WorldWideScience

Sample records for silica microparticle filler

  1. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    International Nuclear Information System (INIS)

    Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Houlton, Robert J.; Chitanvis, Kiran E.; Brown, Geoffrey W.; Hanson, David E.

    2004-01-01

    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  3. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste

    Science.gov (United States)

    Müller, Miroslav; Valášek, Petr

    2018-05-01

    A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.

  4. Functionalized diatom silica microparticles for removal of mercury ions

    International Nuclear Information System (INIS)

    Yu Yang; Addai-Mensah, Jonas; Losic, Dusan

    2012-01-01

    Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH 2 ) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g -1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  5. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    Science.gov (United States)

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  7. Comparison between rice husk ash and commercial silica as filler in polymeric composites

    International Nuclear Information System (INIS)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M.

    2014-01-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  8. Analysis of sorption into single ODS-silica gel microparticles in acetonitrile-water.

    Science.gov (United States)

    Nakatani, Kiyoharu; Kakizaki, Hiroshi

    2003-08-01

    Intraparticle mass transfer processes of Phenol Blue (PB) in single octadecylsilyl (ODS)-silica gel microparticles in acetonitrile-water were analyzed by microcapillary manipulation and microabsorption methods. An absorption maximum of PB, the sorption isotherm parameters, and the sorption rate in the microparticle system were highly dependent on the percentage of acetonitrile in solution. The results are discussed in terms of the microscopic polarity surrounding PB in the ODS phase and the relationship between the isotherm parameters and the sorption rate.

  9. Silica-filled elastomers polymer chain and filler characterization by a SANS-SAXS approach

    CERN Document Server

    Botti, A; Richter, D; Urban, V; Ipns, A 6 4; Kohlbrecher, J; Straube, E

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  10. Silica-filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    International Nuclear Information System (INIS)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D.; Urban, V.; Kohlbrecher, J.; Straube, E.

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  11. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.

    2016-01-01

    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  12. Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.

    Science.gov (United States)

    Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam

    2016-11-08

    We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers

  13. Polymer-filler interactions in polyether based thermoplastic polyureathane/silica nanocomposites

    OpenAIRE

    Heinz, Özge; Heinz, Ozge

    2013-01-01

    Thermoplastic polyurethaneureas (TPU) are a unique class of materials that are used in a broad range of applications due to their tailorable chemistry and morphology that allow engineering materials with targeted properties. The central theme of this dissertation is to develop an understanding on polymer-filler interfacial interactions and related reinforcing mechanism of silica nanoparticles in polyether based TPU/silica nanocomposites. Prior to our investigation on nanocomposite materials, ...

  14. Boronic acid functionalized silica microparticles for isolation of flavonoids from Hypericum perforatum

    Directory of Open Access Journals (Sweden)

    Onur Çetinkaya

    2017-10-01

    Full Text Available We have selectively separated cis- and/or vicinal-diol-containing flavonoids from Hypericum perfaratum (HP by adsorption/desorption using aminophenylboronic acid (APBA functionalized uniform (1.6 μm silica microparticles (BASPs synthesized via the Stöber method. Silica particles were alkylated by its terminal –OH with 3-aminopropyl trimethoxysilane (APTS, glutaraldehyde (GA and APBA. The results from model adsorption studies indicated that these microparticles selectively adsorbed quercetin and rutin but partially apigenin. The antioxidant and antiradical activities of the desorption solution were slightly higher than that of the post-adsorption solution. These results indicated that the BASP selectively adsorbed the cis- and/or vicinal antioxidant and antiradical flavonoids.

  15. XPS and Raman study of zinc containing silica microparticles loaded with insulin

    Energy Technology Data Exchange (ETDEWEB)

    Vanea, E.; Simon, V., E-mail: viorica.simon@phys.ubbcluj.ro

    2013-09-01

    Zinc–silica microparticles obtained by sol–gel method solely or by combining sol–gel chemistry with freeze-drying and spray-drying procedures were explored as potential insulin drug delivery carriers for their improved loading efficiency. Zinc containing silica hosts of different specific surface area and mean pore volume loaded with insulin under similar conditions were investigated by X-ray photoelectron spectroscopy (XPS) and confocal micro-Raman spectroscopy in order to assess the insulin adherence to these matrices and the biologically active state of the insulin after embedding.

  16. Influence of the silica fillers on the ageing of epoxy resins under irradiations

    International Nuclear Information System (INIS)

    Benard, F.

    2004-01-01

    Various studies were carried out on the ageing of epoxy resins under irradiations. In all cases, pure polymers were studied. The aim of our work managed by the CEA and the CNRS consists on studying the part of fillers and particularly the part of silica on ageing process under electron beam irradiations. Because of their wide use in industrial applications and especially in nuclear environment, the DGEBA-TETA resins (Diglycidylether of Bisphenol A - Triethylenetetramine) were chosen. Those epoxy resins are difficult to analyse because of their insolubility. Some pure and nano-metric silica filled chemical models which chemical structure very close to the one the DGEBA/TETA resin were synthesized and analysed with classical methods in organic chemistry. A major phenomenon of rupture of the C-O and C-N chemical bonds with creation of phenolic extremities, methylketone extremities, of primary and tertiary amines and notably enamine functions were revealed by the analyses. The quantitative 1 H and 13 C NMR analyses revealed the screen effect due to the silica and the reactions between the chemical species created by the irradiations and the silica surface. Thermic and thermodynamic analyses of the different epoxy resins in function of the irradiation dose and of the kind of silica showed the decrease of the glass transition temperature, of the relaxation temperature and of the crosslink density confirming the major phenomenon of bond ruptures during irradiations. With silica, the decrease of the crosslink density is slowed. This phenomenon can be explained with interactions between the nano-metric silica surface and the epoxy resin offsetting the effect of the chain rupture on the resin mechanical properties. The 13 C solid state NMR analyses confirmed the choice of the chemical models and permitted to detect the chemical species created by the irradiations. The analyse of the polarization transfers with 13 C CP-MAS NMR spectroscopy revealed the stiffening of the nano

  17. Comparison between rice husk ash and commercial silica as filler in polymeric composites; Comparacao de cinza de casca de arroz e silica comercial como carga em compositos polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M., E-mail: ijk.fernandes@gmail.com [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Pos-Graduacao em Engenharia Civil

    2014-07-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  18. Light induced assembly and self-sorting of silica microparticles

    NARCIS (Netherlands)

    Vilanova Garcia, N.; De Feijter, I.; Teunissen, A.J.P.; Voets, I.K.

    2018-01-01

    To tailor the properties of colloidal materials, precise control over the self-assembly of their constituents is a prerequisite. Here, we govern the assembly of silica particles by functionalization with supramolecular moieties which interact with each other via directional and reversible hydrogen

  19. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  20. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy

    OpenAIRE

    NAKATANI, Kiyoharu; MATSUTA, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius s...

  1. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    Science.gov (United States)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  2. Hollow Mesoporous Carbon Microparticles and Micromotors with Single Holes Templated by Colloidal Silica-Assisted Gas Bubbles.

    Science.gov (United States)

    Huang, Xiaoxi; Zhang, Tao; Asefa, Tewodros

    2017-07-01

    A simple, new synthetic method that produces hollow, mesoporous carbon microparticles, each with a single hole on its surface, is reported. The synthesis involves unique templates, which are composed of gaseous bubbles and colloidal silica, and poly(furfuryl alcohol) as a carbon precursor. The conditions that give these morphologically unique carbon microparticles are investigated, and the mechanisms that result in their unique structures are proposed. Notably, the amount of colloidal silica and the type of polymer are found to hugely dictate whether or not the synthesis results in hollow asymmetrical microparticles, each with a single hole. The potential application of the particles as self-propelled micromotors is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy.

    Science.gov (United States)

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.

  4. External and intraparticle diffusion of coumarin 102 with surfactant in the ODS-silica gel/water system by single microparticle injection and confocal fluorescence microspectroscopy

    International Nuclear Information System (INIS)

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase. (author)

  5. Dataset for acrylate/silica nanoparticles formulations and photocured composites: Viscosity, filler dispersion and bulk Poisson׳s ratio

    Directory of Open Access Journals (Sweden)

    Hubert Gojzewski

    2017-06-01

    Full Text Available UV-curable polymer composites are of importance in industry, biomedical applications, scientific fields, and daily life. Outstanding physical properties of polymer composites were achieved with nanoparticles as filler, primarily in enhancing mechanical strength or barrier properties. Structure-property relationships of the resulting nanocomposites are dictated by the polymer-filler molecular architecture, i.e. interactions between polymer matrix and filler, and high surface area to volume ratio of the filler particles. Among monomers, acrylates and methacrylates attracted wide attention due to their ease of polymerization and excellent physicochemical and mechanical properties of the derived polymers. We prepared and photopolymerized two series of formulations containing hydrophobized silica nanofiller (Aerosil R7200 dispersed in 2-hydroxyethyl acrylate (HEA or polyethylene glycol diacrylate (PEGDA monomers. We compared selected physical properties of the formulations, both before and after photocuring; specifically the viscosity of formulations and dispersion of the filler in the polymer matrices. Additionally, we estimated the bulk Poisson׳s ratio of the investigated nanocomposites. This article contains data related to the research article entitled “Nanoscale Young׳s modulus and surface morphology in photocurable polyacrylate/nanosilica composites” (Gojzewski et al., 2017 [1].

  6. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  7. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    Science.gov (United States)

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Infrared Spectroscopic Study on Structural Change and Interfacial Interaction in Rubber Composites Filled with Silica-Kaolin Hybrid Fillers

    Science.gov (United States)

    Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.

    2016-07-01

    A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.

  9. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  10. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  11. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    Science.gov (United States)

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  12. Use of new silica fillers as additives for polymers used in packaging of fruit

    Directory of Open Access Journals (Sweden)

    Romina Arreche

    2012-01-01

    Full Text Available The objective of this work was to synthesize nanosilicas with different degree of hydrophobicity by the sol-gel method, using tetraethyl orthosilicate as a precursor. For this purpose, 3-aminopropyl triethoxysilane (APS and 1,1,1,3,3,3 - hexamethyldisilazane (HMDS, were added during synthesis as modifiers. A commercial biopolymer (Hexamoll Dinch, BASF intended for packaging of apples, was added to the new nanosilicas. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, potentiometric titration, porosity, specific surface area and hydrophobicity/hydrophilicity by wetting test. Colorimetry was used to evaluate change in apple pulp color after contact with the different silicas.

  13. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  14. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    International Nuclear Information System (INIS)

    Maio, A.; Fucarino, R.; Khatibi, R.; Botta, L.; Scaffaro, R.; Rosselli, S.; Bruno, M.

    2014-01-01

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H 2 SO 4 /H 3 PO 4 and KMnO 4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors

  15. The Effect of Filler-Polymer Interactions on Cold-Crystallization Kinetics in Crosslinked, Silica Filled PDMS/PDPS Copolymer Melts

    International Nuclear Information System (INIS)

    Chien, A; DeTeresa, S; Thompson, L; Cohenour, R; Balazs, B; Maxwell, R S

    2006-01-01

    Crystallization in a series of variable crosslink density poly(dimethyl-diphenyl) siloxanes random block copolymers reinforced through a mixture of precipitated and fumed silica fillers has been studied by Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and X-ray Diffraction (XRD). The silicone composite studied was composed of 94.6 mol% Dimethoylsiloxane, 5.1 mol% diphenylsiloxane, and 0.3 mol% methyl-vinyl siloxane (which formed crosslinking after a peroxide cure). The polymer was filled with a mixture of 21.6 wt. % fumed silica and 4.0 wt. % precipitated silica previously treated with 6.8 wt. % ethoxy-endblocked siloxane processing aid. The base composite was characterized by a molecular weight between crosslinks in the polymer network of ∼24 kDa and an overall molecular weight (including the influence of the silica fillers) between crosslinks of ∼11 kDa. Molecular weight between crosslinks and filler-polymer interaction strength were then modified by exposure to γ-irradiation in either air or vacuum. The unirradiated material exhibited crystallization at -80 C as measured by DSC with a 16% crystallization as measured by XRD. Isothermal DMA experiments illustrated that crystallization at -85 C occurred over a 1.8 hour period in silica-filled systems and 2.2-2.6 hours in unfilled systems. The onset of crystallization typically occurred after a 30-minute incubation/nucleation period. The crystallization kinetics were dependent on crosslink density. Changes in molecular weight of a factor of two did not, however, change the amount of crystallization. Irradiation in vacuum resulted in faster overall crystallization rates compared to air irradiation for the same crosslink density, likely due to a reduction in the interaction between the polymer chains and the silica filler surface. Modulated differential scanning calorimetry contrasted the crystallization and melting behavior of pure PDMS versus the PDMS/PDPS base copolymer and helped

  16. Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications

    Directory of Open Access Journals (Sweden)

    Juliana Lasprilla-Botero

    2018-05-01

    Full Text Available A coating rendering superhydrophobic properties to low-density polyethylene (LDPE films used in packaging applications was herein generated by means of the electrohydrodynamic processing (EHDP technique. To this end, electrospun ultrathin poly(ε-caprolactone (PCL fibers, followed by electrosprayed nanostructured silica (SiO2 microparticles, were deposited on top of the LDPE film. Various electrospinning and electrospraying times were tested and optimized followed by a thermal post-treatment to provide physical adhesion between the bilayer coating and the LDPE substrate. The morphology, hydrophobicity, permeance to limonene, and thermal stability of the resultant nanostructured coatings were characterized. It was observed that by controlling both the deposition time of the electrospun ultrathin PCL fibers and the electrosprayed SiO2 microparticles, as well as the conditions of the thermal post-treatment, effective superhydrophobic coatings were developed onto the LDPE films. The resultant multilayer presented a hierarchical micro/nanostructured surface with an apparent contact angle of 157° and a sliding angle of 8°. The addition of silica reduced, to some extent, the limonene (aroma barrier, likely due to the increased surface-to-volume ratio, which allowed permeant sorption to occur but improved the thermal stability of the LDPE/PCL film. As a result, the developed multilayer system of LDPE/PCL/SiO2 has significant potential for use in easy-to-empty packaging applications of high water activity products.

  17. A Review on Reinforcement of Natural Rubber by Silica Fillers for Use in Low-Rolling Resistance Tires

    NARCIS (Netherlands)

    Sarkawi, S.S.; Kaewsakul, Wisut; Sahakaro, Kannika; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2015-01-01

    High dispersion silica has recently become the preferred alternative to carbon black for low rolling resistance tyres. However, the combination of natural rubber with silica and a coupling agent remains a challenge, but also offers a tremendous potential for reduction of energy consumption of

  18. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings

    Science.gov (United States)

    Ruggiero, Ludovica; Crociani, Laura; Zendri, Elisabetta; El Habra, Naida; Guerriero, Paolo

    2018-05-01

    In the last decade many commercial biocides were gradually banned for toxicity. This work reports, for the first time, the synthesis and characterization of silica nanocontainers loaded with a natural product antifoulant (NPA), the zosteric sodium salt which is a non-commercial and environmentally friendly product with natural origin. The synthesis approach is a single step dynamic self-assembly with tetraethoxysilane (TEOS) as silica precursor. Unlike conventional mesoporous silica nanoparticles, the structure of these silica nanocontainers provides loading capacity and allows prolonged release of biocide species. The obtained nanocapsules have been characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The encapsulation was checked by FTIR ATR spectroscopy and thermogravimetric analyses. The results of the release studies show the great potential of the here presented newly developed nanofillers in all applications where a controlled release of non-toxic and environmentally friendly biocides is required.

  19. Wrinkle Fillers

    Science.gov (United States)

    ... your health care provider about their training and experience injecting dermal fillers in the face. Do not inject yourself with dermal fillers. Do not purchase dermal filler products online, because they could be ...

  20. The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties

    Czech Academy of Sciences Publication Activity Database

    Tadiello, L.; D´Arienzo, M.; Di Credico, B.; Hanel, T.; Matějka, Libor; Mauri, M.; Morazzoni, F.; Simonutti, R.; Špírková, Milena; Scotti, R.

    2015-01-01

    Roč. 11, č. 20 (2015), s. 4022-4033 ISSN 1744-683X Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : nanocomposites * silica particles * polymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.798, year: 2015

  1. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  2. Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers

    Directory of Open Access Journals (Sweden)

    Shuye Zhang

    2018-01-01

    Full Text Available Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test.

  3. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  4. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  6. Separation of rhodium(III and iridium(IV chlorido species by quaternary diammonium centres hosted on silica microparticles

    Directory of Open Access Journals (Sweden)

    A. Majavu

    2017-12-01

    Full Text Available Silica gel was functionalized with six different quaternary diammonium centres derived from ethylenediamine (EDA, tetramethylenediamine (TMDA, hexamethylenediamine (HMDA, 1,8-diaminooctane (OMDA, 1,10-diaminodecane (DMDA and 1,12-diaminododecane (DDMDA to produce Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA, Si-QUAT DMDA and Si-QUAT DDMDA, respectively. The synthesized silica-based resins were characterized by means of FTIR, XPS, SEM, BET surface area, thermogravimetric analysis and elemental analysis. The materials were used to investigate the adsorption and separation of [RhCl5(H2O]2− and [IrCl6]2−. Batch studies (equilibrium and kinetic studies were conducted to study the adsorption of [RhCl5(H2O]2− and [IrCl6]2− onto Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA, Si-QUAT DMDA and Si-QUAT DDMDA using single metal aqueous solutions. The Freundlich isotherm confirmed multilayer adsorption and the Freundlich constant (kf displayed the following ascending order; Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA and Si-QUAT DMDA, and a decrease in kf for Si-QUAT DDMDA. Kinetic studies suggest a pseudo-first order kinetic model. Column studies were also conducted for a binary mixture of these metal ion chlorido species ([RhCl5(H2O]2− and [IrCl6]2−. The iridium loading capacities increased as the carbon spacer between the diammonium centres increased in the following order; Si-QUAT EDA, Si-QUAT TMDA, Si-QUAT HMDA, Si-QUAT OMDA and Si-QUAT DMDA (4.56 mg/g, 6.88 mg/g, 14.63 mg/g, 19.01 mg/g and 29.35 mg/g, respectively. It was observed that the iridium loading capacity of Si-QUAT DDMDA decreased to 8.90 mg/g. This paper presents iridium-specific materials that could be applied in solutions of secondary PGMs sources containing rhodium and iridium as well as in feed solutions from ore processing. Keywords: Silica gel, Quaternary diammonium centres, Rhodium, Iridium, Separation

  7. Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements

    OpenAIRE

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here....

  8. Effect of silica-based fillers on structure and properties of epoxy-based composites; Efeito das cargas a base de silica na estrutura e propriedades de compositos a base de resina epoxidica

    Energy Technology Data Exchange (ETDEWEB)

    Solymossy, Ana Paula F.; Dahmouche, Karim; Soares, Bluma G. [Instituto de Macromoleculas (IMA), Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Rocha, L. Alonso; Ribeiro, Sidney J.L, E-mail: apfiuza@ima.ufrj.br [Instituto de Quimica, Universidade Estadual Paulista (UNESP), Araraquara-SP (Brazil)

    2011-07-01

    In the present work, the incorporation effect of nanoparticles of commercial silica (Aerosil R200 - R200), polysilsesquioxane (POSS) and in-situ synthesized mesoporous silica (MP) on the structure, curing and thermal properties of epoxy resin. SAXS analysis of R200 and MP composites showed a tendency to Guinier plateau, while the POSS composite showed larger particle size. By the rheological analysis it was possible to measure the gel time of the composites, of which the greater value obtained was for MP, followed by POSS and then by R200, due to their affinity with the matrix and particle sizes. DMA showed that R200 composite has the lowest modulus, when compared with the other composites. The MP composite has higher Tg than POSS composite and lower than R200 composite. (author)

  9. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  10. Highly selective coextraction of rhodamine B and dibenzyl phthalate based on high-density dual-template imprinted shells on silica microparticles.

    Science.gov (United States)

    Long, Zerong; Xu, Weiwei; Peng, Yumei; Lu, Yi; Luo, Qian; Qiu, Hongdeng

    2017-01-01

    A simple one-pot approach based on molecularly imprinted polymer shells dispersed on the surface of silica for simultaneous determination of rhodamine B and dibenzyl phthalate (DBzP) has been developed. Highly dense molecularly imprinted polymer shells were formed in the mixture of acetonitrile and toluene by the copolymerization of methacrylic acid and ethylene glycol dimethacrylate, as well as two templates, rhodamine B and dibenzyl phthalate, directed by the vinyl end groups functional monolayer at surface silica microspheres after 3-methacryloxypropyl trimethoxysilane modification. The obtained imprinted polymer shells showed large average pore diameter (102.5 nm) and about 100 nm shell thickness. The imprinted particles also showed high imprinting factor (α RhB = 3.52 and α DBzP = 3.94), rapid binding kinetics, and excellent selective affinity capacity for rhodamine B and dibenzyl phthalate containing another three competitors in mixed solution. Moreover, the imprinted particles coupled with ultra high performance liquid chromatography was successfully applied to simultaneous analysis of rhodamine B and dibenzyl phthalate in two spiked beverage samples with average recoveries in the range of 88.0-93.0% for rhodamine B and 84.0-92.0% for dibenzyl phthalate with the relative standard deviation lower than 5.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advanced Laser Techniques for Filler-Induced Complications

    DEFF Research Database (Denmark)

    Cassuto, D.; Marangoni, O.; Santis, G. De

    2009-01-01

    discomfort and pain. RESULTS All 20 patients experienced reduction or complete resolution, the latter increasing with repeated treatments. CONCLUSION Laser-assisted treatment offers a successful solution for patients who have been suffering from disfiguring nodules from injected fillersFoften for many years......BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...

  12. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    Science.gov (United States)

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  13. Microparticles in cardiovascular diseases

    NARCIS (Netherlands)

    VanWijk, Marja J.; VanBavel, E.; Sturk, A.; Nieuwland, R.

    2003-01-01

    Microparticles are membrane vesicles released from many different cell types. There are two mechanisms that can result in their formation, cell activation and apoptosis. In these two mechanisms, different pathways are involved in microparticle generation. Microparticle generation seems to be a well

  14. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  15. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    low viscosities, which is favorable for loading of inorganic fillers [5]. In this study, commercially available fillers, such as fumed silica (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), copper calcium titanate (CaCu3Ti4O12, CCTO), multi-walled carbon nanotubes (MWCNTs) were added...

  16. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  17. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    Science.gov (United States)

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  18. Physics of microparticle acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune

    2012-01-01

    of microparticle acoustophoresis and to develop methods for future advancement of its use. Throughout the work on this thesis the author and co-workers1 have studied the physics of microparticle acoustophoresis by comparing quantitative measurements to a theoretical framework consisting of existing hydrodynamic...

  19. Restructuring of microparticles

    International Nuclear Information System (INIS)

    Lameiras, F.S.; Santos, A.M.M. dos

    1992-01-01

    Experimental grain sizes distribution of sintered (U,Gd)O 2 pellets were analysed according to the model of Lameiras for microparticles restructuring. This model, which includes the grain growth and Ostwald ripening phenomena, assumes that the microparticles restructuring is governed by two fundamental principles: minimization of the interface energy and uniformization of its distribution in space. It is also, assumed that the interface energy is stored in the grain boundaries, triple lines and quadruple points. The minimization of the interface energy can be done through three ways independent of each other: diminishing of the number of microparticles, alteration of the size distribution and alteration of the form distribution. The uniformization of the spatial distribution of the interface energy can be done through two ways also independent of each other: tendency to an uniform spatial distribution of microparticles and tendency to an uniform distribution of the interface energy per microparticle. The model accords well with these experimental data. (author)

  20. Reactive processing of silica-reinforced tire rubber : new insight into the time- and temperature-dependence of silica rubber interaction

    NARCIS (Netherlands)

    Mihara, S.

    2009-01-01

    In recent years, silica has become one of the most important fillers used in tire tread compounds due to its contribution to a better environment. Silica is capable of not only reducing the rolling resistance but also improving the wet skid resistance of tires, compared to carbon black as a filler.

  1. Microparticle Flow Sensor

    Science.gov (United States)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  2. Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment.

    Science.gov (United States)

    Farrag, Yousof; Sabando, Constanza; Rodríguez-Llamazares, Saddys; Bouza, Rebeca; Rojas, Claudio; Barral, Luís

    2018-04-25

    A simple method for producing donut-shaped starch microparticles by adding ethanol to a heated aqueous slurry of corn starch is presented. The obtained microparticles were analysed by SEM, XRD and DSC. The average size of microparticles was 14.1 ± 0.3 μm with holes of an average size of 4.6 ± 0.2 μm. The crystalline arrangement of the microparticles was of a V-type single helix. The change in crystallinity from A-type of the starch granules to a more open structure, where water molecules could penetrate easier within the microparticles, substantially increased their solubility and swelling power. The microparticles exhibited a higher gelatinization temperature and a lower gelatinization enthalpy than did the starch granules. The donut-shaped microparticles were stable for more than 18 months and can be used as a carrier of an active compound or as a filler in bioplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  4. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  5. Biogas of sanitary fillers

    International Nuclear Information System (INIS)

    Serrano Camacho, Ciro

    2007-01-01

    The author proposes a methodology for the preliminary estimation of the energetic potential and environmental improvement derivates of the implementation of these technologies that allows to make the first estimative of biogas generation of sanitary fillers with base in the results of the simulation of three predictive model: One Mexican, other denominated Scholl-Canyon of North American origin and the designed by the EPA. The three models use different versions and constants for a differential equation of degradation of first degree

  6. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  7. Microparticle analysis system and method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  8. Evaluation of rice husk ash as filler in tread compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M. R. S., E-mail: monica.fernandes@lanxess.com [Lanxess Elastômeros do Brasil S.A., Brasil and Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) (Brazil); Furtado, C. R. G., E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de, E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com [Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) (Brazil)

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  9. Evaluation of rice husk ash as filler in tread compounds

    International Nuclear Information System (INIS)

    Fernandes, M. R. S.; Furtado, C. R. G.; Sousa, A. M. F. de

    2014-01-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  10. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal; Kuritka, Ivo, E-mail: ivo@kuritka.net; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-08-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites.

  11. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    International Nuclear Information System (INIS)

    Machovsky, Michal; Kuritka, Ivo; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-01-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites

  12. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  13. Research progress of composite fillers

    Directory of Open Access Journals (Sweden)

    Yixuan ZHAO

    2015-08-01

    Full Text Available Using composite filler is a very potential way to braze dissimilar material, especially braze metals with ceramics. The composite filler which is added varieties of high temperature alloy, carbon fiber and ceramic particles has a suitable coefficient of thermal expansion. The application of composite filler can release the residual stress caused by mismatch of thermal expansion coefficient in the brazing joints and improve the overall performance significantly. According to the traditional classification method of composite materials, the composite filler is divided into micron-reinforced composite filler and nano-reinforced composite filler, of which the feature and research status are discussed in this text. According to the influence of different size reinforced phases on microstructure and mechanical property of the brazing joints, nano-reinforced composite filler has more uniform and better structure compared with micron-reinforced composite filler, and higher joint strengh can be obtained by using it. However, the reinforced mechanism is still an open question, and will become the key area of the future research work.

  14. Plasma Polymerization of Acetylene onto silica: and Approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, Jacobus W.M.; Ooij, W.J.; Dierkes, Wilma K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water

  15. Profile analysis of microparticles

    International Nuclear Information System (INIS)

    Konarski, P.; Iwanejko, I.; Mierzejewska, A.

