WorldWideScience

Sample records for silica low-k films

  1. Low temperature mechanical dissipation of an ion-beam sputtered silica film

    International Nuclear Information System (INIS)

    Martin, I W; Craig, K; Bassiri, R; Hough, J; Robie, R; Rowan, S; Nawrodt, R; Schwarz, C; Harry, G; Penn, S; Reid, S

    2014-01-01

    Thermal noise arising from mechanical dissipation in oxide mirror coatings is an important limit to the sensitivity of future gravitational wave detectors, optical atomic clocks and other precision measurement systems. Here, we present measurements of the temperature dependence of the mechanical dissipation of an ion-beam sputtered silica film between 10 and 300 K. A dissipation peak was observed at 20 K and the low temperature dissipation was found to have significantly different characteristics than observed for bulk silica and silica films deposited by alternative techniques. These results are important for better understanding the underlying mechanisms of mechanical dissipation, and thus thermal noise, in the most commonly-used reflective coatings for precision measurements. (paper)

  2. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    Science.gov (United States)

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  3. Low-k films modification under EUV and VUV radiation

    International Nuclear Information System (INIS)

    Rakhimova, T V; Rakhimov, A T; Mankelevich, Yu A; Lopaev, D V; Kovalev, A S; Vasil'eva, A N; Zyryanov, S M; Kurchikov, K; Proshina, O V; Voloshin, D G; Novikova, N N; Krishtab, M B; Baklanov, M R

    2014-01-01

    Modification of ultra-low-k films by extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) emission with 13.5, 58.4, 106, 147 and 193 nm wavelengths and fluences up to 6 × 10 18  photons cm −2 is studied experimentally and theoretically to reveal the damage mechanism and the most ‘damaging’ spectral region. Organosilicate glass (OSG) and organic low-k films with k-values of 1.8–2.5 and porosity of 24–51% are used in these experiments. The Si–CH 3 bonds depletion is used as a criterion of VUV damage of OSG low-k films. It is shown that the low-k damage is described by two fundamental parameters: photoabsorption (PA) cross-section σ PA and effective quantum yield φ of Si–CH 3 photodissociation. The obtained σ PA and φ values demonstrate that the effect of wavelength is defined by light absorption spectra, which in OSG materials is similar to fused silica. This is the reason why VUV light in the range of ∼58–106 nm having the highest PA cross-sections causes strong Si–CH 3 depletion only in the top part of the films (∼50–100 nm). The deepest damage is observed after exposure to 147 nm VUV light since this emission is located at the edge of Si–O absorption, has the smallest PA cross-section and provides extensive Si–CH 3 depletion over the whole film thickness. The effective quantum yield slowly increases with the increasing porosity but starts to grow quickly when the porosity exceeds the critical threshold located close to a porosity of ∼50%. The high degree of pore interconnectivity of these films allows easy movement of the detached methyl radicals. The obtained results have a fundamental character and can be used for prediction of ULK material damage under VUV light with different wavelengths. (paper)

  4. Sol-gel-derived mesoporous silica films with low dielectric constants

    Energy Technology Data Exchange (ETDEWEB)

    Seraji, S.; Wu, Yun; Forbess, M.; Limmer, S.J.; Chou, T.; Cao, Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2000-11-16

    Mesoporous silica films with low dielectric constants and possibly closed pores have been achieved with a multiple step sol-gel processing technique. Crack-free films with approximately 50% porosity and 0.9 {mu}m thicknesses were obtained, a tape-test revealing good adhesion between films and substrates or metal electrodes. Dielectric constants remained virtually unchanged after aging at room temperature at 56% humidity over 6 days. (orig.)

  5. Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors

    Institute of Scientific and Technical Information of China (English)

    Shujing Guo; Liqiang Li; Zhongwu Wang; Zeyang Xu; Shuguang Wang; Kunjie Wu; Shufeng Chen; Zongbo Zhang; Caihong Xu; Wenfeng Qiu

    2017-01-01

    Silica is one of the most commonly used materials for dielectric layer in organic thin-film transistors due to its excellent stability,excellent electrical properties,mature preparation process,and good compatibility with organic semiconductors.However,most of conventional preparation methods for silica film are generally performed at high temperature and/or high vacuum.In this paper,we introduce a simple solution spin-coating method to fabricate silica thin film from precursor route,which possesses a low leakage current,high capacitance,and low surface roughness.The silica thin film can be produced in the condition of low temperature and atmospheric environment.To meet various demands,the thickness of film can be adjusted by means of preparation conditions such as the speed of spin-coating and the concentration of solution.The p-type and n-type organic field effect transistors fabricated by using this film as gate electrodes exhibit excellent electrical performance including low voltage and high performance.This method shows great potential for industrialization owing to its characteristic of low consumption and energy saving,time-saving and easy to operate.

  6. Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    International Nuclear Information System (INIS)

    Ganjoo, S; Azimirad, R; Akhavan, O; Moshfegh, A Z

    2009-01-01

    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 deg. C and then annealed in a temperature range of 200-500 deg. C. The average water contact angle of the silica films prepared with low water content and annealed at 300 deg. C measured about 5 deg. for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle greater than 60 deg. Atomic force microscopic analysis revealed that the silica films prepared with low water had a rough surface (∼30 nm), while the films prepared with high water had a smoother surface (∼2 nm). Using x-ray photoelectron spectroscopy, we have shown that with a decrease in the surface water on the film, its hydrophilicity increases logarithmically.

  7. Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi-Firouzjah, Marzieh [Semnan Science and Technology Park, 3614933578, Shahrood (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Laser & Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of)

    2015-02-27

    Structural and optical properties of low refractive index fluorinated silica (SiO{sub x}C{sub y}F{sub z}) films were investigated. The films were deposited on p-type silicon and polycarbonate substrates by radio frequency plasma enhanced chemical vapor deposition method at low temperatures. A mixture of tetraethoxysilane vapor, oxygen, and CF{sub 4} was used for deposition of the films. The influence of oxygen flow rate on the elemental compositions, chemical bonding states and surface roughness of the films was studied using energy dispersive X-ray analyzer, Fourier transform infrared spectroscopy in reflectance mode and atomic force microscopy, respectively. Effects of chemical bonds of the film matrix on optical properties and chemical stability were discussed. Energy dispersive spectroscopy showed high fluorine content in the SiO{sub x}C{sub y}F{sub z} film matrix which is in the range of 7.6–11.3%. It was concluded that in fluorine content lower than a certain limit, chemical stability of the film enhances, while higher contents of fluorine heighten moisture absorption followed by increasing refractive index. All of the deposited films were highly transparent. Finally, it was found that the refractive index of the SiO{sub x}C{sub y}F{sub z} film was continuously decreased with the increase of the O{sub 2} flow rate down to the minimum value of 1.16 ± 0.01 (at 632.8 nm) having the most ordered and nano-void structure and the least organic impurities. This sample also had the most chemical stability against moisture absorption. - Highlights: • Low deposition temperature and organic precursor led to higher film fluorination. • High fluorine and nanovoid structure led to drastic decrease in the refractive index. • Silica based thin film with ultralow refractive index of 1.16 was produced. • The produced ultralow-n film is highly stable against moisture absorption.

