synthesis of nanoparticles in the presence of a lipid or surfactant layer, and aqueous magnetoliposomes (AMLs) were obtained by encapsulation of the nanoparticles in liposomes. FRET (Förster resonance energy transfer) experiments were performed to study the non-specific interactions between aqueous magnetoliposomes and giant unilamellar vesicles (GUVs), as models of cell membranes. It was possible to detect membrane fusion between GUVs and AMLs containing both NBD-C{sub 6}-HPC (donor) and the dye Nile Red (acceptor). - Highlights: • Magnetic nickel nanoparticles were synthesized in microheterogeneous media. • The nanoparticles were covered with a silica shell to improve biocompatibility. • Aqueous and dry magnetoliposomes were prepared, the latter with diameter around 70 nm. • Membrane fusion between magnetoliposomes and models of cell membranes was detected by FRET.

  5. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  6. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2014-06-01

    Full Text Available Silica coated (30 wt% cobalt zinc ferrite (Co1−xZnxFe2O4, x=0, 0.2, 0.3, 0.4, 0.5 and 1 nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared (FTIR spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1−xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  7. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles.

    Science.gov (United States)

    Topouzi, Marianthi; Kontonasaki, Eleana; Bikiaris, Dimitrios; Papadopoulou, Lambrini; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2017-05-01

    Fractures in long span provisional/interim restorations are a common complication. Adequate fracture toughness is necessary to resist occlusal forces and crack propagation, so these restorations should be constructed with materials of improved mechanical properties. The aim of this study was to investigate the possible reinforcement of neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles in a PMMA resin for fixed interim restorations. Composite PMMA-Silica nanoparticles powders were mixed with PMMA liquid and compact bar shaped specimens were fabricated according to the British standard BS EN ISO 127337:2005. The single-edge notched method was used to evaluate fracture toughness (three-point bending test), while the dynamic thermomechanical properties (Storage Modulus, Loss Modulus, tanδ) of a series of nanocomposites with different amounts of nanoparticles (0.25%, 0.50%, 0.75%, 1% w.t.) were evaluated. Statistical analysis was performed and the statistically significant level was set to pPMMA resins used in fixed provisional restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine.

    Science.gov (United States)

    Montalti, M; Prodi, L; Rampazzo, E; Zaccheroni, N

    2014-06-21

    The ability to find synergic solutions is the core of scientific research and scientific advancement. This is particularly true for medicine, where multimodal imaging and theranostic tools represent the frontier research. Nanotechnology, which by its very nature is multidisciplinary, has opened up the way to the engineering of new organized materials endowed with improved performances. In particular, merging nanoparticles and luminescent signalling can lead to the creation of unique tools for the design of inexpensive, hand-held diagnostic and theranostic kits. In this wide scenario, dye-doped silica nanoparticles constitute very effective nanoplatforms to obtain efficient luminescent, stable, biocompatible and targeted agents for biomedical applications. In this review we discuss the state of the art in the field of luminescent silica-based nanoparticles for medical imaging, starting with an overview of the most common synthetic approaches to these materials. Trying to rationalize the presentation of this extremely multifaceted and complex subject, we have gathered significant examples of systems applied in cancer research, also discussing those that take a multifunctional approach, including theranostic structures. Nanoprobes designed for applications that do not include cancer are a minor part, but interesting achievements have been published and we present a selection of these in the subsequent section. To conclude, we propose a debate on the advantages of creating chemosensors based on luminescent silica nanoparticles. This is far from easy but is a particularly valuable goal in the medical field and therefore subject to extensive research worldwide.

  9. Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, Marine [UMR 5253 CNRS-UM2-ENSCM-UM1, Institut Charles Gerhardt Montpellier (France); Gary-Bobo, Magali [Faculte de Pharmacie, Universite Montpellier 1, Universite Montpellier 2, Institut des Biomolecules Max Mousseron UMR 5247 CNRS (France); Lartigue, Lenaiec; Brevet, David [UMR 5253 CNRS-UM2-ENSCM-UM1, Institut Charles Gerhardt Montpellier (France); Morere, Alain; Garcia, Marcel [Faculte de Pharmacie, Universite Montpellier 1, Universite Montpellier 2, Institut des Biomolecules Max Mousseron UMR 5247 CNRS (France); Maillard, Philippe [Universite Paris-Sud, UMR 176 CNRS, Institut Curie (France); Raehm, Laurence; Guari, Yannick, E-mail: yannick.guari@um2.fr; Larionova, Joulia; Durand, Jean-Olivier, E-mail: durand@univ-montp2.fr [UMR 5253 CNRS-UM2-ENSCM-UM1, Institut Charles Gerhardt Montpellier (France); Mongin, Olivier [Universite de Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226 (France); Blanchard-Desce, Mireille [Universite Bordeaux, Institut des Sciences Moleculaires, UMR CNRS 5255 (France)

    2013-05-15

    An original fluorophore engineered for two-photon excitation or a porphyrin derivative were entrapped in the silica shell of magnetic porous silica nanoparticles during the synthesis of the silica moiety without damaging the structure of the organic part. The mild conditions involved allowed obtaining microporous or mesoporous silica magnetic nanoparticles, respectively. Mannose was grafted on the surface of the nanoparticles to target MCF-7 breast cancer cells. The studies of magnetic properties of these hybrid nanoparticles show that they present a blocking temperature at 190 K. The nano-objects designed with the two-photon fluorophore were efficient for two-photon imaging of MCF-7 cancer cells, whereas the nano-objects with the photosensitizer efficiently killed cancer cells. The presence of the mannose moiety was demonstrated to improve both imaging and therapy properties.

  10. Coordination-Accelerated "Iron Extraction" Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles.

    Science.gov (United States)

    Wang, Liying; Huo, Minfeng; Chen, Yu; Shi, Jianlin

    2017-11-01

    Biodegradation behavior of inorganic silica-based nanoplatforms is of critical importance in their clinical translations, but still remains a great challenge in achieving this goal by composition regulation of biocompatible silica framework. In the present work, a chemical coordination-accelerated biodegradation strategy to endow hollow mesoporous silica nanoparticles (HMSNs) with unique coordination-responsive biodegradability, on-demand coordination-responsive drug releasing behavior, and significantly enhanced chemotherapeutic efficacy by directly doping iron (Fe) ions into the framework of mesoporous silica is reported. A simple but versatile dissolution-regrowth strategy has been developed to enable the framework Fe doping via chemical bonding. The deferiprone-mediated biodegradation of Fe-doped HMSNs (Fe-HMSNs) has been comprehensively evaluated both in simulated body fluid and intracellular level, which have exhibited a specific coordination-accelerated biodegradation behavior. In addition to high biocompatibility of Fe-HMSNs, the anticancer drug doxorubicin (DOX)-loaded Fe-HMSNs show enhanced tumor-suppressing effect on 4T1 mammary cancer xenograft. This work paves a new way for tuning the biodegradation performance of mesoporous silica-based nanoplatforms simply by biocompatible Fe-ion doping into silica framework based on the specific coordination property between introduced metal Fe ions with Fe-coordination proteins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions.

    Science.gov (United States)

    Sharma, Kamendra P; Aswal, Vinod K; Kumaraswamy, Guruswamy

    2010-09-02

    Addition of nonionic surfactant, C(12)E(9), to an aqueous dispersion of charge stabilized silica nanoparticles renders particle aggregation reversible. In contrast, aggregation of the same silica particles in aqueous solutions is irreversible. We use a combination of small-angle X-ray scattering (SAXS) and contrast matching small-angle neutron scattering (SANS) to investigate interparticle interactions and microstructure in dispersions of silica particles in aqueous nonionic surfactant solutions. We show that the silica particles interact through a screened Coulombic interaction in aqueous dispersions; interestingly, this interparticle interaction is hard-sphere-like in surfactant solutions. In surfactant solutions, we show that the final surfactant-particle structure can be modeled as 14 micelles adsorbed (on average) on the surface of each silica particle. This gives rise to the short-range interparticle repulsion that makes particle aggregation reversible, and results in the hard sphere interparticle interaction potential. Finally, we show that adsorption of polyethylene imine on the surface of the silica particles prevents adsorption of surfactant micelles on the particle surface.

  12. Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering.

    Science.gov (United States)

    Hollamby, Martin J; Borisova, Dimitriya; Brown, Paul; Eastoe, Julian; Grillo, Isabelle; Shchukin, Dmitry

    2012-03-06

    Since the first development of surfactant-templated mesoporous silicas, the underlying mechanisms behind the formation of their structures have been under debate. Here, for the first time, time-resolved small-angle neutron scattering (tr-SANS) is applied to study the complete formation of mesoporous silica nanoparticles. A distinct advantage of this technique is the ability to detect contributions from the whole system, enabling the visualization not only of particle genesis and growth but also the concurrent changes to the coexistent micelle population. In addition, using contrast-matching tr-SANS, it is possible to highlight the individual contributions from the silica and surfactant. An analysis of the data agrees well with the previously proposed "current bun" model describing particle growth: Condensing silica oligomers adsorb to micelles, reducing intermicellar repulsion and resulting in aggregation to form initial particle nuclei. From this point, the growth occurs in a cooperative manner, with condensing silica filling the gaps between further aggregating micelles. The mechanistic results are discussed with respect to different reaction conditions by changing either the concentration of the silica precursor or the temperature. In doing so the importance of in situ techniques is highlighted, in particular, tr-SANS, for mechanism elucidation in the broad field of materials science.

  13. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y.

    2017-07-01

    Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS) as precursor of silica and cetyltrimethylammonium bromide (CTAB) as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM), high resolution transmission electron microscopy (HR-TEM), N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS). The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480m2/g was obtained with pore sizes ranging 2.5–2.8nm. (Author)

  14. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  15. Radiosensitizing Silica Nanoparticles encapsulating Docetaxel for Treatment of Prostate Cancer

    OpenAIRE

    Belz, Jodi; Castilla-Ojo, Noelle; Sridhar, Srinivas; Kumar, Rajiv

    2017-01-01

    The applications of nanoparticles in oncology include enhanced drug delivery, efficient tumor targeting, treatment monitoring and diagnostics. The ‘theranostic properties’ associated with nanoparticles have shown enhanced delivery of chemotherapeutic drugs with superior imaging capabilities and minimal toxicities. In conventional chemotherapy, only a fraction of the administered drug reaches the tumor site or cancer cells. For successful translation of these formulations, it is imperative to ...

  16. Fracture Behavior of Silica- and Rubber-Nanoparticle-Toughed Epoxies

    Science.gov (United States)

    Labak, Amelia K.

    Particle-toughened crosslinked epoxies are popular materials for a variety of applications, including the microelectronics industry. For this application, the properties of these materials, such as a high fracture toughness and a low coefficient of thermal expansion, are highly appealing. In order to achieve these properties, inorganic particles are often added into the matrix. For this study, both inorganic and organic particles-toughened epoxies are investigated in the hopes of finding an optimized system. In particular, in this study, micron-sized silica and nano-sized rubbery block copolymers are added to an amine-cured epoxy matrix. A series of rubber-only and silica-only systems are investigated for their contribution to the fracture toughness. Then, a series of hybrid systems are investigated. The hypothesis is that the rubber will contribute toughness through rubber particle cavitation and matrix void growth and the silica will contribute toughness through crack pinning and bridging and particle debonding. In the hybrid systems, these mechanisms will take place at a different scale. Therefore, the nanoscale mechanisms of the rubber will be able to function at the same time as the micron sized mechanisms of the silica and the resultant toughness will be synergistically higher. The results from this study show an interesting contribution from the rubber particles both in the rubber-only systems and the hybrid system. Ultimately, there was a marked increase in the fracture toughness of the hybrid systems, although not synergistic. This increase indicates that it would be possible to create an optimized hybrid system from the combined addition of these particles.

  17. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    Science.gov (United States)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  18. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.

    Science.gov (United States)

    Patwardhan, Siddharth V; Emami, Fateme S; Berry, Rajiv J; Jones, Sharon E; Naik, Rajesh R; Deschaume, Olivier; Heinz, Hendrik; Perry, Carole C

    2012-04-11

    Control over selective recognition of biomolecules on inorganic nanoparticles is a major challenge for the synthesis of new catalysts, functional carriers for therapeutics, and assembly of renewable biobased materials. We found low sequence similarity among sequences of peptides strongly attracted to amorphous silica nanoparticles of various size (15-450 nm) using combinatorial phage display methods. Characterization of the surface by acid base titrations and zeta potential measurements revealed that the acidity of the silica particles increased with larger particle size, corresponding to between 5% and 20% ionization of silanol groups at pH 7. The wide range of surface ionization results in the attraction of increasingly basic peptides to increasingly acidic nanoparticles, along with major changes in the aqueous interfacial layer as seen in molecular dynamics simulation. We identified the mechanism of peptide adsorption using binding assays, zeta potential measurements, IR spectra, and molecular simulations of the purified peptides (without phage) in contact with uniformly sized silica particles. Positively charged peptides are strongly attracted to anionic silica surfaces by ion pairing of protonated N-termini, Lys side chains, and Arg side chains with negatively charged siloxide groups. Further, attraction of the peptides to the surface involves hydrogen bonds between polar groups in the peptide with silanol and siloxide groups on the silica surface, as well as ion-dipole, dipole-dipole, and van-der-Waals interactions. Electrostatic attraction between peptides and particle surfaces is supported by neutralization of zeta potentials, an inverse correlation between the required peptide concentration for measurable adsorption and the peptide pI, and proximity of cationic groups to the surface in the computation. The importance of hydrogen bonds and polar interactions is supported by adsorption of noncationic peptides containing Ser, His, and Asp residues, including

  19. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Ribeiro

    2017-10-01

    Full Text Available The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles. Superior bilayer deposition took place from lipid films, whereas adsorption from pre-formed bilayer fragments yielded limiting adsorption below the levels expected for bilayer adsorption.

  20. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  1. SANS study of Lysozyme vs. BSA protein adsorption on silica nanoparticles

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2012-06-01

    Lysozyme (M.W. 14.7 kD) and BSA (M.W. 66.7 kD) are two most commonly studied model proteins in literature. Lysozyme (cationic) and BSA (anionic) are oppositely charged at pH 7 and their interaction with anionic silica nanoparticles has been studied using small-angle neutron scattering (SANS). Measurements were carried out on fixed 1 wt% concentration of nanoparticles and varying concentration of protein in the range 0.5 to 2 wt%. It is found that both the proteins adsorb on the nanoparticles where strong interaction of lysozyme leads to the aggregation of nanoparticles but the system remains stable with BSA. Adsorption increases with protein concentration and has been found much larger for lysozyme.

  2. Nanoparticle metrology standards based on the time-resolved fluorescence anisotropy of silica colloids

    Science.gov (United States)

    Apperson, Kathleen; Karolin, Jan; Martin, Robert W.; Birch, David J. S.

    2009-02-01

    We demonstrate nanoparticle size measurement using time-resolved fluorescence anisotropy decay in relation to establishing a nanometrology standard. The rotational correlation time equivalent to the isotropic Brownian rotation of a fluorescent 6-methoxyquinolinium dye attached to amorphous silica nanoparticles was determined in three different LUDOXLUDOX is a registered trademark of DuPont Corporation. colloids from the complex fluorescence anisotropy decay observed. Once competing depolarization and nanoparticle aggregation had been taken into account, good agreement was found of 4.0 ± 0.4 nm, 6.4 ± 0.5 nm and 11.0 ± 1.6 nm corresponding to the manufacturer's reported particle radii of 3.5 nm, 6 nm and 11 nm, for LUDOX SM30, AM30 and AS40 respectively. We describe the measurement science required for acquisition and interpretation of fluorescence anisotropy decay data in order to determine nanoparticle size while highlighting the limitations and useful range of measurement.

  3. Nanoparticle metrology standards based on the time-resolved fluorescence anisotropy of silica colloids

    International Nuclear Information System (INIS)

    Apperson, Kathleen; Karolin, Jan; Martin, Robert W; Birch, David J S

    2009-01-01

    We demonstrate nanoparticle size measurement using time-resolved fluorescence anisotropy decay in relation to establishing a nanometrology standard. The rotational correlation time equivalent to the isotropic Brownian rotation of a fluorescent 6-methoxyquinolinium dye attached to amorphous silica nanoparticles was determined in three different LUDOX colloids from the complex fluorescence anisotropy decay observed. Once competing depolarization and nanoparticle aggregation had been taken into account, good agreement was found of 4.0 ± 0.4 nm, 6.4 ± 0.5 nm and 11.0 ± 1.6 nm corresponding to the manufacturer's reported particle radii of 3.5 nm, 6 nm and 11 nm, for LUDOX SM30, AM30 and AS40 respectively. We describe the measurement science required for acquisition and interpretation of fluorescence anisotropy decay data in order to determine nanoparticle size while highlighting the limitations and useful range of measurement

  4. A novel liposome-encapsulated hemoglobin/silica nanoparticle as an oxygen carrier.

    Science.gov (United States)

    Liu, Mingxian; Gan, Lihua; Chen, Liuhua; Zhu, Dazhang; Xu, Zijie; Hao, Zhixian; Chen, Longwu

    2012-05-10

    A novel liposome-encapsulated hemoglobin/silica nanoparticle (LEHSN) was fabricated by a water-in-oil-in-water (W/O/W) double emulsion approach. Bovine hemoglobin (Hb) was first adsorbed onto the surfaces of silica nanoparticles (SNs), and then the complex of Hb/SNs was encapsulated by liposome to form LEHSN which has a core-shell supramolecular structure. On the one hand, liposomes built a cell membrane-like environment for the controlled release of Hb. On the other hand, SNs which act as rigid core provide a supported framework for lecithin membrane, and enhance the stability of liposomes. In comparison with liposome-encapsulated Hb (LEH), LEHSN shows substantially enhanced stability and improved release property of Hb in vitro. This study highlights the potential of the novel LEHSN as an oxygen carrier for pharmaceutical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles.