    2001-01-01

    Depth resolved analyses of several types of microparticles are presented. Particles for secondary ion mass spectrometry (SIMS) depth profile analysis were collected in the working environment of glass plant, steelworks and welding station using eight-stage cascade impactor with particle size range of 0.3 μm to 15 μm. Ion beam sputtering and sample rotation technique allowed to describe morphology i.e. the elemental structure of collected sub-micrometer particles. Also model particles Iriodin 221 (Merck) were depth profiled. The core-shell structure is found for all types of investigated particles. Steelworks particles consist mainly of iron and manganese cores. At the shells of these microparticles: lead, chlorine and fluorine are found. The particles collected in the glass-works consist mainly of lead-zirconium glass cores covered by carbon and copper. Stainless-steel welding particles compose of iron, manganese and chromium cores covered by a shell rich in carbon, chlorine and fluorine. Sample rotation technique applied in SIMS appears to be an effective tool for environmental microparticle morphology studies

  16. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  17. A concept of ferroelectric microparticle propulsion thruster

    International Nuclear Information System (INIS)

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-01-01

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches ∼9x10 -4 N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster

  18. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    Directory of Open Access Journals (Sweden)

    Xu W

    2011-08-01

    Full Text Available Weiguo Xu1, Cornelia Ganz2, Ulf Weber2, Martin Adam2, Gerd Holzhüter2, Daniel Wolter3, Bernhard Frerich3, Brigitte Vollmar1, Thomas Gerber21Institute for Experimental Surgery, 2Institute of Physics, 3Department of Oral, Maxillofacial and Plastic Surgery, University of Rostock, Rostock, GermanyAbstract: In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.Keywords: bone remodelling, electron microscopy, histomorphometry, nanotechnology, tissue engineering

  19. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  20. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  1. Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete

    Directory of Open Access Journals (Sweden)

    Hafez E. Elyamany

    2014-06-01

    Full Text Available The objective of this study is to evaluate the effect of various filler types on the fresh and hardened properties of self-compacting concrete (SCC and Flow-able concrete. For this purpose, two groups of fillers were selected. The first group was pozzolanic fillers (silica fume and metakaolin while the second group was non-pozzolanic fillers (limestone powder, granite dust and marble dust. Cement contents of 400 kg/m3 and 500 kg/m3 were considered while the used filler material was 7.5%, 10% and 15%. Slump and slump flow, T50, sieve stability and bleeding tests were performed on fresh concrete. The studied hardened properties included unit weight, voids ratio, porosity, and water absorption and cube compressive strength. In addition, thermo-gravimetric analysis, X-ray diffraction analysis and scanning electronic microscope were performed. The test results showed that filler type and content have significant effect on fresh concrete properties where non-pozzolanic fillers improve segregation and bleeding resistance. Generally, filler type and content have significant effect on unit weight, water absorption and voids ratio. In addition, non-pozzolanic fillers have insignificant negative effect on concrete compressive strength. Finally, there was a good correlation between fresh concrete properties and hardened concrete properties for SCC and Flow-able concrete.

  2. Oxadiazole telechelics immobilized on silica for proton conductive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Treekamol, Yaowapa; Schieda, Mauricio [GKSS-Forschungszentrum Geesthacht GmbH (Germany); Nunes, Suzana [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Schulte, Karl [Technische Univ. Hamburg-Harburg, Hamburg (Germany)

    2010-07-01

    Functionalized silica and layered silicates have been used in our group to prepare proton conductive membranes with applications to direct methanol fuel cells. We report recent results on the use of silica with amphoteric functionalization in proton conductive membranes working at low humidity levels. Aerosil silica was functionalized by reacting it subsequently with bromophenyltrimethoxysilane and with aromatic bishydroxy terminated oxadiazole oligomers. We have prepared proton conductive membranes including as fillers a series of different sulfonated and non-sulfonated telechelics, synthesized with diphenylsulfone, diphenylether and fluorinated oxadiazole segments. We will present a comparison between fillers with different functionalization and how they affect the conductivity of a proton conductive polymer matrix. The functionalized fillers present the possibility of improving water retention and increasing the maximum doping level with phosphoric acid. Furthermore, the oligomer segments, containing both basic nitrogen and acid sulfonic groups, give an amphoteric character to the membrane, improving the proton conductivity in low humidity conditions. (orig.)

  3. Optimizing outcomes with polymethylmethacrylate fillers.

    Science.gov (United States)

    Gold, Michael H; Sadick, Neil S

    2018-03-30

    The ideal filler should be long-lasting, biocompatible, chemically inert, soft and easy to use, and have a long history of safety. This review focuses on the evolution and development of the PMMA-collagen gel, Bellafill, and the 10 years of postmarketing experience of Bellafill since it received premarket approval (PMA) from the FDA as Artefill in 2006. Artefill was rebranded to Bellafill in 2015. The authors conducted a literature search on PubMed for key articles describing the steps in which Arteplast, a PMMA filler developed in 1989, led to the development of Bellafill, the only PMMA filler approved by the US FDA for the treatment of nasolabial folds and acne scar correction. The factors governing efficacy and safety were also evaluated for the major PMMA fillers available in the world. The process of manufacturing and purifying PMMA has played a major role in minimizing adverse events for Bellafill. Postmarketing surveillance data for the 2007-2016 period show that for more than 530 000 Bellafill syringes distributed worldwide, 11 confirmed granulomas (excluding clinical trial data) (0.002% of syringes sold) have been reported. Data on other PMMA fillers are limited and inconsistent. The authors suggest that adverse events are often attributable to lack of proficiency in treatment technique and other factors. Bellafill has demonstrated an excellent safety and effectiveness profile in multiple clinical studies, customer feedback, and 10 years of postmarketing surveillance experience. Adverse events occur with all fillers for a variety of reasons. In addition to quality of the product, injector skill and technique are critical to ensuring good clinical outcomes. © 2018 Wiley Periodicals, Inc.

  4. Membrane microparticles and diseases.

    Science.gov (United States)

    Wu, Z-H; Ji, C-L; Li, H; Qiu, G-X; Gao, C-J; Weng, X-S

    2013-09-01

    Membrane microparticles (MPs) are plasma membrane-derived vesicles shed by various types of activated or apoptotic cells including platelets, monocytes, endothelial cells, red blood cells, and granulocytes. MPs are being increasingly recognized as important regulators of cell-to-cell interactions. Recent evidences suggest they may play important functions not only in homeostasis but also in the pathogenesis of a number of diseases such as vascular diseases, cancer, infectious diseases and diabetes mellitus. Accordingly, inhibiting the production of MPs may serve as a novel therapeutic strategy for these diseases. Here we review recent advances on the mechanism underlying the generation of MPs and the role of MPs in vascular diseases, cancer, diabetes, inflammation, and pathogen infection.

  5. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  6. Joint Workplan on Filler Investigations for DPCs.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.

  7. Effects of trace fillers on the radiation-induced crosslinking of polyethylene

    International Nuclear Information System (INIS)

    Chappas, W.J.; Silverman, J.

    1979-01-01

    Silica-filled samples of low-density polyethylene were subjected to γ and electron irradiation. The insoluble fraction determined by Soxhlet extraction was found to be independent of filler concentrations up to 0.5% by volume. The results show no evidence to support the previously reported work by Gordiyenko et al. of a sharp increase in the gel fraction of irradiated samples with filler concentrations of 0.2%. Substantial changes in the conditions of irradiation and of sample preparation and treatment do not affect gel yields strongly

  8. Nanosericite as an Innovative Microparticle in Dual-Chemical Paper Retention Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Shing Perng

    2013-01-01

    Full Text Available Dual-chemical retention systems based on 2 cationic polyacrylamides, a colloidal silica, and a globular anionic polymer microparticles were investigated and an exfoliated nanoparticle indigenous mica mineral, sericite, was examined for its efficacy in substituting commercial microparticle preparations. The results indicated that nanosericite generated FPR between 76.9 and 80.9% for fines and chemicals. Its ash retention values, however, were higher and tended to increase with doses of polymer, nanosericite, or Sc to between 16 and 24%. As for paper physical properties, nanosericite was not amenable to substitute the c-PAMb/polymer with only handsheet stiffness superior to the combination. Nanosericite, however, showed good substitution capacity than the c-PAMa-colloidal silica combination. Regardless of the c-PAMa doses, all examined handsheet physical properties incorporating nanosericite were superior to colloidal silica. The optimal performance was observed with c-PAMa dose of 200 ppm. Optical properties of the handsheets indicated that with nanosericite substitution, brightness values were comparable to the polymer group, while its substitution capacity for colloidal silica decreased with increasing c-PAMb dose. Only at c-PAMa dose of 300 ppm, it appeared to have good substitution for colloidal silica. Substituting nanosericite for colloidal silica appeared to reduce the c-PAMa charge and increased the overall cost effectiveness.

  9. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    Science.gov (United States)

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  11. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2014-03-01

    Full Text Available A research has been carried out to develop natural rubber (NR hybrid composites reinforced with marble sludge (MS/Silica and MS/rice husk derived silica (RHS. The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc.

  12. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  13. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  14. Reconfigurable engineered motile semiconductor microparticles.

    Science.gov (United States)

    Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan

    2018-05-03

    Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

  15. The appearance of microparticles in accelerator tubes

    International Nuclear Information System (INIS)

    Griffiths, G.L.; Eastham, D.A.; Kivlin, F.J.

    1978-07-01

    Microparticles have been found in submodules of accelerator tubes during the voltage conditioning process. The microparticle detector uses electrostatic induction and time-of-flight measurements to determine the charge and velocity of microparticles. Preliminary measurements with a charge sensitive limit of about 5 x 10 -15 C proves the presence of microparticles at a threshold voltage well below the onset of microdischarges or voltage breakdown. No direct evidence relating microparticles to the initiation of electrical breakdown has been found in this experiment. (author)

  16. Mechanistic aspects of the role of coupling agents in silica-rubber composites

    NARCIS (Netherlands)

    ten Brinke, J.W.; Debnath, S.C.; Reuvekamp, Louis A.E.M.; Noordermeer, Jacobus W.M.; Hjelm, R.P.; Gerspacher, M.; le Mehaute, A.; Schuster, R.; Tsobnang, F.

    2003-01-01

    Compared to carbon black, the use of silica as reinforcing filler for rubber results in lower hysteretic losses, for tyre applications leading to lower rolling resistance and consequently fuel savings. The compatibility of hydrophilic silica with a hydrophobic rubber polymer matrix is generally

  17. The impact of fillers on lineup performance.

    Science.gov (United States)

    Wetmore, Stacy A; McAdoo, Ryan M; Gronlund, Scott D; Neuschatz, Jeffrey S

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629-654, 2003), and explored the impact of the number of fillers (lineup size) and filler quality on simultaneous and sequential lineups (viewing lineups members in sequence), and compared both to showups. In limited situations, we found that filler siphoning can produce a simultaneous lineup performance advantage, but one that is insufficient in magnitude to explain empirical data. However, the magnitude of the empirical simultaneous lineup advantage can be approximated once criterial variability is added to the model. But this modification works by negatively impacting showups rather than promoting more filler siphoning. In sequential lineups, fillers were found to harm performance. Filler siphoning fails to clarify the relationship between simultaneous lineups and sequential lineups or showups. By incorporating constructs like filler siphoning and criterial variability into a computational model, and trying to approximate empirical data, we can sort through explanations of eyewitness decision-making, a prerequisite for policy recommendations.

  18. Sifat filler kayu keruing terhadap vulkanisat karet

    Directory of Open Access Journals (Sweden)

    Herminiwati Herminiwati

    1999-12-01

    Full Text Available The purpose of this research was to investigate the properties of keruing wood filler in their application on vulacanized rubber of shoes soles. To know its suitability for rubber goods filler, the properties of keruing wood filler was investigated by comparing with carbon black N330. Keruing wood filler were made by carbonization process at temperature 450oC for one hour and activation process with NaCl 4% for twenty four hours, followed by pyrolisis at temperature 500oC for one hour. Filler were milled and sieved by 400 mesh siefter. The standard compound formula was prepared base on ASTM D 3192 with various filler level of keruing wood filler, carbon black N330 either separately formulated of combination. The research showed that using keruing wood filler in the amount of 30-70 phr could meet 75% the requirements of SNI. 12-0172-1987 : Canvas shoes for general purpose, where as carbon black N330 in the amount of 30-70 phr could meet 87,5% the requirements of SNI. 12-0172-1987. Combination of keruing wood filler and carbon black showed that keruing wood filler could substitute 25-57 phr of carbon black.

  19. Soy-based fillers for thermoset composites

    Science.gov (United States)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  20. Influence of heat conductivity on the performance of RTV SIR coatings with different fillers

    Energy Technology Data Exchange (ETDEWEB)

    Siderakis, K [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, GR-26110 Patras (Greece); Agoris, D [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Greece, GR-26500, Rion, Greece (Greece); Gubanski, S [High Voltage Laboratory, Department of Electric Power Engineering, Chalmers University of Technology, S-41296, Gothenburg (Sweden)

    2005-10-07

    Room temperature vulcanized silicone rubber (RTV SIR) coatings are employed in order to improve the pollution performance of high voltage ceramic insulators by imparting surface hydrophobicity. In this paper, the performance of three RTV SIR coatings containing different fillers is investigated in a salt-fog test. Alumina trihydrate (ATH) and silica are the fillers included in the formulation, aiming to increase the material endurance to the energy supplied by the surface electrical activity during periods of hydrophobicity loss. The primary action of these fillers is to increase the material heat conductivity, i.e. the amount of energy conducted to the substrate. In addition, in the case of ATH relief is also achieved due to particle decomposition. The results indicate that for the compositions commercially available, where low amounts of fillers are used, and under the conditions of the test, ATH filled coatings performed better than the silica filled ones. This is attributed to ATH decomposition which further relieves the material structure and therefore decelerates material aging.

  1. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  2. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  3. [Influences of composition on brush wear of composite resins. Influences of particle size and content of filler].

    Science.gov (United States)

    Yuasa, S

    1990-07-01

    The influences of the composition on abrasion resistance of composite resins were examined using various experimental composite resins which had various matrix resin, filler size and content. The abrasion test was conducted by the experimental toothbrush abrasion testing machine developed in our laboratory. Three series of heat-curing composite resins were tested. One series was made from a Bis-MPEPP or UDMA monomer, and a silica filler with an average particle size of 0.04, 1.9, 3.8, 4.3, 7.5, 13.8 and 14.1 microns. The filler content of this series was constant at 45 wt%. The second series contained a silica filler of 4.3 microns in a content ranging from 35 to 75 wt%. The third series contained a microfiller (0.04 microns) and macrofiller (4.3 microns) in total content of 45 wt%. In this series, the microfiller was gradually replaced by 5, 15, 25 and 45 wt% of the macrofiller. The results obtained for these three series indicated that the abrasion resistance of composite resins was controlled by the inorganic filler, mainly filler size and content. The abrasion loss did not vary with the difference of matrix resin. When the particle size of the filler was below about 5 microns, the abrasion resistance decreased markedly with the decrease in filler size. The composite resin which contained a 0.04 or 1.9 micron filler was less resistant to toothbrush wear than the unfilled matrix resin. However, the microfiller also contributed to abrasion resistance when used in combination with the macrofiller, although abrasion resistance decreased with the increase in the microfiller concentration. The increase of filler content clearly improved the abrasion resistance when used the macrofiller. The analysis of these results and SEM observations of the brushed surfaces of samples suggested that the toothbrush abrasion was three-body abrasion caused by the abrasive in the toothpaste, and affected by the difference in the particle size between abrasive and filler, and between

  4. Does filler database size influence identification accuracy?

    Science.gov (United States)

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. The impact of fillers on lineup performance

    OpenAIRE

    Wetmore, Stacy A.; McAdoo, Ryan M.; Gronlund, Scott D.; Neuschatz, Jeffrey S.

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629...

  6. Production and Application of Olivine Nano-Silica in Concrete

    Science.gov (United States)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  7. Circulating Microparticles in Patients with Benign and Malignant Ovarian Tumors

    NARCIS (Netherlands)

    Rank, A.; Liebhardt, S.; Zwirner, J.; Burges, A.; Nieuwland, R.; Toth, B.

    2012-01-01

    Background: Microparticles are known to be increased in various malignancies. In this prospective study, microparticle levels were evaluated in patients with benign and malignant ovarian lesions. Patients and Methods: Microparticles from platelets/megakaryocytes, activated platelets and endothelial

  8. Current Concepts in Filler Injection.

    Science.gov (United States)

    Moradi, Amir; Watson, Jeffrey

    2015-11-01

    When evaluating the face in thirds, the upper face, midface, and lower face, one may assume the lateral the temple, midface, and lateral mandible as the pillars of these subdivisions. Many of our facial aesthetic procedures address these regions, including the lateral brow lift, midface lift, and lateral face lift. As the use of facial fillers has advanced, more emphasis is placed on the correction of the temples, midlateral face, and lateral jaw line. This article is dedicated to these facial aesthetic pillars. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Influence of fillers on mechanical properties of filled rubbers during ageing by irradiation

    International Nuclear Information System (INIS)

    Planes, Emilie

    2008-01-01

    The understanding of the evolution of mechanical properties and the prediction of the lifetime of material environment is a recurring problem. This question is very important to develop polymer formulations used for electrical cables in nuclear power plants. Thus it is important to know the evolution of materials when they are submitted to usual conditions in nuclear power plants. There are in literature some studies concerning the ageing by gamma irradiation of unfilled elastomer but the addition of fillers in the material can have consequences on the evolution of the mechanical properties during irradiation. Thus this work concerns the study of the ageing by gamma irradiation of filled rubbers and the identification of the role of fillers in the degradation mechanisms. The studied matrix, which commonly used for the type of application is EPDM. The fillers are: nano-scopic silica and aluminium trihydrate. Their surfaces have been treated in order to understand the role of filler-matrix interfaces during ageing. To evaluate the influence of fillers on the degradation mechanisms and on the evolution of the mechanical properties, the evolution during ageing of these materials filled or not has been studied for an ageing by irradiation: they have been physico-chemically, micro-structurally and mechanically characterized at various levels of ageing [fr

  10. Microparticles as Potential Biomarkers of Cardiovascular Disease

    International Nuclear Information System (INIS)

    França, Carolina Nunes; Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein

    2015-01-01

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice

  11. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    França, Carolina Nunes, E-mail: carolufscar24@gmail.com [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)

    2015-02-15

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  12. Evaluation of the filler packing structures in dental resin composites: From theory to practice.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2018-07-01

    The aim of this study is to evaluate the packing properties of uniform silica particles and their mixture with secondary particles yielding maximally loaded dental composites. We intend to verify the difference between the idealized models (the close-packed structures and the random-packed structures) and the actual experimental results, in order to provide guidance for the preparation of dental composites. The influence of secondary particle size and the resin composition on the physical-mechanical properties and the rheological properties of the experimental dental composites was also investigated. Silica particles (S-920, S-360, and S-195) with average diameters of 920, 360, and 195nm were synthesized via the Stöber process. Their morphology and size distribution were determined by field-emission scanning electron microscopy and laser particle sizer. A series of silica fillers, S-920, S-920+195, S-920+360, and S-920+360+195, were then formulated with two Bis-GMA/TEGDMA resins (weight ratios of 70:30 and 50:50). For these experimental dental composites, their maximum filler loadings were assessed and compared to the theory. The mechanical properties, degree of conversion, depth of cure, and polymerization shrinkage of these composites were then evaluated. Their rheological behaviors were measured with a rheometer. Unimodal S-920 had the maximally filler loading of 70.80wt% with the 5B5T resin, close to the theoretical estimation of the random loose packing (71.92wt%). The maximum loading of the S-920+360+195 filled composite was 72.92wt% for the same resin, compared to the theoretical estimation of 89.29wt% obtained for the close-packed structures. These findings indicate that random loose packing matches more closely to the real packing state for the filler formulations used. When maximally loaded, the composite with S-920+360+195 produced the best mechanical properties and the lowest polymerization shrinkage. The degree of conversion and depth of cure were

  13. Sugarcane bagasse ash: new filler to natural rubber composite

    Directory of Open Access Journals (Sweden)

    Renivaldo José dos Santos

    2014-12-01

    Full Text Available Waste recycling has been the subject of numerous scientific researches regarding the environmental care. This paper reports the redirecting of sugarcane bagasse ash (SBA as new filler to natural rubber (NR/SBA. The NR/SBA composites were prepared using an opened cylinder mixer to incorporate the vulcanization agents and different proportions of residue (SBA. The ash contains about 70-90% of inorganic compounds, with silica (SiO2 being the main compound. The SBA incorporation improved the mechanical properties of the vulcanized rubber. Based on these results, a new use is proposed for the agro-industry organic waste to be implemented in the rubber vulcanization process, aimed at improving the rubber physical properties as well as decreasing the prices of natural rubber composites.

  14. Fillers as Signs of Distributional Learning

    Science.gov (United States)

    Taelman, Helena; Durieux, Gert; Gillis, Steven

    2009-01-01

    A longitudinal analysis is presented of the fillers of a Dutch-speaking child between 1;10 and 2;7. Our analysis corroborates familiar regularities reported in the literature: most fillers resemble articles in shape and distribution, and are affected by rhythmic and positional constraints. A novel finding is the impact of the lexical environment:…

  15. Adverse reactions to injectable soft tissue fillers

    DEFF Research Database (Denmark)

    Requena, Luis; Requena, Celia; Christensen, Lise

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable ag...

  16. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    Utilisation of Danish chalk filler has been investigated as a means to produce self compacting concrete (SCC) at lower strength levels for service in non aggressive environments. Stable SCC mixtures were prepared at chalk filler contents up to 60% by volume of binder to yield compressive strengths...

  17. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  18. 7 CFR 58.514 - Container fillers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging Frozen...

  19. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  20. Self-Assembly Kinetics of Colloidal Particles inside Monodispersed Micro-Droplet and Fabrication of Anisotropic Photonic Crystal Micro-Particles

    Directory of Open Access Journals (Sweden)

    Ming-Yu Zhang

    2016-09-01

    Full Text Available A new microfluidic approach to preparing anisotropic colloidal photonic crystal microparticles is developed and the self-assembly kinetics of colloidal nanoparticles is discussed. Based on the “coffee ring” effect in the self-assembly process of colloidal silica particle in strong solvent extraction environment, we successfully prepared anisotropic photonic crystal microparticles with different shapes and improved optical properties. The shapes and optical properties of photonic crystal microparticles can be controlled by adjusting the droplet size and extraction rate. We studied the self-assembly mechanism of colloidal silica particles in strong solvent extraction environment, which has potential applications in a variety of fields including optical communication technology, environmental response, photo-catalysis and chromic material.

  1. Influence of Nano Silica on Alkyd Films

    DEFF Research Database (Denmark)

    Nikolic, Miroslav

    . The present work centers on the reinforcement of alkyd binders emulsified in water and used in exterior wood coatings with nano silica. Raman spectroscopy was used throughout the study to maintain the reproducibility of results as it was found that colloidal nano silica can increase or decrease the speed...... of alkyd curing affecting the tested mechanical properties. Hydrophilic, colloidal nano silica was seen to have limited effect in improving the mechanical properties due to problems in properly dispersing and attaining good surface interactions with the hydrophobic alkyd polymer. Efforts in increasing...... the interactions with the alkyd polymer while keeping the nano filler stable in the water phase did not show further improvements of mechanical properties. The best results in respect to mechanical properties, as measured under static and dynamic loading, were obtained with the use of hexamethyldisilazane treated...

  2. Pharmaceutical microparticle engineering with electrospraying

    DEFF Research Database (Denmark)

    Bohr, Adam; Wan, Feng; Kristensen, Jakob

    2015-01-01

    Microparticles of Celecoxib, dispersed in a matrix of poly(lactic-co-glycolic acid) (PLGA), were prepared by electrospraying using different solvent mixtures to investigate the influence upon particle formation and the resulting particle characteristics. Mixtures consisting of a good solvent, ace...... demonstrated by the increasingly higher drug release rates. The results demonstrate the importance of solvent composition in particle preparation and indicate potential for exploiting this dependence to improve pharmaceutical particle design and performance....

  3. Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, K., E-mail: karl-sebastian.mandel@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany); Hutter, F., E-mail: frank.hutter@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Gellermann, C., E-mail: carsten.gellermann@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Sextl, G., E-mail: gerhard.sextl@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany)

    2013-04-15

    Superparamagnetic nanoparticles of magnetite were coprecipitated from iron salts, dispersed with nitric acid and stabilised either by lactic acid (LA) or by a polycarboxylate-ether polymer (MELPERS4343, MP). The differently stabilised nanoparticles were incorporated into a silica matrix to form nanocomposite microparticles. The silica matrix was prepared either from tetraethylorthosilicate (TEOS) or from an aqueous sodium silicate (water glass) solution. Stabilisation of nanoparticles had a crucial influence on microparticle texture and nanoparticle distribution in the silica matrix. Magnetic measurements in combination with transmission electron microscopy (TEM) investigations suggest a uniform magnetic interaction of nanoparticles in case of LA stabilisation and magnetically interacting nanoparticle clusters of different sizes in case of MP stabilisation. Splitting of blocking temperature (T{sub B}) and irreversible temperature (T{sub ir}) in zero field cooled (ZFC) and field cooled (FC) measurements is discussed in terms of nanoparticle clustering. -- Highlights: ► Superparamagnetic nanoparticles were synthesised, dispersed and stabilised. ► Stabilisation is either via a polycarboxylate ether polymer or lactic acid. ► Stabilised nanoparticles were incorporated into silica to form composite particles. ► Depending on the stabilisation, nanoparticle clustering in the composites differed. ► Clustering influences zero field cooled/field cooled magnetic measurements.

  4. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    Science.gov (United States)

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests. © 2013 Wiley Periodicals, Inc.

  6. MODIFICATION OF PAPERMAKING GRADE FILLERS: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-08-01

    Full Text Available The use of fillers in paper products can provide cost and energy savings, improved paper properties, increased productivities, and specifically desired paper functionalities. There are many problems associated with the use of fillers, such as unsuitability of calcium carbonate fillers in acid papermaking, negative effects of filler loading on paper strength, sizing, and retention, and tendencies of fillers to cause abrasion and dusting. In order to solve these problems and to make better use of fillers, many methods have been proposed, among which filler modification has been a hot topic. The available technologies of filler modification mainly include modification with inorganic substances, modification with natural polymers or their derivatives, modification with water-soluble synthetic polymers, modification with surfactants, modification with polymer latexes, hydrophobic modification, cationic modification, surface nano-structuring, physical modification by compressing, calcination or grinding, and modification for use in functional papers. The methods of filler modification can provide improved acid tolerant and optical properties of fillers, enhanced fiber-filler bonding, improved filler retention and filler sizabilities, alleviated filler abrasiveness, improved filler dispersability, and functionalization of filled papers. Filler modification has been an indispensable way to accelerate the development of high filler technology in papermaking, which is likely to create additional benefits to papermaking industry in the future.

  7. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  8. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  9. Effect Assessment the Impact of Filler Types on the Input Design Parameter of Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Sahar S. Neham

    2017-08-01

    Full Text Available To meet the requirements of flexible pavements (safety, economy, limited the stresses on the natural subgrade and a smooth ride, good quality material of surface course must be used so to prevent pavement distresses caused by the different types of loadings (structural and environmental loadings, while the resilient modulus is important input data when flexible pavement was designed, it is selected to show its effect by different types of mineral filler as a partial replacement. In this paving mix, to improve the quality of the mix material and to represent the effect of these replacements materials on the elastic characterization by measuring the resilient modulus of hot mix asphalt (HMA: Fly Ash (FA, Ordinary Portland Cement (OPC, Hydrated Lime (HL and Silica Fume (SF are used as a partial percent of filler (Limestone Dust (LSD replacement, where these materials are locally available including (40-50 penetration grade asphalt binder. To achieve the goal of study; asphalt concrete mixes are prepared at their optimum asphalt content using Marshall Method of mix design. Four replacement percent’s were used; 0, 1.5, 3.0 and 4.5 percent by total weight of aggregate for each filler types. According to ASTM D4123 criteria (Resilient Modulus was tested by UTM¬25. Mixes modified with (FA, (OPC, (HL and (SF were found to have average improvement in the value of Resilient Modulus by (13.37, 9.63, 11.14, 24.00 % at 1.5 percent of filler replacement and by (24.54, 16.63, 18.73, 38.31 % at 3.0 percent of filler replacement also the percent of improvement is: (39.55, 26.36, 29.82, 58.30 at 4.5percent of filler replacement sequentially.

  10. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  11. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    Science.gov (United States)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  12. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Nguyen, Hiep Dinh; Daugaard, Anders Egede

    2016-01-01

    Introduction of nano fillers in exterior wood coatings is not straight forward. Influence on aging of polymer binder needs to be taken into account along with possible benefits that nano fillers can provide immediately after application. This study shows the influence of two differently modified...... hydrophobic nano silica on an alkyd binder for exterior wood coatings. One month after application, the highest strength and energy required to break the films was obtained with addition of 3% disilazane modified silica. Changes in tensile properties were accompanied with a small increase in glass transition...