  8. Tailoring of the Nanotexture of Mesoporous Silica Films and their Functionalized Derivatives for Selectively Harvesting Low Molecular Weight Protein

    Science.gov (United States)

    Hu, Ye; Bouamrani, Ali; Tasciotti, Ennio; Li, Li; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    We present a fast, efficient and reliable system based on mesoporous silica chips to specifically fractionate and enrich the low molecular weight proteome. Mesoporous silica thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different templates and concentrations in the precursor solution, various pore size distributions, pore structures and connectivity were obtained and applied for selective recovery of low mass proteins. In combination with mass spectrometry and statistic analysis, we demonstrated the correlation between the nanophase characteristics of the mesoporous silica thin films and the specificity and efficacy of low mass proteome harvesting. In addition, to overcome the limitations of the pre-functionalization method in polymer selection, plasma ashing was used for the first time for the treatment of the mesoporous silica surface prior to chemical modification. Surface charge modifications by different functional groups resulted in a selective capture of the low molecular weight proteins from serum sample. In conclusion our study demonstrates that the ability to tune the physico-chemical properties of mesoporous silica surfaces, for a selective enrichment of the low molecular weight proteome from complex biological fluids, has the potential to promote proteomic biomarker discovery. PMID:20014864

  9. Preparation and Characterization of Silica/Polyamide-imide Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    Hwang Jong-Sun

    2010-01-01

    Full Text Available Abstract The functional silica/polyamide-imide composite films were prepared via simple ultrasonic blending, after the silica nanoparticles were modified by cationic surfactant—cetyltrimethyl ammonium bromide (CTAB. The composite films were characterized by scanning electron microscope (SEM, thermo gravimetric analysis (TGA and thermomechanical analysis (TMA. CTAB-modified silica nanoparticles were well dispersed in the polyamide-imide matrix, and the amount of silica nanoparticles to PAI was investigated to be from 2 to 10 wt%. Especially, the coefficients of thermal expansion (CET continuously decreased with the amount of silica particles increasing. The high thermal stability and low coefficient of thermal expansion showed that the nanocomposite films can be widely used in the enamel wire industry.

  10. Structure and properties of low-n mesoporous silica films for optical applications

    International Nuclear Information System (INIS)

    Konjhodzic, Denan; Bretinger, Helmut; Marlow, Frank

    2006-01-01

    The properties and structure of the mesoporous silica films synthesized by dip-coating in evaporation-induced self-assembly are investigated. The nonionic triblock copolymer EO 2 PO 7 EO 2 has been used as a template in this modified sol-gel process. A strong dependence of the formed structure on the processing conditions, especially humidity, has been revealed allowing an appreciable structure tuning. Low humidity allows the reproducible synthesis of low refractive index films, which were used as optical waveguide supports. They are crack-free, transparent, thermally stable, very smooth, and have a thickness up to 1 μm. Under higher humidity conditions a novel sustained lamellar structure was synthesized, that remains stable upon calcination. The films were characterized by angle-dependent interferometry, small angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). 2D photonic crystals made of different materials, such as polymers can be deposited onto these films

  11. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  12. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  13. Mechanical characterization of zeolite low dielectric constant thin films by nanoindentation

    International Nuclear Information System (INIS)

    Johnson, Mark; Li Zijian; Wang Junlan; Ya, Yushan

    2007-01-01

    With semiconductor technologies continuously pushing the miniaturization limits, there is a growing interest in developing novel low dielectric constant materials to replace the traditional dense SiO 2 insulators. In order to survive the multi-level integration process and provide reliable material and structure for the desired integrated circuits (IC) functions, the new low-k materials have to be mechanically strong and stable. Therefore the material selection and mechanical characterization are vital for the successful development of next generation low-k dielectrics. A new class of low-k materials, nanoporous pure-silica zeolite, is prepared in thin films using IC compatible spin coating process and characterized using depth sensing nanoindentation technique. The elastic modulus of the zeolite thin films is found to be significantly higher than that of other low-k materials with similar porosity and dielectric constants. Correlations between the mechanical, microstructural and electrical properties of the thin films are discussed in detail

  14. Low molecular weight protein enrichment on mesoporous silica thin films for biomarker discovery.

    Science.gov (United States)

    Fan, Jia; Gallagher, James W; Wu, Hung-Jen; Landry, Matthew G; Sakamoto, Jason; Ferrari, Mauro; Hu, Ye

    2012-04-17

    The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.(1-3) The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.(4,5) Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.(6) Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.(7-9) Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.(10,11) Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass

  15. Nanotexture Optimization by Oxygen Plasma of Mesoporous Silica Thin Film for Enrichment of Low Molecular Weight Peptides Captured from Human Serum

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Brousseau, Louis; Bouamrani, Ali; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    This study investigated the optimization of mesoporous silica thin films by nanotexturing using oxygen plasma versus thermal oxidation. Calcination in oxygen plasma provides superior control over pore formation with regard to the pore surface and higher fidelity to the structure of the polymer template. The resulting porous film offers an ideal substrate for the selective partitioning of peptides from complex mixtures. The improved chemico-physical characteristics of porous thin films (pore size distribution, nanostructure, surface properties and pore connectivity) were systematically characterized with XRD, Ellipsometry, FTIR, TEM and N2 adsorption/desorption. The enrichment of low molecular weight proteins captured from human serum on mesoporous silica thin films fabricated by both methodologies were investigated by comparison of their MALDI-TOF MS profiles. This novel on-chip fractionation technology offers advantages in recovering the low molecular weight peptides from human serum, which has been recognized as an informative resource for early diagnosis of cancer and other diseases. PMID:21179395

  16. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  17. Adhesion study of low-k/Si system using 4-point bending and nanoscratch test

    International Nuclear Information System (INIS)

    Damayanti, M.; Widodo, J.; Sritharan, T.; Mhaisalkar, S.G.; Lu, W.; Gan, Z.H.; Zeng, K.Y.; Hsia, L.C.

    2005-01-01

    Chemical vapour deposited (CVD) low-k films using tri-methyl-silane (3MS) and tetra-methyl cyclo-tetra-siloxanes (TMCTS) precursors were studied. A 4-point bend test (4PBT) was performed to assess the adhesion property of the low-k films to Si substrates and the results were compared with that of simpler method, nanoscratch test (NST), as a quality control tool despite its drawbacks. Adhesion energy, G c , of the low-k/Si interface as measured by 4PBT and critical scratch load, P c , as obtained by NST display a linear relationship with hardness and modulus of the low-k film. The lowering of G c as the hardness of the film decreases can be explained by the effects of the C introduction into the Si-O networks found in these films. Lower carbon content for higher hardness films is thought to cause them to be more 'silica-like', and thus, exhibit better adhesion with the Si substrate. Two failure modes were observed for specimens under 4PBT. On one hand, films with low hardness ( c ( 2 ) with an adhesive separation of low-k from the Si substrate. On the other hand, films of high hardness (>5 GPa) display interfacial energies in excess of 10 J/m 2 with delamination of epoxy from the Si substrate, thus, indicating excellent adhesion between the low-k films and Si substrate. For the low hardness films, good correlation exists between P c and G c . However, the two data points of the high hardness films that gave the two highest P c and G c values do not lie on the correlation line drawn for the low hardness film data points due to different factors governing the failure in both tests and a change in the 4PBT failure mechanism

  18. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  19. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  20. Colloidal silica films for high-capacity DNA arrays

    Science.gov (United States)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  1. Preparing hydrophobic nanocellulose-silica film by a facile one-pot method.