    Science.gov (United States)

    Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min

    2017-01-01

    Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli . Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.

  6. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  7. Structure and interaction in liquid-liquid phase transition of silica nanoparticles in aqueous electrolyte solution

    Science.gov (United States)

    Chinchalikar, A. J.; Aswal, V. K.; Kohlbrecher, J.; Wagh, A. G.

    2013-02-01

    Small-angle neutron scattering (SANS) measurements have been performed on charged silica nanoparticles undergoing liquid-liquid phase transition (LLPT) in aqueous electrolyte solution. We show that there is local crowding followed by clustering of particles on approaching LLPT. The local crowding is understood to be driven by the secondary minimum whereas clustering by the primary minimum of the DLVO potential. The local crowding has been characterized by the Baxter Sticky model of particles and clustering by the surface fractals. The role of nanoparticle to salt concentration in LLPT has been examined.

  8. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.

    Science.gov (United States)

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-06-03

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.

  9. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  10. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.

    Science.gov (United States)

    Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G

    2017-11-15

    The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Intracellular pH-sensing using core/shell silica nanoparticles.

    Science.gov (United States)

    Korzeniowska, B; Woolley, R; DeCourcey, J; Wencel, D; Loscher, C E; McDonagh, C

    2014-07-01

    An in-depth understanding of biochemical processes occurring within biological systems is key for early diagnosis of disease and identification of appropriate treatments. Nanobiophotonics offers huge potential benefits for intracellular diagnostics and therapeutics. Intracellular sensing using fluorescent nanoparticles is a potentially useful tool for real-time, in vivo monitoring of important cellular analytes. This work is focused on synthesis of optical chemical nanosensors for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly silica matrix with co-encapsulated Texas Red, acting as a reference dye, and pH-sensitive fluorescein isothiocyanate enabling ratiometric quantitative environmental detection. In order to obtain silica-based nanoparticles -70 nm in size, a modified sol-gel-based Stöber method was employed. The potential of these nanosensors for intracellular pH monitoring is demonstrated inside a live human embryonic kidney cell line whereby a significant change in fluorescence is observed when the cell pH is switched from acidic to basic. High loading efficiencies of nanoparticles into the cells is seen, with little effect on cell morphology even following extended nanoparticle exposure (up to 72 h). Nanoparticle incubation time and the fast response of the nanosensor (-2 s) make it a very powerful tool in monitoring the processes occurring within the cytosol.

  12. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)

    2011-09-02

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  13. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    International Nuclear Information System (INIS)

    Torres-Torres, C; Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A; Rangel-Rojo, R; Torres-Martinez, R

    2011-01-01

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  14. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  15. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  16. Silica-coated .gamma.-Fe2O3 nanoparticles: preparation and engulfment by mammalian macrophages

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Boiko, N.; Klyuchivska, O.; Trchová, Miroslava; Petrovský, Eduard; Stoika, R.; Horák, Daniel

    2013-01-01

    Roč. 1, č. 2 (2013), s. 182-192 ISSN 2167-9312 R&D Projects: GA ČR GCP207/12/J013; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 ; RVO:67985530 Keywords : maghemite * nanoparticles * silica Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E)

  17. Development of an Immunochromatographic Assay Kit Using Fluorescent Silica Nanoparticles for Rapid Diagnosis of Acanthamoeba Keratitis

    OpenAIRE

    Toriyama, Koji; Suzuki, Takashi; Inoue, Tomoyuki; Eguchi, Hiroshi; Hoshi, Saichi; Inoue, Yoshitsugu; Aizawa, Hideki; Miyoshi, Kazutomi; Ohkubo, Michio; Hiwatashi, Eiji; Tachibana, Hiroshi; Ohashi, Yuichi

    2014-01-01

    We developed an immunochromatographic assay kit that uses fluorescent silica nanoparticles bound to anti-Acanthamoeba antibodies (fluorescent immunochromatographic assay [FICGA]) and evaluated its efficacy for the detection of Acanthamoeba and diagnosis of Acanthamoeba keratitis (AK). The sensitivity of the FICGA kit was evaluated using samples of Acanthamoeba trophozoites and cysts diluted to various concentrations. A conventional immunochromatographic assay kit with latex labels (LICGA) was...

  18. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay

    OpenAIRE

    Demir, Eşref; Castranova, Vincent

    2016-01-01

    Synthetic amorphous silica nanoparticles (SAS NPs) have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/Tk+/− assay (MLA) was used to evaluate the mutagenic eff...

  19. Mn-Zn ferrite nanoparticles with silica and titania coatings: synthesis, transverse relaxivity and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Herynek, V.; Havelek, R.; Královec, K.; Kubániová, D.; Kohout, J.; Dvořák, P.; Jirák, Zdeněk

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-8, č. článku 5300908. ISSN 0018-9464 R&D Projects: GA ČR GA16-04340S Institutional support: RVO:68378271 Keywords : amorphous titania * silica * magnetic nanoparticles * Mn-Zn ferrite * transverse relaxivity * cytotoxicity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  20. Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties.

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Keshvan, Prashant C; Bhat, Madhusudan; Dinda, Amit K; Mitra, Susmita

    2015-11-01

    Silica nanoparticles have drawn a lot of attention for nanomedicine application, and this is attributed to their biocompatibility and ease of surface functionalization. However, successful utilization of these inorganic systems for biomedical application depends on their physicochemical properties. This study, therefore, discusses in vitro toxicity of organically modified silica nanoparticles on the basis of size, shape, and surface properties of silica nanoparticles. Spherical- and oval-shaped nanoparticles having hydroxyl and amine groups were synthesized in Tween 80 micelles using different organosilanes. Nanoparticles of similar size and morphology were considered for comparative assessment. "As-prepared" nanoparticles were characterized in terms of size, shape, and surface properties using ZetaSizer, transmission electron microscopy, and Fourier transform infrared to establish the above parameters. In vitro analysis in terms of nanoparticle-based toxicity was performed on J-774 (macrophage) cell line using propidium iodide-4',6-diamidino-2-phenylindol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Fluorescent dye-entrapped nanoparticles were used to visualize the uptake of the nanoparticles by macrophage cells. Results from cell studies suggested low levels of toxicity for different nanoparticle formulations studied, therefore are suitable for nanocarrier application for poorly soluble molecules. On the contrary, the nanoparticles of similar size and shape, having amine groups and low net negative charge, do not exhibit any in vitro cytotoxicity. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Preventive and therapeutic effects of gene therapy using silica nanoparticles-binding of GM-CSF gene on white blood cell production in dogs with leukopenia.

    Science.gov (United States)

    Choi, Eun Wha; Koo, Hye Cheong; Shin, Il Seob; Chae, Young Jin; Lee, Jong Hwa; Han, Sei Myoung; Lee, Seung Jun; Bhang, Dong Ha; Park, Yong Ho; Lee, Chang Woo; Youn, Hwa Young

    2008-09-01

    Our previous study has shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) gene/silica nanoparticles have a leukocytosis effect in normal dogs. Therefore, this study was conducted to determine whether treatment of canine GM-CSF gene/silica nanoparticles has preventive or therapeutic effects in dogs with leukopenia. To induce leukopenia, vinblastine was administered intravenously at a dose of 2 mg/m(2) of body surface area on day 0. Then 7.5 microg GM-CSF/nanoparticles (1:100, w/w) were administered intravenously to each of four dogs in the prevention group on day 2 and an equivalent amount of GM-CSF/nanoparticles was administered to the post-nadir group on day 4 (other groups were administered phosphate-buffered saline intravenously). Therapeutic GM-CSF gene was expressed in peripheral blood mononuclear cells for 10 days and both the prevention and post-nadir groups showed significant increases in white blood cell counts when compared with the control group, as confirmed by complete blood count, differential count, and flow cytometry. GM-CSF/nanoparticles can be useful for correction of acute leukopenia, such as chemotherapy-induced myelosuppression, without developing neutralizing antibodies.

  2. PtNi nanoparticles embedded in porous silica microspheres as ...

    Indian Academy of Sciences (India)

    SEM, EDS, TEM, FTIR, XRD, ICP-AES, XPS and nitrogen adsorption/desorption analysis were employed to systematically investigate the morphology and structure of the obtained SiO2 microspheres and SiO₂/PtNi nanocatalysts. Results show that uniform PtNi nanoparticles can be homogeneously and firmly embedded ...

  3. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  4. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    International Nuclear Information System (INIS)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-01-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity

  5. Lateral flow immunoassay using europium chelate-loaded silica nanoparticles as labels.

    Science.gov (United States)

    Xia, Xiaohu; Xu, Ye; Zhao, Xilin; Li, Qingge

    2009-01-01

    Despite their ease of use, lateral flow immunoassays (LFIAs) often suffer from poor quantitative discrimination and low analytical sensitivity. We explored the use of a novel class of europium chelate-loaded silica nanoparticles as labels to overcome these limitations. Antibodies were covalently conjugated onto europium chelate-loaded silica nanoparticles with dextran as a linker. The resulting conjugates were used as labels in LFIA for detection of hepatitis B surface antigen (HBsAg). We performed quantification with a digital camera and Adobe Photoshop software. We also used 286 clinical samples to compare the proposed method with a quantitative ELISA. A detection limit of 0.03 microg/L was achieved, which was 100 times lower than the colloidal gold-based LFIAs and lower than ELISA. A precise quantitative dose-response curve was obtained, and the linear measurement range was 0.05-3.13 microg/L, within which the CVs were 2.3%-10.4%. Regression analysis of LFIA on ELISA results gave: log (LFIA) = -0.14 log (ELISA) + 1.03 microg/L with r = 0.99 for the quantification of HBsAg in 35 positive serum samples. Complete agreement was observed for the qualitative comparison of 286 clinical samples assayed with LFIA and ELISA. Europium chelate-loaded silica nanoparticle labels have great potential to improve LFIAs, making them useful not only for simple screening applications but also for more sensitive and quantitative immunoassays.

  6. Optical study of the ultrasonic formation process of noble metal nanoparticles dispersed inside the pores of monolithic mesoporous silica

    CERN Document Server

    Fu Gan Hua; Kan Cai Xia; Li Cun Cheng; Fang Qi

    2003-01-01

    Gold nanoparticles dispersed inside the pores of monolithic mesoporous silica were prepared by soaking the silica in a gold (III) ion solution and subsequent ultrasound irradiation. The formation process of gold nanoparticles in the pores of mesoporous silica was investigated based on optical measurements of wrapped and naked soaked silica after ultrasonic irradiation, and the reduction rate effect in solution and pre-soaking effect. It has been shown that acoustic cavitation cannot occur in nano-sized pores. The gold nanoparticles in silica are not formed in situ within the pores but produced mainly by diffusion of the gold clusters formed in the solution during irradiation into the pores. The radicals formed in solution are exhausted before entering the pores of silica. There exists a critical reduction rate in solution, at which the yield of gold nanoparticles in silica reaches a maximum, and above which there is a decrease in the yield. This is attributed to too quick a growth or aggregation of gold clust...

  7. Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant.

    Science.gov (United States)

    Yu, Huan; Zhu, Yang; Yang, Hui; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Guo, Xingzhong

    2014-09-07

    A facile and "green" method was proposed to introduce Ag nanoparticles (Ag NPs) into the hierarchically monolithic silica uniformly in the presence of (3-aminopropyl)-triethoxysilane (APTES) and ethylene glycol. APTES is used to modify the monolith by incorporating amino groups onto the surface of meso-macroporous skeletons, while ethylene glycol is employed as the productive reductant. Ag NPs are homogeneously immobilized in hierarchically monolithic silica after reduction and drying at 40 °C for different duration times, and the embedded amount of Ag NPs can reach 15.44 wt% when treated once. The embedment of Ag NPs increases with the repeat treatment and the APTES amount, without uncontrollable crystalline growth. The surface areas of Ag NPs embedded in silica monoliths after heat treatment at 300 and 400 °C are higher than those before heat treatment. The modification via APTES and the embedment of Ag NPs does not spoil the morphology of monolithic silica, while changing the pore structures of the monolith. A tentative formation process and a reduction mechanism are proposed for the modification, reduction and embedment. Ag NPs embedded in monolithic silica is promising for wide applications such as catalysis and separation.

  8. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications.

    Science.gov (United States)

    Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-02-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120°C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Luminescence Properties of Mesoporous Silica Nanoparticles Encapsulating Different Europium Complexes: Application for Biolabelling

    Directory of Open Access Journals (Sweden)

    S. Lechevallier

    2013-01-01

    Full Text Available In this work we have synthesized and characterized new hybrid nanoplatforms for luminescent biolabeling based on the concept of Eu3+ complexes encapsulation in mesoporous silica nanoparticles (≈100 nm. Eu complexes have been selected on the basis of their capability to be excited at 365 nm which is a currently available wavelength, on routine epifluorescence microscope. For Eu complexes encapsulation, two different routes have been used: the first route consists in grafting the transition metal complex into the silica wall surface. The second way deals with impregnation of the mesoporous silica NPs with the Eu complex. Using the second route, a silica shell coating is realized, to prevent any dye release, and the best result has been obtained using Eu-BHHCT complex. However, the best solution appears to be the grafting of Eu(TTA3-Phen-Si to mesoporous silica NPs. For this hybrid, mSiO2-Eu(TTA3(Phen-Si full characterization of the nanoplatforms is also presented.

  10. Periodically organized mesoporous silica thin layers as host for phosphinines-stabilized gold nanoparticles: UV-visible sensing of small thiols and phosphines

    International Nuclear Information System (INIS)

    Goettmann, Frederic; Moores, Audrey; Boissiere, Cedric; Le Floch, Pascal; Sanchez, Clement

    2006-01-01

    Herein we report on a new chemo sensor based on ligand induced plasmon band shift of gold nanoparticles [F. Goettmann, A. Moores, C. Boissiere, P. Le Floch and C. Sanchez, Small (2005) 636. ]. Phosphininine stabilized gold nanoparticles were hosted in periodically organized mesoporous silica thin films. These layers feature a strong absorption in the UV-visible spectrum caused by the nanoparticles plasmon band. The position of the latter is unusual, due to the electronic properties of the phosphinine (the phosphorus analog of pyridine). This user-friendly system proved to be remarkably efficient in UV-visible detection of thiols and small phosphines. The sensor is sensitive, selective and reusable. Exchange processes at gold nanoparticles surface in solution or hosted were also discussed in regard of the plasmon band position

  11. Mesoporous silica hybrid membranes for precise size-exclusive separation of silver nanoparticles.

    Science.gov (United States)

    Mekawy, Moataz M; Yamaguchi, Akira; El-Safty, Sherif A; Itoh, Tetsuji; Teramae, Norio

    2011-03-15

    One-dimensional (1D) nanomaterials have unique applications due to their inherent physical properties. In this study, hexagonally ordered mesoporous silica hybrid anodic alumina membranes (AAM) were synthesized using template-guided synthesis with a number of nonionic n-alkyl-oligo(ethylene oxide), Brij-type (C(x)EO(y)), which are surfactants that have different molecular sizes and characteristics. The hexagonal mesoporous silicas are vertically aligned in the AAM channels with a predominantly columnar orientation. The hollow mesostructured silicas had tunable pore diameters varying from 3.7 to 5.1 nm. In this synthesis protocol, the surfactant molecular natures (corona/core features) are important for the controlled generation of ordered structures throughout AAM channels. The development of ultrafiltration membranes composed of silica mesostructures could be used effectively in separating silver nanoparticles (Ag NPs) in both aqueous and organic solution phases. This would be relevant to the production of well-defined Ag NPs with unique properties. To create a size-exclusive separation system of Ag NPs, we grafted hydrophobic trimethylsilyl (TMS) groups onto the inner pores of the mesoporous silica hybrid AAM. The immobilization of the TMS groups allowed the columnar mesoporous silica inside AAM to retain this inner pore order without distortion during the separation of solution-phase Ag NPs in organic solvents that may cause tortuous-pore membranes. Mesoporous TMS-silicas inside 1D AAM channels were applicable as a size-exclusive separation system to isolate organic solution-phase Ag NPs of uniform morphology and size. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    Science.gov (United States)

    Ray, D.; Aswal, V. K.

    2015-06-01

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle-surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  13. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro.

    Science.gov (United States)

    Lankoff, Anna; Arabski, Michal; Wegierek-Ciuk, Aneta; Kruszewski, Marcin; Lisowska, Halina; Banasik-Nowak, Anna; Rozga-Wijas, Krystyna; Wojewodzka, Maria; Slomkowski, Stanislaw

    2013-05-01

    Silica nanoparticles have an interesting potential in drug delivery, gene therapy and molecular imaging due to the possibility of tailoring their surface reactivity that can be obtained by surface modification. Despite these potential benefits, there is concern that exposure of humans to certain types of silica nanomaterials may lead to significant adverse health effects. The motivation of this study was to determine the kinetics of cellular binding/uptake of the vinyl- and the aminopropyl/vinyl-modified silica nanoparticles into peripheral blood lymphocytes in vitro, to explore their genotoxic and cytotoxic properties and to compare the biological properties of modified silica nanoparticles with those of the unmodified ones. Size of nanoparticles determined by SEM varied from 10 to 50 nm. The average hydrodynamic diameter and zeta potential also varied from 176.7 nm (+18.16 mV) [aminopropyl/vinyl-modified] and 235.4 nm (-9.49 mV) [vinyl-modified] to 266.3 (-13.32 mV) [unmodified]. Surface-modified silica particles were internalized by lymphocytes with varying efficiency and expressed no cytotoxic nor genotoxic effects, as determined by various methods (cell viability, apoptosis/necrosis, oxidative DNA damage, chromosome aberrations). However, they affected the proliferation of the lymphocytes as indicated by a decrease in mitotic index value and cell cycle progression. In contrast, unmodified silica nanoparticles exhibited cytotoxic and genotoxic properties at high doses as well as interfered with cell cycle.