  13. Cavitational micro-particles: plasma formation mechanisms

    International Nuclear Information System (INIS)

    Bica, Ioan

    2005-01-01

    Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)

  14. Obtainment of silica nanofiber and its preliminary investigation and its effects as reinforcement in polymeric matrix

    International Nuclear Information System (INIS)

    Teixeira, R.S.; Oliveira, G.L.; Silva, F.D.C.; Teofilo, E. T.; Farias, R.C.; Menezes, R.R.

    2016-01-01

    Silica is widely used as fillers in polymers, and may confer flame retardant characteristics and improve mechanical properties. their use usually occurs as spherical nanoparticles or short fibers of. Studies using this reinforce in the form of nanofibers are promising. This analysis proposes to obtain silica nanofibers by blowspinning method in solution (SBS), and investigate its application in polymeric matrix. To synthesize the silica nanofibers it was used a precursor solution that has been subjected to SBS process and calcined for forming the silica layer. The DR-X indicated the obtainment of amorphous silica phase and SEM showed the the fibers are at the nanometer scale. Silica nanofibers were incorporated into filmogenic solution Polyamide 6. Preliminary results showed no improvement in mechanical properties. Future stages propose to verify that the surface chemical modification of silica nanofibers enables interaction charge / matrix. (author)

  15. The effects of fillers on polyurethane resin-based electrical insulators

    Directory of Open Access Journals (Sweden)

    Altafim Ruy Alberto Corrêa

    2003-01-01

    Full Text Available The increasingly widespread use of polymeric insulators in vehicle distributors and transmission systems has led to an ongoing quest for quality and low costs. This quest has, in turn, resulted in improved performance and cost benefits, brought about by the use of new polymeric and composite resins. Occasionally, however, while some properties are improved, others may show a loss of optimal performance. Therefore, to understand the behavior of fillers, such as carbon black, silica and mica added to castor oil-derived polyurethane resins, several thermal, mechanical and electrical tests were conducted on samples and insulators produced specifically for this purpose, using these new materials. The results of these tests clearly demonstrated that this type of resin and its composites can be used to manufacture indoor electrical insulators and that the fillers analyzed in this study improve or maintain the characteristics of the pure resins.

  16. Microfluidic production of polymeric functional microparticles

    Science.gov (United States)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  17. Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement.

    Science.gov (United States)

    Fumagalli, Matthieu; Berriot, Julien; de Gaudemaris, Benoit; Veyland, Anne; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Heux, Laurent

    2018-04-04

    Rubber materials with well-dispersed fillers and large mechanical reinforcement have been obtained by melt-processing a diene elastomer matrix and tailored nanocellulose powders having both a high specific surface area and a modified interface. Such filler powders with a specific surface area of 180 m2 g-1 and 100 m2 g-1 have been obtained by freeze-drying suspensions of short needle-like cellulose nanocrystals (CNCs) and entangled networks of microfibrillated cellulose (MFC) in tert-butanol/water, respectively. A quantitative and toposelective filler surface esterification was performed using a gas-phase protocol either with palmitoyl chloride (PCl) to obtain a hydrophobic but non-reactive nanocellulose interface, or with 3,3'-dithiopropionic acid chloride (DTACl) to introduce reactive groups that can covalently bind the nanocellulose interface to the dienic matrix in a subsequent vulcanization process. A set of filled materials was prepared varying the filler morphology, interface and volume fraction. Transmission electron microscopy images of ultrathin cryo-sections showed that modified nanocellulose fillers presented a relatively homogeneous distribution up to a volume fraction of 20%. The materials also exhibited a significant modulus increase, while keeping an extensibility in the same range as that of the neat matrix. Strikingly, in the case of the reactive interface, a strong stress-stiffening behavior was evidenced from the upward curvature of the tensile curve, leading to a large increase of the ultimate stress (up to 7 times that of the neat matrix). Taken together, these properties, which have never been previously reported for nanocellulose-filled elastomers, match well the mechanical characteristics of industrial carbon black or silica-loaded elastomers.

  18. Trojan Microparticles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Thierry F. Vandamme

    2012-01-01

    Full Text Available During the last decade, the US Food and Drug Administration (FDA have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal, the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review.

  19. Update on botulinum toxin and dermal fillers.

    Science.gov (United States)

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  20. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  1. Microparticles

    African Journals Online (AJOL)

    (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy ... Polymeric drug delivery systems ... carrier systems based on available literature [10- .... the formulation were close, but the polydispersity .... significantly difference (p < 0.05) from the ... Pacheco PD, Manrique JY, Martinez F. Thermodynamic.

  2. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    Science.gov (United States)

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area. © 2015 Wiley Periodicals, Inc.

  3. Structure analyses of swollen rubber-filler systems by using contrast variation Small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Takenaka, Mikihito; Nishitsuji, Shotaro; Yamaguchi, Daisuke; Koizumi, Satoshi

    2009-01-01

    Full text: The polymer layers absorbed on silica particles in rubber-silica systems have investigated with contrast variation small-angle neutron scattering (SANS) method. The scattering intensities of specimens swollen by the solvents having various scattering length densities were measured. The contrast variation SANS for the specimens yielded partial scattering functions: the scattering function for polymer-polymer correlation SPP(q), the scattering function for silica- silica correlation SSS(q), and the scattering function for polymer- silica correlation SPS(q). The analyses of SSS(q) explored the hierarchical structures formed by silica particles. The analyses of SPS(q) and SSS(q) clarified the existence of dense polymer layers around silica aggregates. Several characteristic parameters are estimated from the analyses, such as the size of aggregates, the thickness of layers, the volume fractions of polymer of layers and matrix, and the correlation length of the matrix network. The contrast variation SANS is found to be a powerful tool of the analyses of the structures of the rubber-filler systems. (author)

  4. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.M.

    2011-01-01

    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a

  5. Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-04-01

    Full Text Available In this study, epoxy molding compounds (EMCs with aluminosilicate (AlS and aluminum oxide (AlO were fabricated as fillers by a twin-screw-extruder (TSE and shaped to plate samples using injection molding. AlS and AlO, electrical insulating mineral materials, were used as fillers to improve the thermal conductivity (λc of composites. Composites with different filler particle sizes, filler contents and filler geometry were fabricated and the influence of these variables on the λc was studied. The λc of composites was measured with the hot-disk method. The distribution of fillers in composites was observed using scanning electron microscopy (SEM. Using the Lewis-Nielsen equation, experimental values of λc were compared with those predicted. The predicted results fit the experimental values well. The result showed that λc increases significantly when the filler content of composites is approximately over 50 vol %.

  6. Modification of montmorillonite fillers by ionizing radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.; Mirkowski, K.

    2006-01-01

    The mineral fillers can be modified by using unsaturated compounds: styrene, methacrylic acid and maleic anhydride (MA), following by irradiation with high energy electron beam. In presented paper the authors have used this method to change properties of bentonite S pecjal , containing about 70% of pure montmorillonite. It has been shown that: (a) the particles obtained in this process can be good fillers for the production of composites; (b) maleic anhydride reacts via anhydride group with active ionic sites of bentonite, forming a salt-like compound. Irradiation with electron beam leads to the breakage of double bond in maleic anhydride and to the production of new organic phases

  7. Development of Alginate/Chitosan Microparticles for Dust Mite ...

    African Journals Online (AJOL)

    Erah

    surface of chitosan microparticles [4]. .... The reverse-phase high performance liquid .... The surface charge of alginate ... negative charge was as a result of the alginate on the microparticle surface. ... electrostatic interaction of the positively-.

  8. Microparticles and exosomes: impact on normal and complicated pregnancy

    NARCIS (Netherlands)

    Toth, Bettina; Lok, Christianne A. R.; Böing, Anita; Diamant, Michaela; van der Post, Joris A. M.; Friese, Klaus; Nieuwland, Rienk

    2007-01-01

    Eukaryotic cells release vesicles into their environment by membrane shedding (ectosomes or microparticles) and secretion (exosomes). Microparticles and exosomes occur commonly in vitro and in vivo. The occurrence, composition and function(s) of these vesicles change during disease (progression).

  9. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  10. Effect of part replacement of silica sand with carbon black on composite properties

    International Nuclear Information System (INIS)

    Adeosun, B.F.; Olaofe, O.

    2003-01-01

    We have reported the properties of natural rubber filled with locally available materials (Adu et al 2000). The effect of local clay, limestone, silica sand and charcoal on the properties of natural rubber has been examined. Results have shown detrimental effects of silica sand on the properties of natural rubber compound. It has been reported that when silica is used as a part for part replacement of carbon black, the heat build up the composite decreased whilst tear resistance improved. Results revealed that within the filler content range used in the present work, the hardness, modulus, and tensile strength of composites loaded with silica sand/carbon black showed enhanced magnitude over the composite loaded singly with silica sand. These parameters generally increased with increasing carbon black content in the composite. New area of use requiring moderate level of tensile strength, hardness and modulus (as in soles of shoes and engine mounts) is therefore opened up for silica sand.(author)

  11. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  12. Controversial effects of fumed silica on the curing and thermomechanical properties of epoxy composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The effect of fumed silica on the curing of a trimethylolpropane epoxy resin was investigated by thermal analysis methods like Differential Scanning Calorimetry (DSC, and Dynamic Mechanical Analysis (DMA. The fumed silica used here is a by-product of the silicon and ferrosilicon industry, consisting of micro and nanosized particles. Both the curing reaction and the properties of the obtained composites were affected by the filler content. Different trends were observed for filler contents above and below the 30 wt%. Up to 30 wt%, the behaviour can be explained as a predominantly agglomeration effect. For 30 wt% and higher filler contents, single particles seem to play a more important role.

  13. Investigation of strain-induced magnetization change in ferromagnetic microparticles

    International Nuclear Information System (INIS)

    Chuklanov, A P; Nurgazizov, N I; Bizyaev, D A; Khanipov, T F; Bukharaev, A A; Yu Petukhov, V; Chirkov, V V; Gumarov, G G

    2016-01-01

    This work is devoted to investigation of magnetoelastic strain effect on the ferromagnetic microparticles of permalloy. An original method of sample fabrication with compressed microparticles is proposed. Magnetic force microscopy and magneto-optical Kerr experiments were carried out with unstrained and compressed microparticles. The domain walls transformation in compressed microparticles is in good agreement with numerical calculations. Hard axis of magnetization was observed on the compressed sample. (paper)

  14. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  15. Influence of microparticle size on cavitation noise during ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    H. Ge

    2015-09-01

    Full Text Available The cavitation noise in the ultrasonic vibration system was found to be influenced by the size of microparticles added in water. The SiO2 microparticles with the diameter smaller than 100 μm reduced the cavitation noise, and the reason was attributed to the constrained oscillation of the cavitation bubbles, which were stabilized by the microparticles.

  16. Waste-wood-derived fillers for plastics

    Science.gov (United States)

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  17. Nickel-chromium-silicon brazing filler metal

    Science.gov (United States)

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  18. Intraoral approach: A newer technique for filler injection

    Directory of Open Access Journals (Sweden)

    Chytra V Anand

    2010-01-01

    Full Text Available Filler injections are the most common aesthetic procedures used for volume correction. Various techniques have been described in the use of fillers. This article reviews the available literature on a new technique using the intraoral approach for injection of fillers.

  19. Contactless and non-invasive delivery of micro-particles lying on a non-customized rigid surface by using acoustic radiation force.

    Science.gov (United States)

    Meng, Jianxin; Mei, Deqing; Jia, Kun; Fan, Zongwei; Yang, Keji

    2014-07-01

    In the existing acoustic micro-particle delivery methods, the micro-particles always lie and slide on the surface of platform in the whole delivery process. To avoid the damage and contamination of micro-particles caused by the sliding motion, this paper deals with a novel approach to trap micro-particles from non-customized rigid surfaces and freely manipulate them. The delivery process contains three procedures: detaching, transporting, and landing. Hence, the micro-particles no longer lie on the surface, but are levitated in the fluid, during the long range transporting procedure. It is very meaningful especially for the fragile and easily contaminated targets. To quantitatively analyze the delivery process, a theoretical model to calculate the acoustic radiation force exerting upon a micro-particle near the boundary in half space is built. An experimental device is also developed to validate the delivery method. A 100 μm diameter micro-silica bead adopted as the delivery target is detached from the upper surface of an aluminum platform and levitated in the fluid. Then, it is transported along the designated path with high precision in horizontal plane. The maximum deviation is only about 3.3 μm. During the horizontal transportation, the levitation of the micro-silica bead is stable, the maximum fluctuation is less than 1 μm. The proposed method may extend the application of acoustic radiation force and provide a promising tool for microstructure or cell manipulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Roes, A. L., E-mail: a.l.roes@uu.nl; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K. [Utrecht University, Copernicus Institute, Department of Science, Technology and Society (Netherlands)

    2010-08-15

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the 'functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  1. Controllable Micro-Particle Rotation and Transportation Using Sound Field Synthesis Technique

    Directory of Open Access Journals (Sweden)

    Shuang Deng

    2018-01-01

    Full Text Available Rotation and transportation of micro-particles using ultrasonically-driven devices shows promising applications in the fields of biological engineering, composite material manufacture, and micro-assembly. Current interest in mechanical effects of ultrasonic waves has been stimulated by the achievements in manipulations with phased array. Here, we propose a field synthesizing method using the fewest transducers to control the orientation of a single non-spherical micro-particle as well as its spatial location. A localized acoustic force potential well is established and rotated by using sound field synthesis technique. The resultant acoustic radiation torque on the trapped target determines its equilibrium angular position. A prototype device consisting of nine transducers with 2 MHz center frequency is designed and fabricated. Controllable rotation of a silica rod with 90 μm length and 15 μm diameter is then successfully achieved. There is a good agreement between the measured particle orientation and the theoretical prediction. Within the same device, spatial translation of the silica rod can also be realized conveniently. When compared with the existing acoustic rotation methods, the employed transducers of our method are strongly decreased, meanwhile, device functionality is improved.

  2. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  3. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties.

    Science.gov (United States)

    Oral, Onur; Lassila, Lippo V; Kumbuloglu, Ovul; Vallittu, Pekka K

    2014-05-01

    The aim of this study was to investigate the effect of silanization of biostable and bioactive glass fillers in a polymer matrix on some of the physical properties of the composite. The water absorption, solubility, flexural strength, flexural modulus and toughness of different particulate filler composite resins were studied in vitro. Five different specimen groups were analyzed: A glass-free control, a non-silanized bioactive glass, a silanized bioactive glass, a non-silanized biostable glass and a silanized biostable glass groups. All of these five groups were further divided into sub-groups of dry and water-stored materials, both of them containing groups with 3wt%, 6wt%, 9wt% or 12wt% of glass particles (n=8 per group). The silanization of the glass particles was carried out with 2% of gamma-3-methacryloxyproyltrimethoxysilane (MPS). For the water absorption and solubility tests, the test specimens were stored in water for 60 days, and the percentages of weight change were statistically analyzed. Flexural strength, flexural modulus and toughness values were tested with a three-point bending test and statistically analyzed. Higher solubility values were observed in non-silanized glass in proportion to the percentage of glass particles. Silanization, on the other hand, decreased the solubility values of both types of glass particles and polymer. While 12wt% non-silanized bioactive glass specimens showed -0.98wt% solubility, 12wt% silanized biostable glass specimens were observed to have only -0.34wt% solubility. The three-point bending results of the dry specimens showed that flexural strength, toughness and flexural modulus decreased in proportion to the increase of glass fillers. The control group presented the highest results (106.6MPa for flexural strength, 335.7kPA for toughness, 3.23GPa for flexural modulus), whereas for flexural strength and toughness, 12wt% of non-silanized biostable glass filler groups presented the lowest (70.3MPa for flexural strength

  4. Circulating microparticles: square the circle

    Science.gov (United States)

    2013-01-01

    Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes. PMID:23607880

  5. Agglomeration of microparticles in complex plasmas

    International Nuclear Information System (INIS)

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-01-01

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  6. Field Effect Microparticle Generation for Cell Microencapsulation.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Fu, Shin-Huei

    2017-01-01

    The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.

  7. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  8. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    Science.gov (United States)

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  9. Effect of Silica Nanoparticles on the Local Segmental Dynamics in Polyvinylacetate

    Science.gov (United States)

    Bogoslovov, R. B.; Roland, C. M.; Ellis, A. R.; Randall, A. M.; Robertson, C. G.

    2008-07-01

    The effect of nanosized silica particles on the properties of polyvinylacetate (PVAc) was investigated for a range of silica concentrations encompassing the filler network percolation threshold. The quantity of polymer adsorbed to the particles ("bound rubber") increased systematically with silica content and was roughly equal to the quantity shielded from shear stresses ("occluded rubber"). A variety of experimental techniques was employed including pressure-volume-temperature measurements, broadband dielectric spectroscopy, thermal analysis (modulated DSC), dynamic-mechanical spectroscopy, viscometry. The glass transition properties of PVAc, i.e. the glass transition temperature and the changes in the thermal expansion coefficient and heat capacity at Tg, as well as the isothermal compressibility and the volume sensitivity of the local segmental dynamics of the polymer chains in the presence of the polymer-filler interface are discussed. The implication of this result and possible directions for new research are considered.

  10. DNA-tagged Microparticles for Tracing Water Flows and Travel Times in Natural Systems: The First results from Controlled Laboratory Experiments

    Science.gov (United States)

    Bogaard, T.; Bandyopadhyay, S.; Foppen, J. W.

    2017-12-01

    Societal demand for water safety is continuously increasing, being it resilient against flood/droughts, clean water for ecosystems, recreation or safe drinking water. Robust methods to measure temporal and spatial patterns of water and contaminant pathways are still lacking. Our research project aims to develop and apply (1) innovative, robust, and environmental-friendly silica-protected iron oxide micro-particles tagged with artificial DNA to trace contaminant movement and travel times of water in natural systems and (2) an innovative coupled model approach to capture dynamics in hydrological pathways and their effects on water quality. The exceptional property of DNA-tagging is the infinite number of unique tracers that can be produced and their detectability at extreme low concentrations. The advantage of the iron-core of the particle is the magnetic harvesting of the particles from water-samples. Such tracers are thought to give the water sector a unique tool for in-situ mapping of transport of contaminants and pathogenic microorganisms in water systems. However, the characteristics of the particle like magnetic property of the iron-core and surface potential of the silica layer, are of key importance for the behaviour of the particle in surface water and in soils. Furthermore, the application of such micro-particles requires strict protocols for the experiment, sampling and laboratory handling which are currently not available. We used two different types of silica-protected DNA-tagged micro-particles. We performed batch, column and flow experiments to assess the behaviour of the particles. We will present the first results of the controlled laboratory experiments for hydrological tracing. We will discuss the results and link it to the differences in particles design. Furthermore, we will draw conclusions and discuss knowledge gaps for future application of silica-protected DNA-tagged micro-particles in hydrological research.

  11. Strategy for the hemocompatibility testing of microparticles.

    Science.gov (United States)

    Braune, S; Basu, S; Kratz, K; Johansson, J Bäckemo; Reinthaler, M; Lendlein, A; Jung, F

    2016-01-01

    Polymer-based microparticles are applied as non-thrombogenic or thrombogenic materials in a wide variety of intra- or extra-corporeal medical devices. As demanded by the regulatory agencies, the hemocompatibility of these blood contacting biomaterials has to be evaluated in vitro to ensure that the particle systems appropriately fulfill the envisioned function without causing undesired events such as thrombosis or inflammation. Currently described in vitro assays for hemocompatibility testing of particles comprise tests with different single cell types (e.g. erythrocytes or leukocytes), varying concentrations/dilutions of the used blood cells or whole blood, which are not standardized.Here, we report about an in vitro dynamic test system for studying the hemocompatibility of polymeric microparticles utilizing fresh human whole blood from apparently healthy subjects, collected and processed under standardized conditions. Spherical poly(ether imide) microparticles with an average diameter of 140±30 μm were utilized as model systems. Reported as candidate materials for the removal of uremic toxins, these microparticles are anticipated to facilitate optimal flow conditions in a dialyzer with minimal backflow and blood cell damage. Pristine (PEI) and potassium hydroxide (PEI-KOH) functionalized microparticles exhibited similarly nanoporous surfaces (PEI: ØExternal pore = 90±60 nm; PEI-KOH ØExternal pore = 150±130 nm) but varying water wettabilities (PEI: θadv = 112±10° PEI-KOH θadv = 60±2°). The nanoporosity of the microparticle surfaces allows the exchange of toxic solutes from blood towards the interconnective pores in the particle core, while an immigration of the substantially larger blood cells is inhibited.Sterilized PEI microparticles were incorporated -air-free -in a syringe-based test system and exposed to whole blood for 60 minutes under gentle agitation. Thereafter, thrombi formation on the particles surfaces were analyzed

  12. Fillers in the skin of color population.

    Science.gov (United States)

    Heath, Candrice R; Taylor, Susan C

    2011-05-01

    The skin of color population in the United States is rapidly growing and the cosmetic industry is responding to the demand for skin of color targeted treatments. The aging face in skin of color patients has a unique pattern that can be successfully augmented by dermal fillers. Though many subjects with skin of color were not included in the pre-market dermal filler clinical trials, some post-market studies have examined the safety and risks of adverse events in this population. The safety data from a selection of these studies was examined. Though pigmentary changes occurred, there have been no reports of keloid development. Developing a patient-specific care plan and instituting close follow up is emphasized.

  13. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells

    Directory of Open Access Journals (Sweden)

    Stefania Roberta Cicco

    2016-12-01

    Full Text Available In the past decade, mesoporous silica nanoparticles (MSNs with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS and 3-aminopropyl-triethoxysilane (APTES. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the –SH or –NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.

  14. Dermal fillers for facial soft tissue augmentation.

    Science.gov (United States)

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  15. Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2012-02-01

    We fabricate epoxy composites with low thermal expansion by using mesoporous silica particles with a large pore diameter (around 10 nm) as inorganic fillers. From a simple calculation, almost all the mesopores are estimated to be completely filled with the epoxy polymer. The coefficient of linear thermal expansion (CTE) values of the obtained epoxy composites proportionally decrease with the increase of the mesoporous silica content.

  16. Innovation in detection of microparticles and exosomes

    NARCIS (Netherlands)

    van der Pol, E.; Coumans, F.; Varga, Z.; Krumrey, M.; Nieuwland, R.

    2013-01-01

    Cell-derived or extracellular vesicles, including microparticles and exosomes, are abundantly present in body fluids such as blood. Although such vesicles have gained strong clinical and scientific interest, their detection is difficult because many vesicles are extremely small with a diameter of

  17. Microparticles and Exosomes in Gynecologic Neoplasias

    NARCIS (Netherlands)

    Nieuwland, Rienk; van der Post, Joris A. M.; Lok Gemma, Christianne A. R.; Kenter, G.; Sturk, Augueste

    2010-01-01

    This review presents an overview of the functions of microparticles and exosomes in gynecologic neoplasias. Growing evidence suggests that vesicles released from cancer cells in gynecologic malignancies contribute to the hypercoagulable state of these patients and contribute to tumor progression by

  18. Microparticles in high-voltage accelerator tubes

    International Nuclear Information System (INIS)

    Griffith, G.L.; Eastham, D.A.

    1979-01-01

    Microparticles with radii greater than 2 μm have been observed in a high voltage vacuum accelerator tube. The charge acquired by most of the particles is similar to the contact charging of a conducting sphere on a plane. (author)

  19. Microassembly using a Cluster of Paramagnetic Microparticles

    NARCIS (Netherlands)

    Khalil, I.S.M.; Brink, F.V; Sardan Sukas, Ö.; Misra, Sarthak

    2013-01-01

    We use a cluster of paramagnetic microparticles to carry out a wireless two-dimensional microassembly operation. A magnetic-based manipulation system is used to control the motion of the cluster under the influence of the applied magnetic fields. Wireless motion control of the cluster is implemented

  20. Heterogeneous membranes filled with hypercrosslinked microparticle adsorbent

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Krystl, V.; Hrabánek, P.; Bernauer, B.; Kočiřík, Milan

    2005-01-01

    Roč. 65, 1-2 (2005), s. 57-68 ISSN 1381-5148 R&D Projects: GA ČR GA104/03/0680 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous membranes * hypercrosslinked adsorbent * microparticle s Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.565, year: 2005

  1. Diving with microparticles in acoustic fields

    DEFF Research Database (Denmark)

    2012-01-01

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales...

  2. Harvesting microalgae with microwave synthesized magnetic microparticles

    Czech Academy of Sciences Publication Activity Database

    Procházková, G.; Šafařík, Ivo; Brányik, T.

    2013-01-01

    Roč. 130, FEB (2013), s. 472-477 ISSN 0960-8524 R&D Projects: GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : harvesting microalgae * iron oxide magnetic microparticles * non-covalent interactions * microwave treatment * cell demagnetization Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.039, year: 2013

  3. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2016-06-01

    Full Text Available Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement in concrete. Properties of hardened concrete such as compressive strength, flexural strength, and permeability have been assessed and analyzed. Cubic specimens and beams were produced and cured in a curing tank for 7 and 28 days. Testing results have shown that additions of silica fume to cement between 5% and 7%, which acts as a filler and cementations material, developed high flexural and compressive strength with reduction of permeability.

  4. PROCESS TIME OPTIMIZATION IN DEPOSITOR AND FILLER

    Directory of Open Access Journals (Sweden)

    Jesús Iván Ruíz-Ibarra

    2017-07-01

    Full Text Available As in any industry, in soft drink manufacturing demand, customer service and production is of great importance that forces this production to have their equipment and production machines in optimal conditions for the product to be in the hands of the consumer without delays, therefore it is important to have the established times of each process, since the syrup is elaborated, packaged, distributed, until it is purchased by the consumer. After a chronometer analysis, the most common faults were detected in each analyzed process. In the filler machine the most frequent faults are: accumulation of bottles in the subsequent and previous processes to filling process, which in general the cause of the collection of bottles is due to failures in the other equipment of the production line. In the process of unloading the most common faults are: boxes jammed in bump and pusher (pushing boxes; boxes fallen in rollers and platforms transporter. According to observations in each machine, the actions to be followed are presented to solve the problems that arise. Also described the methodology to obtain results, to data analyze and decisions. Firstly an analysis of operations is done to know each machine, supported by the manuals of the machines and the operators themselves a study of times is done by chronometer to determine the standard time of the process where also they present the most common faults, then observations are made on the machines according to the determined sample size, thus obtaining the information necessary to take measurements and to make the study of optimization of the production processes. An analysis of the predetermined process times is also performed by the MTM methods and the MOST time analysis. The results of operators with MTM: Fault Filler = 0.846 minutes, Faultless Filler = 0.61 minutes, Fault Breaker = 0.74 minutes and Fault Flasher = 0.45 minutes. The results of MOST operators are: Fault Filler = 2.58 minutes, Filler Fails

  5. Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces.

    Science.gov (United States)

    Bell, Michael; Krentz, Timothy; Keith Nelson, J; Schadler, Linda; Wu, Ke; Breneman, Curt; Zhao, Su; Hillborg, Henrik; Benicewicz, Brian

    2017-06-01

    Adding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites. Ligand engineering was used to synthesize bimodal ligands onto 15nm silica nanoparticles consisting of long epoxy compatible, poly(glycidyl methacrylate) (PGMA) chains, and short, π-conjugated, electroactive surface ligands. Surface initiated RAFT polymerization was used to synthesize multiple graft densities of PGMA chains, ultimately controlling the dispersion of the filler. Thiophene, anthracene, and terthiophene were employed as π-conjugated surface ligands that act as electron traps to mitigate avalanche breakdown. Investigation of the synthesized multifunctional nanoparticles was effective in defining the maximum particle spacing or free space length (L f ) that still leads to property enhancement, as well as giving insight into the effects of varying the electronic nature of the molecules at the interface on breakdown strength. Optimization of the investigated variables was shown to increase the AC dielectric breakdown strength of epoxy composites as much as 34% with only 2wt% silica loading. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    Science.gov (United States)

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  7. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Carrasco, M. F.

    2003-12-01

    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  8. Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler.

    Science.gov (United States)

    Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali

    2018-01-07

    Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.