    Science.gov (United States)

    Le, Duy; Kongparakul, Suwadee; Samart, Chanatip; Phanthong, Patchiya; Karnjanakom, Surachai; Abudula, Abuliti; Guan, Guoqing

    2016-11-20

    Hydrophobic nanocellulose-silica film was successfully prepared by a facile one-pot method using tetraethoxysilane (TEOS) and dodecyl triethoxylsilane (DTES). Morphological characterization of the hydrophobic nanocellulose-silica (NC-SiO2-DTES) film showed well self-assembled DTES modified silica spherical nanoparticles with the particle sizes in the range of 88-126nm over the nanocellulose film. The hydrophobicity of the NC-SiO2-DTES film was achieved owing to the improvement of roughness of the nanocellulose film by coating dodecyl- terminated silica nanoparticles. An increase in DTES loading amount and reaction time increased the hydrophobicity of the film, and the optimum condition for NC-SiO2-DTES film preparation was achieved at DTES/TEOS molar ratio of 2.0 for 8h reaction time. Besides, the NC-SiO2-DTES film performed superoleophilic property with octane and hexadecane contact angles of 0°. It also showed an excellent hydrophobic property over all pH values ranged from 1 to 14. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of cesium ion-implantation on mechanical and electrical properties of organosilicate low-k films

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Pei, D.; Guo, X.; Cheng, M. K.; Lee, S.; Shohet, J. L. [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Lin, Q. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); King, S. W. [Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-05-16

    The effects of cesium (Cs) ion-implantation on uncured plasma-enhanced chemical-vapor-deposited organosilicate low dielectric constant (low-k) (SiCOH) films have been investigated and compared with an ultraviolet (UV) cured film. The mechanical properties, including the elastic modulus and hardness, of the SiCOH low-k films are improved by up to 30% with Cs implantation, and further up to 52% after annealing at 400 °C in a N{sub 2} ambient for 1 h. These improvements are either comparable to or better than the effects of UV-curing. They are attributed to an enhancement of the Si-O-Si network structure. The k-value of the SiCOH films increased slightly after Cs implantation, and increased further after annealing. These increases are attributed to two carbon-loss mechanisms, i.e., the carbon loss due to Si-CH{sub 3} bond breakage from implanted Cs ions, and the carbon loss due to oxidation during the annealing. The time-zero dielectric breakdown strength was improved after the Cs implantation and the annealing, and was better than the UV-cured sample. These results indicate that Cs ion implantation could be a supplement to or a substitution for the currently used UV curing method for processing SiCOH low-k films.

  3. A methodology for the preparation of nanoporous polyimide films with low dielectric constants

    International Nuclear Information System (INIS)

    Jiang Lizhong; Liu Jiugui; Wu Dezhen; Li Hangquan; Jin Riguang

    2006-01-01

    A method to generate nanoporous polyimide films with low dielectric constants was proposed. The preparation consisted of two steps. Firstly, a polyimide/silica hybrid film was prepared via sol-gel process. Secondly, the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 20 and 120 nm, depending on the size of silica particles. Both hybrid and porous films were subjected to a variety of characterizations including transmission electron microscopy observation, dielectric constant measurement and tensile strength measurement

  4. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid

    International Nuclear Information System (INIS)

    Yang, Hao; Pi, Pihui; Yang, Zhuo-ru; Lu, Zhong; Chen, Rong

    2016-01-01

    Graphical abstract: - Highlights: • Cured fluoropolymer@silica hybrid was coated on stainless steel mesh. • The hybrid film showed superhydrophobicity and superoleophilicity by adjusting silica dosage. • The hybrid film exhibited good thermal stability and excellent oil/water separation efficiency. - Abstract: Recently, considerable efforts have been made on superhydrophobic–superoleophilic filter to satisfy the requirements of the applications to oil/water separation. In this work, we obtained a superhydrophobic and superoleophilic film by coating cured fluoropolymer@silica hybrid on stainless steel mesh. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric-differential scanning calorimetry (TG-DSC) were used to determine the chemical composition and thermal stability of the sample. The effect of silica nanoparticles (NPs) concentration on the surface property of the hybrid film was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle analyzer. The results indicate that silica NPs not only enhance the thermal stability, but also strengthen the hydrophobicity and oleophilicity of the film. When 20 wt% silica NPs was added into the thermosetting fluoropolymer, the hybrid film shows both superhydrophobicity and superoleophilicity owing to the large surface roughness factor (RMS) and porous structure. Moreover, the hybrid film could be used to separate water from different oils effectively. When the pore size of the mesh is less than 300 μm, the oil/water separation efficiency of the film reaches above 99%, which shows a great potential application to dehydrate fuel oils.

  5. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao [Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Street, Wuhan, 430073 (China); Pi, Pihui; Yang, Zhuo-ru [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 (China); Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Street, Wuhan, 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Street, Wuhan, 430073 (China)

    2016-12-01

    Graphical abstract: - Highlights: • Cured fluoropolymer@silica hybrid was coated on stainless steel mesh. • The hybrid film showed superhydrophobicity and superoleophilicity by adjusting silica dosage. • The hybrid film exhibited good thermal stability and excellent oil/water separation efficiency. - Abstract: Recently, considerable efforts have been made on superhydrophobic–superoleophilic filter to satisfy the requirements of the applications to oil/water separation. In this work, we obtained a superhydrophobic and superoleophilic film by coating cured fluoropolymer@silica hybrid on stainless steel mesh. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric-differential scanning calorimetry (TG-DSC) were used to determine the chemical composition and thermal stability of the sample. The effect of silica nanoparticles (NPs) concentration on the surface property of the hybrid film was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle analyzer. The results indicate that silica NPs not only enhance the thermal stability, but also strengthen the hydrophobicity and oleophilicity of the film. When 20 wt% silica NPs was added into the thermosetting fluoropolymer, the hybrid film shows both superhydrophobicity and superoleophilicity owing to the large surface roughness factor (RMS) and porous structure. Moreover, the hybrid film could be used to separate water from different oils effectively. When the pore size of the mesh is less than 300 μm, the oil/water separation efficiency of the film reaches above 99%, which shows a great potential application to dehydrate fuel oils.

  6. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  7. Positron annihilation studies of mesoporous silica films using a slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi; Ito, Kenji; Kabayashi, Yoshinori

    2006-01-01

    Positron annihilation lifetime spectra were measured for mesoporous silica films, which were synthesized using triblock copolymer (EO 106 PO 70 EO 106 ) as a structure-directing agent. Different positron lifetime spectra for the deposited and calcined films indicated the formation of meso-structure after calcination, which was confirmed by Fourier transform infrared (FTIR) spectra and field emission-scanning electron microscopy (FE-SEM) observation. Open porosity or pore interconnectivity of a silica film might be evaluated by a two-dimensional positron annihilation lifetime spectrum of an uncapped film. Pore sizes and their distributions in the silica films were found to be affected by thermal treatments

  8. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  9. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    Science.gov (United States)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  10. Densification of zirconia films by coevaporation with silica

    International Nuclear Information System (INIS)

    Feldman, A.; Farabaugh, E.N.