  14. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    Science.gov (United States)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  15. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion.

    Science.gov (United States)

    Poussard, Sylvie; Decossas, Marion; Le Bihan, Olivier; Mornet, Stéphane; Naudin, Grégoire; Lambert, Olivier

    2015-01-01

    The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion.

  16. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  17. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  18. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams

    Science.gov (United States)

    Kim, Ijung; Worthen, Andrew J.; Johnston, Keith P.; DiCarlo, David A.; Huh, Chun

    2016-04-01

    Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO2-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.

  19. Serum Protein Adsorption Enhances Active Leukemia Stem Cell Targeting of Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Beck, Michaela; Mandal, Tamoghna; Buske, Christian; Lindén, Mika

    2017-06-07

    The functionalization of nanoparticles with a ligand targeting receptors overexpressed by the target cells is a commonly used strategy when aiming at nanoparticle-based, cell type-specific drug delivery.1-4 However, the influence of particle surface chemistry on the targetability has received much less attention. The surface charge is known to directly or indirectly affect the nanoparticle cellular uptake kinetics by influencing serum protein adsorption.5-7 Thus, it is fair to assume that both the specificity and cellular uptake kinetics of targeted nanoparticles are influenced by the nanoparticle charge, both of which are important parameters for controlling cell-specific drug delivery efficiency. We therefore studied the influence of the surface chemistry of mesoporous silica nanoparticles (MSNs) carrying identical amounts of a specific antibody (anti-B220) on the selectivity toward B220-positive leukemia stem cells. The uptake by these cells was higher compared to the nanoparticle uptake by B220-negative leukemia stem cells, demonstrating uptake specificity. In addition, the adsorption of serum proteins onto the differently charged MSNs was studied by SDS-PAGE. Interestingly, the highest selectivity was not observed for the MSNs with the lowest level of serum protein adsorption, which suggests that proteins present in the protein corona of the MSNs may positively influence the selective uptake of targeted nanoparticles. For the particles exhibiting the highest selectivity, successful selective delivery of cargo to the B220-positive cells was demonstrated. Taken together, our results indicate that nanoparticle surface charge and adsorption of serum proteins is an important factor for enhancing selectivity in targeted delivery of drugs using nanoparticulate vectors, an observation tentatively attributed to enhanced cellular internalization kinetics in the presence of adsorbed serum proteins on the nanoparticles.

  20. Tailoring the size and distribution of Ag nanoparticles in silica glass by defects

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yitao, E-mail: yangyt@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Hengqing; Liu, Juan; Xian, Yongqiang [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Yizhun [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-02-15

    The composites embedded with metallic nanoparticles show large nonlinear optical susceptibility and strong surface plasmon resonance absorption, which enable potential application in opto-electronics. Ion implantation has been proven to be a powerful technique of synthesis of metallic nanoparticles due to its versatility and compatibility. However, the synthesis of nanoparticles by ion implantation inevitably leads to a broad size distribution due to Ostwald ripening process. The broad size distribution has a negative effect on improving the figure of merits for nonlinear optics. In this paper, we tried to introduce defects in silica glass to act as pre-nucleation centers to mediate the size and distribution of Ag nanoparticles. In experiment, the silica glass samples were pre-irradiated by 200 keV Ar ions to fluences of 0.8, 2.0 and 5.0 × 10{sup 16} ions/cm{sup 2}, and then 200 keV Ag ions were implanted into the pre-irradiated samples to fluence of 2.0 × 10{sup 16} ions/cm{sup 2}. UV–VIS results show that the absorbance intensity of Ag SPR peak initially increases and then decreases with pre-irradiation fluence, which implies the change in size and density of Ag nanoparticles in samples. TEM results verify that Ag nanoparticles in the sample pre-irradiated to the fluence of 0.8 × 10{sup 16} ions/cm{sup 2} grow bigger and distribute in a relatively narrow region comparing with that without pre-irradiation. With further increase of pre-irradiation fluence, the size of Ag nanoparticles shows a depth dependent distribution. A boundary can be clear seen at the depth of 110 nm, larger Ag nanoparticles disperse in region shallower than 110 nm, and smaller Ag nanoparticles disperse in the region deeper than 110 nm. The average size of Ag nanoparticles initially increases and then decreases with pre-irradiation fluence. Therefore, the introduction of defects by pre-irradiation could be an effective way to tailor the size and distribution of metallic nanoparticles in

  1. Silica-coated gadolinium-doped lanthanum strontium manganite nanoparticles for self-controlled hyperthermia applications

    Science.gov (United States)

    Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu

    2018-01-01

    Gadolinium-doped lanthanum strontium manganite (LSM) nanoparticles were synthesized by using a citrate-gel technique. The particles were then annealed at 850 oC to remove defects for a good crystallinity, followed by coating with silica for possible biomedical application to magnetic hyperthermia. The chemical composition was determined to be La0.54Sr0.27Gd0.19MnO3 using an inductively coupled plasma mass spectrometer. The nanoparticles were characterized by X-ray diffraction, transmission electron microscope, and Fourier transform infrared spectrometer to check the perovskite crystalline structure and to observe the particles size and coating status of silica on the surface of the particles. The Curie temperature of the particles was found to be about 280 K. The saturation temperature of the aqueous solution of the particles remained at the hyperthermia target temperature of 42 oC with increasing concentration of particles from 6 to 60 mg/mL in the dispersion. This saturation temperature for a highly concentrated 120-mg/mL-sample increased further, but less than the dangerous temperature of 47 oC for normal tissues. The saturation temperature of the powder sample reached only up to 53 oC. These results showed that the gadolinium-doped LSM nanoparticles can be used for the self-controlled hyperthermia in which the temperature does not exceed the target temperature of hyperthermia even at the tissue site of highly accumulated nanoparticles.

  2. Guanidine-based polymer brushes grafted onto silica nanoparticles as efficient artificial phosphodiesterases.

    Science.gov (United States)

    Savelli, Claudia; Salvio, Riccardo

    2015-04-07

    Polymer brushes grafted to the surface of silica nanoparticles were fabricated by atom-transfer radical polymerization (ATRP) and investigated as catalysts in the cleavage of phosphodiesters. The surfaces of silica nanoparticles were functionalized with an ATRP initiator. Surface-initiated ATRP reactions, in varying proportions, of a methacrylate moiety functionalized with a phenylguanidine moiety and an inert hydrophilic methacrylate species afforded hybrid nanoparticles that were characterized with potentiometric titrations, thermogravimetric analysis, and SEM. The activity of the hybrid nanoparticles was tested in the transesterification of the RNA model compound 2-hydroxypropyl para-nitrophenylphosphate (HPNP) and diribonucleoside monophosphates. A high catalytic efficiency and a remarkable effective molarity, thus overcoming the effective molarities previously observed for comparable systems, indicate the existence of an effective cooperation of the guanidine/guanidinium units and a high level of preorganization in the nanostructure. The investigated system also exhibits a marked and unprecedented selectivity for the diribonucleoside sequence CpA. The results presented open up the way for a novel and straightforward strategy for the preparation of supramolecular catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents

    Science.gov (United States)

    Enache, Daniela F.; Vasile, Eugenia; Simonescu, Claudia M.; Răzvan, Anca; Nicolescu, Alina; Nechifor, Aurelia-Cristina; Oprea, Ovidiu; Pătescu, Rodica-Elena; Onose, Cristian; Dumitru, Florina

    2017-09-01

    Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been prepared by the deposition of silica onto magnetite nanoparticles via controlled hydrolysis of TEOS. The new formed silica surface has been functionalized by grafting 3-(triethoxysilyl) propyl isocyanate (ICPTES) and, subsequently, by condensation of isocyanate moiety with cysteine. The morphology of magnetic silica nanoparticles has been investigated by FTIR, PXRD, TEM-HRTEM/SEM/EDX as well as TG experiments. HRTEM microscopy revealed that the Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@ICPTES-cysteine nanoparticles are all of spherical shape with particle of ca. 10-30 nm diameters and the silica-coated magnetites have a core-shell structure. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been tested for their sorption capacity of Pb(II) from synthetic aqueous solutions and the influence of pH solution, contact time, initial heavy metal ion concentrations, and adsorption isotherms on the sorption behavior were also studied. The kinetic studies revealed that the Pb(II) sorption process is mainly controlled by chemical mechanisms. Fe3O4@SiO2@ICPTES-cysteine, with a sorption capacity of 81.8 mg Pb(II)/g, has the potential to be an efficient Pb(II) adsorbent.

  4. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    Science.gov (United States)

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  5. The development of a silica nanoparticle-based label-free DNA biosensor

    Science.gov (United States)

    Kell, Arnold J.; Pagé, Lilianne; Tan, Sophie; Charlebois, Isabelle; Boissinot, Maurice; Leclerc, Mario; Simard, Benoit

    2011-09-01

    A silica nanoparticle-based DNA biosensor capable of detecting Bacillus anthracis bacteria through the use of unlabelled ss-oligonucleotides has been developed. The biosensor makes use of the optical changes that accompany a nanoparticle-immobilized cationic conjugated polymer (polythiophene) interacting with single-stranded vs. hybridized oligonucleotides, where a fluorescence signal appears only when hybridized DNA is present (i.e. only when the ss-oligonucleotide interacting with the polymer has hybridized with its complement). In order to enhance the sensitivity of the biosensor, two different nanoparticle architectures were developed and used to elucidate how the presence of neighboring fluorophores on the nanoparticle surface affects Förster-resonant energy transfer (FRET) between the polythiophene/oligonucleotide complex (FRET donor) and the fluorophores (FRET acceptors). We demonstrate that the silica nanoparticle-based FRET platform lowers the limit of detection at least 10-fold in comparison to the polythiophene itself, and allows the detection of ~2 × 10-12 moles of ss-oligonucleotide in a 100 μL sample with a standard fluorimeter (i.e. has a limit of detection of ~2 nM ssDNA). Such nanoparticle-based biosensor platforms are beneficial because of the robustness and stability inherent to their covalent assembly and they provide a valuable new tool that may allow for the sensitive, label-free detection (the target DNA that produces the fluorescence signal is unlabelled) without the use of polymerase chain reaction.A silica nanoparticle-based DNA biosensor capable of detecting Bacillus anthracis bacteria through the use of unlabelled ss-oligonucleotides has been developed. The biosensor makes use of the optical changes that accompany a nanoparticle-immobilized cationic conjugated polymer (polythiophene) interacting with single-stranded vs. hybridized oligonucleotides, where a fluorescence signal appears only when hybridized DNA is present (i.e. only when

  6. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    Science.gov (United States)

    He, Rong; You, Xiaogang; Shao, Jun; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2007-08-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g-1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays.

  7. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    International Nuclear Information System (INIS)

    He Rong; You Xiaogang; Shao Jun; Gao Feng; Pan Bifeng; Cui Daxiang

    2007-01-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g -1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays

  8. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    Science.gov (United States)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  9. Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons

    Science.gov (United States)

    White-Schenk, Desiree; Shi, Riyi; Leary, James F.

    2015-03-01

    Oxidative stress plays a major role in many disease pathologies, notably in the central nervous system (CNS). For instance, after initial spinal cord injury, the injury site tends to increase during a secondary chemical injury process based on oxidative stress from necrotic cells and the inflammatory response. Prevention of this secondary chemical injury would represent a major advance in the treatment of people with spinal cord injuries. Few therapeutics are useful in combating such stress in the CNS due to side effects, low efficacy, or half-life. Mesoporous silica nanoparticles show promise for delivering therapeutics based on the formation of a porous network during synthesis. Ideally, they increase the circulation time of loaded therapeutics to increase the half-life while reducing overall concentrations to avoid side effects. The current study explored the use of silica nanoparticles for therapeutic delivery of anti-oxidants, in particular, the neutralization of acrolein which can lead to extensive tissue damage due to its ability to generate more and more copies of itself when it interacts with normal tissue. Both an FDA-approved therapeutic, hydralazine, and natural product, epigallocatechin gallate, were explored as antioxidants for acrolein with nanoparticles for increased efficacy and stability in neuronal cell cultures. Not only were the nanoparticles explored in neuronal cells, but also in a co-cultured in vitro model with microglial cells to study potential immune responses to near-infrared (NIRF)-labeled nanoparticles and uptake. Studies included nanoparticle toxicity, uptake, and therapeutic response using fluorescence-based techniques with both dormant and activated immune microglia co-cultured with neuronal cells.

  10. Diamino moiety functionalized silica nanoparticles as pseudostationary phase in capillary electrochromatography separation of plant auxins.

    Science.gov (United States)

    Li, Hui; Ding, Guo-Sheng; Yue, Chun-Yue; Tang, An-Na

    2012-07-01

    A novel and simple method for the preparation of silica nanoparticles having surface-functionalized diamino moiety (dASNPs) was reported in our paper and characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetry techniques. To test this method practically, in this contribution we describe the enhanced separation of four plant auxins - indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (dCPAA), and 2-(1-naphthyl) acetic acid (NAA) - by capillary electrochromatography using diamino moiety functionalized silica nanoparticles as pseudostationary phase (PSP) in the running buffer. The effect of pH, buffer concentration, and diamino moiety functionalized silica nanoparticles concentration on the selectivity of separation was investigated. A combination of the nanoparticles and running buffer reversed the electroosmotic direction making possible the rapid and efficient separation of the auxins from the auxins migrated in the same direction with the EOF under optimum experimental conditions. A good resolution of four auxins was obtained within 5.5 min under optimum experimental conditions. The precision (RSD, n = 5) was in the range of 0.72-0.91% and 1.89-2.23% for migration time and peak area response, respectively. The detection limits were 0.48, 0.44, 0.46, and 0.42 μM for NAA, IBA, IAA, and dCPAA, respectively. Furthermore, the method was successfully tested for the determination of IAA in the grapes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice

    Science.gov (United States)

    Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-03-01

    Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.

  12. Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG

    Science.gov (United States)

    Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar

    2018-03-01

    The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.

  13. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    Science.gov (United States)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  14. Impact of Amorphous Silica Nanoparticles on a Living Organism: Morphological, Behavioural and Molecular Biology Implications.

    Directory of Open Access Journals (Sweden)

    Alfredo eAmbrosone

    2014-09-01

    Full Text Available It is generally accepted that silica (SiO2 is not toxic. But the increasing use of silica nanoparticles (SiO2NPs in many different industrial fields has prompted the careful investigation of its toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles 25nm in diameter, were administered to living Hydra vulgaris (Cnidaria. The dose-related effects were defined by morphological and behavioural assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35nM NPs and a LT50 of 38h. At sub lethal doses the morpho-physiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs and that the physiological modifications are transduced to gene expression modulation.

  15. Bioprobes Based on Aptamer and Silica Fluorescent Nanoparticles for Bacteria Salmonella typhimurium Detection

    Science.gov (United States)

    Wang, Qiu-Yue; Kang, Yan-Jun

    2016-03-01

    In this study, we have developed an efficient method based on single-stranded DNA (ssDNA) aptamers along with silica fluorescence nanoparticles for bacteria Salmonella typhimurium detection. Carboxyl-modified Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (RuBPY)-doped silica nanoparticles (COOH-FSiNPs) were prepared using reverse microemulsion method, and the streptavidin was conjugated to the surface of the prepared COOH-FSiNPs. The bacteria S. typhimurium was incubated with a specific ssDNA biotin-labeled aptamer, and then the aptamer-bacteria conjugates were treated with the synthetic streptavidin-conjugated silica fluorescence nanoprobes (SA-FSiNPs). The results under fluorescence microscopy show that SA-FSiNPs can be applied effectively for the labeling of bacteria S. typhimurium with great photostable property. To further verify the specificity of SA-FSiNPs out of multiple bacterial conditions, variant concentrations of bacteria mixtures composed of bacteria S. typhimurium, Escherichia coli, and Bacillus subtilis were treated with SA-FSiNPs.

  16. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder.

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-08

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  17. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-01

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  18. Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles

    Science.gov (United States)

    Candel, Inmaculada; Aznar, Elena; Mondragón, Laura; Torre, Cristina De La; Martínez-Máñez, Ramón; Sancenón, Félix; Marcos, M. Dolores; Amorós, Pedro; Guillem, Carmen; Pérez-Payá, Enrique; Costero, Ana; Gil, Salvador; Parra, Margarita

    2012-10-01

    MCM-41 silica nanoparticles were used as inorganic scaffolding to prepare a nanoscopic-capped hybrid material S1, which was able to release an entrapped cargo in the presence of certain enzymes, whereas in the absence of enzymes, a zero release system was obtained. S1 was prepared by loading nanoparticles with Safranine O dye and was then capped with a gluconamide derivative. In the absence of enzymes, the release of the dye from the aqueous suspensions of S1 was inhibited as a result of the steric hindrance imposed by the bulky gluconamide derivative, the polymerized gluconamide layer and the formation of a dense hydrogen-bonded network around the pore outlets. Upon the addition of amidase and pronase enzymes, delivery of Safranine O dye was observed due to the enzymatic hydrolysis of the amide bond in the anchored gluconamide derivative. S1 nanoparticles were not toxic for cells, as demonstrated by cell viability assays using HeLa and MCF-7 cell lines, and were associated with lysosomes, as shown by confocal microscopy. Finally, the S1-CPT material loaded with the cytotoxic drug camptothecin and capped with the gluconamide derivative was prepared. The HeLa cells treated with S1-CPT underwent cell death as a result of material internalization, and of the subsequent cellular enzyme-mediated hydrolysis and aperture of the molecular gate, which induced the release of the camptothecin cargo.