  9. Ultrasound detection and identification of cosmetic fillers in the skin

    DEFF Research Database (Denmark)

    Wortsman, X.; Wortsman, J.; Orlandi, C.

    2012-01-01

    Background While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect...... cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. Objectives The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated...... with the presence of those agents. Methods We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Results Fillers...

  10. Reversible vs. nonreversible fillers in facial aesthetics: concerns and considerations.

    Science.gov (United States)

    Smith, Kevin Christopher

    2008-08-15

    Soft-tissue augmentation of the face is an increasingly popular cosmetic procedure. In recent years, the number of available filling agents has also increased dramatically, improving the range of options available to physicians and patients. Understanding the different characteristics, capabilities, risks, and limitations of the available dermal and subdermal fillers can help physicians improve patient outcomes and reduce the risk of complications. The most popular fillers are those made from cross-linked hyaluronic acid (HA). A major and unique advantage of HA fillers is that they can be quickly and easily reversed by the injection of hyaluronidase into areas in which elimination of the filler is desired, either because there is excess HA in the area or to accelerate the resolution of an adverse reaction to treatment or to the product. In general, a lower incidence of complications (especially late-occurring or long-lasting effects) has been reported with HA fillers compared with the semi-permanent and permanent fillers. The implantation of nonreversible fillers requires more and different expertise on the part of the physician than does injection of HA fillers, and may produce effects and complications that are more difficult or impossible to manage even by the use of corrective surgery. Most practitioners use HA fillers as the foundation of their filler practices because they have found that HA fillers produce excellent aesthetic outcomes with high patient satisfaction, and a low incidence and severity of complications. Only limited subsets of physicians and patients have been able to justify the higher complexity and risks associated with the use of nonreversible fillers.

  11. Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials

    Directory of Open Access Journals (Sweden)

    N. Rodella

    2016-09-01

    Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.

  12. Effect of the levitating microparticle cloud on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S.; Pustylnik, M. Y.; Klumov, B. A.; Morfill, G. E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  13. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  14. Complications caused by injection of dermal filler in Danish patients

    DEFF Research Database (Denmark)

    Uth, Charlotte Caspara; Elberg, Jens Jørgen; Zachariae, Claus

    2016-01-01

    Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number of complicati......Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number...

  15. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  16. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    International Nuclear Information System (INIS)

    Chiriac, L.B.; Trandafir, D.L.; Turcu, R.V.F.; Todea, M.; Simon, S.

    2016-01-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy_2O_3. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, "2"9Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T_1 and RARE-T_2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T_2-weighted MRI contrast properties.

  17. Development of polymer concrete radioactive waste management containers - Effect of ceramic fillers on the mechanical and physico-chemical properties of polymer concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Chun; Park, Min Jin; Shin, Hyun Ick; Choi, Yong Jin [Myongji University, Seoul (Korea)

    1999-11-01

    Particle size distribution of the ceramic filler is the primary factor to influence the composition of polymer concrete. The estimated optimum compositions of the polymer concretes prepared in the study are 62 {approx} 71wt% for fine aggregates, 6 {approx} 29wt% for ceramic fillers and 9 {approx}13wt% for polymer resin. Calcium Carbonate and silica are the ceramic fillers practically usable for manufacturing polymer concrete. Less polymer resin is required for the preparation of polymer concrete at lower relative packing volume of ceramic fillers. It has been found that depended on the type of fine aggregates, the effect of ceramic filler on the mechanical behavior of polymer concrete can be opposite. Strength and elastic modulus of polymer concrete are affected by gamma radiation. Crosslinking of unsaturated polyester resin and epoxy resin are promoted by gamma radiation up to 00 MRad and 50 MRad, respectively. However, higher dose of radiation degrades the mechanical properties of polymer concrete. Hydrothermal treatment of polymer concrete at 80 deg. C and 1bar for 30 days causes about 25% reduction of bending strength and elastic modulus. The strength reduction arises from the hydrolysis of ester groups in unsaturated polyester catalyzed by hydrothermal condition. 13 refs., 37 figs., 15 tabs. (Author)

  18. rice husk as filler rice husk as filler in the production of bricks using

    African Journals Online (AJOL)

    eobe

    block [1].The effect of palm fruit fibre in clay bricks was also investigated by Akinyele and Abdulraheem,. [2], they observed ... the Rice Husk ash at 8% improves the compressive ... that 5% mix of the material acts as a filler in concrete because ...

  19. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  20. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  1. Procedure for radiotracer labelling of carbon microparticles

    International Nuclear Information System (INIS)

    Kallay, Z.; Soltes, L.; Novak, I.; Trnovec, T.; Berek, D.

    1988-01-01

    A method is suggested for the labelling of carbon microparticles with radioisotopes. A carbon precursor is selected from the group of polymers including phenol-formaldehyde bitumens, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, urea-formaldehyde or epoxy bitumens, and polysaccharides. A monodisperse fraction of the porous precursor is saturated with a solution of a salt of the radioisotope, and the carrier solvent is removed by evaporation at 360-420 K. The impregnated precursor is subsequently pyrolyzed at 870-1000 K. This method can find application in the preparation of radiactively labelled microparticles used for examining changes in the function of the cardiovascular system in experimental medicine, pharmacology, physiology and endocrinology. (P.A.)

  2. Standard guidelines for the use of dermal fillers

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2008-03-01

    Full Text Available Currently used fillers vary greatly in their sources, efficacy duration and site of deposition; detailed knowledge of these properties is essential for administering them. Indications for fillers include facial lines (wrinkles, folds, lip enhancement, facial deformities, depressed scars, periocular melanoses, sunken eyes, dermatological diseases-angular cheilitis, scleroderma, AIDS lipoatrophy, earlobe plumping, earring ptosis, hand, neck, dιcolletι rejuvenation. Physicians′ qualifications : Any qualified dermatologist may use fillers after receiving adequate training in the field. This may be obtained either during postgraduation or at any workshop dedicated to the subject of fillers. The physicians should have a thorough knowledge of the anatomy of the area designated to receive an injection of fillers and the aesthetic principles involved. They should also have a thorough knowledge of the chemical nature of the material of the filler, its longevity, injection techniques, and any possible side effects. Facility: Fillers can be administered in the dermatologist′s minor procedure room. Preoperative counseling and informed consent: Detailed counseling with respect to the treatment, desired effects, and longevity of the filler should be discussed with the patient. Patients should be given brochures to study and adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. A consent form should include the type of filler, longevity expected and possible postoperative complications. Preoperative photography should be carried out. Choice of the filler depends on the site, type of defect, results needed, and the physician′s experience. Injection technique and volume depend on the filler and the physician′s preference, as outlined in these guidelines.

  3. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  4. Thermal History Using Microparticle Trap Luminescence

    Science.gov (United States)

    2012-06-01

    the size and shape of bacterial or viral agents and dispersed in a burst vessel . After the test, luminescence from the microparticles is measured to...platinum resistor sputtered on 1 nm adhesion layer of chrome, in turn on a 200nm LPCVD nitride; silicon wet -etching makes this a platform suspended...increased to 500°C until combustion occurred (- 7 min). The remaining powder was collected, crushed in a agate mortar, and annealed (typically at 900

  5. Coherent beam combination via microparticle plasma modes

    International Nuclear Information System (INIS)

    Rogovin, D.; Shen, T.P.

    1988-01-01

    Recently, there have been interesting observations and calculations on phase conjugation via degenerate four-wave mixing in gold colloids. The generation of phase conjugate radiation in these media arises from and reflects the creation of static index grating imposed on the electronic wave functions within the microparticles. These encouraging findings motivate us to consider the possibility of generating moving index gratings in these media with possible applications to coherent beam combination

  6. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  7. SIMS depth profile analysis of environmental microparticles

    International Nuclear Information System (INIS)

    Konarski, P.

    2000-01-01

    Environmental and technological research demands chemical characterization of aerosol particles so minute in size, that conventional methods for bulk analyses are simply not applicable. In this work novel application of secondary ion mass spectrometry (SIMS) for characterization of microparticles suspended in atmosphere of the working environment of glass plant Thomson Polkolor, Piaseczno and steelworks Huta Sendzimira, Cracow is presented. The new technique based on sample rotation in depth profile analysis of sub-micrometer particulate material was performed on SAJW-02 analyser equipped with Balzers 16 mm quadrupole spectrometer and sample rotation manipulator using 5 keV Ar + and O 2 + ion beams. The results were compared with the standard method used on ims-3f Cameca analyser 12 keV O 2 + ion beam. Grain size distributions of aerosol microparticles were estimated using eight-stage cascade impactor with particle size range of 0.2 μm to 15 μm. Elemental concentration and crystalline structure of the collected dust particles were performed using spark source mass spectrometry and X-ray diffraction methods. SIMS depth profile analysis shows that sub-micrometer particles do not have uniform morphology, The core-shell structure has been observed for particles collected in both factories. Presented models show that the steelworks particles consists mainly of iron and manganese cores. At the shells of these microparticles :lead, chlorine and fluorine are found. The cores of glass plant submicrometer particles consists mainly of lead-zirconium glass covered by a shell containing carbon and copper. Sample rotation technique applied SIMS appears to be an effective tool for environmental microparticle morphology studies. (author)

  8. Circulating procoagulant microparticles in cancer patients

    OpenAIRE

    Thaler, Johannes; Ay, Cihan; Weinstabl, Harald; Dunkler, Daniela; Simanek, Ralph; Vormittag, Rainer; Freyssinet, Jean-Marie; Zielinski, Christoph; Pabinger, Ingrid

    2010-01-01

    Abstract Accumulating evidence indicates that microparticles (MPs) are important mediators of the interaction between cancer and the hemostatic system. We conducted a large prospective cohort study to determine whether the number of circulating procoagulant MPs is elevated in cancer patients and whether the elevated MP levels are predictive of occurrence of venous thrombembolism (VTE). We analyzed plasma samples of 728 cancer patients from the ongoing prospective observational Vien...

  9. Detection of microparticles in dynamic processes

    International Nuclear Information System (INIS)

    Ten, K A; Pruuel, E R; Kashkarov, A O; Rubtsov, I A; Shechtman, L I; Zhulanov, V V; Tolochko, B P; Rykovanov, G N; Muzyrya, A K; Smirnov, E B; Stolbikov, M Yu; Prosvirnin, K M

    2016-01-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μ s. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μ s in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded. (paper)

  10. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  11. Preparation of alginate coated chitosan microparticles for vaccine delivery

    Directory of Open Access Journals (Sweden)

    Wei YuQuan

    2008-11-01

    Full Text Available Abstract Background Absorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine. Results The prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE of 60% and loading capacity (LC of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM, the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h. SDS-polyacrylamide gel electrophoresis (SDS-PAGE assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR. Conclusion The prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan

  12. 7 CFR 58.229 - Filler and packaging equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry Milk...

  13. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  14. High filler concrete using fly ash : Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  15. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  16. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  17. 14 CFR 25.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  18. 14 CFR 27.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  19. 14 CFR 29.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  20. Selecting fillers on emotional appearance improves lineup identification accuracy.

    Science.gov (United States)

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Bio-based fillers for environmentally friendly composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-03-01

    Full Text Available The use of bio-based fillers as alternative replacement for synthetic fillers has been dictated by increasing ecological concerns as well as depleting petroleum resources. The other aspect is a growing need for eco-friendly, renewable...

  2. Biocomposites from polyhydroxybutyrate and bio-fillers by solvent ...

    Indian Academy of Sciences (India)

    Biocomposites from polyhydroxybutyrate (PHB) and some bio-fillers such as lignin (L), alpha cellulose (AC) and cellulose nanofibrils (CNFs) were prepared to investigate the effect of the bio-fillers on the properties of PHB by a solvent casting method. The thermal properties by thermogravimetry analysis (TGA–DTG and ...

  3. Relative position control and coalescence of independent microparticles using ultrasonic waves

    Science.gov (United States)

    Deng, Shuang; Jia, Kun; Chen, Jian; Mei, Deqing; Yang, Keji

    2017-05-01

    Controlling the relative positions and coalescence of independent cells or microparticles is of particular importance for studying many physical phenomena, biological research, pharmaceutical tests, and chemical material processing. In this work, contactless maneuvering of two independent microparticles initially lying on a rigid surface was performed at a stable levitation height within a water-filled ultrasonic chamber. Three lead zirconate titanate transducers with 2 MHz thickness resonance frequency were obliquely mounted in a homemade device to form a sound field in a half space. By modulating the excitation voltage of a single transducer and the subsequent combination of amplitude and phase modulation, two separate 80 μm diameter silica beads were picked up from the chamber bottom, approached, and then coalesced to form a cluster in different ways. Both particles simultaneously migrated towards each other in the former process, while more dexterous movement with single-particle migration was realized for the other process. There is good agreement between the measured trajectories and theoretical predictions based on the theory of the first-order acoustic radiation force. The method introduced here also has the ability to form a cluster at any desired location in the chamber, which is promising for macromolecule processing ranging from the life sciences to biochemistry and clinical practice.

  4. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  5. Friction and wear study of NR/SBR blends with Si3N4Filler

    Science.gov (United States)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  6. Microvascular complications associated with injection of cosmetic facelift dermal fillers

    Science.gov (United States)

    Yousefi, Siavash; Prendes, Mark; Chang, Shu-Hong; Wang, Ruikang K.

    2015-02-01

    Minimally-invasive cosmetic surgeries such as injection of subdermal fillers have become very popular in the past decade. Although rare, some complications may follow injections such as tissue necrosis and even blindness. There exist two hypothesis regarding source of these complications both of which include microvasculature. The first hypothesis is that fillers in between the tissue structures and compress microvasculature that causes blockage of tissue neutrition and oxygen exchange in the tissue. In another theory, it is hypothesized that fillers move inside major arteries and block the arteries/veins. In this paper, we study these hypotheses using optical coherence tomography and optical microangiography technologies with different hyaluronic-acid fillers in a mouse ear model. Based on our observations, the fillers eventually block arteries/veins if injected directly into them that eventually causes tissue necrosis.

  7. The development of brazing filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Lee, P.Y.; Sun, Z.C.; Pan, C.J.; Hou, B.L.; Han, S.L.; Pei, Y.Y.; Long, W.M.

    2011-01-01

    Magnet supports is one of the key components to sustain the ITER superconductor magnet coils, which operate at several K low temperature. Cooling of the supports is needed for maintaining temperature balance. It is suggested to use brazing connection to attach the thermal anchor to the support which made from SS 316LN plates. In this study, several kinds of brazing filler were developed as candidates, including Sn-Pb brazing filler, Ag-based and Cu-based brazing filler. The test result shows that Ag-based brazing filler has the best weldability with 316LN, but Cu-based alloy shows the best mechanical properties at both room temperature and 77 K. Even though the Sn-Pb alloy shows the lowest strength, it can be easily brazed due to the low brazing temperature. Detail of the brazing filler selection is suggested and discussed in this article.

  8. Managing complications of fillers: Rare and not-so-rare

    Directory of Open Access Journals (Sweden)

    Eckart Haneke

    2015-01-01

    Full Text Available Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted.

  9. Fabrication of chitosan microparticles loaded in chitosan and poly

    Indian Academy of Sciences (India)

    In recent decades, the use of microparticle-mediated drug delivery is widely applied in the field of biomedicalapplication. Here, we report the new dressing material with ciprofloxacin-loaded chitosan microparticle (CMP) impregnatedin chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a ...

  10. Dynamic release and clearance of circulating microparticles during cardiac stress.

    Science.gov (United States)

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  11. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  12. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    Science.gov (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  13. Evaluating conditions for the formation of chitosan/gelatin microparticles

    Directory of Open Access Journals (Sweden)

    Marcia C. Silva

    2009-06-01

    Full Text Available Chitosan/gelatin microparticles were prepared by complex coacervation. Three chitosan (CH samples, with different acetylation degrees and intrinsic viscosities, were used together with commercial gelatin (G samples. Microparticles formation was investigated at various CH/G ratios, within the pH range of 3.5 to 6.0. Reactions were carried out at 40 and 60 ºC, for 2, 4, and 6 hours. Turbidity measurements performed at 633 nm were used to monitor the process. The resulting curves revealed maximum values, which were correlated to the glucosamine content of CH samples. After isolation, yields were determined, and the microparticles were characterized by infrared spectroscopy (FTIR and thermogravimetry (TGA. Both techniques evidenced the formation of coacervate microparticles. The highest yields in microparticles were determined for the system comprising the CH sample with the lowest degree of acetylation and intrinsic viscosity, and the gelatin sample with the lowest bloom strength.

  14. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles.

    Science.gov (United States)

    Tang, Ke; Zhang, Yi; Zhang, Huafeng; Xu, Pingwei; Liu, Jing; Ma, Jingwei; Lv, Meng; Li, Dapeng; Katirai, Foad; Shen, Guan-Xin; Zhang, Guimei; Feng, Zuo-Hua; Ye, Duyun; Huang, Bo

    2012-01-01

    Cellular microparticles are vesicular plasma membrane fragments with a diameter of 100-1,000 nanometres that are shed by cells in response to various physiological and artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with chemotherapeutic drugs package these drugs into microparticles, which can be collected and used to effectively kill tumour cells in murine tumour models without typical side effects. We describe several mechanisms involved in this process, including uptake of drug-containing microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells. This study highlights a novel drug delivery strategy with potential clinical application.

  15. Fission product release from HTGR coated microparticles and fuel elements

    International Nuclear Information System (INIS)

    Gusev, A.A.; Deryugin, A.I.; Lyutikov, R.A.; Chernikov, A.S.

    1991-01-01

    The article presents the results of the investigation of fission products release from microparticles with UO 2 core and five-layer HII PyC- and SiC base protection layers of TRICO type as well as from spherical fuel elements based thereon. It is shown that relative release of short-lived xenon and crypton from microparticles does not exceed (2-3) 10 -7 . The release of gaseous fission products from fuel elements containing no damaged coated microparticles, is primarily determined by the contamination of matrix graphite with fuel. An analytical dependence is derived, the dependence described the relation between structural parameters of coated microparticles, irradiation conditions and fuel burnup at which depressurization of coated microparticles starts

  16. SU-8 micropatterning for microfluidic droplet and microparticle focusing

    International Nuclear Information System (INIS)

    Debuisson, Damien; Senez, Vincent; Arscott, Steve

    2011-01-01

    We demonstrate micropatterned surfaces consisting of concentric circles and spirals which can focus an evaporating sessile droplet to a specific location on a surface. We also study the micropattern geometry to focus microparticles contained within the droplet. The micropatterned surfaces are fabricated using the photoresist SU-8. Our process enables the modification of the surface wetting via the formation of smooth trench-like defects in the SU-8 which define the micropatterns; the geometry of these micropatterns determines the droplet/microparticle focusing. It is clearly shown that the introduction of small gaps into the micropatterns promotes microparticle centring due to the modification of the depinning angle of the droplet. We also show that the use of spiral micropatterns promotes microparticle centring. Finally, microparticle focusing can be enhanced by modification of surface wetting via the addition of a thin fluorocarbon hydrophobic layer onto the SU-8

  17. Cell-derived microparticles in haemostasis and vascular medicine.

    Science.gov (United States)

    Burnier, Laurent; Fontana, Pierre; Kwak, Brenda R; Angelillo-Scherrer, Anne

    2009-03-01

    Considerable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets - the main source of microparticles - but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.

  18. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precursor.

    Science.gov (United States)

    Moteki, Takahiko; Chaikittisilp, Watcharop; Shimojima, Atsushi; Okubo, Tatsuya

    2008-11-26

    Novel pure silica sodalite with hollow sodalite-cages has been synthesized for the first time by topotactic conversion of layered silicate (RUB-15) precursor. This success has been achieved by stepwise syntheses from silicate monomers, through clusters and layers, to microporous crystals. The pretreatment of layered silicate with small carboxylic acids before conversion is a crucial step. The obtained sodalite possesses accessible micropores, as confirmed by physical adsorption of hydrogen molecules. This plate-like silica sodalite would be very promising as fillers in mixed-matrix membranes for hydrogen separation.

  19. Effect of concentrated epoxidised natural rubber and silica masterbatch for tyre application

    Energy Technology Data Exchange (ETDEWEB)

    Azira, A. A., E-mail: azira@lgm.gov.my; Kamal, M. M., E-mail: mazlina@lgm.gov.my [High Value Added Rubber Products and Nanostructured Materials, Stesen Penyelidikan RRIM, LGM 47000 Sungai Buloh, Selangor (Malaysia); Verasamy, D., E-mail: devaraj@lgm.gov.my [Environmental Technology & Sustainability, Technology & Engineering Division, Malaysian Rubber Board, Stesen Penyelidikan RRIM, LGM 47000 Sungai Buloh, Selangor (Malaysia)

    2016-07-06

    The availability of concentrated epoxidised natural rubber (ENR-LC) has provided a better opportunity for using epoxidised natural rubber (ENR) with silica to reinforce natural rubber for tyre application. ENR-LC mixed directly with silica to rubber by high speed stirrer without using any coupling agent. Some rubber compounds were prepared by mixing a large amount of precipitated amorphous white silica with natural rubber. The silica was prepared in aqueous dispersion and the filler was perfectly dispersed in the ENR-LC. The performance of the composites was evaluated in this work for the viability of ENR-LC/Si in tyre compounding. Compounding was carried out on a two roll mill, where the additives and curing agents was later mixed. Characterization of these composites was performed by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) for dispersion as well as mechanical testing. C-ENR/Si showed efficient as primary reinforcing filler in ENR with regard to modulus and tensile strength, resulting on an increase in the stiffness of the rubbers compared to ENR latex. Overall improvement in the mechanical properties for the ENR-LC over the control crosslinked rubber sample was probably due to synergisms of silica reinforcement and crosslinking of the polymeric matrix phase.

  20. Effect of concentrated epoxidised natural rubber and silica masterbatch for tyre application

    International Nuclear Information System (INIS)

    Azira, A. A.; Kamal, M. M.; Verasamy, D.

    2016-01-01

    The availability of concentrated epoxidised natural rubber (ENR-LC) has provided a better opportunity for using epoxidised natural rubber (ENR) with silica to reinforce natural rubber for tyre application. ENR-LC mixed directly with silica to rubber by high speed stirrer without using any coupling agent. Some rubber compounds were prepared by mixing a large amount of precipitated amorphous white silica with natural rubber. The silica was prepared in aqueous dispersion and the filler was perfectly dispersed in the ENR-LC. The performance of the composites was evaluated in this work for the viability of ENR-LC/Si in tyre compounding. Compounding was carried out on a two roll mill, where the additives and curing agents was later mixed. Characterization of these composites was performed by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) for dispersion as well as mechanical testing. C-ENR/Si showed efficient as primary reinforcing filler in ENR with regard to modulus and tensile strength, resulting on an increase in the stiffness of the rubbers compared to ENR latex. Overall improvement in the mechanical properties for the ENR-LC over the control crosslinked rubber sample was probably due to synergisms of silica reinforcement and crosslinking of the polymeric matrix phase.

  1. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  3. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  4. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    Science.gov (United States)

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  5. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  6. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers

    Directory of Open Access Journals (Sweden)

    Mitsuru Tanahashi

    2010-03-01

    Full Text Available Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.

  7. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers

    Science.gov (United States)

    Tanahashi, Mitsuru

    2010-01-01

    Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.

  8. The Effect of Aging and Silanization on the Mechanical Properties of Fumed Silica-based Dental Composite

    Directory of Open Access Journals (Sweden)

    Khaje S

    2015-12-01

    Full Text Available Statement of Problem: Mechanical strength and durability of dental composites are the main topics studied in this field of science today. This study examined fumed silica-based composite as a strong and durable restorative material through flexural and cycling test methods. Objectives: The purpose of this study was to evaluate the effect of silanization, ageing, cycling and hybridizing on mechanical properties of fumed silica-based resin composite. Materials and Methods: Composites were made of light-cured copolymer based on Bisphenol A glycolmethacrylate (Bis-GMA and Triethylene glycoldimethacrylate (TEGDMA at proportion of 50:50 which reinforced by fumed silica filler. For each composite sample, 5 specimen bars were made using Teflon mould (2 x 2 x 25 mm3. The samples with 12 wt% fumed silica (FS were considered as a base line group. The samples were exposed to cyclic cold water (FS-CCW and hot water (FS-CHW. The effect of silanization and adding more filler was studied together with samples containing 12 wt% (FS-S (12, 16 wt% (FS-S (16 and 20 wt% (FS-S (20 fumed silica filler. The filler was silanized with (γ-MPS. The degree of conversion was assessed with Fourier Transform Infra-Red spectroscopy. Flexural properties were evaluated with the Three-Point Bending test. Flexural data were analyzed with Excel software. Hardness was measured with an Atomic Force Microscope (AFM. Results: The degree of conversion of the resin reached 74% within 24 hrs. Salinization allowed more filler to be wetted by resin. Addition of silanized particles from sample FS-S (12 to sample FS-S (20 improved the mechanical strength. Hybridizing fumed silica with nano-silica (FS-N had no significant effect on the strength, but nano-hardness improved greatly. Ageing and cycling had adverse effects on the strength of the sample FS. The flexural strength of FS-CHW was 72% less than FS sample. Conclusions: Sample FS-N with low diluent and filler percentage complied with the

  9. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    Science.gov (United States)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  10. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  11. Mechanical properties of epoxy/coconut shell filler particle composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Harimi, M.; Maleque, M.A.

    2003-01-01

    This paper presents the tensile and flexural properties of composites made from coconut shell filler particles and epoxy resin. The tensile and flexural tests of composites based on coconut shell filler particles at three different filler contents viz., 5%, 0% and 15%were carried out using universal tensile testing machine according to ASTM D 3039/D M-95a and ASTM D790-90 tensile respectively and their results were presented. Experimental results showed that tensile and flexural properties of the composites increased with the increase of the filler particle content. The composite materials demonstrate somewhat linear behavior and sharp structure for tensile and slight nonlinear behavior and sharp fracture of flexural testing. The relation between stress and percentage of filler for tensile and flexural tests were found to b linear with correlation factors of 0.9929 and 0.9973 respectively. Concerning the relation between the modulus and percentage of filler for tensile and flexural tests, it was found to be a quadratic relation with the same correlation factor approximated to 1. The same behavior was observed for the strain versus percentage of filler tensile and flexural tests, with the same correlation factor. (author)

  12. Microstructural and rheological analysis of fillers and asphalt mastics

    International Nuclear Information System (INIS)

    Geber, R; Simon, A; Kocserha, I; Buzimov, A

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics. (paper)

  13. Hyaluronic acid gel fillers in the management of facial aging

    Directory of Open Access Journals (Sweden)

    Fredric S Brandt

    2008-03-01

    Full Text Available Fredric S Brandt1, Alex Cazzaniga21Private Practice in Coral Gables, Florida, USA and Manhattan, NY, USA, and Dermatology Research Institute, Coral Gables, FL, USA; 2Dermatology Research Institute, Coral Gables, Florida, USAAbstract: Time affects facial aging by producing cellular and anatomical changes resulting in the consequential loss of soft tissue volume. With the advent of new technologies, the physician has the opportunity of addressing these changes with the utilization of dermal fillers. Hyaluronic acid (HA dermal fillers are the most popular, non-permanent injectable materials available to physicians today for the correction of soft tissue defects of the face. This material provides an effective, non invasive, non surgical alternative for correction of the contour defects of the face due to its enormous ability to bind water and easiness of implantation. HA dermal fillers are safe and effective. The baby-boomer generation, and their desire of turning back the clock while enjoying an active lifestyle, has expanded the popularity of these fillers. In the US, there are currently eight HA dermal fillers approved for commercialization by the Food and Drug Administration (FDA. This article reviews the innate properties of FDA-approved HA fillers and provides an insight on future HA products and their utilization for the management of the aging face.Keywords: hyaluronic acid, aging face, dermal filler, wrinkles, Restylane, Perlane, Juvéderm

  14. Endothelial microparticles (EMP in physiology and pathology

    Directory of Open Access Journals (Sweden)

    Ewa Sierko

    2015-08-01

    Full Text Available Endothelial microparticles (EMP are released from endothelial cells (ECs in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF – a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes, leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9 at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 – components of the classical pathway – suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  15. Volume correction in the aging hand: role of dermal fillers

    Directory of Open Access Journals (Sweden)

    Rivkin AZ

    2016-08-01

    Full Text Available Alexander Z Rivkin David Geffen/UCLA School of Medicine Los Angeles, CA, USA Abstract: The hands, just like the face, are highly visible parts of the body. They age at a similar rate and demonstrate comparable changes with time, sun damage, and smoking. Loss of volume in the hands exposes underlying tendons, veins, and bony prominences. Rejuvenation of the hands with dermal fillers is a procedure with high patient satisfaction and relatively low risk for complications. This study will review relevant anatomy, injection technique, clinical safety, and efficacy of dermal filler volumization of the aging hand. Keywords: dermal fillers, hands, volumization, hyaluronic acid, calcium hydroxylapatite

  16. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  17. Late-Onset Inflammatory Response to Hyaluronic Acid Dermal Fillers

    Directory of Open Access Journals (Sweden)

    Tahera Bhojani-Lynch, MRCOphth, CertLRS, MBCAM, DipCS

    2017-12-01

    Conclusion:. Late-onset inflammatory reactions to HA fillers may be self-limiting but are easily and rapidly treatable with oral steroids, and with hyaluronidase in the case of lumps. It is likely these reactions are due to a Type IV delayed hypersensitivity response. Delayed inflammation associated with HA fillers is nonbrand specific. However, the case where 2 different brands were injected during the same session, but only 1 brand triggered a hypersensitivity reaction, suggests that the technology used in the manufacturing process, and the subsequent differing products of degradation, may have an influence on potential allergic reactions to HA fillers.