    1985-04-01

    Optical films of zirconia have been receiving considerable attention because of their potential use as the high-index layer in multilayer optical coatings for the ultraviolet portion of the spectrum. Several problems are associated with electron-beam deposited zirconia films, including index instability and index inhomogeneity. The index instability is caused by the adsorption and the desorption of water in the porous columnar structure of the zirconia films. Index inhomogeneity is due to the inhomogeneous structure in the films. Recent work has shown that the first several tens of nanometers of a film possess a cubic structure, whereas the outmost layers possess a monoclinic structure. One approach for producing bulk-like zirzonia films that is receiving considerable attention at present is ion-assisted electron-beam deposition. This is because the method has successfully produced zirconia films having bulk-like densities and refractive indices that show insignificant sensitivity to water adsorption. In this paper a similar effect is demonstrated when mixed zirconia:silica films are produced by coevaporation from independent electron-beam sources, and, in particular, it is shown that the admixture of a small amount of silica with the zirconia produces a film possessing a higher refractive index than a pure zirconia film

  11. Brillouin light scattering studies on the mechanical properties of ultrathin, porous low-K dielectric films

    Science.gov (United States)

    Zhou, Wei; Sooryakumar, R.; King, Sean

    2010-03-01

    Low K dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric material for interconnects in state of the art integrated circuits. To further reduce interconnect resistance-capacitance (RC) delays, additional reductions in the K for these low-K materials is being pursued by the introduction of controlled levels of porosity. The main challenge for porous low-K dielectrics is the substantial reduction in mechanical properties that is accompanied by the increased pore volume content needed to reduce K. We report on the application of the nondestructive Brillouin light scattering technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200 nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for the principal elastic constants that completely characterize the mechanical properties of these porous films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. The resulting elastic constants are compared with corresponding values obtained from other experimental techniques.

  12. Improvement of RVNRL film properties by adding fumed silica and hydroxy apatite

    Directory of Open Access Journals (Sweden)

    Adul Thiangchanya

    2003-01-01

    Full Text Available The effect of adding fumed silica and hydroxy apatite to Radiation Vulcanized Natural Rubber Latex (RVNRL for improving tear strength, aging properties, degradability and water-soluble protein content of rubber films has been investigated. The addition of fumed silica and hydroxy apatite in RVNRL improves tear strength and aging properties of rubber films, whereas tensile strength and degradability of rubber films were unchanged during storage at room temperature. The water-soluble protein content in rubber films was reduced by immobilization of the fumed silica and hydroxy apatite and enhanced by addition of ZnO. This may reduce allergy problems of natural rubber latex products caused by water-soluble protein. The MST of the RVNRL with fumed silica and hydroxy apatite indicated that the latex must be used within two months after mixing because of its stability.

  13. Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films

    Science.gov (United States)

    Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.

    2006-07-01

    In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.

  14. SIMS studies of low-K materials

    International Nuclear Information System (INIS)

    Lin Xuefeng; Smith, Stephen P.

    2006-01-01

    We report progress in conducting quantitative SIMS analyses of low-K materials. Electron-beam (e-beam) pre-irradiation of SIMS measurement sites was used to study the e-beam-induced effects on SIMS depth profiling of a porous organosilicate low-K material. Pre-irradiation of the sample surface using the e-beam causes a reduction in the thickness of the low-K film. SIMS profiling was used to sputter to identifiable marker positions within the pre-irradiated film. Physical measurement of the thickness of the remaining film was used to show that the e-beam-induced reduction in thickness occurs uniformly throughout the pre-irradiated film. Exposure of the film to the e-beam prior to SIMS analysis also resulted in minor changes in the composition of the film. However, pre-irradiation of the film is not part of the normal SIMS measurement procedure. We conclude that when the e-beam irradiation is used only for charge compensation during SIMS depth profiling, the SIMS analysis of the low-K material will not be significantly affected

  15. Tunable pores in mesoporous silica films studied using a pulsed slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Oshima, Nagayasu; Kinomura, Atsushi; Suzuki, Ryoichi; Kobayashi, Yoshinori

    2007-01-01

    Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was applied to study mesoporous silica films, synthesized using amphiphilic PEO-PPO-PEO triblock copolymers as structure-directing agents. The pore size depends on the loading of different templates. Larger pores were formed in silica films templated by copolymers with higher molecular-weights. Using 2-dimensional PALS, open porosity of silica films was also found to be influenced by the molecular-weight as well as the ratio of hydrophobic PPO moiety of the templates

  16. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  17. Future directions of positron annihilation spectroscopy in low-k dielectric films

    International Nuclear Information System (INIS)

    Gidley, D.W.; Vallery, R.S.; Liu, M.; Peng, H.G.

    2007-01-01

    Positronium Annihilation Lifetime Spectroscopy (PALS) has become recognized in the microelectronics industry as one of only several methods capable of quantitatively characterizing engineered nanopores in next-generation (k < 2.2) interlayer dielectric (ILD) thin films. Successes and shortcomings of PALS to date will be assessed and compared with other methods of porosimetry such as ellipsometric and X-ray porosimetries (EP and XRP). A major theme in future low-k research focuses on the ability to integrate porous ILD's into chip fabrication; the vulnerability of porous dielectrics to etching, ashing, and chemical-mechanical polishing in process integration is delaying the introduction of ultra-low-k films. As device size approaches 45 nm the need to probe very small (sub-nanometer), semi-isolated pores beneath thin diffusion barriers is even more challenging. Depth-profiled PALS with its ability to determine a quantitative pore interconnection length and easily resolve 0.3 nm pores beneath diffusion barriers or in trench-patterned dielectrics should have a bright future in porous ILD research. The ability of PALS (and PAS in general) to deduce evolution and growth of pores with porosity should find broad applicability in the emerging field of high performance materials with strategically engineered nanopores. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    Directory of Open Access Journals (Sweden)

    Marina Kurohiji

    2018-01-01

    Full Text Available A robust fiber Bragg grating (FBG hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2 catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor solution. The atom ratio of Si : Pt was fixed at 13 : 1. A small amount of this solution was dropped on the substrate and dried at room temperature. After that, the film was calcined at 500°C in air. These procedures were repeated and therefore thick hydrogen-sensitive films were obtained. The catalytic film obtained by 20-time coating on quartz glass substrate showed a temperature change 75 K upon exposure to 3 vol.% H2. For realizing robust sensor device, this catalytic film was deposited and FBG portion was directly fixed on titanium substrate. The sensor device showed good performances enough to detect hydrogen gas in the concentration range below lower explosion limit at room temperature. The enhancement of the sensitivity was attributed to not only catalytic combustion heat but also related thermal strain.

  19. Characterization of transparent silica films deposited on polymeric materials

    International Nuclear Information System (INIS)

    Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O.

    2002-01-01

    Silica films were synthesized by capacitively coupled RF PECVD using mixtures of organo-silane and oxygen as a source. The chemical bonding states and compositions of the films deposited were evaluated with FTIR and XPS. Film surfaces and cross-sections were observed by SEM. Oxygen transmission rates (OTR) of the films coated on polyethylene terephthalate (PET) substrates were measured by an isopiestic method. (Authors)

  20. Mechanical property changes in porous low-k dielectric thin films during processing

    Energy Technology Data Exchange (ETDEWEB)

    Stan, G., E-mail: gheorghe.stan@nist.gov; Gates, R. S. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kavuri, P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Torres, J.; Michalak, D.; Ege, C.; Bielefeld, J.; King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2014-10-13

    The design of future generations of Cu-low-k dielectric interconnects with reduced electronic crosstalk often requires engineering materials with an optimal trade off between their dielectric constant and elastic modulus. This is because the benefits associated with the reduction of the dielectric constant by increasing the porosity of materials, for example, can adversely affect their mechanical integrity during processing. By using load-dependent contact-resonance atomic force microscopy, the changes in the elastic modulus of low-k dielectric materials due to processing were accurately measured. These changes were linked to alterations sustained by the structure of low-k dielectric films during processing. A two-phase model was used for quantitative assessments of the elastic modulus changes undergone by the organosilicate skeleton of the structure of porous and pore-filled dielectrics.