  19. Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina.

    Science.gov (United States)

    Drelich, J; Long, J; Xu, Z; Masliyah, J; White, C L

    2006-11-15

    The atomic force microscope (AFM) has been used to measure surface forces between silicon nitride AFM tips and individual nanoparticles deposited on substrates in 10(-4) and 10(-2) M KCl solutions. Silica nanoparticles (10 nm diameter) were deposited on an alumina substrate and alumina particles (5 to 80 nm diameter) were deposited on a mica substrate using aqueous suspensions. Ionic concentrations and pH were used to manage attractive substrate-particle electrostatic forces. The AFM tip was located on deposited nanoparticles using an operator controlled offset to achieve stepwise tip movements. Nanoparticles were found to have a negligible effect on long-range tip-substrate interactions, however, the forces between the tip and nanoparticle were detectable at small separations. Exponentially increasing short-range repulsive forces, attributed to the hydration forces, were observed for silica nanoparticles. The effective range of hydration forces was found to be 2-3 nm with the decay length of 0.8-1.3 nm. These parameters are in a good agreement with the results reported for macroscopic surfaces of silica obtained using the surface force apparatus suggesting that hydration forces for the silica nanoparticles are similar to those for flat silica surfaces. Hydration forces were not observed for either alumina substrates or alumina nanoparticles in both 10(-4) M KCl solution at pH 6.5 and 10(-2) M KCl at pH 10.2. Instead, strong attractive forces between the silicon nitride tip and the alumina (nanoparticles and substrate) were observed.

  20. Modified Stoeber synthesis of highly luminescent dye-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Canton, G.; Ricco, R. [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN) (Italy); Marinello, F. [Universita di Padova, Dipartimento di Innovazione Meccanica e Gestionale (DIMEG) (Italy); Carmignato, S. [Universita di Padova, Dipartimento di Tecnica e Gestione dei Sistemi Industriali (DTG) (Italy); Enrichi, F., E-mail: enrichi@civen.org [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN) (Italy)

    2011-09-15

    Dye-doped silica nanoparticles (NPs) have been demonstrated to be sensitive labeling markers for biosensing and bioimaging. Their flexible conjugation, excellent photostability and ultrasensitivity make them a powerful tool in biological analysis. Although there have been many reports on the basic research and application of these NPs, they are far from reaching their full potential. Silica NPs can be obtained through two principal approaches: the Stoeber synthesis and the microemulsion method. The Stoeber synthesis has the advantage of being easily scaled up for commercial applications and the possibility to effortlessly transfer the NPs into aqueous solutions (typical of bioanalysis). However, further investigation on the impact of the synthesis parameters on the particles size and on the doping process are needed in order to obtain highly luminescent particles. In this study a modified Stoeber synthesis is proposed and a systematic study of the different reagents is reported, which provides a better picture on the influence of ethanol, ammonia, water, silica precursors, and dye concentration on the final morpho-optical properties. As a result, samples of luminescent silica NPs from 10 to 300 nm have been synthesized and optimized to be highly promising labels for biological applications.

  1. Modified Stöber synthesis of highly luminescent dye-doped silica nanoparticles

    International Nuclear Information System (INIS)

    Canton, G.; Riccò, R.; Marinello, F.; Carmignato, S.; Enrichi, F.

    2011-01-01

    Dye-doped silica nanoparticles (NPs) have been demonstrated to be sensitive labeling markers for biosensing and bioimaging. Their flexible conjugation, excellent photostability and ultrasensitivity make them a powerful tool in biological analysis. Although there have been many reports on the basic research and application of these NPs, they are far from reaching their full potential. Silica NPs can be obtained through two principal approaches: the Stöber synthesis and the microemulsion method. The Stöber synthesis has the advantage of being easily scaled up for commercial applications and the possibility to effortlessly transfer the NPs into aqueous solutions (typical of bioanalysis). However, further investigation on the impact of the synthesis parameters on the particles size and on the doping process are needed in order to obtain highly luminescent particles. In this study a modified Stöber synthesis is proposed and a systematic study of the different reagents is reported, which provides a better picture on the influence of ethanol, ammonia, water, silica precursors, and dye concentration on the final morpho-optical properties. As a result, samples of luminescent silica NPs from 10 to 300 nm have been synthesized and optimized to be highly promising labels for biological applications.

  2. Studying the loading effect of acidic type antioxidant on amorphous silica nanoparticle carriers

    Science.gov (United States)

    Ravinayagam, Vijaya; Rabindran Jermy, B.

    2017-06-01

    The study investigates the suitable nanosilica carriers to transport acidic type cargo molecules for potential targeted drug delivery application. Using phenolic acidic type antioxidant gallic acid (GA) as model compound, the present study investigates the loading effect of GA (0.3-15.9 mmol GA g-1 support) on textural characteristics of amorphous silica nanoparticles such as Q10 silica (1D), structured two-dimensional Si-MCM-41 (2D), and three-dimensional Si-SBA-16 (3D). The variation in the nature of textures after GA loading was analyzed using X-ray diffraction, N2 adsorption, FT-IR, scanning electron microscopy with energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. Among the nanocarriers, high adsorption of GA was found in the following order: Si-SBA-16 (3D)˜Si-KIT-6 (3D) > Si-MCM-41 (2D) > ultralarge pore FDU-12 (ULPFDU-12; 3D) > Q10 (1D)˜mesostructured cellular silica foam (MSU-F). 3D-type silicas Si-SBA-16 and KIT-6 were shown to maintain structural integrity at acidic condition (pH ˜3) and accommodate GA in non-crystalline form. In the case of ULPFDU-12 and MSU-F cellular foam, only crystalline deposition of GA occurs with a significant variation in the surface area and pore volume. [Figure not available: see fulltext.

  3. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  4. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.

    Science.gov (United States)

    Törngren, Björn; Akitsu, Kenta; Ylinen, Anne; Sandén, Simon; Jiang, Hua; Ruokolainen, Janne; Komatsu, Makoto; Hamamura, Tomofumi; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi; Österbacka, Ronald; Smått, Jan-Henrik

    2014-08-01

    Plasmonic core-shell Au@SiO2 nanoparticles have previously been shown to enhance the performance of dye-sensitized solar cells (DSSCs). A thin silica coating can provide a better stability during thermal processing and chemical stability to survive the corrosive electrolyte used in DSSCs. However, the thickness and completeness of the silica shell has proven crucial for the performance of the plasmonic particles and is largely controlled by the linking chemistry between the gold core and silica shell. We have evaluated four different silica coating procedures of ∼15 nm gold nanoparticles for usage in DSSCs. The chemical stability of these core-shell nanoparticles was assessed by dispersing the particles in iodide/triiodide electrolyte solution and the thermal stability by heating the particles up to 500°C. In order to maintain stable gold cores a complete silica coating was required, which was best obtained by using a mercaptosilane as a linker. In situ TEM characterization indicated that the heating process only had minor effects on the core-shell particles. The final step was to evaluate how the stable Au@SiO2 nanoparticles were influencing a real DSSC device when mixed into the TiO2 photoanode. The plasmon-incorporated DSSCs showed a ∼10% increase in efficiency compared to devices without core-shell nanoparticles. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    International Nuclear Information System (INIS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S K

    2014-01-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core–shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery. (papers)

  6. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica -based sols with nanoparticles of copper

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  7. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper.

    Science.gov (United States)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yazdanshenas, Mohammad Esmaeil

    2011-11-15

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.

  8. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio

    2017-01-01

    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  9. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay.

    Science.gov (United States)

    Demir, Eşref; Castranova, Vincent

    2016-01-01

    Synthetic amorphous silica nanoparticles (SAS NPs) have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/ Tk +/- assay (MLA) was used to evaluate the mutagenic effect for five different concentrations (from 0.01 to 150 μg/mL) of two different sizes of SAS NPs (7.172 and 7.652 nm) and a fine collodial form of silicon dioxide (SiO 2 ). This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the two selected SAS NPs are mutagenic in the MLA assay, showing a concentration-dependent effect. The relative mutagenic potencies according to the induced mutant frequency (IMF) are as follows: SAS NPs (7.172 nm) (IMF = 705.5 × 10 -6 ), SAS NPs (7.652 nm) (IMF = 575.5 × 10 -6 ), and SiO 2 (IMF = 57.5 × 10 -6 ). These in vitro results, obtained from mouse lymphoma cells, support the genotoxic potential of NPs as well as focus the discussion of the benefits/risks associated with their use in different areas.

  10. Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery.

    Science.gov (United States)

    Xu, Chun; Yu, Meihua; Noonan, Owen; Zhang, Jun; Song, Hao; Zhang, Hongwei; Lei, Chang; Niu, Yuting; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2015-11-25

    A new type of monodispersed mesoporous silica nanoparticles with a core-cone structure (MSN-CC) has been synthesized. The large cone-shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN-CC has a large pore size of 45 nm and a high pore volume of 2.59 cm(3) g(-1). MSN-CC demonstrates a high loading capacity of large proteins and successfully delivers active β-galactosidase into cells, showing their potential as efficient nanocarriers for the cellular delivery of proteins with large molecular weights. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  12. Synthesis of mesoporous silica nanoparticles and nanorods: Application to doxorubicin delivery

    Science.gov (United States)

    Rahmani, Saher; Durand, Jean-Olivier; Charnay, Clarence; Lichon, Laure; Férid, Mokhtar; Garcia, Marcel; Gary-Bobo, Magali

    2017-06-01

    The synthesis and application of mesoporous silica nanoparticles (MSN) and mesoporous silica nanorods (MSNR) for drug delivery were described. MSN or MSNR were obtained by adjusting the amount of added cosolvent to the sol-gel solution. Therefore, the addition of ethanol (EtOH) has contributed to the control of the particle shape and to the structure of the mesoporosity. MSN and MSNR particles were then loaded with doxorubicin and incubated with MCF-7 breast cancer cells. MSN and MSNR particles were efficient in killing cancer cells but their behavior in drug delivery was altered on account of the difference in their morphology. MSN showed a burst release of doxorubicin in cells whereas MSNR showed a sustained delivery of the anti-cancer drug.

  13. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    International Nuclear Information System (INIS)

    Ray, D.; Aswal, V. K.

    2015-01-01

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles

  14. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  15. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging.

    Science.gov (United States)

    Nagesetti, Abhignyan; McGoron, Anthony J

    2016-11-01

    We report a novel system of organically modified silica nanoparticles (Ormosil) capable of near infrared fluorescence and chemotherapy with adjuvant hyperthermia for image guided cancer therapy. Ormosil nanoparticles were loaded with a chemotherapeutic, Doxorubicin (DOX) and cyanine dye, IR820. Ormosil particles had a mean diameter of 51.2±2.4 nanometers and surface charge of -40.5±0.8mV. DOX was loaded onto Ormosil particles via physical adsorption (FDSIR820) or covalent linkage (CDSIR820) to the silanol groups on the Ormosil surface. Both formulations retained DOX and IR820 over a period of 2 days in aqueous buffer, though CDSIR820 retained more DOX (93.2%) compared to FDSIR820 (77.0%) nanoparticles. Exposure to near infrared laser triggered DOX release from CDSIR820. Uptake of nanoparticles was determined by deconvolution microscopy in ovarian carcinoma cells (Skov-3). CDSIR820 localized in the cell lysosomes whereas cells incubated with FDSIR820 showed DOX fluorescence from the nucleus indicating leakage of DOX from the nanoparticle matrix. FDSIR820 nanoparticles showed severe toxicity in Skov-3 cells whereas CDSIR820 particles had the same cytotoxicity profile as bare (No DOX and IR820) Ormosil particles. Furthermore, exposure of CDSIR820 nanoparticles to Near Infrared laser at 808 nanometers resulted in generation of heat (to 43°C from 37°C) and resulted in enhanced cell killing compared to Free DOX treatment. Bio-distribution studies showed that CDSIR820 nanoparticles were primarily present in the organs of Reticuloendothelial (RES) system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cellular Interactions and Formation of an Epithelial “Nanocoating-Like Barrier” with Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2016-10-01

    Full Text Available Oral mucosa as the front-line barrier in the mouth is constantly exposed to a complex microenvironment with multitudinous microbes. In this study, the interactions of mesoporous silica nanoparticles (MSNs with primary human gingival epithelial cells were analyzed for up to 72 h, and their diffusion capacity in the reconstructed human gingival epithelia (RHGE and porcine ear skin models was further assessed at 24 h. It was found that the synthesized fluorescent mesoporous silica nanoparticles (RITC-NPs with low cytotoxicity could be uptaken, degraded, and/or excreted by the human gingival epithelial cells. Moreover, the RITC-NPs penetrated into the stratum corneum of RHGE in a time-dependent manner, while they were unable to get across the barrier of stratum corneum in the porcine ear skins. Consequently, the penetration and accumulation of RITC-NPs at the corneum layers of epithelia could form a “nanocoating-like barrier”. This preliminary proof-of-concept study suggests the feasibility of developing nanoparticle-based antimicrobial and anti-inflammatory agents through topical application for oral healthcare.

  17. Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution

    Science.gov (United States)

    Hozhabr Araghi, Samira; Entezari, Mohammad H.

    2015-04-01

    Amino-functionalized silica magnetite nanoparticles (A-S-MNPs) have been prepared through coating of sono-synthesized magnetite nanoparticles (MNPs) in a basic medium by SiO2. Then, the resultant silica magnetite nanoparticles (S-MNPs) were modified with 3-aminpropyltriethoxysilane (APTES). The modification was carried out by the organic solvent method in dry hexane to graft amine groups on the surface. The adsorption behavior of this novel magnetic sorbent was studied for the simultaneous removal of two organic pollutants containing the sulfonate group, e.g., Reactive Black 5 (RB5) and sodium dodecylbenzenesulfonate (SDBS) in aqueous solutions. The results show that a pseudo-second-order model fits well the experimental data and the rate constant of adsorption for SDBS is higher than for RB5. The adsorption capacity was obtained by the Langmuir isotherm. The qmax was 83.33 and 62.5 mg/g for RB5 and SDBS at pH 2 and 298 K, respectively. Furthermore, the loaded A-S-MNPs can be recovered easily from aqueous solution by magnetic separation and regenerated by simply washing with 0.1 M NaOH solution. Therefore, the synthesized novel magnetic sorbent can be used as an effective and recyclable adsorbent for the simultaneous removal of dye and surfactant from aqueous solutions.

  18. Fabrication of isolated platinum nanowire gratings and nanoparticles on silica substrate by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasutaka [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Nedyalkov, Nikolay [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shouse 72, Sofia 1784 (Bulgaria); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Takami, Akihiro [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Terakawa, Mitsuhiro, E-mail: terakawa@elec.keio.ac.jp [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)

    2017-02-01

    Highlights: • Formation of HSFL with periodicities shorter than 100 nm. • Structural evolution from platinum nanowire gratings to platinum nanoparticles only by increasing the number of pulses. • Melting and fragmentation of the nanowire gratings would play a key role in structural evolution. - Abstract: We demonstrate the fabrication of isolated platinum nanostructures on a silica substrate by using femtosecond laser. Nanowire gratings which have short periodicities of approximately 50 nm were formed by irradiating a platinum thin film deposited on a fused silica substrate with 800-nm wavelength femtosecond laser pulses. The structural evolution from the nanowire gratings to nanoparticles was observed only by increasing the number of pulses. The periodicities or diameters of the structures showed good uniformity. Scanning electron microscopy of the surfaces and theoretical calculation of temperature profile using a two-temperature model revealed that the structural evolution can be attributed to the fragmentation of the formed nanowires. The presented method provides a simple and high-throughput technique for fabricating both metal nanowire gratings and nanoparticles, which have the potential to be used for the fabrication of optical, electrical and biomedical devices.

  19. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wen, Yuanqing, E-mail: m18600788382@163.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2017-08-01

    Graphical abstract: A novel strategy for surface PEGylation of mesoporous silica nanoparticles was developed based on the light induced surface-initiated atom transfer radical polymerization. - Highlights: • Surface modification of silica nanoparticles through light induced surface-initiated ATRP. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites show high water dispersity. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites are promising for biomedical applications. • The light induced ATRP possesses many advantages as compared with traditional ATRP. - Abstract: The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH{sub 2}-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH{sub 2}-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization

  20. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms

    International Nuclear Information System (INIS)

    Herrling, Maria P.; Lackner, Susanne; Tatti, Oleg; 2NMR, Institute for Biological Interfaces 4 and Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe (Germany))" data-affiliation=" (Pro2NMR, Institute for Biological Interfaces 4 and Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe (Germany))" >Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-01-01

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe 3 O 4 -NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe 3 O 4 -NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe 3 O 4 -NP at short contact times (5 min) in flow cells and complementary, scFe 3 O 4 -NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe 3 O 4 -NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe 3 O 4 -NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3 h in the MBBR. The biosorption depended on the exposure concentration of scFe 3 O 4 -NP, but less on the contact time. Most scFe 3 O 4 -NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe 3 O 4 -NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations

  1. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  2. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT : PCBM/ZnO nanorod array hybrid solar cells

    NARCIS (Netherlands)

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A.; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-01-01

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the

  3. Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix.