  18. Utilization of mango seed starch in manufacture of bioplastic reinforced with microparticle clay using glycerol as plasticizer

    Science.gov (United States)

    Maulida; Kartika, T.; Harahap, M. B.; Ginting, M. H. S.

    2018-02-01

    Bioplastics are plastics that can be used just like conventional plastics but will disintegrate by the activity of microorganisms into water and carbon dioxide. Starch is a natural polymer material that can used for bioplastic production. The addition of reinforcing particles has been shown to improve the mechanical properties of bioplastics. The aim of this research is to know the potency of mango seed starch and microparticle clay as filler and glycerol concentration as plasticizer on tensile strength and elongation at break, functional group (FTIR) and surface morphology (SEM). In this study used mango seed starch size of 5 grams, with the variation of clay filler mass of 0; 3; 6 and nine wt%, while the mass of glycerol with a variation of 0; 20; 25; 30; And 35% wt. The heating temperature of the bioplastics solution used was 80.53 °C. The resulting bioplastics was analyzed for their physical and chemical properties, including FTIR, SEM, tensile strength, elongation at break. The FTIR analysis shows that no new functional groups was formed. From the analysis of mango starch content obtained 62.82%, 44.0% amylopectin content, amylose content 14.82%, and water content 12.65%. In this study obtained bioplastics with the best conditions on the use of 6% clay and 25% glycerol, with a tensile strength of 5.657MPa, percent elongation at breakup 43.431%.

  19. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  20. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  1. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  2. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  3. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gaihre, Bipin [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10 days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. - Highlights: • Zirconium ions crosslinked carboxymethyl cellulose microparticles were fabricated. • The microparticles were further stabilized by complexation with chitosan.

  4. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering

    International Nuclear Information System (INIS)

    Gaihre, Bipin; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10 days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. - Highlights: • Zirconium ions crosslinked carboxymethyl cellulose microparticles were fabricated. • The microparticles were further stabilized by complexation with chitosan.

  5. (Methacrylic Acid-Co-Divinylbenzene) Resin as Filler- Binder for ...

    African Journals Online (AJOL)

    Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand. Abstract ... Methods: Powder properties of PMD and MCC were characterized. Tablets ... with the widely used filler-binder, ... Gravimetric swelling was determined by.

  6. Characteristics of styrene-butadiene rubber/silica/Nanoprene compounds for application in tire tread.

    Science.gov (United States)

    Seo, Byeongho; Kang, Jonghyub; Jang, Sukhee; Kang, Yonggu; Kim, Wonho

    2013-03-01

    Nanoprene is made from chemically cross-linked rubber particles, and has many hydroxyl groups on the surface of the particles. It is speculated that the Nanoprene could reduce the silica-silica network formation by introducing hydrogen bonding between the silanol group of silica and the hydroxyl group of Nanoprene. In this study, the styrene-butadiene rubber (SBR)/silica compounds with two types of the Nanoprene (BM75OH, BM15OH) were evaluated and it could be well explained by the concept of the volume fraction of filler or the volume fraction of rubber. If the Nanoprene applied to the compound is considered as a kind of filler, the minimum torque values and bound rubber contents of the un-vulcanized compounds, the swelling ratio and the stress-strain relationship of the vulcanized compounds could be well explained by the volume fraction of filler (phi(F)). If Nanoprene is considered as a kind of rubber such as SBR, the properties such as peak tan delta, Payne effect, tan delta at 0 degrees C and 60 degrees C, and abrasion resistance could be well explained by the volume fraction of rubber (phi'(R)). However, the improvement of silica dispersion by addition of the Nanoprene particles in the compounds was not significant. The application of BM75OH as a polymer to the tread compound will be suitable for winter tires. In addition, the compound with BM15OH as an additive will be suitable as a tread compound for summer tires.

  7. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  8. Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania

    International Nuclear Information System (INIS)

    Tominaga, Yoichi; Endo, Masanori

    2013-01-01

    Composite polymer electrolytes were prepared consisting of amorphous polyether, Li salt and mesoporous inorganic filler, and we investigated their ion-conductive properties. We synthesized three types of filler, mesoporous silica, alumina and titania (MP-Si, Al, Ti), and characterized their structural and physicochemical properties using SEM, TEM, SAXS and BET surface area measurements. From these measurements, we confirmed that MP fillers have well-defined arrays of mesoporous and hexagonal structures. Dependence on the MP filler content of the glass transition temperature (T g ) revealed that the addition of filler to original polyether-salt electrolyte causes T g decrease, to due to the dissociation of aggregated ions such as triples or crystalline complex domains. The MP-Ti composites had the greatest ionic conductivity (1.4 × 10 −5 S/cm, 7.5 wt% at 30 °C) of all samples, and the values were more than double that of the original. The addition of MP-Ti also increased the lithium transference number, because the electrolyte/filler interface provided active sites that increase mobile Li ions and conducting paths so as to enhance the mobility

  9. Treatment of Soft Tissue Filler Complications: Expert Consensus Recommendations.

    Science.gov (United States)

    Urdiales-Gálvez, Fernando; Delgado, Nuria Escoda; Figueiredo, Vitor; Lajo-Plaza, José V; Mira, Mar; Moreno, Antonio; Ortíz-Martí, Francisco; Del Rio-Reyes, Rosa; Romero-Álvarez, Nazaret; Del Cueto, Sofía Ruiz; Segurado, María A; Rebenaque, Cristina Villanueva

    2018-04-01

    Dermal fillers have been increasingly used in minimally invasive facial esthetic procedures. This widespread use has led to a rise in reports of associated complications. The aim of this expert consensus report is to describe potential adverse events associated with dermal fillers and to provide guidance on their treatment and avoidance. A multidisciplinary group of experts in esthetic treatments convened to discuss the management of the complications associated with dermal fillers use. A search was performed for English, French, and Spanish language articles in MEDLINE, the Cochrane Database, and Google Scholar using the search terms "complications" OR "soft filler complications" OR "injectable complications" AND "dermal fillers" AND "Therapy". An initial document was drafted by the Coordinating Committee, and it was reviewed and modified by the experts, until a final text was agreed upon and validated. The panel addressed consensus recommendations about the classification of filler complications according to the time of onset and about the clinical management of different complications including bruising, swelling, edema, infections, lumps and bumps, skin discoloration, and biofilm formation. Special attention was paid to vascular compromise and retinal artery occlusion. Clinicians should be fully aware of the signs and symptoms related to complications and be prepared to confidently treat them. Establishing action protocols for emergencies, with agents readily available in the office, would reduce the severity of adverse outcomes associated with injection of hyaluronic acid fillers in the cosmetic setting. This document seeks to lay down a set of recommendations and to identify key issues that may be useful for clinicians who are starting to use dermal fillers. Additionally, this document provides a better understanding about the diagnoses and management of complications if they do occur. This journal requires that authors assign a level of evidence to each

  10. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thi Duy Hanh [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Bonani, Walter [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy); Speranza, Giorgio [Center for Materials and Microsystems, PAM-SE, Fondazione Bruno Kessler, Trento (Italy); Sglavo, Vincenzo; Ceccato, Riccardo [Department of Industrial Engineering, University of Trento, Trento (Italy); Maniglio, Devid; Motta, Antonella [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy); Migliaresi, Claudio, E-mail: claudio.migliaresi@unitn.it [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy)

    2016-02-01

    Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions. - Highlights: • Diatomite is a natural source of silica and has a potential as silicon-donor for bone regenerative applications. • Diatom particles derived from purified diatom skeletons were prepared by fragmentation under extreme alkaline condition. • Dissolution of diatom particles derived from diatom skeletons in DI water depend on purification method

  11. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  12. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  13. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment.

    Science.gov (United States)

    Rousseau, Matthieu; Belleannee, Clemence; Duchez, Anne-Claire; Cloutier, Nathalie; Levesque, Tania; Jacques, Frederic; Perron, Jean; Nigrovic, Peter A; Dieude, Melanie; Hebert, Marie-Josee; Gelb, Michael H; Boilard, Eric

    2015-01-01

    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.

  14. THERMAL INSULATION PROPERTIES RESEARCH OF THE COMPOSITE MATERIAL WATER GLASS–GRAPHITE MICROPARTICLES

    Directory of Open Access Journals (Sweden)

    V. A. Gostev

    2014-05-01

    Full Text Available Research results for the composite material (CM water glass–graphite microparticles with high thermal stability and thermal insulation properties are given. A composition consisting of graphite (42 % by weight, water glass Na2O(SiO2n (50% by weight and the hardener - sodium silicofluoric Na2SiF6 (8% by weight. Technology of such composition receipt is suggested. Experimental samples of the CM with filler particles (graphite and a few microns in size were obtained. This is confirmed by a study of samples by X-ray diffraction and electron microscopy. The qualitative and quantitative phase analysis of the CM structure is done. Load limit values leading to the destruction of CM are identified. The character of the rupture surface is detected. Numerical values of specific heat and thermal conductivity are defined. Dependence of the specific heat capacity and thermal conductivity on temperature at monotonic heating is obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. CM with such characteristics can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  15. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    Science.gov (United States)

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  16. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Obtain and characterization of chitosan / propranolol microparticles by spray drying

    International Nuclear Information System (INIS)

    Nascimento, Ednaldo G. do; Silva Junior, Arnobio A. da; Santos, Katia S.C.R. dos

    2015-01-01

    The study investigated the application of chitosan microparticles as carriers into hard gelatin capsule containing propranolol, evaluating the variability of the molecular weight and the chitosan particles by spray drying. The formulations were characterized by average weight, dosing unit dose uniformity and dissolution profile according to the pharmacopoeia. While the microparticles were characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The results showed that chitosan microparticles obtained without the drug and then physically mixed with propranolol promoted a modified release 85% of the drug after 5 hours. While, chitosan microparticles sprayed with propranolol released only 55% at 5 hours is presented both as a modified release system. Samples of dried chitosan showed up amorphous and homogeneous and spherical morphology. (author)

  18. Distinct proteome pathology of circulating microparticles in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer Tandrup; Tanassi, Julia T

    2017-01-01

    BACKGROUND: The pathogenesis of systemic lupus erythematosus (SLE) is poorly understood but has been linked to defective clearance of subcellular particulate material from the circulation. This study investigates the origin, formation, and specificity of circulating microparticles (MPs) in patients...

  19. Effect of Recycled Rubber Particles and Silica on Tensile and Tear Properties of Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Velu CHANDRAN

    2016-05-01

    Full Text Available Application of scrap rubber and worn out tires in natural rubber compounds has been studied. The scrap rubber can, however, be recycled and compounded with natural rubber and thus can be generated as a rubber composite. In this work, recycled rubber particles (RRP were prepared using pulverization process. Then, RRP was blended with natural rubber and silica compounds, and it was synthesized by two- roll mill and hydraulic press at specified operating conditions. The samples ranging from 0 to 40 phr of RRP loaded with silica were used as constant filler. The mechanical properties and morphological analysis were carried out. The results showed that tensile strength and elongation at break gradually decreased with increasing RRP loading in natural rubber and silica compounds. Tensile modulus went down at 10 phr of RRP and then showed an increasing trend. Hardness increased up to 30 phr of RRP and tear strength increased up to 20 phr of RRP. A comparative study was also carried out with virgin natural rubber vulcanizates. The incorporation of RRP and silica up to 20 phr in natural rubber did not lower the performance of rubber articles. Morphological studies revealed that better filler dispersion, interfacial adhesion, and cross link density could increase the tensile and tear strengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7330

  20. Droplet-based microfluidic method for synthesis of microparticles

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available Droplet-based microfluidics has, in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology such as the synthesis of hydrogel microparticles. Hydrogels have been used in many..., in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology, such as synthesis of hydrogel microparticles. CONCLUSION AND OUTLOOK The droplet-based microfluidic method offers...

  1. Effects of microparticle size and Fc density on macrophage phagocytosis.

    Directory of Open Access Journals (Sweden)

    Patricia Pacheco

    Full Text Available Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

  2. Use of protein containing magnetic microparticles in radioassays

    International Nuclear Information System (INIS)

    Ithakissios, D.S.; Kubiatowicz, D.O.

    1977-01-01

    We describe a radioassay method that involves the use of magnetic protein microparticles composed of a water-insoluble protein matrix containing magnetically responsive material. We define two different types of particles according to the mechanism of action: The substrate is sorbed nonspecifically by the protein matrix of the particle or by a second substance such as charcoal or ion-exchange resin incorporated within the protein matrix of the particle. These particles are useful for separating free from bound substrate. Examples of these are albumin magnetic microparticles for use in a total thyroxine radioassay and triiodothyronine uptake test, or albumin magnetic microparticles containing charcoal for use in a vitamin B 12 radioassay. The substrate is sorbed specifically by a binding protein incorporated within the matrix of the particles. The binding protein can include antibodies or other specific nonimmune proteins. Particles of this type are useful in solid-phase radioassays. These particles are exemplified by albumin magnetic microparticles containing sockeye salmon serum, used in a solid-phase B 12 radioassay. We discuss the methods for the preparation of both types of magnetic microparticles and their use in radioassays. We describe a unique inexpensive magnetic separation rack, which provides simple, fast, and reproducible separation of the magnetic microparticles from their suspending medium during the assay

  3. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2018-01-01

    Full Text Available The water-in-oil (W/O emulsification-diffusion method was used for construction of keratin (Ker, alginate (Alg, and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning electron microscope analysis show that the microparticles have different shapes: spherical, bowl-like, porous, and hollow, with several sizes depending on the blend ratio. FTIR and TG analyses indicated that the secondary structure and thermal stability of the microparticles were influenced by the Ker/Alg blend ratio. The interaction between functional groups of keratin and alginate was the main factor for both β-sheet structure and Td,max values of the microparticles. The results suggested that Ker/Alg blend microparticles might be applied in many fields by varying the Ker/Alg ratio.

  4. In vitro release kinetics of Tolmetin from tabletted Eudragit microparticles.

    Science.gov (United States)

    Pignatello, R; Consoli, P; Puglisi, G

    2000-01-01

    In a previous paper the preparation has been described, by three different techniques, of microparticles made of Eudragit RS 100 and RL 100 containing a NSAI agent, Tolmetin. Freely flowing microparticles failed to affect significantly the in vitro drug release, which displayed a similar dissolution profile after micro-encapsulation to the free drug powder. Microparticles were then converted into tablets and the effect of compression on drug delivery, as well as that of the presence of co-additives, was studied in the present work. Furthermore, microparticles were also prepared by adding MgO to the polymer matrix, to reduce the sensitivity of the drug to pH changes during its dissolution. Similarly, magnesium stearate was also used for microparticle formation as a droplet stabilizer, in order to reduce particle size and hinder rapid drug release. A mathematical evaluation, by using two semi-empirical equations, was applied to evaluate the influence of dissolution and diffusion phenomena upon drug release from microparticle tablets.

  5. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface

    International Nuclear Information System (INIS)

    Pan Xiaodong

    2007-01-01

    Elastomer compounds reinforced with precipitated silica can exhibit elevated wet sliding friction on a rough surface in comparison with corresponding compounds filled with carbon black particles. The underlying mechanism is currently not well understood. To unravel this puzzling observation, the variation of wet sliding friction with filler volume fraction is examined at the sliding speed of the order of 1 m s -1 under different lubrication conditions. Depending on the lubrication liquid-water or ethanol-a compound that shows both higher bulk hysteretic loss and lower modulus does not always exhibit a higher wet sliding friction. A thorough characterization of the bulk rheology of the compounds investigated fails to provide the rationale for such behaviour, thus constituting an apparent violation of the conventional viscoelastic understanding of rubber friction on a rough surface. On the other hand, the detected lowering of friction when the lubrication liquid is changed from water to ethanol resembles the effect of liquid medium on interfacial adhesion reported in the literature. Hence, it is suggested that a stronger interfacial attractive interaction should exist in water between the road surface and silica particles on the compound surface immediately next to the road surface. This should be related to the elevated wet sliding friction detected for silica-filled compounds under water lubrication

  6. Labia Majora Augmentation with Hyaluronic Acid Filler: Technique and Results.

    Science.gov (United States)

    Fasola, Elena; Gazzola, Riccardo

    2016-11-01

    External female genitalia lose elasticity and volume with age. In the literature several techniques address the redundancy of the labia minora, but only few reports describe the augmentation of labia majora with fat grafting. At present, no studies describe the augmentation of the labia majora with hyaluronic acid. This study aims to present our technique of infiltration of hyaluronic acid filler, analyzing effectiveness, patient satisfaction, and complications. We retrospectively analyzed 54 patients affected by hypotrophy of the labia majora; they were treated with hyaluronic acid filler between November 2010 and December 2014. The Global Aesthetic Improvement Scale (GAIS) filled out by the doctor and the patients was used to evaluate the results 12 months after the infiltration. Complications were recorded. A total of 31 patients affected by mild to moderate labia majora hypotrophy were treated with 19 mg/mL HA filler; 23 patients affected by severe labia majora hypotrophy were treated with 21 mg/mL HA filler. Among the first group of patients, one underwent a second infiltration 6 months later with 19 mg/mL HA filler (maximum 1 mL). A significant improvement (P labia majora is able to provide a significant rejuvenation with a simple outpatient procedure. We achieved significant improvements with one infiltration in all cases. The treatment is repeatable, has virtually no complications and it is reversible. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  7. An investigation of tendon sheathing filler migration into concrete

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age

  8. Influence of reactive fillers on concrete corrosion resistance

    Science.gov (United States)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  9. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  10. Dynamic properties of micro-particles in ultrasonic transportation using phase-controllable standing waves

    International Nuclear Information System (INIS)

    Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji

    2014-01-01

    Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.

  11. Dynamic properties of micro-particles in ultrasonic transportation using phase-controllable standing waves

    Science.gov (United States)

    Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji

    2014-10-01

    Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.

  12. Soft tissue augmentation 2006: filler fantasy.

    Science.gov (United States)

    Klein, Arnold William

    2006-01-01

    As an increasing number of patients seek esthetic improvement through minimally invasive procedures, interest in soft tissue augmentation and filling agents is at an all-time high. One reason for this interest is the availability of botulinum toxin type A, which works superbly in the upper face. The rejuvenation of the upper face has created much interest in injectable filling agents and implant techniques that work equally well in the restoration of the lower face. One of the central tenets of soft tissue augmentation is the concept of the three-dimensional face. The youthful face has a soft, full appearance, as opposed to the flat, pulled, two-dimensional look often achieved by more traditional surgical approaches. Injectable filling agents can augment and even at times, replace pulling. Additionally, with the lip as the focal center of the lower face, subtle lip enhancement is here to stay, and is in fact, the number one indication for injectable fillers. Moreover, minimally invasive soft tissue augmentation offers cosmetic enhancement without the cost and recovery time associated with more invasive procedures. As more and more physicians take interest in minimally invasive surgery, courses in cosmetic surgery techniques are becoming increasingly popular at the medical meetings of many specialties. Today, physicians have a much larger armamentarium of techniques and materials with which to improve facial contours, ameliorate wrinkles, and provide esthetic rejuvenation to the face. For a substance or device to be amenable for soft tissue augmentation in the medical community, it must meet certain criteria. It must have both a high "use" potential, producing cosmetically pleasing results with a minimum undesirable reactions, and have a low abuse potential in that widespread or incorrect or indiscriminate use would not result in significant morbidity. It must be nonteratogenic, noncarcinogenic, and nonmigratory. In addition, the agent must provide predictable

  13. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  14. On the PEEK composites reinforced by surface-modified nano-silica

    International Nuclear Information System (INIS)

    Lai, Y.H.; Kuo, M.C.; Huang, J.C.; Chen, M.

    2007-01-01

    The nano-sized silica fillers reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface pretreatment with stearic acid. The performances and properties of the resulting PEEK/SiO 2 nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified nano-silica was seen to disperse more uniformly than the unmodified counterpart. The XRD patterns of the modified silica reinforced PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. The coefficient of thermal expansion (CTE) becomes lowered when the content of the nano-silica increases. Furthermore, the CTE of the modified silica filled PEEK nanocomposites shows the higher CTE values. A logic model is proposed. The increment of the dynamic modulus for the PEEK nanocomposites is up to 40% at elevated temperatures from 100 to 250 deg. C, indicating the apparent improvement of elevated temperature mechanical properties

  15. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  16. [Ideas about registration for sodium hyaluronate facial derma fillers].

    Science.gov (United States)

    Zhao, Peng; Shi, Xinli; Liu, Wenbo; Lu, Hong

    2012-09-01

    To review the registration and technical data for sodium hyaluronate facial derma fillers. Recent literature concerning registration for sodium hyaluronate facial derma fillers was reviewed and analyzed. The aspects on registration for sodium hyaluronate facial derma fillers include nominating the product, dividing registration unit, filling in a registration application form, preparing the technical data, developing the standard, and developing a registration specification. The main difficulty in registration is how to prepare the research data of that product, so the manufacturers need to enhance their basic research ability and work out a scientific technique routing which could ensure the safety and effectiveness of the product, also help to set up the supportive documents to medical device registration.

  17. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  18. Brazing of Cu with Pd-based metallic glass filler

    Energy Technology Data Exchange (ETDEWEB)

    Terajima, Takeshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: terajima@jwri.osaka-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Yuji [Materials and Structures Laboratory, Tokyo Institute of Technology (Japan); Zhang, Wei; Kimura, Hisamichi; Inoue, Akihisa [Institute for Materials Research, Tohoku University (Japan)

    2008-02-25

    Metallic glass has several unique properties, including high mechanical strength, small solidification shrinkage, small elastic modulus and supercooling state, all of which are well suited as a residual stress buffer for metal and ceramic joining. In the present preliminary study, we demonstrated brazing of Cu rods with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass filler. The brazing was carried out at 873 K for 1 min in a vacuum atmosphere (1 x 10{sup -3} Pa), and then the specimens were quenched at the rate of 30 K/s by blowing He. The metallic glass brazing of Cu using Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler was successful, with the exception that several voids remained in the filler. According to micro-focused X-ray diffraction, no diffraction patterns were observed at both the center of the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler and the Cu/Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} interface. The result showed that the Cu specimens were joined with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler in the glassy state. The tensile fracture strength of the brazed specimens ranged from 20 to 250 MPa. The crack extension from the voids in the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler may have caused the results to be uneven and very low compared to the strength of Pd-based bulk metallic glass.

  19. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe?

    Science.gov (United States)

    Tushuizen, Maarten E; Diamant, Michaela; Sturk, Augueste; Nieuwland, Rienk

    2011-01-01

    Microparticles are ascribed important roles in coagulation, inflammation, and endothelial function. These processes are mandatory to safeguard the integrity of the organism, and their derangements contribute to the development of atherosclerosis and cardiovascular disease. More recently, the presumed solely harmful role of microparticles has been challenged because microparticles may also be involved in the maintenance and preservation of cellular homeostasis and in promoting defense mechanisms. Here, we summarize recent studies revealing these 2 faces of microparticles in cardiovascular disease.

  20. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  1. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications

    Directory of Open Access Journals (Sweden)

    Diego Bracho

    2012-01-01

    Full Text Available Synthetic silica nanospheres of 20 and 100 nm diameter were produced via the sol-gel method to be used as filler in polypropylene (PP composites. Modification of the silica surface was further performed by reaction with organic chlorosilanes in order to improve the particles interaction with the hydrophobic polyolefin matrix. These nanoparticles were characterized using transmission electronic microscopy (TEM, elemental analysis, thermogravimetric analysis (TGA, and solid-state nuclear magnetic resonance (NMR spectroscopy. For unmodified silica, it was found that the 20 nm particles have a greater effect on both mechanical and barrier properties of the polymeric composite. In particular, at 30 wt%, Young's modulus increases by 70%, whereas water vapor permeability (WVP increases by a factor of 6. Surface modification of the 100 nm particles doubles the value of the composite breaking strain compared to unmodified particles without affecting Young's modulus, while 20 nm modified particles presented a slight increase on both Young's modulus and breaking strain. Modified 100 nm particles showed a higher WVP compared to the unmodified particles, probably due to interparticle condensation during the modification step. Our results show that the addition of nanoparticles on the composite properties depends on both particle size and surface modifications.

  2. Lower Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    Science.gov (United States)

    Braz, André; Humphrey, Shannon; Weinkle, Susan; Yee, G Jackie; Remington, B Kent; Lorenc, Z Paul; Yoelin, Steve; Waldorf, Heidi A; Azizzadeh, Babak; Butterwick, Kimberly J; de Maio, Mauricio; Sadick, Neil; Trevidic, Patrick; Criollo-Lamilla, Gisella; Garcia, Philippe

    2015-11-01

    The use of injectable fillers enables facial sculpting through treatment of volume depletion and modeling of facial contours. Injectable fillers are among the most frequently performed minimally invasive cosmetic procedures.However, treatment of the lower third of the face can be challenging and requires expertise in facial anatomy. In this article, the authors provide a comprehensive review of the anatomy of the lower third of the face, highlighting danger zones. In addition, the authors describe their preferred approach and detailed technique used in the treatment of each specific area, namely the jawline, prejowl sulcus, melomental folds, and lips.

  3. Effect of the filler on radiolysis of filled elastomers

    International Nuclear Information System (INIS)

    Komarov, S.A.; Erastov, A.Kh.; Kolesnikov, A.A.; Gostikina, A.V.; Mal'kov, A.M.; Korovkin, V.V.

    1987-01-01

    The effect of the type and concentration of filler (A-175 Aerosil, PM-75 technical carbon, BS-100 white black, kaolin, titanium oxide) on the radiation yield of elastomers of different chemical nature was studied. The extreme character of the dependence of the radiation yield of paramagnetic centers on the concentration of filler, common to the systems studied, was established; it was due to the features of the colloid chemical structure of the filled elastomers and particularly to processes of cross-linking of the filter

  4. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  5. Energy losses in magnetically insulated transmission lines due to microparticles

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1987-01-01

    We discuss the effects of high-velocity and hypervelocity microparticles in the magnetically insulated transmission lines of multiterawatt accelerators used for particle beam fusion and radiation effects simulation. These microparticles may be a possible source for plasma production near the anode and cathode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Losses in the current pulse, due to microparticles, are estimated to be approximately 12 mA/cm 2 (0.3 kA) as a lower limit, and --0.3 A/cm 2 (7.2 kA) for microparticle initiated, anode plasma positive ion transport. We have calculated the velocities reached by these microparticles and the effects on them of Van der Waals forces. Field emission from the particles and their effects on cathode and anode plasma formation have been examined. Particle collision with the electrodes is also examined in terms of plasma production, as in the electron deposition in the particles in transit across the anode-cathode gap. Blistering of the electrode surface, thought to be due to H - bombardment was also observed and appears to be consistent with losses due to negative ions previously reported by J. P. VanDevender, R. W. Stinnett, and R. J. Anderson [App. Phys. Lett. 38, 229 (1981)

  6. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  7. Preparation and characterisation of ethylcellulose microparticles containing propolis

    Directory of Open Access Journals (Sweden)

    G. B. AVANçO

    2009-02-01

    Full Text Available

    Ethylcellulose microparticles containing propolis ethanolic extract (PE were prepared by the emulsification and solvent evaporation method. Three ratios of ethylcellulose to PE dry residue value (DR were tested (1:0.25, 1:4 and 1:10. Moreover, polysorbate 80 was used as emulsifier in the external phase (1.0 or 1.5% w/w. Regular particle morphology without amorphous and/or sticking characteristics was achieved only when an ethylcellulose:DR ratio of 1:0.25 and 1.0% polysorbate 80 were used. Microparticles had a mean diameter of 85.83 µm. The entrapment efficiency for propolis of the microparticles was 62.99 ± 0.52%. These ethylcellulose microparticles containing propolis would be useful for developing propolis aqueous dosage forms without the strong and unpleasant taste, aromatic odour and high ethanol concentration of PE. Keywords: Brazilian propolis; ethylcellulose; emulsification and solvent evaporation; microparticle characterisation; optimisation.