  1. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  2. Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates

    International Nuclear Information System (INIS)

    Guseva, D. V.; Komarov, P. V.; Lyulin, Alexey V.

    2014-01-01

    Constant temperature–constant pressure (NpT) molecular-dynamics computer simulations have been carried out for the united-atom model of a non-crosslinked (1,4) cis-polyisoprene (PI) melt confined between two amorphous, fully coordinated silica surfaces. The Lennard-Jones 12-6 potential was implemented to describe the polymer–silica interactions. The thickness H of the produced PI–silica film has been varied in a wide range, 1 g g is the individual PI chain radius of gyration measured under the imposed confinement. After a thorough equilibration, the PI film stratified structure and polymer segmental dynamics have been studied. The chain structure in the middle of the films resembles that in a corresponding bulk, but the polymer-density profile shows a pronounced ordering of the polymer segments in the vicinity of silica surfaces; this ordering disappears toward the film middles. Tremendous slowing down of the polymer segmental dynamics has been observed in the film surface layers, with the segmental relaxation more than 150 times slower as compared to that in a PI bulk. This effect increases with decreasing the polymer-film thickness. The segmental relaxation in the PI film middles shows additional relaxation process which is absent in a PI bulk. Even though there are fast relaxation processes in the film middle, its overall relaxation is slower as compared to that in a bulk sample. The interpretation of the results in terms of polymer glassy bridges has been discussed

  3. Action of colloidal silica films on different nano-composites

    Directory of Open Access Journals (Sweden)

    S. Abdalla

    Full Text Available Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer. Keywords: Dielectric break down, Polymers, Nano-composite, Colloidal silica

  4. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    Science.gov (United States)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  5. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  6. Molecular insight into nanoscale water films dewetting on modified silica surfaces.

    Science.gov (United States)

    Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang

    2015-01-07

    In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

  7. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Patel, N; Mariazzi, S; Toniutti, L; Checchetto, R; Miotello, A; Dire, S; Brusa, R S

    2007-01-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 deg. C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 deg. C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 deg. C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO 3 ) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol

  8. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    Science.gov (United States)

    Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.

    2007-09-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.

  9. Ageing-induced enhancement of open porosity of mesoporous silica films studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Oshima, Nagayasu; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi

    2006-01-01

    We show that ageing of the silica sol in a closed vessel enhanced the open porosity of calcined mesoporous silica film studied by positron. Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was used to estimate the mesopore size. 2-dimensional PALS (2D-PALS) and ortho-positronium time-of-flight (Ps-TOF) were used to evaluate the open porosity, interconnectivity and tortuosity of mesopores in the silica films. Results revealed that little change in pore size but significant enhancement of open porosity and/or pore interconnectivity occurred in the silica film deposited after the precursor solution aged for a relative longer time

  10. Reinforcement of LENRA film by in-situ generated silica produced by sol gel process

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Eda Yuhana Ariffin; Dahlan Mohd; Ibrahim Abdullah

    2008-08-01

    Liquid epoxidised natural rubber acrylate (LENRA) film was reinforced with silica-siloxane structures formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethylorthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reaction was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. Instrumental analysis was carried out by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA) and FTIR. It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. In this work, the effects of TEOS composition on mechanical properties and interaction that occurs between fillers and matrix have also been studied. It was observed that increasing the concentration of TEOS improved the scratch and stress properties of the film. Morphology study by the scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at low concentrations of TEOS. (Author)

  11. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    Science.gov (United States)

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  12. Liquid phase deposition of silica: Thin films, colloids and fullerenes

    Science.gov (United States)

    Whitsitt, Elizabeth A.

    Little research has been done to explore liquid phase deposition (LPD) of silica on non-planar substrates. This thesis proves that the seeded growth of silica colloids from fullerene and surfactant micelles is possible via LPD, as is the coating of individual single walled carbon nanotubes (SWNTs) and carbon fibers. Working on the premise that a molecular growth mechanism (versus colloidal/gel deposition) is valid for LPD, nanostructured substrates and specific chemical functional groups should act as "seeds," or templates, for silica growth. Seeded growth is confirmed by reactions of the growth solution with a range of surfactants and with materials with distinctive surface moieties. LPD promises lower production costs and environmental impact as compared to present methods of coating technology, because it is an inherently simple process, using low temperatures and inexpensive air-stable reactants. Silica is ubiquitous in materials science. Its applications range from thixotropic additives for paint to gate dielectrics in the semiconductor industry. Nano-structured coatings and thin films are integral in today's electronics industry and will become more vital as the size of electronics shrinks. With the incorporation of nanoparticles in future devices, the ability to deposit quality coatings with finely tuned properties becomes paramount. The methods developed herein have applications in fabricating insulators for use in the future molecular scale electronics industry. Additionally, these silica nanoparticles have applications as templates for use in photonics and fuel cell membrane production and lend strength and durability to composites.

  13. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  14. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties

    International Nuclear Information System (INIS)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2014-01-01

    Highlights: • Superhydrophobic silica film was prepared by sol–gel process. • The surfaces exhibited superhydrophobicity with water contact angle greater than 150°. • AFM images showed the roughness increases with increasing the percentage of silylation agent. • Before and after modification, the particle size of silica was lower than 50 nm. - Graphical abstract: Schematic illustration of the surface modification of the silica nanoparticle by iso-OTMS on the glass substrate. - Abstract: In this paper, we study the two-step dip coating via a sol–gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H 2 O) was kept constant at 1:36:6.6 respectively, with 6 M NH 4 OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO 2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG–DTA analysis

  15. Compressive properties of silica aerogel at 295, 76, and 20K

    International Nuclear Information System (INIS)

    Arvidson, J.M.; Scull, L.L.