    Science.gov (United States)

    Moleski, Rodoula; Leontidis, Epameinondas; Krumeich, Frank

    2006-10-01

    The controlled production of ZnO nanoparticles within an amorphous silica matrix is achieved using a new methodology consisting of four stages. First, precursor zinc glycerolate nanoparticles are produced within reversed micelles of glycerol in heptane stabilized by the surfactant Aerosol-OT (bis-ethylhexyl sodium sulfosuccinate, AOT). The surface of these nanoparticles is then modified by exchanging AOT with bis-trimethoxysilyl-ethane (BTME). The surface-modified nanoparticles are copolymerized with tetramethoxysilane (TMOS) to provide a composite silica material, in which the nanoparticles are apparently dissolved, producing a uniform distribution of zinc in the silica matrix. Finally, the conversion of zinc to ZnO is achieved by heating the material at 700 degrees C, leading to a uniform dispersion of very small (amorphous matrix. The fluorescence spectrum of the ZnO particles within the matrix is blue-shifted, as expected from the strong quantum confinement achieved. The properties of the system at all stages in this synthetic process are monitored using TEM, XRD, fluorescence and FT-IR spectroscopy. Glycerol forms complexes with many metal ions, so the present procedure may be generalized to provide uniform distributions of metal ions and subsequently metal oxide nanoparticles in amorphous silica.

  4. Antimicrobial and wound healing properties of nitric oxide-releasing xerogels and silica nanoparticles

    Science.gov (United States)

    Hetrick, Evan M.

    Indwelling medical devices continue to be plagued by the body's response to foreign materials and the ever-present threat of microbial infection. Endogenously-produced nitric oxide (NO) has been shown to play beneficial roles in both wound healing and the body's defense against infection. To exploit NO's favorable properties for biomaterials applications, previous studies have detailed the synthesis of xerogel polymers and silica nanoparticles capable of storing and releasing NO via diazeniumdiolate NO-donors. Here, the ability of NO-releasing materials to reduce bacterial adhesion under flow conditions, modulate the foreign body response, and kill microbial pathogens is described. To more thoroughly characterize the antibacterial properties of NO-releasing xerogels, studies were conducted with Pseudomonas aeruginosa in a parallel plate flow cell. Xerogels modified to release NO reduced bacterial adhesion in a flux-dependent manner, with a NO flux of ˜21 pmol·cm -2·s-1 inhibiting P. aeruginosa adhesion by 65% compared to controls. Fluorescent viability probes indicated that bacteria adhered to NO-releasing xerogels were killed within 7 h of adhesion. In terms of tissue biocompatibility, the foreign body response was studied in an animal model at the site of subcutaneous implants coated with NO-releasing xerogels. Implant-derived NO reduced capsule thickness and the chronic inflammatory response by 50 and 30%, respectively, compared to controls. Additionally, 77% more blood vessels were observed in proximity to NO-releasing implants after 1 week compared to controls. Along with their ability to reduce bacterial adhesion and mitigate the foreign body response, NO-releasing materials may prove useful for treating infections due to the broad-spectrum antimicrobial properties of NO. Recently, silica nanoparticles have been developed that release micromolar quantities of NO, and here the efficacy of such nanoparticles was examined against both planktonic and biofilm

  5. Secreted Phosphoprotein 1 and Sex-Specific Differences in Silica-Induced Pulmonary Fibrosis in Mice.

    Science.gov (United States)

    Latoche, Joseph D; Ufelle, Alexander Chukwuma; Fazzi, Fabrizio; Ganguly, Koustav; Leikauf, George D; Fattman, Cheryl L

    2016-08-01

    Fibrotic lung diseases occur predominantly in males, and reports describe better survival in affected females. Male mice are more sensitive to silica-induced lung fibrosis than silica-treated female mice. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) increases in pulmonary fibrosis, and Spp1 transcription may be regulated by estrogen or estrogen receptor-related receptors. We determined whether differences in silica-induced SPP1 levels contribute to sex differences in lung fibrosis. Male and female mice were treated with 0.2 g/kg intratracheal silica, and lung injury was assessed 1, 3, or 14 days post-exposure. Gene-targeted (Spp1-/-) mice, control Spp1+/+ (C57BL/6J) mice, ovariectomized (OVX) female mice, and estrogen-treated male mice were treated with silica, and lung injury was assessed. Silica-induced SPP1 in lung tissue, bronchoalveolar lavage, and serum increased more in male than in female mice. Following silica treatment, bronchoalveolar lavage cell infiltrates decreased in female Spp1-/- mice compared with female Spp1+/+ mice, and lung hydroxyproline decreased in male Spp1-/- mice compared with male Spp1+/+ mice. OVX female mice had increased lung SPP1 expression in response to silica compared with silica-treated sham female mice. Silica-induced lung collagen and hydroxyproline (markers of fibrosis), and SPP1 levels decreased in estrogen-treated males compared with untreated males. These findings suggest that sex-specific differences in SPP1 levels contribute to the differential sensitivity of male and female mice to the development of silica-induced fibrosis. Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. 2016. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect 124:1199-1207; http://dx.doi.org/10.1289/ehp.1510335.

  6. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles

    International Nuclear Information System (INIS)

    Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S.; Lellouche, J. P.

    2015-01-01

    Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO 2 nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-H bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO 2 @BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability

  7. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S. [Department of Plastics Engineering, Shenkar College of Engineering and Design, 12 Anna Frank Street, Ramat Gan 52526 (Israel); Lellouche, J. P. [Department of Chemistry, Nanomaterials Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramar-Gan, 52900 (Israel)

    2015-05-22

    Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO{sub 2} nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-H bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO{sub 2}@BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability.

  8. Silica nanoparticles doped with anthraquinone for lung cancer phototherapy.

    Science.gov (United States)

    de Souza Oliveira, Ronaldo Custodio; Corrêa, Rodrigo José; Teixeira, Raquel Simas Pereira; Queiroz, Daniela Dias; da Silva Souza, Rodrigo; Garden, Simon John; de Lucas, Nanci Camara; Pereira, Marcos Dias; Bello Forero, Josué Sebastián; Romani, Eric Cardona; Ribeiro, Emerson Schwingel

    2016-12-01

    In the present study, SiO 2 nanoparticles functionalized with 3-(2-aminoethylamino)propyl group (SiNP-AAP) were used, for the first time, to covalently bond rose bengal (SiNP-AAP-RB) or 9,10-anthraquinone-2-carboxylic acid (SiNP-AAP-OCAq). The functionalized SiNP were characterized by: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM); elemental analysis (CHN) for determination of the dye concentration; FTIR and UV-vis diffuse reflectance (DR-UV-vis) and a surface area study (BET). The functionalized SiNPs were applied in photodynamic therapy (PDT) against lung cancer cell lines. The evaluated cytotoxicity revealed 20-30% cell survival after 15min of PDT for both materials but the OCAq concentration was half of the RB nanomaterial. The phototoxicity was mainly related to oxidative stress generated in the cellular environment by singlet oxygen and by hydrogen abstraction as confirmed by the laser flash photolysis technique. The unprecedented results indicate that SiNP-AAP-OCAq is a possible system for promoting cell apoptosis by both type I and type II mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    Science.gov (United States)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of

  10. Laser induced damage and fracture in fused silica vacuum windows

    International Nuclear Information System (INIS)

    Campbell, J.H.; Hurst, P.A.; Heggins, D.D.; Steele, W.A.; Bumpas, S.E.

    1996-11-01

    Laser-induced damage, that initiates catastrophic fracture, has been observed in large (≤61 cm dia) fused silica lenses that also serve as vacuum barriers in Nova and Beamlet lasers. If the elastic stored energy in the lens is high enough, the lens will fracture into many pieces (implosion). Three parameters control the degree of fracture in the vacuum barrier window: elastic stored energy (tensile stress), ratio of window thickness to flaw depth, and secondary crack propagation. Fracture experiments were conducted on 15-cm dia fused silica windows that contain surface flaws caused by laser damage. Results, combined with window failure data on Beamlet and Nova, were used to develop design criteria for a ''fail-safe'' lens (that may catastrophically fracture but not implode). Specifically, the window must be made thick enough so that the peak tensile stress is less than 500 psi (3.4 MPa) and the thickness/critical flaw size is less than 6. The air leak through the window fracture and into the vacuum must be rapid enough to reduce the load on the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments ''lock'' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase, leading to further (i.e. secondary) crack growth

  11. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.

    2016-04-13

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  13. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells

    International Nuclear Information System (INIS)

    Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L’Azou, Béatrice

    2012-01-01

    Silica nanoparticles (nano-SiO 2 ) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO 2 can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO 2 of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK 1 ). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO 2 nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24 h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO 2 . The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO 2 .

  14. Effect of concentration of sodium silicate solution in the synthesis of silica-coated magnetite nanoparticles by ultrasonication

    Science.gov (United States)

    Fajaroh, Fauziatul; Sumari, Nazriati

    2016-02-01

    An ex-situ silica coating of magnetite nanoparticles synthesized electrochemically had been successfully carried out by ultrasonication. An aqueous solution of sodium silicate had been used as silica source.The Si-O-Si, Si-O and Fe-O-Si bonds on the surface of the silica-coated magnetite had been successfully identified using FTIR. Reduction in particle size due to the influence of ultrasound was studied using SEM. Enhancement in the specific surface area of the particles due to the silica coating and reduction in particle size was learned through BET analysis. The Characters of the resulting silica-coated magnetite were influenced by the concentration of sodium silicate solution. The greater the concentration of sodium silicate solution, the smaller the particle crystallinity and the larger the particles surface area was produced. The resulting silica-coated magnetite has a surface area of 38.171 to 67.993 m2/g, otherwise the non-coated particles only has a surface area of 27.894 m2/g. This silica-coated magnetite nanoparticles has more potent as an adsorbent than that of the bare magnetite. Besides that, the presence of silanol groups on its surface makes an opportunity for further functionalization needed for some applications.

  15. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model

    Directory of Open Access Journals (Sweden)

    Chen Bojun

    2012-09-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI leads to serious neurological and functional deficits through a chain of pathophysiological events. At the molecular level, progressive damage is initially revealed by collapse of plasma membrane organization and integrity produced by breaches. Consequently, the loss of its role as a semi-permeable barrier that generally mediates the regulation and transport of ions and molecules eventually results in cell death. In previous studies, we have demonstrated the functional recovery of compromised plasma membranes can be induced by the application of the hydrophilic polymer polyethylene glycol (PEG after both spinal and brain trauma in adult rats and guinea pigs. Additionally, efforts have been directed towards a nanoparticle-based PEG application. The in vivo and ex vivo applications of PEG-decorated silica nanoparticles following CNS injury were able to effectively and efficiently enhance resealing of damaged cell membranes. Results The possibility for selectivity of tetramethyl rhodamine-dextran (TMR dye-doped, PEG-functionalized silica nanoparticles (TMR-PSiNPs to damaged spinal cord was evaluated using an ex vivo model of guinea pig SCI. Crushed and nearby undamaged spinal cord tissues exhibited an obvious difference in both the imbibement and accumulation of the TMR-PSiNPs, revealing selective labeling of compression-injured tissues. Conclusions These data show that appropriately functionalized nanoparticles can be an efficient means to both 1. carry drugs, and 2. apply membrane repair agents where they are needed in focally damaged nervous tissue.

  16. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    Science.gov (United States)

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  17. pH-responsive silica nanoparticles for controllable {sup 1}O{sub 2} generation

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaobo; Wang Jianguang; Chen Jingrong; Lei Wanhua; Wang Xuesong; Zhang Baowen, E-mail: xswang@mail.ipc.ac.cn, E-mail: g203@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-03-19

    pH-responsive {sup 1}O{sub 2} photosensitizing systems may serve as selective photodynamic therapy (PDT) agents by targeting the acidic interstitial fluid of many kinds of tumors. In this work, we present a pH-responsive nanoparticle-based platform for controllable {sup 1}O{sub 2} generation, in which a hydrophobic {sup 1}O{sub 2} photosensitizer (meso-tetraphenylporphyrin, TPP) and a pH indicator (Bromocresol Purple, BCP, or Bromothymol Blue, BTB) are simultaneously encapsulated in organically modified silica nanoparticles (OSNP). In basic conditions, the pH indicator absorbs light competitively and thus restricts sensitizer excitation. In acidic solution, the blue shifted absorption of the pH indicator allows the efficient excitation of the sensitizer. The pH indicator serves as an 'inner filter' to modulate effectively the excitation of the sensitizer and thus the {sup 1}O{sub 2} generation efficiency.

  18. pH-responsive silica nanoparticles for controllable 1O2 generation

    International Nuclear Information System (INIS)

    Li Zhaobo; Wang Jianguang; Chen Jingrong; Lei Wanhua; Wang Xuesong; Zhang Baowen

    2010-01-01

    pH-responsive 1 O 2 photosensitizing systems may serve as selective photodynamic therapy (PDT) agents by targeting the acidic interstitial fluid of many kinds of tumors. In this work, we present a pH-responsive nanoparticle-based platform for controllable 1 O 2 generation, in which a hydrophobic 1 O 2 photosensitizer (meso-tetraphenylporphyrin, TPP) and a pH indicator (Bromocresol Purple, BCP, or Bromothymol Blue, BTB) are simultaneously encapsulated in organically modified silica nanoparticles (OSNP). In basic conditions, the pH indicator absorbs light competitively and thus restricts sensitizer excitation. In acidic solution, the blue shifted absorption of the pH indicator allows the efficient excitation of the sensitizer. The pH indicator serves as an 'inner filter' to modulate effectively the excitation of the sensitizer and thus the 1 O 2 generation efficiency.

  19. Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers.

    Science.gov (United States)

    Wang, Yan; Cui, Haixin; Sun, Changjiao; Zhao, Xiang; Cui, Bo

    2014-12-01

    Photolysis and poor solubility in water of Abamectin are key issues to be addressed, which causes low bioavailability and residual pollution. In this study, a novel hydrophilic delivery system through loading Abamectin with porous silica nanoparticles (Abam-PSNs) was developed in order to improve the chemical stability, dispersity, and the controlled release of Abamectin. These results suggest that Abam-PSNs can significantly improve the performance of controllable release, photostability, and water solubility of Abamectin by changing the porous structure of silica nanoparticles, which is favorable to improve the bioavailability and reduce the residues of pesticides.

  20. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  1. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions.

    Science.gov (United States)

    Weaver, James L; Tobin, Grainne A; Ingle, Taylor; Bancos, Simona; Stevens, David; Rouse, Rodney; Howard, Kristina E; Goodwin, David; Knapton, Alan; Li, Xiaohong; Shea, Katherine; Stewart, Sharron; Xu, Lin; Goering, Peter L; Zhang, Qin; Howard, Paul C; Collins, Jessie; Khan, Saeed; Sung, Kidon; Tyner, Katherine M

    2017-07-17

    As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.

  2. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.

    Science.gov (United States)

    Park, Yoonjee C; Paulsen, Jeffrey; Nap, Rikkert J; Whitaker, Ragnhild D; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y

    2014-01-28

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate). Adsorption behavior was determined at various pH and salt conditions via chemical analysis and NMR, and the results were compared with molecular theory predictions. Most of the NPs were recovered from silica, whereas far fewer NPs were recovered from calcium carbonate because of differences in the mineral surface properties. NP adsorption increased with increasing salt concentration: this trend was qualitatively explained by molecular theory, as was the role of the PEG grafting in preventing NPs adsorption. Quantitative disagreement between the theoretical predictions and the data was due to NP aggregation, especially at high salt concentration and in the presence of calcium carbonate. Upon aggregation, NP concentrations as determined by NMR T2 were initially overestimated and subsequently corrected using the relaxation rate 1/T2, which is a function of aggregate size and fractal dimension of the aggregate. Our experimental validation of the theoretical predictions of NP adsorption to minerals in the absence of aggregation at various pH and salt conditions demonstrates that molecular theory can be used to determine interactions between NPs and relevant reservoir surfaces. Importantly, this integrated experimental and

  3. Structural evolution of silica nanoparticles in water-in- oil microemulsions

    International Nuclear Information System (INIS)

    Bush, A.J.; Bartlett, J.R.; Finnie, K.S.; Schultz, J.; Kong, L.; Larkin, M.; Barbe, C.J.

    2003-01-01

    Full text: The controlled release of drugs, encapsulated within nanoparticles, has been achieved by a variety of microencapsulation techniques, including, liposomes, hydrogels and polymeric materials, which are based on organic carrier systems. We have been studying inorganic nanoparticles as they possess several intrinsic advantages as drug carriers for in-vivo applications. In particular, they are biologically inert, intrinsically hydrophilic and exhibit a long shelf life in the 'dry' state. Recently, we have developed a suite of sol-gel techniques for producing nanoparticulate silica containing encapsulated bioactive species using water-in-oil microemulsions. The internal nanostructure of the gels (pore volume, size and tortuosity, and surface chemistry), which controls the release kinetics of the bioactive species, can be precisely tailored by varying such sol-gel processing parameters as the water-to-alkoxide ratio, pH, alkoxide concentration, ageing, and drying conditions. Prior to encapsulation of the drug it is vital to understand the mechanism of particle formation. The effect of processing parameters, such as the pH of the aqueous core on the mechanism and kinetics of reactions occurring during nanoparticle evolution, have been investigated. Scattering methods including SANS, SAXS and light scattering, in conjunction with complementary spectroscopic techniques, have been used to probe the evolution of silica nanoparticle structure during the hydrolysis and condensation of tetramethylorthosilicate (TMOS) within the aqueous core of the w/o microemulsions. Photon correlation spectroscopy has revealed the micelle diameter to be 10-12nm. Particle evolution at various pH was monitored using SANS and the rate of hydrolysis has been studied with FTIR, revealing that particle formation appears to be more rapid in base than in acid conditions

  4. Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu(2+) ions.