  8. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  9. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  11. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents.

    Science.gov (United States)

    Wang, Zhengzhi; Landis, Forrest A; Giuseppetti, Anthony A M; Lin-Gibson, Sheng; Chiang, Martin Y M

    2014-12-01

    Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. Published by Elsevier Ltd.

  12. Influencia de la adición del filler calizo sobre el fraguado del cemento

    Directory of Open Access Journals (Sweden)

    Menéndez, Ignacio

    1993-09-01

    Full Text Available The present paper deals about the infuence that addition of calcareous "filler" has on the set of portland cement which rates are from 0 up to 50% of filler.

    En el presente artículo se estudia la influencia que la adición de "filler" calizo ejerce sobre el fraguado del cemento portland, al que se le añaden porcentajes desde O al 50% en filler.

  13. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    Science.gov (United States)

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  14. Microparticles as immune regulators in infectious disease

    Directory of Open Access Journals (Sweden)

    Zheng Lung Ling

    2011-11-01

    Full Text Available Despite their clear relationship to immunology, few existing studies have examined potential role of microparticles (MP in infectious disease. Infection with pathogens usually leads to the expression of a range of inflammatory cytokines and chemokines, as well as significant stress in both infected and uninfected cells. It is thus reasonable to infer from studies to date that infection-associated inflammation also leads to MP production. MP are produced by most of the major cell types in the immune system, and appear to be involved at both the innate and adaptive levels, potentially serving different functions at each level. Thus, MP do not appear to have a universal function; instead their functions are source- or stimulus-dependent, although likely to be primarily either pro- or anti-inflammatory. Importantly, in infectious diseases MP may have the ability to deliver antigen to APC via the biological cargo acquired from their cells of origin. Another potential benefit of MP would be to transfer and/or disseminate phenotype and function to target cells. However, MP may also potentially be manipulated, particularly by intracellular pathogens for survival advantage.

  15. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  16. Hydrogels from radiation crosslinked blends of hydrophilic polymers and fillers

    International Nuclear Information System (INIS)

    Yen, S.N.; Osterholtz, F.D.

    1975-01-01

    Particulate, free-flowing, insoluble swellable polymers are provided which are comprised of a mixture of an insoluble, swellable hydrogel and inert filler. The mixtures are free-flowing powders or granules which can absorb many times their weight of water and hence are useful as a soil amendment

  17. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  18. 14 CFR 23.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  19. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  20. Influence of fillers on the alkali activated chamotte

    Science.gov (United States)

    Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.

    2017-10-01

    Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.

  1. Bacterial biofilm formation and treatment in soft tissue fillers

    DEFF Research Database (Denmark)

    Alhede, Morten; Er, Ozge; Eickhardt, Steffen

    2014-01-01

    that once the bacteria had settled (into biofilms) within the gels, even succesive treatments with high concentrations of relevant antibiotics were not effective. Our data substantiate bacteria as a cause of adverse reactions reported when using tissue fillers, and the sustainability of these infections...

  2. Hybrid filler composition optimization for tensile strength of jute fibre

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/039/05/1223-1231 ... The developed composite consists of natural jute fibre as reinforcement and unsaturated ... The effect of weight content of bagasse fibre, carbon black and calcium carbonate ... of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  3. Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration

    DEFF Research Database (Denmark)

    Sander, Camilla; Madsen, Katrine Dragsbæk; Hyrup, Birgitte

    2013-01-01

    delivery systems are considered a promising approach as they facilitate a close contact between the drug and the oral mucosa. In this study, bioadhesive chitosan-based microparticles of metformin hydrochloride were prepared by spray drying aqueous dispersions with different chitosan:metformin ratios...... be prepared and analyzed using the ex vivo retention model. We observed an increase in metformin retention on porcine mucosa with increasing chitosan:metformin ratios, while no effect of increasing the chitosan molecular weight was found. Rheological characterization of feeds for spray drying was performed...... and chitosan grades with increasing molecular weights. A recently developed ex vivo flow retention model with porcine buccal mucosa was used to evaluate the bioadhesive properties of spray dried microparticles. An important outcome of this study was that microparticles with the desired metformin content could...

  4. New Manufacturing Method for Paper Filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus [SUNY College of Environmental Science and Forestry

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  5. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    Science.gov (United States)

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  6. Supercritical Carbon Dioxide Assisted Processing of Silica/PMMA Nanocomposite Foams

    Science.gov (United States)

    Rende, Deniz; Schadler, Linda S.; Ozisik, Rahmi

    2012-02-01

    Polymer nanocomposite foams receive considerable attention in both scientific and industrial communities. These structures are defined as closed or open cells (pores) surrounded by bulk material and are widely observed in nature in the form of bone structure, sponge, corals and natural cork. Inspired by these materials, polymer nanocomposite foams are widely used in advanced applications, such as bone scaffolds, food packaging and transportation materials due to their lightweight and enhanced mechanical, thermal, and electrical properties compared to bulk polymer foams. The presence of the nanosized fillers facilitates heterogeneous bubble nucleation as a result, the number of bubbles increases while the average bubble size decreases. Therefore, the foam morphology can be controlled by the size, concentration, and surface chemistry of the nanofiller. In the current study, we used supercritical carbon dioxide as a foaming agent for silica/poly(methyl methacrylate), PMMA, foams. The silica nanoparticles were chemically modified by fluoroalkane chains to make them CO2-philic. The surface coverage was controlled via tethering density, and the effect of silica surface coverage and concentration on foam morphology was investigated through scanning electron microscopy and image processing. Results indicated that nanofiller concentration and filler surface chemistry (CO2-philicity) had tremendous effect on foam morphology but surface coverage did not have any effect.

  7. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  8. Protein encapsulation via porous CaCO3 microparticles templating.

    Science.gov (United States)

    Volodkin, Dmitry V; Larionova, Natalia I; Sukhorukov, Gleb B

    2004-01-01

    Porous microparticles of calcium carbonate with an average diameter of 4.75 microm were prepared and used for protein encapsulation in polymer-filled microcapsules by means of electrostatic layer-by-layer assembly (ELbL). Loading of macromolecules in porous CaCO3 particles is affected by their molecular weight due to diffusion-limited permeation inside the particles and also by the affinity to the carbonate surface. Adsorption of various proteins and dextran was examined as a function of pH and was found to be dependent both on the charge of the microparticles and macromolecules. The electrostatic effect was shown to govern this interaction. This paper discusses the factors which can influence the adsorption capacity of proteins. A new way of protein encapsulation in polyelectrolyte microcapsules is proposed exploiting the porous, biocompatible, and decomposable microparticles from CaCO3. It consists of protein adsorption in the pores of the microparticles followed by ELbL of oppositely charged polyelectrolytes and further core dissolution. This resulted in formation of polyelectrolyte-filled capsules with protein incorporated in interpenetrating polyelectrolyte network. The properties of CaCO3 microparticles and capsules prepared were characterized by scanning electron microscopy, microelectrophoresis, and confocal laser scanning microscopy. Lactalbumin was encapsulated by means of the proposed technique yielding a content of 0.6 pg protein per microcapsule. Horseradish peroxidase saves 37% of activity after encapsulation. However, the thermostability of the enzyme was improved by encapsulation. The results demonstrate that porous CaCO3 microparticles can be applied as microtemplates for encapsulation of proteins into polyelectrolyte capsules at neutral pH as an optimal medium for a variety of bioactive material, which can also be encapsulated by the proposed method. Microcapsules filled with encapsulated material may find applications in the field of

  9. In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin

    Science.gov (United States)

    Lin, Jing; Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Ding, Yong; Luo, Yuanfang; Jia, Demin

    2017-06-01

    Silica nanoparticles was in-situ grown on the surface of halloysite nanotubes (HNTs) by a facile one-step approach to prepare a unique nano-structured hybrid (HNTs-g-Silica). The structure, morphology and composition of HNTs-g-Silica were investigated. It was confirmed that silica nanoparticles with the diameter of 10-20 nm were chemically grafted through Sisbnd O bonds and uniformly dispersed onto the surface of HNTs, leading to the formation of nano-protrusions on the nanotube surface. Due to the significantly improved interface strength between HNTs-g-Silica and polymer matrix, HNTs-g-Silica effectively toughened unsaturated polyester resin (UPE) and endowed UPE with superior thermal stability compared to HNTs. Based on the unique hybrid architecture and the improved properties of UPE nanocomposites, it is envisioned that HNTs-g-Silica may be a promising filler for more high performance and functional polymers composites and the fabrication method may have implications in the synthesis of nano hybrid materials.

  10. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  11. Biomimetic Molecular Signaling using DNA Walkers on Microparticles.

    Science.gov (United States)

    Damase, Tulsi Ram; Spencer, Adam; Samuel, Bamidele; Allen, Peter B

    2017-06-22

    We report the release of catalytic DNA walkers from hydrogel microparticles and the detection of those walkers by substrate-coated microparticles. This might be considered a synthetic biology analog of molecular signal release and reception. One type of particles was coated with components of a DNA one-step strand displacement (OSD) reaction to release the walker. A second type of particle was coated with substrate (or "track") for the molecular walker. We distinguish these particle types using fluorescence barcoding: we synthesized and distinguished multiple particle types with multicolor fluorescence microscopy and automated image analysis software. This represents a step toward amplified, multiplex, and microscopically localized detection based on DNA nanotechnology.

  12. Microparticle-initiated losses in magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1986-01-01

    The author's discuss the effects of high and hypervelocity microparticles in magnetically-insulated transmission lines (MITLs) and how they may be a possible source for ion production near the anode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Early losses in the voltage pulse, due to microparticles, are estimated to be approximately 0.3 mA/cm/sup 2/. Blistering of the electrode surface, thought to be due to H/sup -/ bombardment, was also observed and appears to be consistent with losses due to negative ions previously reported by one of the authors

  13. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  14. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  15. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    OpenAIRE

    Srisuwan, Yaowalak; Srihanam, Prasong

    2018-01-01

    The water-in-oil (W/O) emulsification-diffusion method was used for construction of keratin (Ker), alginate (Alg), and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning ...

  16. Comparison of TT-F-1098 Solvent-Thinned Block Fillers with Water-Thinnable Block Fillers.

    Science.gov (United States)

    1985-03-01

    saved money , because the latex is less roller were visible. The appearance of the surface expensive than the epoxy it replaced. In both cases...a previous coating. A kit manu- The appearance of all the fillers was satisfactory. factured b, Paul N. Gardner Company, Inc., Lauder - Voids were

  17. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong, E-mail: yj@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2017-02-15

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  18. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    International Nuclear Information System (INIS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-01-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  19. Photochemical half-cells using mixture films of fullerene-ethylenediamine adduct microparticles and polythiophene

    International Nuclear Information System (INIS)

    Akiyama, Tsuyoshi; Oku, Takeo; Matsumura, Satoshi; Matsuoka, Ken-ichi; Yamada, Sunao

    2013-01-01

    In this study, C 60 fullerene–ethylenediamine adduct microparticles were prepared. Mixture films of these microparticles and polythiophene were fabricated on indium–tin-oxide transparent electrodes by spin-coating. Incorporation of C 60 –ethylenediamine microparticles was verified by scanning electron microscopy (SEM) measurements. The coverage values of these microparticles were approximately 3–17%, which were calculated from SEM images of modified electrodes. Fluorescence spectra of modified electrodes indicated that the emission intensity of polythiophene in these mixture films was apparently quenched by these C 60 –ethylenediamine microparticles as compared with a polythiophene film without these microparticles. In the presence of methylviologen, these modified electrodes generated stable photocurrent. The photoexciting species was polythiophene, which was verified by profiles of photocurrent action spectra. The C 60 –ethylenediamine microparticles substantially enhanced the photocurrent signals generated by the polythiophene-modified electrode.

  20. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress

    DEFF Research Database (Denmark)

    Maurer-Spurej, Elisabeth; Larsen, Rune; Labrie, Audrey

    2016-01-01

    In circulation, shedding of microparticles from a variety of viable cells can be triggered by pathological activation of inflammatory processes, by activation of coagulation or complement systems, or by physical stress. Elevated microparticle content (MPC) in donor blood might therefore indicate...... a clinical condition of the donor which, upon transfusion, might affect the recipient. In blood products, elevated MPC might also represent product stress. Surprisingly, the MPC in blood collected from normal blood donors is highly variable, which raises the question whether donor microparticles are present...... in-vivo and transfer into the final blood component, and how production methods and post-production processing might affect the MPC. We measured MPC using ThromboLUX in (a) platelet-rich plasma (PRP) of 54 apheresis donors and the corresponding apheresis products, (b) 651 apheresis and 646 pooled...

  1. Synthesis and characterization of non halogen fire retardant composite through combination of epoxy resin, Al(OH)3 additive and filler

    Science.gov (United States)

    Saputra, Asep Handaya; Sungkar, Faraj

    2017-11-01

    Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.

  2. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  3. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit; Pongjanyakul, Thaned

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  4. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    these additives, the use of multiple titanium dioxides as filler potentially suits to special applications. In the present study, a series of TiO2 fillers were blended into LSRs, such as hydrophilic/ hydrophobic, micro/ nano scale, anatase/ rutile crystal, sphere/ core-shell structure. The results indicate...... of inorganic fillers. The property improvement of the filled LSRs depends on filler concentration, filler morphology, such as particle size and structure, the degree of dispersion and orientation in the matrix, and also the degree of adhesion with the polymer chains, as well as the properties of the inorganic...

  5. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  6. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    Science.gov (United States)

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  7. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    Science.gov (United States)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  8. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  9. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  10. Distinct proteome pathology of circulating microparticles in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer Tandrup; Tanassi, Julia Tanas

    2017-01-01

    BACKGROUND: The pathogenesis of systemic lupus erythematosus (SLE) is poorly understood but has been linked to defective clearance of subcellular particulate material from the circulation. This study investigates the origin, formation, and specificity of circulating microparticles (MPs) in patien...... generation of MPs may partake in the pathology of SLE and that new diagnostic, monitoring, and treatment strategies targeting these processes may be advantageous....

  11. Electroless or autocatalytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    Use of a novel device for applying uniform metallic coatings to spherical microparticles is described. The apparatus deposits electroless metal coatings on hollow, thin-walled metal or sensitized nonmetallic micromandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels for use as targets in laser-initiated fusion research

  12. Electrolytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    An electroplating apparatus for applying uniform metallic coatings that have excellent surface finishes to discrete microparticles is described. The device is used to electrodeposit metals onto thin-walled metal, metallized glass, or plastic mandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels to be used as targets in laser fusion research

  13. Manipulation of microparticles and red blood cells using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. We report the development of an optoelectronic tweezers set-up which works by light- induced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photo- conductive layer ...

  14. The effects of buserelin microparticles on ovarian function in healthy ...

    African Journals Online (AJOL)

    The effects of buserelin microparticles on ovarian function in healthy women. ... A single-blind, randomised, parallel-group design was used to investigate the ... to at least 8 nmoVI (a sign of ovulation) and oestradiol concentrations increased to ...

  15. Controlled electrosprayed formation of non-spherical microparticles

    Science.gov (United States)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.

    2017-11-01

    Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.

  16. Herbal carrier-based floating microparticles of diltiazem ...

    African Journals Online (AJOL)

    Purpose: To formulate and characterize a gastroretentive floating drug delivery system for diltiazem hydrochloride using psyllium husk and sodium alginate as natural herbal carriers to improve the therapeutic effect of the drug in cardiac patients. Methods: Floating microparticles containing diltiazem hydrochloride were ...

  17. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment

    NARCIS (Netherlands)

    Abid Hussein, Mohammed N.; Böing, Anita N.; Sturk, Augueste; Hau, Chi M.; Nieuwland, Rienk

    2007-01-01

    Endothelial cell cultures contain caspase 3-containing microparticles (EMP), which are reported to form during or after cell detachment. We hypothesize that also adherent endothelial cells release EMP, thus protecting these cells from caspase 3 accumulation, detachment and apoptosis. Human umbilical

  18. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.

    2013-01-01

    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh...

  19. Non-paraxial beam to push and pull microparticles

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, C.-W.

    2011-01-01

    We discuss a feasibility of the pulling (backward) force acting on a spherical microparticle in a non-paraxial Bessel beam. The effect can be explained by the strong interaction of particle's multipoles or by the conservation of momentum in the system “photons-particle.” It is remarkable that the...

  20. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  1. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  2. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  3. Utilization of Durian Seed Flour as Filler Ingredient of Meatball

    OpenAIRE

    D. R. Malini; I. I. Arief; H. Nuraini

    2016-01-01

    Durian seed flour contains starch consisted of amylose and amylopectin like tapioca flour, so it can be utilized as a filler in meatball production. The purposes of this research were to evaluate the nutrient content and quality of durian seed flour, the best level of durian seed flour addition to the meatball production, and the quality of beef meatball during storage in room temperature and refrigerator. Complete randomized design (CRD) was used with 3 treatments and 3 replications. The tre...

  4. Assessing the biodegradability of microparticles disposed down the drain.

    Science.gov (United States)

    McDonough, Kathleen; Itrich, Nina; Casteel, Kenneth; Menzies, Jennifer; Williams, Tom; Krivos, Kady; Price, Jason

    2017-05-01

    Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO 2 in 5 d and 90.5 ± 3.1% evolved CO 2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO 2 evolution in 28 d and >82% CO 2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8  ± 4.8, 84.9  ± 2.2, 82.7  ± 4.7, and 86.4 ± 3.2% CO 2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3  ± 6.9 and 5.1 ± 2.8% CO 2 evolution in 80 d respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mantripragada, Venkata P. [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807 (United States)

    2014-09-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization.

  6. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    International Nuclear Information System (INIS)

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization

  7. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  8. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  9. Utilization of Durian Seed Flour as Filler Ingredient of Meatball

    Directory of Open Access Journals (Sweden)

    D. R. Malini

    2016-12-01

    Full Text Available Durian seed flour contains starch consisted of amylose and amylopectin like tapioca flour, so it can be utilized as a filler in meatball production. The purposes of this research were to evaluate the nutrient content and quality of durian seed flour, the best level of durian seed flour addition to the meatball production, and the quality of beef meatball during storage in room temperature and refrigerator. Complete randomized design (CRD was used with 3 treatments and 3 replications. The treatments used different filler ingredients consisted of: 1 100% tapioca, 2 50% tapioca + 50% durian seed flour, and 3 100% durian seed flour utilization. The results showed that durian seed flour could affect the protein levels and hardness of beef meatballs. In the organoleptic test, the addition of durian seed flour had no effect on the appearance of the color, flavor, aroma, and texture. The meatballs with 100% durian seed flour had the lowest hardness. The protein content of the meatballs with 100% durian seed flour was the highest. The used of 50% durian seed flour gave the best effect to beef meatball during storage. Meatball could be stored up to 8 h in room temperature while refrigerator could keep it longer up to 12 d. It was concluded that the addition 50% durian seed flour may substitute tapioca flour as filler ingredient of beef meatball.

  10. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  11. Lymphedema Fat Graft: An Ideal Filler for Facial Rejuvenation

    Directory of Open Access Journals (Sweden)

    Fabio Nicoli

    2014-09-01

    Full Text Available Lymphedema is a chronic disorder characterized by lymph stasis in the subcutaneous tissue. Lymphatic fluid contains several components including hyaluronic acid and has many important properties. Over the past few years, significant research has been performed to identify an ideal tissue to implant as a filler. Because of its unique composition, fat harvested from the lymphedema tissue is an interesting topic for investigation and has significant potential for application as a filler, particularly in facial rejuvenation. Over a 36-month period, we treated and assessed 8 patients with lymphedematous limbs who concurrently underwent facial rejuvenation with lymphedema fat (LF. We conducted a pre- and post-operative satisfaction questionnaire survey and a histological assessment of the harvested LF fat. The overall mean general appearance score at an average of 6 months after the procedure was 7.2±0.5, demonstrating great improvement. Patients reported significant improvement in their skin texture with a reading of 8.5±0.7 and an improvement in their self-esteem. This study demonstrates that LF as an ideal autologous injectable filler is clinically applicable and easily available in patients with lymphedema. We recommend the further study and clinical use of this tissue as it exhibits important properties and qualities for future applications and research.

  12. Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Cheng Lihong; Zheng Liaoying; Li Guorong; Zeng Jiangtao; Yin Qingrui

    2008-01-01

    Silica/epoxy composites have been widely used in functional electric device applications. Silica nanoparticles, both unmodified and modified with the coupling agent KH-550, were used to prepare epoxy composites. Dielectric measurements showed that nanocomposites exhibit a higher dielectric constant than the control sample, and had more obvious dielectric relaxation characteristics. Results showed that particle surface properties have a profound effect on the dielectric behavior of the nanocomposites. These characteristics are attributed to the local ununiformity of the microstructure caused by the large interface area and the interaction between the filler and the matrix. This phenomenon is explained in terms of prolonging chemical chains created during the curing process. The mechanism is discussed with measurements of X-ray diffraction (XRD) and Fourier transform infrared (FTIR)

  13. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  14. Diagnostics of the influence of levitating microparticles on the radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Pustylnik, Mikhail Y.; Mitic, Slobodan; Klumov, Boris A.; Morfill, Gregor E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1 s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  15. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    Science.gov (United States)

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which

  16. PEMANFAATAN LIMBAH SERBUK MARMER PADA BETON SEBAGAI BAHAN PENGGANTI SEBAGIAN SEMEN DENGAN VARIASI PENGGUNAAN SILICA FUME

    Directory of Open Access Journals (Sweden)

    Agil Fitri Handayani

    2015-02-01

    Full Text Available The Utilization of Marble Powder Waste in Concrete Ma­­­­­­­­terials as a Partial Material Substitution of Cement  with the Variation Use of Silica Fume. The purpose of this study was to determine the effect of marble powder and silica fume on the mechanical pro­per­ties of concrete. This study used an experimental design using 16 group of testing materials with variety types of mixtures between marble powder and silica fume 0.00; 5.00; 10.00; and 15.00%. The wa­ter-cement ratio was 0.50 and a low dosage of superplasticizer, which was 0.50%. The behavior of fresh concrete were calculated and the mechanical properties of concrete were tested on con­crete age of 28 days. The results showed the marble powder main com­position was Silicon Dioxide (SiO2 17.63% and Calcium Carbonate (CaCO3 2.73%. Mar­ble powder was more appropriate to be used as fillers than to be used as a partial substitution of ce­ment. The optimum mechanical properties of concrete was produced by the mixtures of 5.00% mar­ble powder  and 6.22% silica fume which resulted in compressive strength of 29.04 MPa.   Tujuan penelitian ini adalah untuk mengetahui pengaruh peng­gunaan ser­buk marmer dan silica fume terhadap sifat mekanik beton. Penelitian ini meng­gu­na­kan desain eksperimen dengan 16 kelompok benda uji dengan variasi ser­buk marmer dan silica fume 0,00; 5,00; 10,00; dan 15,00%. Faktor air semen di­gu­nakan 0,50 dan superplasticizer dengan dosis rendah 0,50%. Perilaku beton segar di­perhitungkan dan sifat mekanik beton diuji pada umur beton 28 hari. Hasil analisis me­nunjukkan kom­posisi utama serbuk marmer adalah Silikon Dioksida (SiO2 17,63% dan Kalsium Kar­bonat (CaCO3 2,73%. Serbuk marmer lebih tepat digunakan se­bagai bahan pe­ng­isi atau filler dari pada sebagai pengganti semen. Sifat mekanik be­ton optimum di­ha­sil­kan pada campuran serbuk marmer 5,00% dan silica fume 6,22% dengan kuat tekan be­ton yang dihasilkan  mencapai 29

  17. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  18. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  19. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects.

    Science.gov (United States)

    Kriebardis, Anastasios G; Antonelou, Marianna H; Georgatzakou, Hara T; Tzounakas, Vassilis L; Stamoulis, Konstantinos E; Papassideri, Issidora S

    2016-05-01

    Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors' haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles.

  20. Skin Necrosis with Oculomotor Nerve Palsy Due to a Hyaluronic Acid Filler Injection

    Directory of Open Access Journals (Sweden)

    Jae Il Lee

    2017-07-01

    Full Text Available Performing rhinoplasty using filler injections, which improve facial wrinkles or soft tissues, is relatively inexpensive. However, intravascular filler injections can cause severe complications, such as skin necrosis and visual loss. We describe a case of blepharoptosis and skin necrosis caused by augmentation rhinoplasty and we discuss the patient’s clinical progress. We describe the case of a 25-year-old female patient who experienced severe pain, blepharoptosis, and decreased visual acuity immediately after receiving a filler injection. Our case suggests that surgeons should be aware of nasal vascularity before performing an operation, and that they should avoid injecting fillers at a high pressure and/or in excessive amounts. Additionally, filler injections should be stopped if the patient complains of severe pain, and appropriate measures should be taken to prevent complications caused by intravascular filler injections.

  1. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  2. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    Science.gov (United States)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  3. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    Science.gov (United States)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  4. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube.

    Science.gov (United States)

    György, Bence; Pálóczi, Krisztina; Kovács, Alexandra; Barabás, Eszter; Bekő, Gabriella; Várnai, Katalin; Pállinger, Éva; Szabó-Taylor, Katalin; Szabó, Tamás G; Kiss, Attila A; Falus, András; Buzás, Edit I

    2014-02-01

    Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. Agitation and storage of blood samples at 37 °C for 1 hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Counter-Propagating Optical Trapping System for Size and Refractive Index Measurement of Microparticles

    National Research Council Canada - National Science Library

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    .... Different from the current best technique for microparticles refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap...

  6. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication

    Science.gov (United States)

    Hargett, Leslie A.; Bauer, Natalie N.

    2013-01-01

    Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation. PMID:24015332

  7. Novel Double-Needle System That Can Prevent Intravascular Injection of Any Filler

    Directory of Open Access Journals (Sweden)

    Hsiang Huang, MD

    2017-09-01

    Full Text Available Summary:. A new type of needle system combines 2 parts, an inner needle and an outer needle. The inner needle is used for filler injection and the outer needle acts as a guiding needle that can observe blood reflow when inserting into the vessel lumen during injection process. This new needle system can be used for all kinds of filler, providing real time monitoring for physician and preventing intravascular injection of any filler.

  8. The basic science of dermal fillers: past and present Part II: adverse effects.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Meehan, Shane; Waldorf, Heidi A

    2012-09-01

    The ideal dermal filler should offer long-lasting aesthetic improvement with a minimal side-effect profile. It should be biocompatible and stable within the injection site, with the risk of only transient undesirable effects from injection alone. However, all dermal fillers can induce serious and potentially long-lasting adverse effects. In Part II of this paper, we review the most common adverse effects related to dermal filler use.