    1986-01-01

    Specimens of silica aerogel were tested in compression at 295, 76, and 20 K in a helium gas environment. The properties reported include Young's modulus, the proportional limit, and yield strength. Compressive stress-versus-strain curves at these temperatures are also given. A test apparatus was developed specifically to determine the compressive properties of low strength materials. To measure specimen strain a concentric, overlapping-cylinder, capacitance extensometer was developed. This frictionless device has the capability to conduct variable temperature tests at any temperature from 1.8 to 295 K. Results from the compression tests indicate that at low temperatures the material is not only stronger, but tougher. During 295-K compression tests, the samples fractured and, in some cases, crumbled. After 76- or 20-K compression tests, the specimens remained intact

  16. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  17. Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Saputra, Riza Eka; Astuti, Yayuk; Darmawan, Adi

    2018-06-01

    This work investigated the synthesis of dimethoxydimethylsilane:tetraethoxysilane (DMDMS:TEOS) silica thin films as well as the effect of DMDMS:TEOS molar ratios and calcination temperature on hydrophobic properties of silica thin films and its correlation with the FTIR spectra behaviour. The silica thin films were synthesized by sol-gel method using combination of DMDMS and TEOS as silica precursors, ethanol as solvent and ammonia as catalyst, with DMDMS and TEOS molar ratio of 10:90, 25:75, 50:50, 75:25 and 90:10. The results showed that DMDMS:TEOS molar ratio had significant impact on the hydrophobic properties of silica thin films coated on a glass surface. Furthermore, the correlation between water contact angle (WCA) and DMDMS:TEOS molar ratio was found to be in a parabolic shape. Concurrently, the maximum apex of the parabola obtained was observed on the DMDMS:TEOS molar ratio of 50:50 for all calcination temperature. It was clearly observed that the silica xerogel exhibiting notable change in relative peak intensities showed FTIR peak splitting of υasymmetric Si-O-Si. To uncover what happened at the FTIR peak, the deconvolution was conducted in Gaussian approach. It was established that the changes in the Gaussian peak component were related to DMDMS:TEOS molar ratios and the calcination temperature that allowed us to tailor the DMDMS:TEOS silica polymer structure model based on the peak intensity ratios. With the increase of DMDMS:TEOS molar ratio, the ratio of (cyclic Si-O-Si)/(linear Si-O-Si) decreased, whilst the ratio of (C-H)/(linear Si-O-Si) increased. Both ratios intersected at DMDMS:TEOS molar ratio of 50:50 with contribution factor ratio of 1:16 and 1:50 for silica xerogel calcined at 300 °C and 500 °C respectively. The importance of this research is the DMDMS:TEOS molar ratio plays an important role in determining the hydrophobic properties of thin films.

  18. Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Saputra, Riza Eka; Astuti, Yayuk; Darmawan, Adi

    2018-03-14

    This work investigated the synthesis of dimethoxydimethylsilane:tetraethoxysilane (DMDMS:TEOS) silica thin films as well as the effect of DMDMS:TEOS molar ratios and calcination temperature on hydrophobic properties of silica thin films and its correlation with the FTIR spectra behaviour. The silica thin films were synthesized by sol-gel method using combination of DMDMS and TEOS as silica precursors, ethanol as solvent and ammonia as catalyst, with DMDMS and TEOS molar ratio of 10:90, 25:75, 50:50, 75:25 and 90:10. The results showed that DMDMS:TEOS molar ratio had significant impact on the hydrophobic properties of silica thin films coated on a glass surface. Furthermore, the correlation between water contact angle (WCA) and DMDMS:TEOS molar ratio was found to be in a parabolic shape. Concurrently, the maximum apex of the parabola obtained was observed on the DMDMS:TEOS molar ratio of 50:50 for all calcination temperature. It was clearly observed that the silica xerogel exhibiting notable change in relative peak intensities showed FTIR peak splitting of υ asymmetric Si-O-Si. To uncover what happened at the FTIR peak, the deconvolution was conducted in Gaussian approach. It was established that the changes in the Gaussian peak component were related to DMDMS:TEOS molar ratios and the calcination temperature that allowed us to tailor the DMDMS:TEOS silica polymer structure model based on the peak intensity ratios. With the increase of DMDMS:TEOS molar ratio, the ratio of (cyclic Si-O-Si)/(linear Si-O-Si) decreased, whilst the ratio of (C-H)/(linear Si-O-Si) increased. Both ratios intersected at DMDMS:TEOS molar ratio of 50:50 with contribution factor ratio of 1:16 and 1:50 for silica xerogel calcined at 300°C and 500°C respectively. The importance of this research is the DMDMS:TEOS molar ratio plays an important role in determining the hydrophobic properties of thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  20. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  1. Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implants.

    Science.gov (United States)

    Miranda, R B P; Grenho, L; Carvalho, A; Fernandes, M H; Monteiro, F J; Cesar, P F

    2018-03-01

    This investigation aimed at developing micropatterned silica thin films (MSTFs) containing nanohydroxyapatite (nano-HA) microaggregates that were not completely covered by silica so that they could directly interact with the surrounding cells. The objectives were 1) to evaluate the effect of the presence of 2 films (MSTF with or without nano-HA addition) on the characteristic strength (σ 0 ) and Weibull modulus ( m) of a yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and 2) to evaluate the effect of these 2 films, as applied onto the Y-TZP surface, on the morphology, orientation, and proliferation of MG63 cells. Sol-gel process and soft lithography were used to apply the MSTF onto the Y-TZP specimens. Three experimental groups were produced: Y-TZP, Y-TZP + MSTF, and Y-TZP + MSTF + sprayed nano-HA. All surfaces were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy and tested for 4-point flexural strength ( n = 30) in water at 37 °C. Weibull analysis was used to determine m and σ 0 (maximum likelihood method). In vitro biological behavior was performed with human osteoblast-like cells (MG63). Y-TZP was successfully coated with MSFT and MSFT + nano-HA. Scanning electron microscopy micrographs indicated that the microaggregates of nano-HA were not entirely covered by the silica. There was no statistically significant difference among the experimental groups for σ 0 and m. In the groups containing the films, the cells were elongated and aligned along the lines. The MSFT + nano-HA group showed significantly higher cell metabolic activity than that obtained for the Y-TZP group at day 7. This investigation was successful in producing an MSTF containing nano-HA microaggregates that remained exposed to the environment. The developed films did not jeopardize the structural reliability of a commercial Y-TZP, as confirmed by the Weibull statistics. The MG63 cells seeded over the films became elongated and aligned along the

  2. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Ribeiro

    2017-10-01

    Full Text Available The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles. Superior bilayer deposition took place from lipid films, whereas adsorption from pre-formed bilayer fragments yielded limiting adsorption below the levels expected for bilayer adsorption.

  3. Photochemical oxygen reduction by zinc phthalocyanine and silver/gold nanoparticle incorporated silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Manas; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Azad, Uday Pratap

    2012-12-15

    Silver or gold nanoparticles are synthesized using a borohydride reduction method and are anchored simultaneously into/onto the mercaptopropyl functionalized silica. Later, zinc phthalocyanine is adsorbed onto the above materials. Thin films of these materials are prepared by coating an aqueous colloidal suspension of the respective material onto glass plates. Visible light irradiation of these films in oxygen saturated, stirred aqueous solutions effectively reduces oxygen to hydrogen peroxide. The photocatalytic reduction of oxygen is explained on the basis of the semiconducting properties of the silica films. The back electron transfer reaction is largely prevented by means of a sacrificial electron donor, triethanolamine. - Highlights: Black-Right-Pointing-Pointer Zinc phthalocyanine adsorbed silica materials were prepared. Black-Right-Pointing-Pointer Thin films of these materials photocatalytically reduce oxygen. Black-Right-Pointing-Pointer The photocatalysis is explained based on semiconductor properties of the materials. Black-Right-Pointing-Pointer Metal nanoparticles increase the photocatalytic efficiency of the materials.

  4. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  5. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  6. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification.

    Science.gov (United States)

    Kadhom, Mohammed; Yin, Jun; Deng, Baolin

    2016-12-06

    Thin film nanocomposite (TFN) membranes containing MCM-41 silica nanoparticles (NPs) were synthesized by the interfacial polymerization (IP) process. An m -phenylenediamine (MPD) aqueous solution and an organic phase with trimesoyl chloride (TMC) dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU) support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m²·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi)).