    Science.gov (United States)

    Dong, Bohua; Cao, Lixin; Su, Ge; Liu, Wei; Qu, Hua; Jiang, Daixun

    2009-11-01

    Silica-coated ZnS:Mn nanoparticles were synthesized by coating hydrophobic ZnS:Mn nanoparticles with silica shell through microemulsion. The core-shell structural nanoparticles were confirmed by X-ray diffraction (XRD) patterns, high-resolution transmission electron microscope (HRTEM) images and energy dispersive spectroscopy (EDS) measurements. Results show that each core-shell nanoparticle contains single ZnS:Mn nanoparticle within monodisperse silica nanospheres (40nm). Photoluminescence (PL) spectroscopy and UV-vis spectrum were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnS:Mn nanoparticles, the silica-coated ZnS:Mn nanoparticles have the improved PL intensity as well as good photostability. The obtained silica-coated ZnS:Mn nanoparticles are water-soluble and have fluorescence sensitivity to Cu(2+) ions. Quenching of fluorescence intensity of the silica-coated nanoparticles allows the detection of Cu(2+) concentrations as low as 7.3x10(-9)molL(-1), thus affording a very sensitive detection system for this chemical species. The possible quenching mechanism is discussed.

  5. Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F.; Sarwer, W. [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Kamran, M.; Mumtaz, M. [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Krenn, H. [Institute of Physics, Karl-Franzens University Graz, Universitätsplatz 5, A-8010 Graz (Austria); Letofsky-Papst, I. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, A-8010 Graz (Austria)

    2016-06-01

    Surface effects in cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles dispersed in a silica (SiO{sub 2}) matrix were studied by using AC and DC magnetization. Nanoparticles with different concentration of SiO{sub 2} were synthesized by using sol–gel method. Average crystallite size lies in the range 25–34 nm for different SiO{sub 2} concentration. TEM image showed that particles are spherical and elongated in shape. Nanoparticles with higher concentration of SiO{sub 2} exhibit two peaks in the out-of-phase ac-susceptibility. First peak lies in the high temperature regime and corresponds to average blocking temperature of the nanoparticles. Second peak lies in the low temperature regime and is attributed to surface spin-glass freezing in these nanoparticles. Low temperature peak showed SiO{sub 2} concentration dependence and was vanished for large uncoated nanoparticles. The frequency dependence of the AC-susceptibility of low temperature peak was fitted with dynamic scaling law which ensures the presence of spin-glass behavior. With increasing applied DC field, the low temperature peak showed less shift as compared to blocking peak, broaden, and decreased in magnitude which also signifies its identity as spin-glass peak for smaller nanoparticles. M–H loops showed the presence of more surface disorder in nanoparticles dispersed in 60% SiO{sub 2} matrix. All these measurements revealed that surface effects become strengthen with increasing SiO{sub 2} matrix concentration and surface spins freeze in to spin-glass state at low temperatures. - Highlights: • Surface effects in CoFe{sub 2}O{sub 4} nanoparticles dispersed in a SiO{sub 2} matrix were studied. • Out-of-phase AC-susceptibility exhibits two peaks for SiO{sub 2} coated nanoparticles. • First peak corresponds to average blocking temperature. • Second peak is attributed to surface spin-glass freezing • The spin-glass behavior depends upon the SiO{sub 2} matrix concentration.

  6. Engineering the internal structure of magnetic silica nanoparticles by thermal control

    KAUST Repository

    Song, Hyon Min

    2014-09-30

    Calcination of hydrated iron salts in the pores of both spherical and rod-shaped mesoporous silica nanoparticles (NPs) changes the internal structure from an ordered 2D hexagonal structure into a smaller number of large voids in the particles with sizes ranging from large hollow cores down to ten nanometer voids. The voids only form when the heating rate is rapid at a rate of 30 °C min-1. The sizes of the voids are controlled reproducibly by the final calcination temperature; as the temperature is decreased the number of voids decreases as their size increases. The phase of the iron oxide NPs is α-Fe2O3 when annealed at 500 °C, and Fe3O4 when annealed at lower temperatures. The water molecules in the hydrated iron (III) chloride precursor salts appear to play important roles by hydrolyzing Si-O-Si bonding, and the resulting silanol is mobile enough to affect the reconstruction into the framed hollow structures at high temperature. Along with hexahydrates, trivalent Fe3+ ions are assumed to contribute to the structure disruption of mesoporous silica by replacing tetrahedral Si4+ ions and making Fe-O-Si bonding. Volume fraction tomography images generated from transmission electron microscopy (TEM) images enable precise visualization of the structures. These results provide a controllable method of engineering the internal shapes in silica matrices containing superparamagnetic NPs.

  7. Hydrophilic nano-silica coating agents with platinum and diamond nanoparticles for denture base materials.

    Science.gov (United States)

    Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke

    2017-05-31

    Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.

  8. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.

    Science.gov (United States)

    Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme

    2018-04-15

    At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.

  9. SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2011-08-16

    The interaction of lysozyme protein (M.W. 14.7 kD) with two sizes of silica nanoparticles (16 and 25 nm) has been examined in aqueous solution using UV-vis spectroscopy and small-angle neutron scattering (SANS). The measurements were performed on fixed concentration (1 wt %) of nanoparticles and varying concentration of protein in the range 0 to 2 wt %. The adsorption isotherm as obtained using UV-vis spectroscopy suggests strong interaction of the two components and shows an exponential behavior. The saturation values of adsorption are found to be around 90 and 270 protein molecules per particle for 16 and 25 nm sized nanoparticles, respectively. The adsorption of protein on nanoparticles leads to the aggregation of particles and these structures have been studied by SANS. The aggregates are characterized by fractal structure coexisting with unaggregated particles at low protein concentrations and free proteins at higher protein concentrations. Further, contrast variation SANS measurements have been carried out to differentiate the adsorbed and free protein in these systems.

  10. Synthesis Of Silver Nanoparticles Supported On Silica Using As Antimicrobial Agent By γ-Irradiation

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Nguyen Quoc Hien; Dang Van Phu; Vo Thi Kim Lang; Nguyen Tue Anh

    2012-01-01

    Silver nanoparticles deposited on silica (Ag nano/SiO 2 ) have been prepared by Co-60 gamma irradiation of the mixture Ag + /SiO 2 /H 2 O/ethanol. The reduction of Ag + in the suspension of SiO 2 is brought by e - aq and H* generated during the radiolysis of water/ethanol solution. The presence of SiO 2 prevents agglomeration of Ag clusters. The conversion dose (Ag + → Ag 0 ) was determined by UV-Vis spectroscopy. The size of Ag nanoparticles was characterized by transmission electron microscopy (TEM). As a result, the particle sizes were determined to be in the range of 15-30 nm for Ag + concentration about 10 mM. The crystal structure of silver nanoparticles was also investigated by X-ray diffraction (XRD). In addition, antifungal activity of Ag nano/SiO 2 was tested against Aspergillus niger var Tieghn by plate count method. The results indicated that the antifungal efficiency of Ag nano/SiO 2 was about 64, 71, 81, 82 and 96% at the concentrations of Ag nanoparticles of 30, 50, 70, 100 and 150 ppm, respectively. (author)

  11. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    Science.gov (United States)

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  12. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial

    Science.gov (United States)

    Kharlamov, Alexander N.; Tyurnina, Anastasiya E.; Veselova, Vera S.; Kovtun, Olga P.; Shur, Vladimir Y.; Gabinsky, Jan L.

    2015-04-01

    Background: Atheroregression becomes an attractive target for cardiovascular treatment. Some clinical trials have demonstrated that intensive therapy with rosuvastatin or recombinant ApoA-I Milano can partially reduce the total atheroma volume (TAV) up to 6.38 mm3 or 14.1 mm3 respectively. Our previous bench studies of selected nanotechnologies documented TAV reduction up to an unprecedented 79.4 mm3. Methods: The completed observational three arms (n = 180) first-in-man trial (the NANOM FIM trial) assessed (NCT01270139) the safety and feasibility of two delivery techniques for nanoparticles (NP), and plasmonic photothermal therapy (PPTT). Patients were assigned to receive either (1) nano-intervention with delivery of silica-gold NP in a bioengineered on-artery patch (n = 60), or (2) nano-intervention with delivery of silica-gold iron-bearing NP with targeted micro-bubbles and stem cells using a magnetic navigation system (n = 60) versus (3) stent implantation (n = 60). The primary outcome was TAV at 12 months. Results: The mean TAV reduction at 12 months in the Nano group was 60.3 mm3 (SD 39.5; min 41.9 mm3, max 94.2 mm3; p man trial (the NANOM FIM trial) assessed (NCT01270139) the safety and feasibility of two delivery techniques for nanoparticles (NP), and plasmonic photothermal therapy (PPTT). Patients were assigned to receive either (1) nano-intervention with delivery of silica-gold NP in a bioengineered on-artery patch (n = 60), or (2) nano-intervention with delivery of silica-gold iron-bearing NP with targeted micro-bubbles and stem cells using a magnetic navigation system (n = 60) versus (3) stent implantation (n = 60). The primary outcome was TAV at 12 months. Results: The mean TAV reduction at 12 months in the Nano group was 60.3 mm3 (SD 39.5; min 41.9 mm3, max 94.2 mm3; p < 0.05) up to mean 37.8% (95% CI: 31.1%, 51.7%; p < 0.05) plaque burden. The analysis of the event free survival of the ongoing clinical follow-up shows the significantly lower risk of

  13. Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites.

    Science.gov (United States)

    Bouty, Adrien; Petitjean, Laurent; Chatard, Julien; Matmour, Rachid; Degrandcourt, Christophe; Schweins, Ralf; Meneau, Florian; Kwasńiewski, Paweł; Boué, François; Couty, Marc; Jestin, Jacques

    2016-01-01

    The question of the influence of nanoparticles (NPs) on chain dimensions in polymer nanocomposites (PNCs) has been treated mainly through the fundamental way using theoretical or simulation tools and experiments on well-defined model PNCs. Here we present the first experimental study on the influence of NPs on the polymer chain conformation for PNCs designed to be as close as possible to industrial systems employed in the tire industry. PNCs are silica nanoparticles dispersed in a styrene-butadiene-rubber (SBR) matrix whose NP dispersion can be managed by NP loading with interfacial coatings or coupling additives usually employed in the manufacturing mixing process. We associated specific chain (d) labeling, and the so-called zero average contrast (ZAC) method, with SANS, in situ SANS and SAXS/TEM experiments to extract the polymer chain scattering signal at rest for non-cross linked and under stretching for cross-linked PNCs. NP loading, individual clusters or connected networks, as well as the influence of the type, the quantity of interfacial agent and the influence of the elongation rate have been evaluated on the chain conformation and on its related deformation. We clearly distinguish the situations where the silica is perfectly matched from those with unperfected matching by direct comparison of SANS and SAXS structure factors. Whatever the silica matching situation, the additive type and quantity and the filler content, there is no significant change in the polymer dimension for NP loading up to 15% v/v within a range of 5%. One can see an extra scattering contribution at low Q, as often encountered, enhanced for non-perfect silica matching but also visible for perfect filler matching. This contribution can be qualitatively attributed to specific h or d chain adsorption on the NP surface inside the NP cluster that modifies the average scattering neutron contrast of the silica cluster. Under elongation, NPs act as additional cross-linking junctions

  14. Dye doped Eosin yellowish silica nanoparticles as novel fluorophore for a peroxyoxalate chemiluminescence system.

    Science.gov (United States)

    Yari, Abdollah; Saidikhah, Marzieh

    2012-05-01

    In this work, we report the preparation and characterization of novel dye doped fluorophore Eosin yellowish silica nanoparticles (ESNPs). We synthesized ESNPs by the Stöber method via encapsulation of Eosin Yellowish in silica particles by the condensation of tetraethyl orthosilicate under alkaline condition at room temperature. The resulted ESNPs were characterized by transmission electron microscopy, atomic force microscopy; UV-Visible, fluorescence and Fourier transform infrared spectroscopy. The sizes of the nanoparticles have been found to be 300.0 (±1.0), 400.0 (±1.1) and 500.0 (±5.2) nm depending the reaction conditions under which they were synthesized. Furthermore, because of intense light emission, the ESNPs were used as fluorophore in a peroxyoxalate chemiluminescence system. The effect of solvent and concentrations of necessary reagents, bis(2,4,6-trichlorophenyl)oxalate, sodium salicylate, hydrogen peroxide and the effects of size of the ESNP and temperature on the luminescence efficiency of the system were examined. The activation kinetic parameters of the system were also evaluated from the temperature investigation.

  15. Polymer-modified fibrous mesoporous silica nanoparticles as coating material for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Liu, Yuanyuan; Liu, Qing; Yu, Haiyan; Sun, Shujun; Xue, Yun; Wang, Yan; Qu, Qishu; Yan, Chao

    2017-05-26

    A novel fibrous mesoporous silica nanoparticles (fSiO 2 ) stationary phase grafted with polymer (Poly (2-(dimethylamino) ethyl methacrylate) (PDMAEMA) was developed for open tubular capillary electrochromatography (OT-CEC). The preparation procedure included synthesizing fSiO 2 through biphase stratification approach, removing the surfactants, silanization and in situ graft polymerization with monomers via atom transfer radical polymerization (ATRP). Subsequently, PDMAEMA-modified mesoporous silica nanoparticles (P-fSiO 2 )/ethanol solution was immobilized onto the inner surface of the pretreated capillary and functionalized with octadecylsilane to fabricate the open-tubular column. Separation of polycyclic aromatic hydrocarbons (PAHs) and proteins were carried out to evaluate the performance of the column in CEC. The run-to-run, day-to-day and column-to-column reproducibility in terms retention time of naphthalene was 1.9%, 2.2%, and 3.7%, respectively. The effects of solvent concentration and pH on the separation were evaluated. The method was also used for the separation of real bio-sample, egg white proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery.

    Science.gov (United States)

    Casado, Maria P; Macken, Ailbhe; Byrne, Hugh J

    2013-01-01

    The acute ecotoxicity of different diameters of silica and polyethyleneimine polystyrene (PS-PEI) nanoparticles (NPs) was assessed on a test battery of aquatic organisms representing different trophic levels. Daphnia magna, Thamnocephalus platyurus, Pseudokirchneriella subcapitata and Vibrio fischeri, were employed in a series of standard acute ecotoxicity tests and work was complemented with two cytotoxicological end points on a rainbow trout gonadal cell line (RTG-2). Physico-chemical characterization of the NPs was performed in the different test media employed, using dynamic light scattering (DLS) and zeta potentiometry. In contrast to silica NPs exposure, for which no effect was observed for concentrations up to 1000 μg ml(-1) for all in vivo aquatic organisms tested, significant toxicity was detected after exposure to PS-PEI NPs at concentrations from 0.40 μg ml(-1) to 416.5 μg ml(-1). Differing sensitivities for each NP diameter for the different organisms were observed as: P. subcapitata≥D. magna>T. platyurus>V. fischeri. The effects observed were dependent in some cases on the NP size, a higher effect being observed for the larger NPs. Finally, cytotoxicity studies showed an effect at the highest concentrations for both sets of NPs which was greater in the case of the PS-PEI NPs. However, as agglomeration and sedimentation of the nanoparticles was observed at these concentrations, the cytotoxicity studies were found not to be a reliable ecotoxicity test model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.

  18. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  19. Indirect immunofluorescence detection of E. coli O157:H7 with fluorescent silica nanoparticles.

    Science.gov (United States)

    Chen, Ze-Zhong; Cai, Li; Chen, Min-Yan; Lin, Yi; Pang, Dai-Wen; Tang, Hong-Wu

    2015-04-15

    A method of fluorescent nanoparticle-based indirect immunofluorescence assay using either fluorescence microscopy or flow cytometry for the rapid detection of pathogenic Escherichia coli O157:H7 was developed. The dye-doped silica nanoparticles (NPs) were synthesized using W/O microemulsion methods with the combination of 3-aminopropyltriethoxysilane (APTES) and fluorescein isothiocyanate (FITC) and polymerization reaction with carboxyethylsilanetriol sodium salt (CEOS). Protein A was immobilized at the surface of the NPs by covalent binding to the carboxyl linkers and the surface coverage of Protein A on NPs was determined by the Bradford method. Rabbit anti-E. Coli O157:H7 antibody was used as primary antibody to recognize E. coli O157:H7 and then antibody binding protein (Protein A) labeled with FITC-doped silica NPs (FSiNPs) was used to generate fluorescent signal. With this method, E. Coli O157:H7 in buffer and bacterial mixture was detected. In addition, E. coli O157:H7 in several spiked background beef samples were measured with satisfactory results. Therefore, the FSiNPs are applicable in signal-amplified bioassay of pathogens due to their excellent capabilities such as brighter fluorescence and higher photostability than the direct use of conventional fluorescent dyes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications.