  9. Silica research in Glasgow

    International Nuclear Information System (INIS)

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  10. Fatty acids profile of chia oil-loaded lipid microparticles

    Directory of Open Access Journals (Sweden)

    M. F. Souza

    Full Text Available ABSTRACT Encapsulation of poly-unsaturated fatty acid (PUFAis an alternative to increase its stability during processing and storage. Chia (Salvia hispanica L. oil is a reliable source of both omega-3 and omega-6 and its encapsulation must be better evaluated as an effort to increase the number of foodstuffs containing PUFAs to consumers. In this work chia oil was extracted and encapsulated in stearic acid microparticles by the hot homogenization technique. UV-Vis spectroscopy coupled with Multivariate Curve Resolution with Alternating Least-Squares methodology demonstrated that no oil degradation or tocopherol loss occurred during heating. After lyophilization, the fatty acids profile of the oil-loaded microparticles was determined by gas chromatography and compared to in natura oil. Both omega-3 and omega-6 were effectively encapsulated, keeping the same omega-3:omega-6 ratio presented in the in natura oil. Calorimetric analysis confirmed that encapsulation improved the thermal stability of the chia oil.

  11. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  12. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    Science.gov (United States)

    Tataru, G; Popa, M; Costin, D; Desbrieres, J

    2012-05-01

    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. Copyright © 2012 Wiley Periodicals, Inc.

  13. Principles of transverse flow fractionation of microparticles in superhydrophobic channels.

    Science.gov (United States)

    Asmolov, Evgeny S; Dubov, Alexander L; Nizkaya, Tatiana V; Kuehne, Alexander J C; Vinogradova, Olga I

    2015-07-07

    We propose a concept of fractionation of micron-sized particles in a microfluidic device with a bottom wall decorated by superhydrophobic stripes. The stripes are oriented at an angle α to the direction of a driving force, G, which generally includes an applied pressure gradient and gravity. Separation relies on the initial sedimentation of particles under gravity in the main forward flow, and their subsequent lateral deflection near a superhydrophobic wall due to generation of a secondary flow transverse to G. We provide some theoretical arguments allowing us to quantify the transverse displacement of particles in the microfluidic channel, and confirm the validity of theoretical predictions in test experiments with monodisperse fractions of microparticles. Our results can guide the design of superhydrophobic microfluidic devices for efficient sorting of microparticles with a relatively small difference in size and density.

  14. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  15. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    Science.gov (United States)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  16. The basic science of dermal fillers: past and present Part I: background and mechanisms of action.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Waldorf, Heidi A

    2012-09-01

    Dermal fillers have provided a safe and effective means for aesthetic soft tissue augmentation, and have experienced a dramatic increase in popularity during the past 10 years. Much focus has been placed upon filler technique and patient outcomes. However, there is a relative lack of literature reviewing the basic science of dermal fillers, which is vital to a physician's understanding of how each product behaves in vivo. Part I of this article reviews the basic science and evolution of both historical and contemporary dermal fillers; Part II examines their adverse effects. We endeavor to provide the physician with a practical approach to choosing products that maximize both aesthetic outcome and safety.

  17. Suspect filler similarity in eyewitness lineups: a literature review and a novel methodology.

    Science.gov (United States)

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2015-02-01

    Eyewitness lineups typically contain a suspect (guilty or innocent) and fillers (known innocents). The degree to which fillers should resemble the suspect is a complex issue that has yet to be resolved. Previously, researchers have voiced concern that eyewitnesses would be unable to identify their target from a lineup containing highly similar fillers; however, our literature review suggests highly similar fillers have only rarely been shown to have this effect. To further examine the effect of highly similar fillers on lineup responses, we used morphing software to create fillers of moderately high and very high similarity to the suspect. When the culprit was in the lineup, a higher correct identification rate was observed in moderately high similarity lineups than in very high similarity lineups. When the culprit was absent, similarity did not yield a significant effect on innocent suspect misidentification rates. However, the correct rejection rate in the moderately high similarity lineup was 20% higher than in the very high similarity lineup. When choosing rates were controlled by calculating identification probabilities for only those who made a selection from the lineup, culprit identification rates as well as innocent suspect misidentification rates were significantly higher in the moderately high similarity lineup than in the very high similarity lineup. Thus, very high similarity fillers yielded costs and benefits. Although our research suggests that selecting the most similar fillers available may adversely affect correct identification rates, we recommend additional research using fillers obtained from police databases to corroborate our findings.

  18. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. Synthesis of cristobalite from silica sands of Tuban and Tanah Laut

    Science.gov (United States)

    Nurbaiti, U.; Pratapa, S.

    2018-03-01

    Synthesis of SiO2 cristobalite powders has been successfully carried out by a coprecipitation method by making use of local silica sands from districts of Tuban and Tanah Laut, Indonesia. Cristobalite is a phase of SiO2 polymorphs which can be used as a composite filler, a coating material, a surface finishing media, and structural ceramics. In the first stage of the synthesis, the as-received sands were processed by a magnetic separation, grinding, and soaking with HCl to increase the purity of silica content. X-ray fluorescence (XRF) spectroscopy showed that the atomic content of Si (excluding oxygen) in both powders reached 95.3 and 97.4%. A coprecipitation process was then performed by dissolving the silica powders in a 7M NaOH solution followed by a titration with 2M HCl to achieve a normal pH and to form a gel. Furthermore, the silica gel is washed, dried and then calcined at a temperature of between 950-1200 °C with a variation of holding time for 1, 4 dan 10 hrs to produce white powders. X-ray diffraction (XRD) data analyses showed that the powder with calcination temperature of 1150 °C for 4 hrs exhibited the highest cristobalite content of up to 95wt%. Its scanning electron microscopy (SEM) image showed that its grain morphology was relatively homogeneous.

  20. Microfluidic device for the assembly and transport of microparticles

    Science.gov (United States)

    James, Conrad D [Albuquerque, NM; Kumar, Anil [Framingham, MA; Khusid, Boris [New Providence, NJ; Acrivos, Andreas [Stanford, CA

    2010-06-29

    A microfluidic device comprising independently addressable arrays of interdigitated electrodes can be used to assembly and transport large-scale microparticle structures. The device and method uses collective phenomena in a negatively polarized suspension exposed to a high-gradient strong ac electric field to assemble the particles into predetermined locations and then transport them collectively to a work area for final assembly by sequentially energizing the electrode arrays.

  1. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-11-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  2. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-01-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  3. Moessbauer study of the magnetic filler for suppositories

    International Nuclear Information System (INIS)

    Bykov, A.V.; Nikolaev, V.I.; Shulgin, V.I.; Diaz, C.; Kharitonov, Yu.Ya.; Cherkasova, O.G.

    1991-01-01

    Moessbauer spectroscopy methods are discussed when applied to test the properties of magnetic suppositories used in medicine. The experiments were carried out on magnetic rectal suppositories containing paramadine and fine-dispersed ferrite powder (BaO.nFe 2 O 3 ) as a magnetic filler. According to the data on the value of effective magnetic field on 57 Fe nuclei in ferrite magnetic sublattices, the stoichiometric n-number equals approximately 5.5; this value corresponds to the composition range of optimal magnetic properties. (orig.)

  4. Moessbauer study of the magnetic filler for suppositories

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.V.; Nikolaev, V.I.; Shulgin, V.I. (M.V. Lomonosov Moscow State Univ. (USSR)); Diaz, C. (Cuba National Center of Scientific Research, Havana (Cuba)); Kharitonov, Yu.Ya.; Cherkasova, O.G. (I.M. Sechenov First Moscow Medical Inst. (USSR))

    1991-11-01

    Moessbauer spectroscopy methods are discussed when applied to test the properties of magnetic suppositories used in medicine. The experiments were carried out on magnetic rectal suppositories containing paramadine and fine-dispersed ferrite powder (BaO.nFe[sub 2]O[sub 3]) as a magnetic filler. According to the data on the value of effective magnetic field on [sup 57]Fe nuclei in ferrite magnetic sublattices, the stoichiometric n-number equals approximately 5.5; this value corresponds to the composition range of optimal magnetic properties. (orig.).

  5. Epoxy composites based on inexpensive tire waste filler

    Science.gov (United States)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  6. Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography

    NARCIS (Netherlands)

    Weerheim, A. M.; Kolb, A. M.; Sturk, A.; Nieuwland, R.

    2002-01-01

    Microparticles in the circulation activate the coagulation system and may activate the complement system via C-reactive protein upon conversion of membrane phospholipids by phospholipases. We developed a sensitive and reproducible method to determine the phospholipid composition of microparticles.

  7. Restructuring of microparticles in nuclear ceramic materials. Part II. Analytical derivation of the steady-state size distribution

    International Nuclear Information System (INIS)

    Lameiras, F.S.

    1991-01-01

    Two fundamental principles were assumed to govern the restructuring of microparticles: minimization and uniformization in space of the interface energy. Five fundamental ways, independent of each other and acting simultaneously, were identified, through which a microparticle set can be restructured according to the fundamental principles: a) decrease of the number of microparticles; b) modification of the microparticle size distribution; c) modification of the microparticles from tending to an equiaxial one; d) tendency to the distribution of microparticles uniform in space; e) tendency to the distribution of the interface energy uniform per microparticle. This presents an analytical derivation of the steady-state microparticle size distribution due to the simultaneous action of the fundamental ways b) and e). (author)

  8. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.

    Science.gov (United States)

    Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos

    2014-10-01

    The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.

  9. Study of Formulation Variables Influencing Polymeric Microparticles by Experimental Design

    Directory of Open Access Journals (Sweden)

    Jitendra B. Naik

    2014-04-01

    Full Text Available The objective of this study was to prepare diclofenac sodium loaded microparticles by single emulsion [oil-in-water (o/w] solvent evaporation method. The 22 experimental design methodology was used to evaluate the effect of two formulation variables on microspheres properties using the Design-Expert® software and evaluated for their particle size, morphology, and encapsulation efficiency and in vitro drug release. The graphical and mathematical analysis of the design showed that the independent variables were a significant effect on the encapsulation efficiency and drug release of microparticles. The low magnitudes of error and significant values of R2 prove the high prognostic ability of the design. The microspheres showed high encapsulation efficiency with an increase in the amount of polymer and decrease in the amount of PVA in the formulation. The particles were found to be spherical with smooth surface. Prolonged drug release and enhancement of encapsulation efficiency of polymeric microparticles can be successfully obtained with an application of experimental design technique.

  10. Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

    Directory of Open Access Journals (Sweden)

    Shih-Mo Yang

    2011-01-01

    Full Text Available This paper reports on an optoelectrofluidic platform which consists of the organic photoconductive material, titanium oxide phthalocyanine (TiOPc, and the photocrosslinkable polymer, poly (ethylene glycol diacrylate (PEGDA. TiOPc simplifies the fabrication process of the optoelectronic chip due to requiring only a single spin-coating step. PEGDA is applied to embed the moldless PEGDA-based microchannel between the top ITO glass and the bottom TiOPc substrate. A real-time control interface via a touch panel screen is utilized to select the target 15 μm polystyrene particles. When the microparticles flow to an illuminating light bar, which is oblique to the microfluidic flow path, the lateral driving force diverts the microparticles. Two light patterns, the switching oblique light bar and the optoelectronic ladder phenomenon, are designed to demonstrate the features. This work integrating the new material design, TiOPc and PEGDA, and the ability of mobile microparticle manipulation demonstrates the potential of optoelectronic approach.

  11. Circulating cell-derived microparticles in women with pregnancy loss.

    Science.gov (United States)

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  12. Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols.

    Science.gov (United States)

    Chandler, Wayne L

    2013-03-01

    This study provides the first estimates of microparticle numbers in platelet-rich plasma (PRP) from normal individuals, closer to in-vivo levels, using higher-resolution flow cytometry. We measured platelet (CD41+) and annexin V+ microparticles in fresh and frozen aliquots of PRP, platelet-poor plasma, platelet-free plasma (PFP), and microparticles isolated by high-speed centrifugation. PRP from healthy individuals contained 730,000/μl total microparticles based on light-scattering measurements. A median of 27,000/μl microparticles in PRP were of platelet origin and 120,000/μl annexin V+, and of these, 24,000/μl were dual-positive procoagulant platelet microparticles. Double centrifugation of PRP removed 99% of platelets, but also 80% of annexin V+ CD41+, 93% of annexin V+ CD41-, and 58% of annexin V- CD41+ microparticles. Loss of microparticles with centrifugation varied from individual to individual. Microparticle counts after isolation by centrifugation and double washing were not significantly different than counts in the original PFP sample, but lower than in PRP. Freeze-thawing of PFP had no effect on platelet microparticle counts, but slightly increased annexin V+, CD41- counts. Freeze-thawing of isolated washed microparticles resulted in a 30-50% increase in annexin V+ microparticles. PRP contains large numbers of cellular microparticles, including platelet and annexin V+ microparticles, which are lost to varying degrees when PRP is double centrifuged to remove platelets. Microparticles remaining in PFP can be recovered by high-speed centrifugation without loss compared to the original PFP sample. Freeze-thawing has variable effects on microparticle counts depending on the sample preparation used.

  13. Effect of monopolar radiofrequency treatment over soft-tissue fillers in an animal model: part 2.

    Science.gov (United States)

    Shumaker, Peter R; England, Laura J; Dover, Jeffrey S; Ross, E Victor; Harford, Robert; Derienzo, Damian; Bogle, Melissa; Uebelhoer, Nathan; Jacoby, Mark; Pope, Karl

    2006-03-01

    Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. Cosmetic fillers are used to soften deep facial lines and wrinkles. Patients who have had dermal fillers implanted may also benefit from or are candidates for monopolar RF skin tightening. This study examined the effect of RF treatment on various dermal filler substances. This is the second part of a two-part study. A juvenile farm pig was injected with dermal fillers including cross-linked human collagen (Cosmoplast), polylactic acid (PLA) (Sculptra), liquid injectable silicone (Silikon 1000), calcium hydroxylapatite (CaHA) (Radiesse), and hyaluronic acid (Restylane). Skin injected with dermal fillers was RF-treated using a 1.5-cm2 treatment tip and treatment levels typically used in the clinical setting. Fillers were examined histologically 5 days, 2 weeks, or 1 month after treatment. Histological specimens were scored for inflammatory response, foreign body response, and fibrosis in order to assess the effect of treatment on early filler processes, such as inflammation and encapsulation. Each filler substance produced a characteristic inflammatory response. No immediate thermal effect of RF treatment was observed histologically. RF treatment resulted in statistically significant increases in the inflammatory, foreign body, and fibrotic responses associated with the filler substances. Monopolar RF treatment levels that are typically used in the clinical setting were employed in this animal study. RF treatment resulted in measurable and statistically significant histological changes associated with the various filler materials. Additional clinical and histological studies are required to determine the optimal timing of monopolar RF treatment and filler placement for maximal potential aesthetic outcome. 2006 Wiley-Liss, Inc.

  14. Effect of three filler types on mechanical properties of dental composite

    Directory of Open Access Journals (Sweden)

    Pahlavan A.

    2005-06-01

    Full Text Available Statement of Problem: Despite the improvements achieved in the field of dental composites, their strength, longevity, and service life specially in high stress areas is not confirmed. Finding better fillers can be a promising step in this task. Purpose: The purpose of this study was to investigate the effect of the filler type on the mechanical properties of a new experimental dental composite and compare these with the properties of composite containing conventional glass filler. Materials and Methods: Experimental composites were prepared by mixing silane-treated fillers with monomers, composed of 70% Bis-GMA and 30% TEGDMA by weight. Fillers were different among the groups. Glass, leucite ceramic and lithium disilicate were prepared as different filler types. All three groups contained 73% wt filler. Comphorquinone and amines were chosen as photo initiator system. Post curing was done for all groups. Diametral tensile strength (DTS, flexural strength and flexural modulus were measured and compared among groups. Data were analyzed with SPSS package using one-way ANOVA test with P<0.05 as the limit of significance. Results: The results showed that the stronger ceramic fillers have positive effect on the flexural strength. Ceramic fillers increased the flexural strength significantly. No significant differences could be determined in DTS among the groups. Flexural modulus can be affected and increased by using ceramic fillers. Conclusion: Flexural strength is one of the most significant properties of restorative dental materials. The higher flexural strength and flexural modulus can be achieved by stronger ceramic fillers. Any further investigation in this field would be beneficial in the development of restorative dental materials.

  15. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  16. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  17. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  18. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  19. Radiological impact of the use of calcium hydroxylapatite dermal fillers

    International Nuclear Information System (INIS)

    Feeney, J.N.; Fox, J.J.; Akhurst, T.

    2009-01-01

    Aim: To report a case series in which the radiological features of the subcutaneous use of calcium hydroxylapatite (CaHa) dermal fillers are described for the first time. Materials and methods: Five patients with facial hyperattenuating hypermetabolic subcutaneous lesions were identified on 2- [ 18 F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography/computed tomography (PET/CT), who gave a history of facial injections to augment physical appearance. Correlation with additional imaging studies was performed. Results: All cases had subcutaneous high attenuation material on CT (range 280-700 HU), which was FDG avid on PET, with a standardized uptake value (SUV) range of 2.9-13.4. Magnetic resonance imaging (MRI) demonstrated a heterogeneous intermediate signal intensity subcutaneous lesion with enhancement post-gadolinium in one case. Conclusions: CaHa dermal filler is hyperattenuating on CT, hypermetabolic on FDG-PET imaging, of intermediate signal intensity on MRI, and is a potential cause of a false-positive imaging study.

  20. Coarse-grained simulation of polymer-filler blends

    Science.gov (United States)

    Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration

    The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.

  1. Injectable neurotoxins and fillers: there is no free lunch.

    Science.gov (United States)

    Emer, Jason; Waldorf, Heidi

    2011-01-01

    Injection of neurotoxins and filling agents for the treatment of facial aesthetics has increased dramatically during the past few decades due to an increased interest in noninvasive aesthetic improvements. An aging but still youth-oriented population expects effective treatments with minimal recovery time and limited risk of complications. Injectable neurotoxins and soft tissue stimulators and fillers have filled this niche of "lunch-time" procedures. As demand for these procedures has increased, supply has followed with more noncore cosmetic specialty physicians, as well as unsupervised ancillary staff, becoming providers and advertising them as easy fixes. Despite an excellent record of safety and efficacy demonstrated in scores of published studies, injectable agents do carry risks of complications. These procedures require a physician with in-depth knowledge of facial anatomy and injection techniques to ensure patient safety and satisfaction. In general, adverse events are preventable and technique-dependent. Although most adverse events are minor and temporary, more serious complications can occur. The recognition, management, and treatment of poor outcomes are as important as obtaining the best aesthetic results. This review addresses important considerations regarding the complications of injectable neurotoxins and fillers used for "lunch-time" injectable procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  3. Facial rejuvenation with fillers: The dual plane technique

    Directory of Open Access Journals (Sweden)

    Giovanni Salti

    2015-01-01

    Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.

  4. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Science.gov (United States)

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana

    2016-03-25

    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  6. Evaluating tamsulosin hydrochloride-released microparticles prepared using single-step matrix coating.

    Science.gov (United States)

    Maeda, Atsushi; Shinoda, Tatsuki; Ito, Naoki; Baba, Keizo; Oku, Naoto; Mizumoto, Takao

    2011-04-15

    The objective of the present study was to determine the optimum composition for sustained-release of tamsulosin hydrochloride from microparticles intended for orally disintegrating tablets. Microparticles were prepared from an aqueous ethylcellulose dispersion (Aquacoa®), and an aqueous copolymer based on ethyl acrylate and methyl methacrylate dispersion (Eudragit®) NE30D), with microcrystalline cellulose as core particles with a fluidized bed coating process. Prepared microparticles were about 200 μm diameter and spherical. The microparticles were evaluated for in vitro drug release and in vivo absorption to assess bioequivalence in a commercial product, Harnal® pellets. The optimum ratio of Aquacoat® and Eudragit® NE30D in the matrix was 9:1. We observed similar drug release profiles in microparticles and Harnal® pellets. Higuchi model analysis of the in vitro drug release from microparticles was linear up to 80% release, typical of Fickian diffusion sustained-release profile. The in vivo absorption properties from microparticles were comparable to Harnal® pellets, and there was a linear relationship between in vitro drug release and in vivo drug release. In conclusion, this development produces microparticles in single-step coating, that provided a sustained-release of tamsulosin hydrochloride comparable to Harnal® pellets. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing.

    Science.gov (United States)

    Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta

    2010-12-06

    The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at -80°C decreased microparticle levels at days 28, 42, and 56 (P centrifugation speeds should be used to minimize contamination by smaller size platelets.

  8. Novel cryomilled physically cross-linked biodegradable hydrogel microparticles as carriers for inhalation therapy.

    Science.gov (United States)

    El-Sherbiny, I M; Smyth, H D C

    2010-01-01

    In this study, novel biodegradable physically cross-linked hydrogel microparticles were developed and evaluated in-vitro as potential carriers for inhalation therapy. These hydrogel microparticles were prepared to be respirable (desired aerodynamic size) when dry and also designed to avoid the macrophage uptake (attain large swollen size once deposited in lung). The swellable microparticles, prepared using cryomilling, were based on Pluronic® F-108 in combination with PEG grafted onto both chitosan (Cs) and its N-phthaloyl derivative (NPHCs). Polymers synthesized in the study were characterized using EA, FTIR, 2D-XRD and DSC. Morphology, particle size, density, biodegradation and moisture content of the microparticles were quantified. Swelling characteristics for both drug-free and drug-loaded microparticles showed excellent size increases (between 700-1300%) and the release profiles indicated sustained release could be achieved for up to 20 days. The respirable microparticles showed drug loading efficiency up to 92%. The enzymatic degradation of developed microparticles started within the first hour and only ∼10% weights were remaining after 10 days. In conclusion, these respirable microparticles demonstrated promising in-vitro performance for potential sustained release vectors in pulmonary drug delivery.

  9. Micro-particle filter made in SU-8 for biomedical applications

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Urs; Fetz, Stefanie

    2009-01-01

    We have integrated a micro-particle filter in a polymer cantilever to filter micro-particles from a fluid while simultaneously measuring the amount of filtered particles. In a 3,8 mum thick SU-8 cantilever a filter was integrated with pore sizes between 3 and 30 mum. The chip was inserted in a mi...

  10. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle...

  11. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Worhoff, Kerstin; De Ridder, Rene M.; Subramaniam, Vinod; Pollnau, Markus

    2013-01-01

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in Al2O3:Yb3+ is presented. Real-time detection and accurate size measurement of single microparticles with diameters ranging between 1 μm and 20 μm are

  12. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  13. Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique.

    Science.gov (United States)

    Rodriguez, Lidia B; Avalos, Abraham; Chiaia, Nicholas; Nadarajah, Arunan

    2017-05-01

    There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.

  14. Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis

    DEFF Research Database (Denmark)

    Ohlin, M.; Fornell, A.; Bruus, Henrik

    2017-01-01

    , by using acoustic actuation, (99.8 ± 0.4)% of all encapsulated microparticles can be detected compared to only (79.0 ± 5.1)% for unactuated operation. In our experiments we observed a strong ordering of the microparticles in distinct patterns within the droplet when using 2D acoustophoresis; to explain...

  15. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward; van der Werf, Kees; Hollink, Anton; Worhoff, Kerstin; de Ridder, R.M.; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminium oxide is presented. Single micro-particles with diameters ranging between 1 μm and 20 μm are detected.

  16. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Johnsen, Christina

    2011-01-01

    Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters.......Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters....

  17. Fabrication of starch-based microparticles by an emulsification-crosslinking method

    Science.gov (United States)

    Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...

  18. Characterization of microparticles prepared by emulsion method from pectin and protein

    Science.gov (United States)

    In this study, pectin was extracted from apple peel and formulated into microparticles in combination with zein, an edible food protein. The physical, chemical, and structural properties of the resultant pectin structures were evaluated. The resultant microparticles were also examined in vitro for c...

  19. Concentration of nanoparticles and/or microparticles in flow conditions by dielectrophoresis

    DEFF Research Database (Denmark)

    2017-01-01

    A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention.......A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention....

  20. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    Directory of Open Access Journals (Sweden)

    Rita E. Serda

    2011-01-01

    Full Text Available Mass transport of drug delivery vehicles is guided by particle properties, such as size, shape, composition, and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two-dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light variable chain, fibrinogen, and complement component 1 compared to their anionic counterparts. Anionic microparticles were found to accumulate in equal abundance in murine liver and spleen, whereas cationic microparticles showed preferential accumulation in the spleen. Immunohistochemistry supported macrophage uptake of both anionic and cationic microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution.

  1. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  2. Alternative Fillers for the Production of Bituminous Mixtures: A Screening Investigation on Waste Powders

    Directory of Open Access Journals (Sweden)

    Cesare Sangiorgi

    2017-06-01

    Full Text Available There has been a significant increase in the demand for using recycled materials in construction because of the lack and limitation of available natural resources. A number of industrial and domestic waste products are being used in the replacement of traditional materials for road construction, and many studies have been carried out in recent years on the use of different recycled materials in substitution of conventional fillers in Asphalt Concretes (AC. The aim of this laboratory research is to analyze the physical characteristics of three different recycled fillers and compare them with those of a traditional limestone filler. The alternative fillers presented in this paper are: a waste bleaching clay that comes from two consecutive stages in the industrial process for decolouring vegetable oils and producing biogas (Ud filler, a dried mud waste from a tungsten mine (MW filler and a recycled glass powder (Gl filler. Results show significant differences between the fillers, and, in particular, Rigden Voids (RV seem to have the largest potential influence on the rheology of ACs.

  3. ZnO as a cheap and effective filler for high breakdown strength elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    . In this article, we explore the use of a cheap and abundant metal oxide filler, namely ZnO, as a filler in silicone-based dielectric elastomers. The electro-mechanical properties of the elastomer composites are investigated, and their performance is evaluated by means of figures of merit. Various commercial...

  4. The Kinetics of Reversible Hyaluronic Acid Filler Injection Treated With Hyaluronidase.

    Science.gov (United States)

    Juhász, Margit L W; Levin, Melissa K; Marmur, Ellen S

    2017-06-01

    Hyaluronidase is an enzyme capable of dissolution of hyaluronic acid (HA). There is a lack of evidence-based research defining time- and concentration-dependent reversal of HA filler using hyaluronidase. To explore the efficacy of different concentrations of hyaluronidase in digesting commercially available HA-based reversible fillers-Belotero Balance (BEL), Juvederm Ultra XC (JUVXC), Juvederm Ultra Plus (JUVX+), Juvederm Voluma XC (JUVV), Restylane-L (RESL), Restylane Silk (RESS), and Perlane/Restylane Lyft (RESLYFT). This was a blinded randomized study involving 15 participants. Participants received HA filler injection into their back, followed by no secondary injection, or injection with normal saline, 20 or 40 units of hyaluronidase. Using a 5-point palpation scale, the degradation of HA filler was monitored over 14 days. In the authors' study, there is a significant decrease in HA filler degradation using 20 and 40 units of hyaluronidase compared with no secondary injection or normal saline. There is no significant difference in HA filler dissolution when comparing 20 to 40 units of hyaluronidase. Lower concentrations of hyaluronidase may be just as effective as higher concentrations to degrade HA filler in situations where the reversal of cutaneous augmentation with HA filler arises.

  5. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    Science.gov (United States)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  6. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  7. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    Science.gov (United States)

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  8. Are functional fillers improving environmental behavior of plastics? A review on LCA studies.

    Science.gov (United States)

    Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere

    2018-06-01

    The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Complications After Facial Injections With Permanent Fillers: Important Limitations and Considerations of MRI Evaluation

    NARCIS (Netherlands)

    Kadouch, Jonathan A.; Tutein Nolthenius, Charlotte J.; Kadouch, Daniel J.; van der Woude, Henk-Jan; Karim, Refaat B.; Hoekzema, Rick

    2014-01-01

    Background: Soft-tissue fillers have become more prevalent for facial augmentation in the last 2 decades, even though complications of permanent fillers can be challenging to treat. An investigative imaging tool could aid in assessing the nature and extent of these complications when clinical

  10. Rotation of magnetic particles inside the polymer matrix of magnetoactive elastomers with a hard magnetic filler

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, G.V., E-mail: gstepanov@mail.ru [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Borin, D.Yu. [TU Dresden, Magnetofluiddynamics, Measuring and Automation Technology, Dresden 01062 (Germany); Storozhenko, P.A. [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation)

    2017-06-01

    We propose the results of research on the magnetic properties of magnetoactive elastomers containing particles of a hard magnetic filler. According to our understanding, the mechanism of re-magnetizing of the composite is based on two competing processes, being the re-magnetizing of the magnetic filler and mechanical rotation of particles inside of the polymer matrix.