  7. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  8. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  9. Development of pore interconnectivity/morphology in porous silica films investigated by cyclic voltammetry and slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Tang, Xiuqin; Xiong, Bangyun; Li, Qichao; Mao, Wenfeng; Xiao, Wei; Fang, Pengfei; He, Chunqing

    2015-01-01

    Highlights: •Porous silica films were studied by cyclic voltammetry and positron annihilation. •Highly interconnected pores were formed in the film fabricated with more CTAB. •Aligned nanochannels were observed in the porous flim prepared with 25 wt.% CTAB. •I − and Ps diffusion in the films was governed by pore interconnectivity/morphology. •Cyclic voltammetry is feasible to explore pore interconnectivity/morphology. -- Abstract: Cyclic voltammetry and positronium (Ps) 3γ-annihilation spectroscopy were applied to investigate pore interconnectivity/morphology of porous silica films fabricated with various loading of cetyltrimethyl ammonium bromide (CTAB). With increasing the ratio of CTAB up to 15 wt.%, the total charge Q, resulted from I − diffusion across the silica films, increased remarkably, indicative of formation of highly interconnected pores in the films prepared with more porogen. However, it decreased dramatically with further loading CTAB of 25 wt.%. Interestingly, 3γ-annihilation fraction I 3γ due to a triplet-state Ps (ortho-positronium, o-Ps) emission from the silica films showed a similar behavior as a function of CTAB loading. The abnormal decrement in Q and I 3γ in the film fabricated with 25 wt.% CTAB was well explained by formation of long nanochannels aligning parallel to the film surface. The results indicated that the total charge Q and Ps 3γ-annihilation fraction were closely associated with I − and Ps diffusion governed by the pore interconnectivity/morphology of the silica films, which made cyclic voltammetry possible to be a feasible tool to characterize pore interconnectivity/morphology of porous thin films

  10. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    OpenAIRE

    Marina Kurohiji; Seiji Ichiriyama; Naoki Yamasaku; Shinji Okazaki; Naoya Kasai; Yusuke Maru; Tadahito Mizutani

    2018-01-01

    A robust fiber Bragg grating (FBG) hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2) catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor...

  11. Ordered and disordered evolution of the pore mesostructure in hybrid silica anti-reflective films obtained by one-pot self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Ghazzal, Mohamed N., E-mail: g_nawfel@yahoo.fr; Debecker, Damien P.; Gaigneaux, Eric M.

    2016-07-29

    Hybrid mesoporous silica films were prepared in acid-catalysed medium using a one-pot self-assembly method. A gradual content of methyl groups was introduced into the inorganic framework by co-condensation of tetraethyl orthosilicate and methyltriethoxysilane. To better understand how the ordered and disordered transition occurs in mesoporous hybrid organosilica sytem as function of the MTES molar ratio in the starting solution, textural, chemical and optical properties of the films were studied by transmission electronic microscopy (TEM), grazing-incident small angle X-ray scattering (GISAXS), transmission Fourier transformed infrared (FTIR) and UV–visible spectroscopy. Increasing the loading of the incorporated organic groups (up to 40% in the starting solution) led simultaneously to a disorganization of the pore mesostructure and a reduction in the pore diameter. Concomitantly, a disordered domain of the silica rings in the walls was observed, which created bond strains in the silica wall contributing also to the disorganization of the pore mesostructure. Furthermore, an optimal MTES content was identified in order to obtain antireflection coatings, exhibiting low reflection in the visible range. - Highlights: • Mesoporous hybrid silica films where prepared by one-pot co-condensation of MTES and TEOS. • Ordered and disordered mesostructures were studied as function as variable MTES molar ratio. • A rearrangement of the silica cyclic species occurred as the molar ratio of MTES increases. • Transmittance of the silica coatings is affected by the MTES molar ratio.

  12. Mesoporous silica films as catalyst support for microstructured reactors: preparation and characterization

    NARCIS (Netherlands)

    Muraza, O.; Kooyman, P.J.; Lafont, U.; Albouy, P.A.; Khimyak, T.; Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2008-01-01

    Mesoporous silica thin films with hexagonal and cubic mesostructure have been deposited by the evaporation induced self-assembly assisted sol–gel route on microchannels etched in a Pyrex® 7740 borosilicate glass substrate. Prior to the synthesis, a 50 nm TiO2 film has been deposited on the substrate

  13. Preparation and Properties of Nano Dy/TiO2 Films Supported on High Silica Fiber

    Directory of Open Access Journals (Sweden)

    HUANG Feng-ping

    2017-07-01

    Full Text Available In order to improve the photocatalytic degradation performance and stability of nano TiO2, Dy doped TiO2 supported on high silica glass fiber was prepared by microwave-sol method combined with dip-coating method. The samples were analyzed by XRD,SEM,PL,EDS,XPS and other equipments for phase composition of films,surface topography, surface elements and the stability of films. And the effects of pretreatment solution and coating method on the high-silica fiber film were investigated.In addition, the photocatalytic performance of the sample has been investigated by degrading methylene blue. The results show that the catalytic stability of Dy doping TiO2 nanofilms supported on high silica glass fiber can be improved and the degradation of methyl orange can reach 94% in 30min after 5 times of coating treatment.

  14. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  15. Perhydropolysilazane-derived silica-polymethylmethacrylate hybrid thin films highly doped with spiropyran: Effects of polymethylmethacrylate on the hardness, chemical durability and photochromic properties

    International Nuclear Information System (INIS)

    Yamano, Akihiro; Kozuka, Hiromitsu

    2011-01-01

    Polymethylmethacrylate (PMMA)-perhydropolysilazane (PHPS) hybrid thin films doped with spiropyran were prepared by spin-coating, which were then converted into 0.26-1.7 μm thick, spiropyran-doped PMMA-silica hybrid films by exposure treatment over aqueous ammonia. The spiropyran/(spiropyran + PHPS + PMMA) mass ratio was fixed at a high value of 0.2 so that the films exhibit visual photochromic changes in color, while the PMMA/(PMMA + PHPS) mass ratio, r, was varied. The spiropyran molecules in the as-prepared films were in merocyanine (MC) and spiro (SP) forms, with and without an optical absorption at 500 nm, at low (r ≤ 0.2) and high (r ≥ 0.4) PMMA contents, respectively. When PMMA content r was increased from 0 to 0.2, the degree of the MC-to-SP conversion on vis light illumination was enhanced, while at higher r's the spiropyran molecules underwent photodegradation. When the silica film (r = 0) was soaked in xylene under vis light, the spiropyran molecules were almost totally leached out, while not on soaking in the dark. On the other hand, no leaching occurred for the film of r = 0.2 either in the presence or absence of vis light. These suggest that the introduction of PMMA is effective in improving the chemical durability of the films, while the silica film (r = 0) is an interesting material with a photoresponsive controlled-release ability. The pencil hardness of the films decreased with increasing PMMA content, but remained over 9H at r ≤ 0.4.