    Science.gov (United States)

    Liu, Jian; Liu, Tingting; Pan, Jian; Liu, Shaomin; Lu, G Q Max

    2018-04-04

    Mesoporous silica nanoparticles (MSNs) are promising functional nanomaterials for a variety of biomedical applications, such as bioimaging, drug/gene delivery, and cancer therapy. This is due to their low density, low toxicity, high biocompatibility, large specific surface areas, and excellent thermal and mechanical stability. The past decade has seen rapid advances in the development of MSNs with multiple compartments. These include hierarchical porous structures and core-shell, yolk-shell, and Janus structured particles for efficient diagnosis and therapeutic applications. We review advances in this area, covering the categories of multicompartment MSNs and their synthesis methods, with an emphasis on hierarchical structures and the incorporation of multiple functions. We classify multicompartment mesoporous silica micro/nanostructures, ranging from core-shell and yolk-shell structures to Janus and raspberry-like nanoparticles, and discuss their synthesis methods. We review applications of these multicompartment MSNs, including bioimaging, targeted drug/gene delivery, chemotherapy, phototherapy, and in vitro diagnostics. We also highlight the latest trends and new opportunities. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 9 is June 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  2. Silica Nanoparticle-Enhanced Fluorescent Sensor Array for Heavy Metal Ions Detection in Colloid Solution.

    Science.gov (United States)

    Peng, Juanjuan; Li, Junyao; Xu, Wang; Wang, Lu; Su, Dongdong; Teoh, Chai Lean; Chang, Young-Tae

    2018-02-06

    Sensitivity and detection limit are two vital factors that affect fluorophores-based sensing and imaging system. However, it remains a challenge to improve the sensitivity and detection limit of fluorophores, largely due to their limited response and photophysical properties. In this study, we report for the first time, a novel approach to enhance the sensitivity and detection limit of probes using silica nanoparticles, also known as silica nanoparticles-enhanced fluorescence (SiEF). SiEF can drastically improve the fluorescence intensities and detection limit of fluorophores. A SiEF-improved fluorescent sensor array for rapid and sensitive identification of different heavy metal ions is achieved, and a 3D spatial dispersion graph is obtained based on the SiEF-improved fluorescent sensor array, which provides a lower concentration dependent pattern than fluorophores alone, allowing qualitative, quantitative, and sensitive detection of heavy metal ions. Furthermore, with UV lamp irradiation of the sensor-metal ion mixtures, the output signals enable direct visual of heavy metal ions with low concentration. Thus, the SiEF approach provides a simple and practical strategy for fluorescent probes to improve their sensitivity and detection limit in analytes sensing.

  3. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles.

    Science.gov (United States)

    Tuoriniemi, Jani; Johnsson, Ann-Cathrin J H; Holmberg, Jenny Perez; Gustafsson, Stefan; Gallego-Urrea, Julián A; Olsson, Eva; Pettersson, Jan B C; Hassellöv, Martin

    2014-06-01

    There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS). However, transmission electron microscopy gave a distribution shifted to smaller sizes. After confirming that the magnification calibration was consistent, this was attributed to sample preparation artifacts. The hydrodynamic diameter, d h , was determined by dynamic light scattering (DLS) both in batch mode, and hyphenated with sedimentation field flow fractionation. Surprisingly the d h were smaller than the SEM, and ES-SMPS diameters. A plausible explanation for the smaller sizes found with DLS is that a permeable gel layer forms on the particle surface. Results from nanoparticle tracking analysis were strongly biased towards larger diameters, most likely because the silica particles provide low refractive index contrast. Calculations confirmed that the sensitivity is, depending on the shape of the laser beam, strongly size dependent for particles with diameters close to the visualization limit.

  4. ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye

    Directory of Open Access Journals (Sweden)

    Youxun Liu

    2015-01-01

    Full Text Available Efficient reuse and regeneration of spent mediators are highly desired for many of the laccases’ biotechnology applications. This investigation demonstrates that a redox mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS covalently attached to silica nanoparticles (SNPs effectively mediated dye decolorization catalyzed by laccase. Characteristics of ABTS-modified silica nanoparticles (ABTS-SNPs were researched by scanning electron microscopy and Fourier-transformed infrared spectroscopy. When ABTS and ABTS-SNPs were used as laccase mediators, the decolorization yields of 96 and 95% were, respectively, obtained for indigo carmine dye. The results suggest that ABTS immobilized on SNPs can be used as laccase mediators as they retain almost the same efficiency as the free ABTS. The oxidized ABTS-SNPs were regenerated by their reduction reaction with ascorbic acid. Decolorization efficiency of regenerated ABTS-SNPs and their initial forms were found to be almost equivalent. Six reuse cycles for spent ABTS-SNPs were run for the treatment of indigo carmine, providing decolorization yields of 96–77%. Compared with free mediator, the immobilized mediators have the advantage of being easily recovered, regenerated, and reused making the whole process environmentally friendly.

  5. Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Muili Feyisitan Fakoya

    2017-12-01

    , optimization studies are also recommended for examination in future nanotechnology research. Keywords: Nanotechnology, Silica nanoparticles, Drilling fluids, Hydraulic fracturing fluids, Enhanced oil recovery, Oilwell cementing, Oil and gas

  6. Enhancement of Degradation and Dechlorination of Trichloroethylene via Supporting Palladium/Iron Bimetallic Nanoparticles onto Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Jianjun Wei

    2016-07-01

    Full Text Available This study is aimed to prevent the agglomeration of Pd/Fe bimetallic nanoparticles and thus improve the efficiency toward degradation and dechlorination of chlorinated organic contaminants. A mesoporous silica with a primary pore diameter of 8.3 nm and a specific surface area of 688 m2/g was prepared and used as the host of Pd/Fe nanoparticles. The Pd/Fe nanoparticles were deposited onto or into the mesoporous silica by reduction of ferrous ion and hexachloropalladate ion in aqueous phase. Batch degradation and dechlorination reactions of trichloroethylene were conducted with initial trichloroethylene concentration of 23.7 mg/L, iron loading of 203 or 1.91 × 103 mg/L and silica loading of 8.10 g/L at 25 °C. Concentration of trichloroethylene occurs on the supported Pd/Fe nanoparticles, with trichloroethylene degrading to 56% and 59% in 30 min on the supported Pd/Fe nanoparticles with weight percentage of palladium to iron at 0.075% and 0.10% respectively. The supported Pd/Fe nanoparticles exhibit better dechlorination activity. When the supported Pd/Fe nanoparticles with a weight percentage of palladium to iron of 0.10% were loaded much less than the bare counterpart, the yield of ethylene plus ethane in 10 h on them was comparable, i.e., 19% vs. 21%. This study offers a future approach to efficiently combine the reactivity of supported Pd/Fe nanoparticles and the adsorption ability of mesoporous silica.

  7. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage.

    Science.gov (United States)

    Chieruzzi, Manila; Miliozzi, Adio; Crescenzi, Tommaso; Torre, Luigi; Kenny, José M

    2015-12-01

    In this study different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (KNO3 selected as phase change material) with nanoparticles using the direct synthesis method. The thermal properties of the nanofluids obtained were investigated. Following the improvement in the specific heat achieved, these nanofluids can be used in concentrating solar plants with a reduction of storage material. The nanoparticles used (1.0 wt.%) were silica (SiO2), alumina (Al2O3), and a mix of silica-alumina (SiO2-Al2O3) with an average diameter of 7, 13, and 2-200 nm respectively. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements of the thermophysical properties were performed by DSC analysis, and the dispersion of the nanoparticles was analyzed by SEM microscopy. The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of about 5-10 % in solid phase and of 6 % in liquid phase. In particular, this research shows that the addition of silica nanoparticles has significant potential for enhancing the thermal storage characteristics of KNO3. The phase-change temperature of potassium nitrate was lowered up to 3 °C, and the latent heat was increased to 12 % with the addition of silica nanoparticles. These results deviated from the predictions of theoretical simple mixing model used. The stored heat as a function of temperature was evaluated for the base salt, and the nanofluids and the maximum values obtained were 229, 234, 242, and 266 J/g respectively. The maximum total gain (16 %) due to the introduction of the nanoparticles (calculated as the ratio between the total stored heat of the nanofluids and the base salt in the range of temperatures 260-390 °C) was also recorded with the introduction of silica. SEM and EDX analysis showed the presence of aggregates in all nanofluids: with silica nanoparticles they were homogenously present while with

  8. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.

    Science.gov (United States)

    Blechinger, Julia; Bauer, Alexander T; Torrano, Adriano A; Gorzelanny, Christian; Bräuchle, Christoph; Schneider, Stefan W

    2013-12-09

    In this study, it is shown that the cytotoxic response of cells as well as the uptake kinetics of nanoparticles (NPs) is cell type dependent. We use silica NPs with a diameter of 310 nm labeled with perylene dye and 304 nm unlabeled particles to evaluate cell type-dependent uptake and cytotoxicity on human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). Besides their size, the particles are characterized concerning homogeneity of the labeling and their zeta potential. The cellular uptake of the labeled NPs is quantified by imaging the cells via confocal microscopy in a time-dependent manner, with subsequent image analysis via a custom-made and freely available digital method, Particle_in_Cell-3D. We find that within the first 4 h of interaction, the uptake of silica NPs into the cytoplasm is up to 10 times more efficient in HUVEC than in HeLa cells. Interestingly, after 10 or 24 h of interaction, the number of intracellular particles for HeLa cells by far surpasses the one for HUVEC. Inhibitor studies show that these endothelial cells internalize 310 nm SiO₂ NPs via the clathrin-dependent pathway. Remarkably, the differences in the amount of taken up NPs are not directly reflected by the metabolic activity and membrane integrity of the individual cell types. Interaction with NPs leads to a concentration-dependent decrease in mitochondrial activity and an increase in membrane leakage for HUVEC, whereas HeLa cells show only a reduced mitochondrial activity and no membrane leakage. In addition, silica NPs lead to HUVEC cell death while HeLa cells survive. These findings indicate that HUVEC are more sensitive than HeLa cells upon silica NP exposure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silica nanoparticles containing 159-Gadolinium as potential system for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Andre Felipe de; Ferreira, Tiago Hilario; Sousa, Edesia Martins Barros de, E-mail: andrefelipe.oliveira88@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (SENAN/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Nanotecnologia; Lacerda, Marco Aurelio [Centro de Desenvolvimento da Tecnologia Nuclear (SERAS/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico das Radiacoes Aplicadas a Saude

    2013-07-01

    Ordered silica nanoparticles are compounds highly organized which have very interesting textural characteristics, such as high thermal stability, well defined pore size, narrow size distribution and high area surface. Among the various types of nano materials ordered, the SBA-16 have a meso structure that can be considered very interesting due to the fact of the arrangement of mesoporous (tri dimensional as a cage) and spherical morphology, which make it in a promising material for a range of bioapplications such as incorporation of drugs and radioisotopes. In this study Gadodiamide® (Omniscan-General Electric Healthcare Company), a frequently non-ionic gadolinium complex contrasting used in MRI's was incorporated in the silica matrix SBA-16 as a carrier. From this gadolinium it is possible to obtain the isotope {sup 159}Gd by neutron irradiation, wherein the isotope {sup 158}Gd captures a neutron and becomes {sup 159}Gd [{sup 15}'8Gd(n,c){sup 1}'5{sup 9}Gd]. The {sup 159}Gd is a beta (endpoint energy of 970.6 keV) and gamma (main energy: 363.54 keV) emitter with a half-life of 18.59 hours. These characteristics are similar to that of other isotopes already used in nuclear medicine such as {sup 90}Y. In this work, the {sup 158}Gd incorporated in the Gd-silica was activated by the neutron flux generated by the cyclotron located in the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) during the production of the {sup 18}FDG. Atomic emission spectroscopy (ICP-AES) and infrared spectroscopy (FTIR) were used to confirm the presence of the gadolinium complex in the silica matrix. The antitumor activity of the complex after the irradiation was evaluated through cytotoxicity assay with T98 cell lines derived from a human glioblastoma multiform tumor. (author)

  10. Silica nanoparticles containing 159-Gadolinium as potential system for cancer treatment

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe de; Ferreira, Tiago Hilario; Sousa, Edesia Martins Barros de; Lacerda, Marco Aurelio

    2013-01-01

    Ordered silica nanoparticles are compounds highly organized which have very interesting textural characteristics, such as high thermal stability, well defined pore size, narrow size distribution and high area surface. Among the various types of nano materials ordered, the SBA-16 have a meso structure that can be considered very interesting due to the fact of the arrangement of mesoporous (tri dimensional as a cage) and spherical morphology, which make it in a promising material for a range of bioapplications such as incorporation of drugs and radioisotopes. In this study Gadodiamide® (Omniscan-General Electric Healthcare Company), a frequently non-ionic gadolinium complex contrasting used in MRI's was incorporated in the silica matrix SBA-16 as a carrier. From this gadolinium it is possible to obtain the isotope 159 Gd by neutron irradiation, wherein the isotope 158 Gd captures a neutron and becomes 159 Gd [ 15 '8Gd(n,c) 1 '5 9 Gd]. The 159 Gd is a beta (endpoint energy of 970.6 keV) and gamma (main energy: 363.54 keV) emitter with a half-life of 18.59 hours. These characteristics are similar to that of other isotopes already used in nuclear medicine such as 90 Y. In this work, the 158 Gd incorporated in the Gd-silica was activated by the neutron flux generated by the cyclotron located in the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) during the production of the 18 FDG. Atomic emission spectroscopy (ICP-AES) and infrared spectroscopy (FTIR) were used to confirm the presence of the gadolinium complex in the silica matrix. The antitumor activity of the complex after the irradiation was evaluated through cytotoxicity assay with T98 cell lines derived from a human glioblastoma multiform tumor. (author)

  11. Silica coating and photocatalytic activities of ZnO nanoparticles: effect of operational parameters and kinetic study.

    Science.gov (United States)

    Ismail, L F M; Emara, M M; El-Moselhy, M M; Maziad, N A; Hussein, O K

    2014-10-15

    Silica-coating ZnO nanoparticles were prepared using the hydrothermal method. The prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray Spectroscopy (EDX). It was found that ultrafine core/shell structured silica-coating ZnO nanoparticles were successfully obtained. TEM analysis revealed a continuous and uniform silica coating layer of about 8nm in thickness on the surface of ZnO nanoparticles. The photocatalytic performance of silica-coating ZnO core/shell nanoparticles in methylene blue aqueous solution was investigated. The effects of some operational parameters such as pH value, nanocatalyst loading and initial MB concentration on the degradation efficiency were discussed. Kinetic parameters were experimentally determined and a pseudo-first-order kinetic was observed. Thus, the main advantage of the coating is the stability of the photocatalysts and the better performance in acidic or alkaline solutions. Compared to ZnO the maximum apparent rate constant is obtained at pH 8.5 (pH 11.5 in case of bare ZnO). Moreover, the Langmuir adsorption model was applied to describe the equilibrium isotherm at different MB concentration. The applicability of the Langmuir isotherm suggests monolayer coverage of the MB onto surface of silica-coating ZnO nanoparticles. The kinetics of the adsorption with respect to the initial dye concentration, were also investigated. The pseudo-first-order and second-order kinetic models were used and the rate constants were evaluated. The kinetic studies revealed that the pseudo-second-order kinetic model better represented the adsorption kinetics, suggesting that the adsorption process may be chemisorption. Copyright © 2014. Published by Elsevier B.V.

  12. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Rudolf Herrmann

    2014-12-01

    Full Text Available The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter. Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.

  13. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles.

    Science.gov (United States)

    Massa, Miguel A; Covarrubias, Cristian; Bittner, Mauricio; Fuentevilla, Ignacio Andrés; Capetillo, Pavel; Von Marttens, Alfredo; Carvajal, Juan Carlos

    2014-12-01

    Infection is the most common factor that leads to dental titanium implant failure. Antibacterial implant surfaces based on nano-scale modifications of the titanium appear as an attractive strategy for control of peri-implantitis. In the present work, the preparation and antibacterial properties of a novel composite coating for titanium based on nanoporous silica and silver nanoparticles are presented. Starch-capped silver nanoparticles (AgNPs) were synthesized and then incorporated into sol-gel based solution system. The AgNP-doped nanoporous silica coatings were prepared on titanium surface using a combined sol-gel and evaporation-induced self-assembly (EISA) method. The coating nanostructure was characterized by XRD, SEM-EDX, and HR-TEM. Antibacterial activity was evaluated against Aggregatibacter actinomycetemcomitans, a representative pathogen of dental peri-implantitis. Colony-forming units (CFUs) were counted within the biofilm and at the planktonic state. Biofilm development was quantified using crystal violet staining and viability of adherent bacteria was confirmed with the Live/Dead fluorescence assay. Silica-based composite coating containing AgNPs (AgNP/NSC) was prepared on titanium surface by direct incorporation of AgNP suspension into the sol-gel system. The self-assembly technique enabled the spontaneous formation of a highly ordered nanoporosity in the coating structure, which is a desired property for osseointegration aspects of titanium implant surface. AgNP/NSC coating produces a strong antibacterial effect on titanium surface by not only killing the adherent bacteria but also reducing the extent of biofilm formation. Biofilm survival is reduced by more than 70% on the AgNP/NSC-modified titanium surface, compared to the control. This antibacterial effect was verified for up to 7 days of incubation. The long-term antibacterial activity exhibited by the nanostructured AgNP/NSC-titanium surface against A. actinomycetemcomitans suggests that this

  14. Biocompatibility of amorphous silica nanoparticles: Size and charge effect on vascular function, in vitro.

    Science.gov (United States)

    Akbar, Naveed; Mohamed, Teba; Whitehead, Debra; Azzawi, May

    2011-01-01

    Synthetic amorphous silica is gaining popularity as the material of choice in the fabrication of nanoparticles for use in imaging diagnostics, medical therapeutics, and tissue engineering because of its biocompatible nature. However, recent evidence suggests that silica nanoparticles (SiNPs) show a concentration- and size-dependent toxic effect that is cell specific. We investigated the direct influence of SiNP uptake on the vasodilator responses of rat aortic vessels, in vitro, using fabricated SiNPs of defined size (97 ± 7.60 and 197 ± 7.50 nm) and charge (positive and nonmodified). Dilator responses to cumulative doses of endothelial-dependent [acetylcholine (Ach); 0.01 µM-1.0 mM] and endothelial-independent (sodium nitroprusside; 0.01-10 µM) agonists were determined before and 30 Min after incubation in SiNPs (at 1.1 × 10(11) nanoparticles/mL). Acute exposure to SiNPs led to their rapid uptake by the lining endothelial cells (as verified by transmission electron microscopy). SiNP uptake had no significant influence on dilator responses, although a greater degree of attenuation was evident after uptake of the 100 nm and positively charged SiNPs (significant at the highest 1.0 mM Ach concentration between positive and nonmodified 200 nm SiNPs; P < 0.05). In summary, our findings suggest that SiNP surface interactions, rather than mass, affect vasodilator function of aortic vessels. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  15. Modeling laser-induced surface cracks in silica at 355 nm

    International Nuclear Information System (INIS)

    Feit, M.D.