  11. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard

    2014-01-01

    permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content...

  12. Ethanol oxidation on a nichrome-supported spherical platinum microparticle electrocatalyst prepared by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Hui; Li, Jing; Dong, Xiaoya; Wang, Dong; Chen, Tiwei; Qiao, Haiyan; Huang, Aiping [College of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Jianshe Road, Xinxiang 453007 (China)

    2008-11-15

    A novel electrode was rapidly prepared by depositing microparticle platinum onto a nichrome substrate in dilute chloroplatinic acid solution by cyclic voltammetry. The SEM results revealed that the deposits were composed of spherical Pt microparticles. Cyclic voltammetry and chronoamperometry were used for the characterization of the electrodes. Results of the electrochemical measurements showed that the spherical Pt microparticle electrodes retained the properties of metal platinum, increased the catalytic activity and promoted the electrocatalytic oxidation of ethanol. Moreover, the deposited Pt microparticles improved the electrochemical properties of the support material and reduced the dosage of noble metal platinum remarkably. The cost could be reduced dramatically by decreasing the contents of platinum. The spherical Pt microparticles deposited on the nichrome supports are likely a potential electrocatalyst for ethanol electrooxidation. (author)

  13. Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S; Pustylnik, M Y; Morfill, G E

    2009-01-01

    Axial distributions of 1s excited states of argon were measured in a radiofrequency (RF) discharge by a self-absorption method. Experiments were performed in the PK-3+ chamber, designed for microgravity experiments in complex (dusty) plasmas on board the International Space Station. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. Distributions, measured at the same discharge conditions in a microparticle-free discharge and a discharge containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  14. Physicochemical characteristics of uranium microparticles collected at nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kaurov, G.; Stebelkov, V.; Kolesnikov, O.; Frolov, D.

    2001-01-01

    Any industrial process is accompanied by appearance of some quantity of microparticles of processed matter in the environment in immediate proximity to the manufacturing object. These particles can be transferred in atmosphere and can be collected at some distances from the plant. The determination of characteristics of industrial dust microparticles at nuclear fuel cycle plants (form, size, structure of surface, elemental composition, isotopic composition, presence of fission products, presence of activation products) in conjunction with the ability to connect these characteristics with certain nuclear manufacturing processes can become the main technical method of detecting of undeclared nuclear activity. Systematization of the experimental data on morphology, elemental and isotopic composition of uranium microparticles, collected at nuclear fuel cycle plants, is given. The purpose of this work is to establish the relationship between morphological characteristics of uranium dust microparticles and types of nuclear manufacture and to define the reference attributes of the most informative microparticles

  15. Microparticle injection effects on microwave transmission through an overly dense plasma layer

    Energy Technology Data Exchange (ETDEWEB)

    Gillman, Eric D., E-mail: eric.gillman@nrl.navy.mil; Amatucci, W. E. [Naval Research Laboratory, Washington, DC 20375 (United States); Williams, Jeremiah [Wittenberg University, Springfield, Ohio 45501 (United States); Compton, C. S. [Sotera Defense Solutions, Herndon, Virginia 20171 (United States)

    2015-04-15

    Microparticles injected into a plasma have been shown to deplete the free electron population as electrons are collected through the process of microparticles charging to the plasma floating potential. However, these charged microparticles can also act to scatter electromagnetic signals. These experiments investigate microwave penetration through a previously impenetrable overly dense plasma layer as microparticles are injected and the physical phenomena associated with the competing processes that occur due to electron depletion and microwave scattering. The timescales for when each of these competing processes dominates is analyzed in detail. It was found that while both processes play a significant and dominant role at different times, ultimately, transmission through this impenetrable plasma layer can be significantly increased with microparticle injection.

  16. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  17. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  18. Recommendations for Filler Material Composition and Delivery Method for Bench-Scale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-01

    This report supplements Joint Workplan on Filler Investigations for DPCs (SNL 2017) providing new and some corrected information for use in planning Phase 1 laboratory testing of slurry cements as possible DPC fillers. The scope description is to "Describe a complete laboratory testing program for filler composition, delivery, emplacement in surrogate canisters, and post-test examination. To the extent possible specify filler material and equipment sources." This report includes results from an independent expert review (Dr. Arun Wagh, retired from Argonne National Laboratory and contracted by Sandia) that helped to narrow the range of cement types for consideration, and to provide further guidance on mix variations to optimize injectability, durability, and other aspects of filler performance.

  19. Use of hyaluronic acid fillers for the treatment of the aging face

    Directory of Open Access Journals (Sweden)

    Michael H Gold

    2007-10-01

    Full Text Available Michael H GoldGold Skin Care Center, Tennessee Clinical Research Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical School,Vanderbilt University Nursing School, Nashville, TN, USA; Huashan Hospital, Fudan University, Shanghai, ChinaAbstract: Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. They have helped revolutionize the filler market with a number of new products available for use for our patients. The purpose of this manuscript is to review the characteristics of the HA fillers and to review each of the current products currently available for use in the US.Keywords: hyaluronic acid, fillers, soft tissue augmentation, expression lines, aging face, collagen

  20. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    Science.gov (United States)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  1. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    Two types of filler from crushed sand were mixed with cement paste with constant superplasticizer dosage per mass of cement to investigate how their shape affects the rheology. The fillers were mylonitic quartz diorite and limestone produced using Vertical Shaft Impact (VSI) crusher and air...... was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  2. The effect of mixing order of fillers on the physical properties of EPDM

    International Nuclear Information System (INIS)

    Gul, J.; Saleemi, A.R.

    2007-01-01

    In this research the effect of mixing order of fillers on the physical properties of EPDM (Ethylene Propylene Diene Monomer) vulcanizates was studied. EPDM was compounded with other ingredients i.e. fillers, process aid, curing package etc in order to get the needed physical properties for thermal insulation. All the factors, which could affect the physical properties of EPDM vulcanizates such as quality and quantity of raw materials, storage conditions of ingredients and vulcanizates, compounding and testing facilities, mixing time, process parameters etc were kept constant except mixing order of addition of filler to EPDM. Different batches of EPDM vulcanizates with different mixing order/sequence of filler to EPDM were prepared and tested for physical properties like density, hardness, tensile strength and elongation. It was concluded that mixing order of filler to EPDM affects tensile strength, elongation and hardness and does not affect density of the EPDM vulcanizate. (author)

  3. Influence of the filler material on the pitting corrosion in welded duplex stainless

    International Nuclear Information System (INIS)

    Munez, C. J.; Utrilla, M. V.; Urena, A.; Otero, E.

    2007-01-01

    In this work, it has been studied the pitting corrosion resistance of welding duplex stainless steel 2205. Unions were made by GMAW process with different fillers: duplex ER 2209 and two austenitic (ER 316LSi and ER 308LSi). the microstructure obtained with the duplex ER 2209 filler is similar to the duplex 2205 base material, but the unions produced with the austenitic fillers cause a decrease of the phases relationα/γ. To evaluate the influence of the filler on the weld, the pitting corrosion resistance was determined by electrochemical critical pitting temperature test (TCP) and the mechanical properties by the hardness. The phases imbalance produced for the dissimilar fillers bring out a variation of the pitting corrosion resistance and the mechanical properties. (Author)

  4. Detection of microparticles from human red blood cells by multiparametric flow cytometry

    Science.gov (United States)

    Grisendi, Giulia; Finetti, Elena; Manganaro, Daniele; Cordova, Nicoletta; Montagnani, Giuliano; Spano, Carlotta; Prapa, Malvina; Guarneri, Valentina; Otsuru, Satoru; Horwitz, Edwin M.; Mari, Giorgio; Dominici, Massimo

    2015-01-01

    Background During storage, red blood cells (RBC) undergo chemical and biochemical changes referred to as “storage lesions”. These events determine the loss of RBC integrity, resulting in lysis and release of microparticles. There is growing evidence of the clinical importance of microparticles and their role in blood transfusion-related side effects and pathogen transmission. Flow cytometry is currently one of the most common techniques used to quantify and characterise microparticles. Here we propose multiparametric staining to monitor and quantify the dynamic release of microparticles by stored human RBC. Material and methods RBC units (n=10) were stored under blood bank conditions for up to 42 days. Samples were tested at different time points to detect microparticles and determine the haemolysis rate (HR%). Microparticles were identified by flow cytometry combining carboxyfluorescein diacetate succinimidyl ester (CFSE) dye, annexin V and anti-glycophorin A antibody. Results We demonstrated that CFSE can be successfully used to label closed vesicles with an intact membrane. The combination of CFSE and glycophorin A antibody was effective for monitoring and quantifying the dynamic release of microparticles from RBC during storage. Double staining with CFSE/glycophorin A was a more precise approach, increasing vesicle detection up to 4.7-fold vs the use of glycophorin A/annexin V alone. Moreover, at all the time points tested, we found a robust correlation (R=0.625; p=0.0001) between HR% and number of microparticles detected. Discussion Multiparametric staining, based on a combination of CFSE, glycophorin A antibody and annexin V, was able to detect, characterise and monitor the release of microparticles from RBC units during storage, providing a sensitive approach to labelling and identifying microparticles for transfusion medicine and, more broadly, for cell-based therapies. PMID:25369588

  5. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    Science.gov (United States)

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  6. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    One prominent method of modifying the properties of dielectric elastomers (DEs) is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting...... and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2) particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0...

  7. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    Zhou Jian; Fedkiw, Peter S.

    2003-01-01

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, M w =250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO 2 , V 6 O 13 , and Li x MnO 2 ), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V 6 O 13 cathodes deliver the highest capacity and Li x MnO 2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO 2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V 6 O 13 ) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  8. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  9. Effects of SiO 2 and TiO 2 fillers on thermal and dielectric properties ...

    Indian Academy of Sciences (India)

    The microstructures and distribution of fillers in the glass matrix have been analyzed by SEM images. It is observed that the fillers have partially dissolved in the glass at the firing temperature leaving some unreacted filler as residue which results in ceramic–glass microcomposites. In consideration of the desired properties of ...

  10. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    Science.gov (United States)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  11. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  12. Behaviour of cellular structures with fluid fillers under impact loading

    Directory of Open Access Journals (Sweden)

    Matej Vesenjak

    2007-03-01

    Full Text Available The paper investigates the behaviour of closed- and open-cell cellular structures under uniaxial impact loading by means of computational simulations using the explicit nonlinear finite element code LS-DYNA. Simulations also consider the influence of pore fillers and the base material strain rate sensitivity. The behaviour of closed-cell cellular structure has been evaluated with use of the representative volume element, where the influence of residual gas inside the closed pores has been studied. Open- cell cellular structure was modelled as a whole to properly account for considered fluid flow through the cells, which significantly influences macroscopic behaviour of the cellular structure. The fluid has been modelled by applying a meshless Smoothed Particle Hydrodynamics (SPH method. Parametric computational simulations provide grounds for optimization of cellular structures to satisfy different requirements, which makes them very attractive for use in general engineering applications.

  13. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    International Nuclear Information System (INIS)

    W. Wallin

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective

  14. Amorphous filler metal foils for brazing zirconium grid plates

    International Nuclear Information System (INIS)

    Plyushchev, A.N.; Kalin, B.A.; Fedotov, V.T.; Sevryukov, O.N.; Mamedova, T.T.; Shestakov, E.F.; Timoshin, S.N.

    2001-01-01

    A new amorphous ribbon filler metal of Zr-5.5 Fe-2.5 Be-1.0 Nb-8.0 Cu-2.0 Sn-0.4 Cr (mass %) with the temperature of melting onset of 745-750 deg C is designed to braze spacer grids of zirconium base alloys. The brazing conditions (780-790 deg C, 40-45 s) are determined which provide minimal standing at temperatures above 700 deg C (∼ 1.5 min) for spacer grids. Mechanical tests show that tensile strength of brazed joints is 55-59 kgf what is twice that of analogous welded joints. In addition, the brazed joints exhibit high corrosion resistance when testing in a distilled steam-water mixture at a temperature of 350 deg C and 16.5 MPa pressure for 10000 h [ru

  15. Mechanical properties of experimental composites with different calcium phosphates fillers.

    Science.gov (United States)

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Epoxy composites based on inexpensive tire waste filler

    International Nuclear Information System (INIS)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-01-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites

  17. Laser plasma jet driven microparticles for DNA/drug delivery.

    Directory of Open Access Journals (Sweden)

    Viren Menezes

    Full Text Available This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications.

  18. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  19. Wh-filler-gap dependency formation guides reflexive antecedent search

    Directory of Open Access Journals (Sweden)

    Michael eFrazier

    2015-10-01

    Full Text Available Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1, where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. 1. Which cowgirl did Mary expect to have injured herself due to negligence?Four eye-tracking text-reading experiments were conducted on examples like (1, differing in whether the embedded clause was non-finite (1 and 3 or finite (2 and 4, and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2 or the wh-dependency was associated with a position earlier in the sentence (3 and 4.The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Exp. 3 and 4, wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure.

  20. Penile Girth Enhancement With Polymethylmethacrylate-Based Soft Tissue Fillers.

    Science.gov (United States)

    Casavantes, Luis; Lemperle, Gottfried; Morales, Palmira

    2016-09-01

    An unknown percentage of men will take every risk to develop a larger penis. Thus far, most injectables have caused serious problems. Polymethylmethacrylate (PMMA) microspheres have been injected as a wrinkle filler and volumizer with increasing safety since 1989. To report on a safe and permanently effective method to enhance penile girth and length with an approved dermal filler (ie, PMMA). Since 2007, the senior author has performed penile augmentation in 752 men mainly with Metacrill, a suspension of PMMA microspheres in carboxymethyl-cellulose. The data of 729 patients and 203 completed questionnaires were evaluated statistically. The overall satisfaction rate was 8.7 on a scale of 1 to 10. After one to three injection sessions, average girth increased by 3.5 cm, or 134% (10.2 to 13.7 cm = 134.31%). Penile length also increased by weight and stretching force of the implant from an average of 9.8 to 10.5 cm. Approximately half the patients perceived some irregularities of the implant, which caused no problems. Complications occurred in 0.4%, when PMMA nodules had to be surgically removed in three of the 24% of patients who had a non-circumcised penis. After 5 years of development, penile augmentation with PMMA microspheres appears to be a natural, safe, and permanently effective method. The only complication of nodule formation and other irregularities can be overcome by an improved injection technique and better postimplantation care. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  1. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis.

    Science.gov (United States)

    Nielsen, C T; Østergaard, O; Rekvig, O P; Sturfelt, G; Jacobsen, S; Heegaard, N H H

    2015-10-01

    A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P microparticle populations could be discerned by flow cytometry, including two subpopulations that were significantly increased in SLE samples (P = 0.01 and P = 0.0002, respectively). No associations of G3BP-positive microparticles with clinical manifestations or disease activity were found. Immune electron microscopy showed co-localization of G3BP with in vivo-bound IgG in glomerular electron dense immune complex deposits in all lupus nephritis biopsies. Both circulating microparticle-G3BP numbers as well as G3BP expression are increased in SLE patients corroborating G3BP being a feature of SLE microparticles. By demonstrating G3BP co-localized with deposited immune complexes in lupus nephritis, the study supports cell-derived microparticles as a major autoantigen source and provides a new understanding of the origin of

  2. Live cell refractometry based on non-SPR microparticle sensor.

    Science.gov (United States)

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Studies of microparticles in patients with the antiphospholipid syndrome (APS).

    Science.gov (United States)

    Vikerfors, A; Mobarrez, F; Bremme, K; Holmström, M; Ågren, A; Eelde, A; Bruzelius, M; Antovic, A; Wallén, H; Svenungsson, E

    2012-06-01

    To study circulating platelet, monocyte and endothelial microparticles (PMPs, MMPs and EMPs) in patients with antiphospholipid syndrome (APS) in comparison with healthy controls. Fifty-two patients with APS and 52 healthy controls were investigated. MPs were measured on a flow cytometer (Beckman Gallios) and defined as particles sized APS patients versus controls (p APS patients. We observed a high number of EMPs expressing TF in APS patients. The numbers of MMPs and total EMPs were also higher as compared with healthy controls but in contrast to previous reports, the number of PMPs did not differ between groups.

  4. Silane grafted natural rubber and its compatibilization effect on silica-reinforced rubber tire compounds

    Directory of Open Access Journals (Sweden)

    K. Sengloyluan

    2017-12-01

    Full Text Available Natural Rubber (NR grafted with 3-octanoylthio-1-propyltriethoxysilane (NXT was prepared by melt mixing using 1,1′-di(tert-butylperoxy-3,3,5-trimethylcyclohexane as initiator at 140 °C with NXT contents of 10 and 20 parts per hundred rubber [phr] and initiator 0.1 phr. The silane grafted on NR molecules was confirmed by Fourier transform infrared (FTIR, proton nuclear magnetic resonance (1H-NMR and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX. Based on 1H-NMR, the use of 10 and 20 phr (parts per hundred resin of silane resulted in grafted NXT onto NR of 0.66 and 1.32 mol%, respectively, or a grafting efficiency of approx. 38%. The use of NXT-grafted NR as compatibilizer in silica-filled NR compounds, to give a total amount of NXT in both grafted and non-grafted forms in the range of 0.8–6.1 wt% relative to the silica, decreases the Mooney viscosity and Payne effect of the compounds, improves filler-rubber interaction, and significantly increases the tensile properties of the silica-filled NR-compounds compared to the non-compatibilized one. At the same silane-content, the use of silane-grafted NR gives slightly better properties than the straight use of the same silane. With sulfur compensation, the use of NXT-grafted-NR with about 6 wt% NXT relative to the silica gives technical properties that reach the levels obtained for straight use of bis-(3-triethoxysilyl-propyltetrasulfide (TESPT at 8.6 wt% relative to the silica.

  5. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  6. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)

    KAUST Repository

    Ahn, Juhyeon; Chung, Wookjin; Pinnau, Ingo; Song, Jingshe; Du, Naiying; Robertson, Gilles P.; Guiver, Michael D.

    2010-01-01

    Recently, high-free volume, glassy ladder-type polymers, referred to as polymers of intrinsic microporosity (PIM), have been developed and their reported gas transport performance exceeded the Robeson upper bound trade-off for O2/N2 and CO2/CH4. The present work reports the gas transport behavior of PIM-1/silica nanocomposite membranes. The changes in free volume, as well as the presence and volume of the void cavities, were investigated by analyzing the density, thermal stability, and nano-structural morphology. The enhancement in gas permeability (e.g., He, H2, O2, N2, and CO2) with increasing filler content shows that the trend is related to the true silica volume and void volume fraction. Crown Copyright © 2009.

  7. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol.

    Science.gov (United States)

    Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling

    2013-09-15

    The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The antibody-based magnetic microparticle immunoassay using p-FET sensing platform for Alzheimer's disease pathogenic factor

    Science.gov (United States)

    Kim, Chang-Beom; Kim, Kwan-Soo; Song, Ki-Bong

    2013-05-01

    The importance of early Alzheimer's disease (AD) detection has been recognized to diagnose people at high risk of AD. The existence of intra/extracellular beta-amyloid (Aβ) of brain neurons has been regarded as the most archetypal hallmark of AD. The existing computed-image-based neuroimaging tools have limitations on accurate quantification of nanoscale Aβ peptides due to optical diffraction during imaging processes. Therefore, we propose a new method that is capable of evaluating a small amount of Aβ peptides by using photo-sensitive field-effect transistor (p-FET) integrated with magnetic force-based microbead collecting platform and selenium(Se) layer (thickness ~700 nm) as an optical filter. This method demonstrates a facile approach for the analysis of Aβ quantification using magnetic force and magnetic silica microparticles (diameter 0.2~0.3 μm). The microbead collecting platform mainly consists of the p-FET sensing array and the magnet (diameter ~1 mm) which are placed beneath each sensing region of the p-FET, which enables the assembly of the Aβ antibody conjugated microbeads, captures the Aβ peptides from samples, measures the photocurrents generated by the Q-dot tagged with Aβ peptides, and consequently results in the effective Aβ quantification.

  9. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress.

    Science.gov (United States)

    Maurer-Spurej, Elisabeth; Larsen, Rune; Labrie, Audrey; Heaton, Andrew; Chipperfield, Kate

    2016-08-01

    In circulation, shedding of microparticles from a variety of viable cells can be triggered by pathological activation of inflammatory processes, by activation of coagulation or complement systems, or by physical stress. Elevated microparticle content (MPC) in donor blood might therefore indicate a clinical condition of the donor which, upon transfusion, might affect the recipient. In blood products, elevated MPC might also represent product stress. Surprisingly, the MPC in blood collected from normal blood donors is highly variable, which raises the question whether donor microparticles are present in-vivo and transfer into the final blood component, and how production methods and post-production processing might affect the MPC. We measured MPC using ThromboLUX in (a) platelet-rich plasma (PRP) of 54 apheresis donors and the corresponding apheresis products, (b) 651 apheresis and 646 pooled platelet concentrates (PCs) with plasma and 414 apheresis PCs in platelet additive solution (PAS), and (c) apheresis PCs before and after transportation, gamma irradiation, and pathogen inactivation (N = 8, 7, and 12 respectively). ThromboLUX-measured MPC in donor PRP and their corresponding apheresis PC samples were highly correlated (r = 0.82, P = .001). The average MPC in pooled PC was slightly lower than that in apheresis PC and substantially lower in apheresis PC stored with PAS rather than plasma. Mirasol Pathogen Reduction treatment significantly increased MPC with age. Thus, MPC measured in donor samples might be a useful predictor of product stability, especially if post-production processes are necessary. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Influence of inert fillers on shrinkage cracking of meta-kaolin geo-polymers

    International Nuclear Information System (INIS)

    Kuenzel, C.; Boccaccini, A.R.

    2012-01-01

    Geo-polymers contain a network of tetrahedral coordinated aluminate and silicate, and are potential materials to immobilize/encapsulate nuclear wastes. They can exhibit shrinkage cracking when water is removed by drying, and in order to use geo-polymers for waste encapsulation this effect needs to be investigated and controlled. In this study, six different fillers were mixed with meta-kaolin and sodium silicate solution at high pH to form geo-polymers, and the influence of filler addition on mechanical properties has been determined. The fillers used were Fe 2 O 3 , Al 2 O 3 , CaCO 3 , sand, glass and rubber and these do not react during geo-polymerisation reactions. Geo-polymers were prepared containing 30 weight percent of filler. The mechanical properties of the geo-polymers were influenced by the type of filler, with low density fillers increasing mortar viscosity. Geo-polymer samples containing fine filler particles exhibited shrinkage cracking on drying. This was not observed when coarser particles were added and these samples also had significantly improved mechanical properties. (authors)

  11. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  12. Effect of Coconut Fillers on Hybrid Coconut Kevlar Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S. P. Jani

    2015-12-01

    Full Text Available This project focuses on the conversion of naturally available coconut fibers and shells into a useful composite. In addition to it, some mechanical properties of the resultant composite is determined and also the effect of coconut shell fillers on the composite is also investigated. The few portion of the composite is incorporated with synthetic Kevlar fiber, thus the coconut fiber is hybridized to enhance the mechanical properties of coconut. In this work two types of composite is fabricate, kevelar coconut fibre (kc composite and kevelarcoco nut fibre coconut shell filler (kccsf composite. Coconut fibers have low weight and considerable properties among the natural fibers, while coconut fillers have a good ductile and impact property. The natural fibers and fillers are treated with Na-OH to make it free of organic impurities. Epoxy resin is used as the polymer matrix. Two composite are produced one with fillers and the other without the fillers using compression molding method. Mechanical properties like tensile strength, flexural strength and water absorption tests are done with ASTM standard. It is observed that that the addition of filler materials improves the adhesiveness of the fibers leading to the increase in the above mentioned properties. The density of the composite is also low hence the strength to weight ratio is very high. The water absorption test also showed that the resultant composite had a small adhesion to water and absorption of water.

  13. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  14. Preparation and evaluation of microparticles from thiolated polymers via air jet milling.

    Science.gov (United States)

    Hoyer, Herbert; Schlocker, Wolfgang; Krum, Kafedjiiski; Bernkop-Schnürch, Andreas

    2008-06-01

    Microparticles were formulated by incorporation of the model protein horseradish peroxidase in (thiolated) chitosan and (thiolated) poly(acrylic acid) via co-precipitation. Dried protein/polymer complexes were ground with an air jet mill and resulting particles were evaluated regarding size distribution, shape, zeta potential, drug load, protein activity, release pattern, swelling behaviour and cytotoxicity. The mean particle size distribution was 0.5-12 microm. Non-porous microparticles with a smooth surface were prepared. Microparticles from (thiolated) chitosan had a positive charge whereas microparticles from (thiolated) poly(acrylic acid) were negatively charged. The maximum protein load for microparticles based on chitosan, chitosan-glutathione (Ch-GSH), poly(acrylic acid) (PAA) and for poly(acrylic acid)-glutathione (PAA-GSH) was 7+/-1%, 11+/-2%, 4+/-0.2% and 7+/-2%, respectively. The release profile of all microparticles followed a first order release kinetic. Chitosan (0.5mg), Ch-GSH, PAA and PAA-GSH particles showed a 31.4-, 13.8-, 54.2- and a 42.2-fold increase in weight, respectively. No significant cytotoxicity could be found. Thiolated microparticles prepared by jet milling technique were shown to be stable and to have controlled drug release characteristics. After further optimizations the preparation method described here might be a useful tool for the production of protein loaded drug delivery systems.

  15. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Science.gov (United States)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  16. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    International Nuclear Information System (INIS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-01-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30–70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials

  17. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Science.gov (United States)

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiaopeng, E-mail: xpxiong@xmu.edu.cn; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju [Xiamen University, Department of Materials Science and Engineering, College of Materials (China)

    2013-08-15

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  19. Heat exchange between a microparticle and plasma. Contribution of charge transfer processes

    International Nuclear Information System (INIS)

    Uglov, A.A.; Gnedovets, A.G.

    1983-01-01

    Heat- and mass-transfer in interaction of a microparticle with a dense plasma have been considered analytically. At that, calculation methods developed as applied to probe diagnostics of slightly ionized plasma are also used in the case of relatively high degrees of ionization, at which heat flows of plasma charged particles Qe and Qi become comparable with molecular ones. High efficiency of energy transfer during electron and ion collisions with a microparticle is due to the following: 1) effective cross section of ion collision with a microparticle, which acquires in a quasineutral plasma the potential phisub(f) < 0, surpasses the geometric one; the maximum contribution of electron and ion constituent is achieved when the cross section ion collisions with a microparticle is linearly connected with its potential, 2) with a charged microparticle electrons from distribution function ''tail'' collide, their energy exceeds potential barrier near the surface and, consequently, the mean heat energy; 3) besides the energy of a microparticle thermal movement during electron recombination and ion neutralization on its surface the heat Qsub(e) and Qsub(i), which considerably exceed the heat of molecular adsorption and mean heat energy of plasma particles at kT approximately 1 eV, are transmitted to the microparticle

  20. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease

    Science.gov (United States)

    van Beers, Eduard J.; Schaap, Marianne C.L.; Berckmans, René J.; Nieuwland, Rienk; Sturk, Augueste; van Doormaal, Frederiek F.; Meijers, Joost C.M.; Biemond, Bart J.

    2009-01-01

    Background Sickle cell disease is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and circulating cell-derived microparticles. There is still no consensus on the cellular origin of such microparticles and the exact mechanism by which they may enhance coagulation activation in sickle cell disease. Design and Methods In the present study, we analyzed the origin of circulating microparticles and their procoagulant phenotype during painful crises and steady state in 25 consecutive patients with sickle cell disease. Results The majority of microparticles originated from platelets (GPIIIa,CD61) and erythrocytes (glycophorin A,CD235), and their numbers did not differ significantly between crisis and steady state. Erythrocyte-derived microparticles strongly correlated with plasma levels of markers of hemolysis, i.e. hemoglobin (r=−0.58, pmicroparticles (r=0.63, p0.05). The extent of factor XI inhibition was associated with erythrocyte-derived microparticles (r=0.50, p=0.023). Conclusions We conclude that the procoagulant state in sickle cell disease is partially explained by the factor XI-dependent procoagulant properties of circulating erythrocyte-derived microparticles. PMID:19815831