    1997-01-01

    Starting from the absorption of laser energy at a subsurface nanoparticle in fused silica, we simulate the consequent buildup of stresses and resulting mechanical material damage . The simulation indicates the formation of micropits with size comparable to a wavelength, similar to experimental observation. Possible mechanisms for enhanced local light absorbtion are discussed

  16. Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide-silica coreshell surfaces

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Jiang, H.; Heczko, Oleg; Söderberg, O.; Hannula, S.-P.

    2012-01-01

    Roč. 14, č. 8 (2012), s. 1-15 ISSN 1388-0764 Institutional research plan: CEZ:AV0Z10100520 Keywords : stroble method * silver nanoparticles * iron oxide * amourphous silica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.175, year: 2012

  17. One pot glucose detection by [Fe(III)(biuret-amide)] immobilized on mesoporous silica nanoparticles: an efficient HRP mimic.

    Science.gov (United States)

    Malvi, Bharmana; Panda, Chakadola; Dhar, Basab B; Gupta, Sayam Sen

    2012-05-28

    An [Fe(III)(biuret-amide)] complex has been immobilized onto mesoporous silica nanoparticles via Cu(I) catalyzed azide-alkyne click chemistry. This hybrid material functions as an efficient peroxidase mimic and was successfully used for the quantitative determination of hydrogen peroxide and glucose via a one-pot colorimetric assay. This journal is © The Royal Society of Chemistry 2012

  18. Magnetite (Fe3O4 Nanoparticle Synthesis using Silica (SiO2 Template and Magnetic Properties Characterisation

    Directory of Open Access Journals (Sweden)

    Suryani Taib

    2015-12-01

    Full Text Available Nanoparticles of magnetite (Fe3O4 have been successfully synthesized by coprecipitation method by mixing FeSO4.7H2O and FeCl3.6H2O with the addition of 10% NH4OH as kopresipitan. Then, functionalized Fe3O4  concentration variation silica (SiO2 5%, 10%, 15%, 20%, 30% and 50%. Particle size and magnetic properties of Fe3O4 nanoparticles were tested by X-Ray Diffraction (XRD and Vibrating Sample Magnetometer (VSM. XRD results showed the addition of silica is not found new phases when added SiO2that serves as a template. The particle size of Fe3O4 nanoparticles obtained 14.23 nm, while the Fe3O4nanoparticles with the addition of a concentration of 5% and 20% respectively SiO215.45 nm and 16.37 nm. VSM results show the value of saturation magnetization and remanent magnetization decreased as more silica concentration, and increased coercivity field. Test Results of Fourier Transform Infra Red (FTIR obtained new peaks which indicate that the functionalization process Fe3O4 with silica has been successfully carried out.

  19. Protocol optimization for the mild detemplation of mesoporous silica nanoparticles resulting in enhanced texture and colloidal stability

    NARCIS (Netherlands)

    Zhang, Zheng; Mayoral, Alvaro; Melian-Cabrera, Ignacio

    2016-01-01

    Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500 -600 degrees C. In this study a mild detemplation method based on the oxidative Fenton

  20. X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film

    International Nuclear Information System (INIS)

    Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.

    2005-01-01

    The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm 2 , it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm 2 , we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix

  1. Preparation of silica doped titania nanoparticles with thermal stability and photocatalytic properties and their application for leather surface functionalization

    Directory of Open Access Journals (Sweden)

    Carmen Gaidau

    2017-11-01

    Full Text Available Doped nanoparticles based on titanium dioxide are of interest for their multifunctional properties and enlarged photocatalytic activity in visible domain. Silica doped titanium dioxide nanoparticles were prepared by hydrothermal method and their structural characteristics and photocatalytic activity were determined, in order to be used for leather coating as alternative to halogen based flame retardants and dry cleaning solvents. A range of concentrations from 2% to 20% silica doped titanium dioxide nanoparticles (% denotes the theoretical weight percent of Si was synthesized and characterized by ICP-OES, FT-IR, UV-vis spectroscopy, XRD, HRTEM and DLS. Titanium dioxide network penetration was supported by Si-O-Ti and OH identification in FT-IR spectra mainly on surface of 10% and 20% silica doped titanium dioxide nanoparticles. The increase of Si-O-Ti bonds with Si dopant concentration acts as efficient barriers against sinterization and growth of TiO2 particles and explains the low particle size identified in HRTEM analyses as compared to undoped TiO2NPs. UV-vis diffuse reflectance spectra of doped titanium dioxide nanoparticles showed the shifting of absorption band to visible domain for 10% silica doped titanium dioxide nanoparticles. The crystallite sizes were calculated from XRD spectra, ranging between 16.2 and 18.1 nm. HRTEM measurement of hydrothermally synthesized titanium dioxide nanoparticles showed anatase crystallites in the range of 8.8–27 nm, while in the 20% silica doped titanium dioxide nanoparticle sample smaller crystallite with sizes between 2.7 nm and 3.5 nm was identified due to the constraints of the SiO2-based amorphous matrix. Nano sizes of 64 nm and 72 nm were found in water dispersions of 10% and 20% silica doped titanium dioxide nanoparticles and the Zeta potentials were of −53.6 mV and −52.9 mV, which indicate very good stabilities. The leather surface treated with composites of film forming polymers

  2. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-01-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH 4 reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  3. Impact of silica environment on hyperfine interactions in ε-Fe{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kubíčková, Lenka, E-mail: sagittaria.64@gmail.com; Kohout, Jaroslav [Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic); Brázda, Petr; Veverka, Miroslav [Institute of Physics of the AS CR, v.v.i. (Czech Republic); Kmječ, Tomáš; Kubániová, Denisa [Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic); Bezdička, Petr [Institute of Inorganic Chemistry of the AS CR, v.v.i. (Czech Republic); Klementová, Mariana; Šantavá, Eva [Institute of Physics of the AS CR, v.v.i. (Czech Republic); Závěta, Karel [Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)

    2016-12-15

    Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of ε-Fe{sub 2}O{sub 3} nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ∼20 nm and the thickness of silica coating ∼5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of ε-Fe{sub 2}O{sub 3} with admixtures of ∼1 % of the α phase and less than 1 % of the γ phase. The hysteresis loops displayed coercivities of ∼2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the ε-Fe{sub 2}O{sub 3} nanoparticles spread between ∼85 K and ∼150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.

  4. Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Tadjarodi, Azadeh; Zabihi, Fatemeh

    2013-01-01

    Graphical abstract: - Highlights: • Metallic silver was decorated in mSiO 2 with grafted hemiaminal functional groups. • Synthesized nanoparticles were used for preparation of glycerol based nanofluids. • The effect of temperature, weight fraction of mSiO 2 and concentration of silver nanoparticles on thermal conductivity of nanofluids was investigated. - Abstract: In the present study, the mesoporous structure of silica (mSiO 2 ) nanoparticles as well as hemiaminal grafted mSiO 2 decorated by metallic silver (Ag/mSiO 2 ) has been used for the preparation of glycerol based nanofluids. Structural and morphological characterization of the synthesized products have been carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis spectroscopy, inductively coupled plasma (ICP) and N 2 adsorption–desorption isotherms. The thermal conductivity and viscosity of the nanofluids have been measured as a function of temperature for various weight fractions and silver concentrations of mSiO 2 and Ag/mSiO 2 nanoparticles, respectively. The results show that the thermal conductivity of the nanofluids increase up to 9.24% as the weight fraction of mSiO 2 increases up to 4 wt%. Also, increasing the percent of the silver decorated mSiO 2 (Ag/mSiO 2 ) up to 2.98% caused an enhancement in the thermal conductivity of the base fluid up to 10.95%. Furthermore, the results show that the nanofluids have Newtonian behavior in the tested temperature range for various concentrations of nanoparticles

  5. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.

  6. Drag reduction in silica nanochannels induced by graphitic wall coatings

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    . In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively...

  7. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    Science.gov (United States)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  8. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    Science.gov (United States)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  9. Synthesis of amino-functionalized silica nanoparticles for preparation of new laboratory standards

    Science.gov (United States)

    Alvarez-Toral, Aitor; Fernández, Beatriz; Malherbe, Julien; Claverie, Fanny; Pecheyran, Christophe; Pereiro, Rosario

    2017-12-01

    Platinum group elements (PGEs) are particularly interesting analytes in different fields, including environmental samples as well as high cost materials that contain them, such as for example automotive catalysts. This type of solid samples could be analysed by laser ablation (LA) coupled to ICP-MS, which allow to significantly reducing the analysis time since the time-consuming processes for sample preparation are not required. There is a considerable demand of standards with high PGEs concentration for quantification purposes, which cannot be carried out easily using LA-ICP-MS because the available standards (i.e. NIST SRM 61 × series) do not have such analytes in the same concentration range. In this paper, a new strategy is proposed for the synthesis of homogeneous laboratory standards with Pt, Pd and Rh concentrations that range from 77 μg/g of Pd up to 2035 μg/g of Rh. The proposed strategy is based on the synthesis of monodisperse amino-functionalized amorphous silica nanoparticles, which can retain metal ions. In addition to Pt, Pd and Rh, three lanthanides were also added to the nanoparticles (La, Ce, Nd). Sturdy pressed pellets can be made from the resulting nanopowder without the use of any binder. Elemental composition of standards made of nanoparticles was analysed by conventional nebulization ICP-MS and their homogeneity was successfully evaluated by LA-ICP-MS.

  10. Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release

    Directory of Open Access Journals (Sweden)

    Lidong Cao

    2016-06-01

    Full Text Available Nanotechnology-based pesticide formulations would ensure effective utilization of agricultural inputs. In the present work, mesoporous silica nanoparticles (MSNs with particle diameters of ~110 nm and pore sizes of ~3.7 nm were synthesized via a liquid crystal templating mechanism. A water-soluble chitosan (CS derivative (N-(2-hydroxylpropyl-3-trimethyl ammonium CS chloride, HTCC was successfully capped on the surface of pyraclostrobin-loaded MSNs. The physicochemical and structural analyses showed that the electrostatic interactions and hydrogen bonding were the major forces responsible for the formation of HTCC-capped MSNs. HTCC coating greatly improved the loading efficiency (LC (to 40.3% compared to using bare MSNs as a single encapsulant (26.7%. The microstructure of the nanoparticles was revealed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The pyraclostrobin-loaded nanoparticles showed an initial burst and subsequent sustained release behavior. HTCC-capped MSNs released faster than bare MSNs in the initial stage. Pyraclostrobin-loaded HTCC-capped MSNs with half doses of pyraclostrobin technical demonstrated almost the same fungicidal activity against Phomopsis asparagi (Sacc., which obviously reduced the applied pesticide and enhanced the utilization efficiency. Therefore, HTCC-decorated MSNs demonstrated great potential as nanocarriers in agrochemical applications.

  11. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment.

    Science.gov (United States)

    Croissant, Jonas G; Zink, Jeffrey I; Raehm, Laurence; Durand, Jean-Olivier

    2018-01-18

    Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm 3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kunov-Kruse, Andreas Jonas; Kegnæs, Søren

    2017-01-01

    Formic acid has recently attracted considerable attention as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we show that silica encapsulated and amine functionalised gold nanoparticles are highly active catalysts for the production...... of hydrogen by vapour phase decomposition of formic acid. The core-shell catalysts are prepared in a reverse micelle system that makes it possible to control the size of the Au nanoparticles and the thickness of the SiO2 shells, which has a large impact on the catalytic activity. The smallest gold...... nanoparticles are 2.2 ± 0.3 nm in diameter and have a turnover frequency (TOF) of up to 958 h−1 at a temperature of 130 °C. Based on detailed in situ ATR-FTIR studies and results from kinetic isotope labelling experiments we propose that the active site is a low-coordinated and amine functionalised Au atom...

  13. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles

    Science.gov (United States)

    Mahony, D.; Cavallaro, A. S.; Mody, K. T.; Xiong, L.; Mahony, T. J.; Qiao, S. Z.; Mitter, N.

    2014-05-01

    Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral

  14. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.

    Science.gov (United States)

    Wang, Kemin; He, Xiaoxiao; Yang, XiaoHai; Shi, Hui

    2013-07-16

    Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires specialized imaging techniques. The diversity, composition, and temporal-spatial variation of life activities from cells to the whole body require the analysis techniques to be fast-response, noninvasive, highly sensitive, and stable, in situ and in real-time. Functionalized nanoparticle-based fluorescence imaging techniques have the potential to meet such needs through real-time and noninvasive visualization of biological events in vivo. Functionalized silica nanoparticles (SiNPs) doped with fluorescent dyes appear to be an ideal and flexible platform for developing fluorescence imaging techniques used in living cells and the whole body. We can select and incorporate different dyes inside the silica matrix either noncovalently or covalently. These form the functionalized hybrid SiNPs, which support multiplex labeling and ratiometric sensing in living systems. Since the silica matrix protects dyes from outside quenching and degrading factors, this enhances the photostability and biocompatibility of the SiNP-based probes. This makes them ideal for real-time and long-time tracking. One nanoparticle can encapsulate large numbers of dye molecules, which amplifies their optical signal and temporal-spatial resolution response. Integrating fluorescent dye-doped SiNPs with targeting ligands using various surface modification techniques can greatly improve selective recognition. Along with the endocytosis, functionalized SiNPs can be efficiently internalized into cells for noninvasive localization, assessment, and monitoring. These unique characteristics of functionalized SiNPs substantially support their applications in fluorescence imaging in vivo. In this Account, we summarize our efforts to develop functionalized dye-doped SiNPs for fluorescence imaging at the cell and small animal levels. We first discuss how to design and

  15. Silicosis and Silica-Induced Autoimmunity in the Diversity Outbred Mouse

    Directory of Open Access Journals (Sweden)

    Jessica M. Mayeux

    2018-04-01

    Full Text Available Epidemiological studies have confidently linked occupational crystalline silica exposure to autoimmunity, but pathogenic mechanisms and role of genetic predisposition remain poorly defined. Although studies of single inbred strains have yielded insights, understanding the relationships between lung pathology, silica-induced autoimmunity, and genetic predisposition will require examination of a broad spectrum of responses and susceptibilities. We defined the characteristics of silicosis and autoimmunity and their relationships using the genetically heterogeneous diversity outbred (DO mouse population and determined the suitability of this model for investigating silica-induced autoimmunity. Clinically relevant lung and autoimmune phenotypes were assessed 12 weeks after a transoral dose of 0, 5, or 10 mg crystalline silica in large cohorts of DO mice. Data were further analyzed for correlations, hierarchical clustering, and sex effects. DO mice exhibited a wide range of responses to silica, including mild to severe silicosis and importantly silica-induced systemic autoimmunity. Strikingly, about half of PBS controls were anti-nuclear antibodies (ANA positive, however, few had disease-associated specificities, whereas most ANAs in silica-exposed mice showed anti-ENA5 reactivity. Correlation and hierarchical clustering showed close association of silicosis, lung biomarkers, and anti-ENA5, while other autoimmune characteristics, such as ANA and glomerulonephritis, clustered separately. Silica-exposed males had more lung inflammation, bronchoalveolar lavage fluid cells, IL-6, and autoantibodies. DO mice are susceptible to both silicosis and silica-induced autoimmunity and show substantial individual variations reflecting their genetic diverseness and the importance of predisposition particularly for autoimmunity. This model provides a new tool for deciphering the relationship between silica exposure, genes, and disease.

  16. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Herrling, Maria P. [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Lackner, Susanne [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Urban Bioengineering for Resource Recovery, Bauhaus-Institute for Infrastructure Solutions, Bauhaus-Universität Weimar, Coudraystraße 7, 99423 Weimar (Germany); Tatti, Oleg [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Guthausen, Gisela [Pro" 2NMR, Institute for Biological Interfaces 4 and Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe (Germany); Delay, Markus [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Franzreb, Matthias [Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Horn, Harald, E-mail: harald.horn@kit.edu [Engler-Bunte-Institut, Chair of Water