  16. Structure and mechanical properties of silica doped zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, Ina, E-mail: uhlmann@ceramics.tu-darmstadt.de [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Hawelka, Dominik [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hildebrandt, Erwin [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Pradella, Jens [Merck KGaA Darmstadt, 64293 Darmstadt (Germany); Rödel, Jürgen [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2013-01-01

    Sol–gel based wear resistant coatings are presented as an alternative to existing vapor deposition coatings. The films consist of zirconia which has been doped with 8 wt.% silica. Crack-free single as well as multilayer coatings with thicknesses of 80 and 150 nm, respectively, could be produced after sintering at 1000 °C. The evolution of layer thickness, optical, chemical and mechanical properties during film annealing was investigated by ellipsometry, scanning electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, nanoindentation and micro-abrasion. Micro-abrasion has been established as an easy and powerful tool to achieve first comparative abrasion data which could be correlated to hardness, Young's modulus and structure of the films. Above 600 °C a tetragonal, oxide coating with a Young's modulus ranging from 80 to 90 GPa, a hardness from 7 to 8 GPa and an increased abrasion resistance was obtained. The film density reached 4.64 g/cm{sup 3} with the mean refractive index n{sub 550} {sub nm} lying between 1.88 and 1.93. - Highlights: ► Sol–gel zirconia–8 wt.% silica coatings with hardness up to 8 GPa achieved ► Layer thickness as compared by ellipsometry and scanning electron microscopy ► Crack-free multilayer coatings produced up to 150 nm.

  17. Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films.

    Science.gov (United States)

    Eita, Mohamed; Arwin, Hans; Granberg, Hjalmar; Wågberg, Lars

    2011-11-15

    Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effects of Na and K ions on the crystallization of low-silica X zeolite and its catalytic performance for alkylation of toluene with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Haitao; Gao, Junhua; Wang, Gencun; Liu, Ping; Zhang, Kan, E-mail: gaojunhua@sxicc.ac.cn, E-mail: zhangkan@sxicc.ac.cn [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China)

    2014-01-15

    The crystallization of low-silica X zeolite (LSX) was studied in Na-K gel systems with different extents of replacement of Na by K while fixed content of other components. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, infrared spectra, and nuclear magnetic resonance were used to characterize liquid and solid phase. In the synthesis of LSX, the molar ratio of K/(Na + K) affects the crystallization and the composition of final products. A higher mole fraction of K corresponded to a lower crystallization rate, higher concentration of Si in the liquid phase, and lower Si/Al ratio of the obtained LSX. The average size of LSX products steadily increased with the progressive replacement of Na by K in the initial gels, and crystal morphology of the LSX products gradually changed from round to octahedral. For alkylation of toluene with methanol over obtained LSX, the selectivity of ring alkylation product xylene decreased while the side chain alkylation products styrene and ethylbenzene increased with the increased x values except x = 0, which was due to its low crystallinity. (author)

  19. Effects of Na and K ions on the crystallization of low-silica X zeolite and its catalytic performance for alkylation of toluene with methanol

    International Nuclear Information System (INIS)

    Hui, Haitao; Gao, Junhua; Wang, Gencun; Liu, Ping; Zhang, Kan

    2014-01-01

    The crystallization of low-silica X zeolite (LSX) was studied in Na-K gel systems with different extents of replacement of Na by K while fixed content of other components. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, infrared spectra, and nuclear magnetic resonance were used to characterize liquid and solid phase. In the synthesis of LSX, the molar ratio of K/(Na + K) affects the crystallization and the composition of final products. A higher mole fraction of K corresponded to a lower crystallization rate, higher concentration of Si in the liquid phase, and lower Si/Al ratio of the obtained LSX. The average size of LSX products steadily increased with the progressive replacement of Na by K in the initial gels, and crystal morphology of the LSX products gradually changed from round to octahedral. For alkylation of toluene with methanol over obtained LSX, the selectivity of ring alkylation product xylene decreased while the side chain alkylation products styrene and ethylbenzene increased with the increased x values except x = 0, which was due to its low crystallinity. (author)

  20. Silica doped with lanthanum sol–gel thin films for corrosion protection

    International Nuclear Information System (INIS)

    Abuín, M.; Serrano, A.; Llopis, J.; García, M.A.; Carmona, N.

    2012-01-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol–gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: ► Silica sol–gel films doped with lanthanum ions were synthesized. ► Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. ► La-acetate is an affordable chemical reactive preferred for the industry. ► Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. ► An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  1. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  2. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-01-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH 4 reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  3. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  4. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    Energy Technology Data Exchange (ETDEWEB)

    Manoudis, P [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Papadopoulou, S [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Karapanagiotis, I [' Ormylia' Art Diagnosis Centre, Ormylia, Chalkidiki, 63071 (Greece); Tsakalof, A [Medical Department, University of Thessaly, Larissa, 41222 (Greece); Zuburtikudis, I [Department of Industrial Design Engineering, TEI of Western Macedonia, Kozani, 50100 (Greece); Panayiotou, C [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2007-04-15

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  5. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    International Nuclear Information System (INIS)

    Manoudis, P; Papadopoulou, S; Karapanagiotis, I; Tsakalof, A; Zuburtikudis, I; Panayiotou, C

    2007-01-01

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale

  6. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films

    International Nuclear Information System (INIS)

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Sondergard, Elin; Arribart, Herve; Berthier, Serge

    2008-01-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 deg. water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 deg. C and 500 deg. C

  7. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films

    Energy Technology Data Exchange (ETDEWEB)

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Sondergard, Elin; Arribart, Herve [Unite mixte CNRS/Saint Gobain Saint Gobain Recherche, BP135, 93303 Aubervilliers (France); Berthier, Serge [Institut des Nanosciences de Paris, UMR 7588, CNRS, Universite Pierre et Marie Curie-Paris 6, 140 rue Lourmel, 75015 Paris (France)], E-mail: cperoz@lbl.gov

    2008-12-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 deg. water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 deg. C and 500 deg. C.

  8. Influence of p H on optical properties of nano structure sol-gel-derived silica films

    International Nuclear Information System (INIS)

    Heshmatpuor, F.; Adelkhani, H.; Nahavandi, M.; Noorbakhsh Shourabadi, M.

    2006-01-01

    Sol-gel derived silica films were fabricated by dip-coating onto glass microscope substrates. Film properties such as transmission and surface morphology were monitored as function of dip speed and sol p H. Film transmission was increased with increasing of p H in visible range. The surface morphology of films were investigated with scanning electron microscopy.

  9. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  10. Controlling pore morphology and properties of nanoporous silica films using the different architecture PS-b-P2VP as a template.

    Science.gov (United States)

    Yu, Yang-Yen; Chien, Wen-Chen; Chen, Shih-Ting

    2010-07-01

    Nanoporous silica films were prepared through the templating of amphiphilic block copolymer, poly(styrene-2-vinyl pyridine) (PS-b-P2VP), and monodispersed colloidal silica nanoparticles. The experimental and theoretical studies suggested that the intermolecular hydrogen bonding existes between the colloidal silica nanoparticles and PS-b-P2VP. The effects of the loading ratio and P2VP chain length on the morphology and properties of the prepared nanoporous silica films were investigated. TEM and AFM studies showed that the uniform pore size could be achieved and the pore size increased with increasing porogen loading. The refractive index and dielectric constant of the prepared nanoporous films decreased with an increase in PS-b-P2VP loading. On the other hand, the porosity increased with an increasing PS-b-P2VP loading. This study demonstrated a methodology to control pore morphology and properties of the nanoporous silica films through the templating of PS-b-P2VP.

  11. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  12. Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites

    Science.gov (United States)

    Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.

  13. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  14. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  15. Thickness controlled sol-gel silica films for plasmonic bio-sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Figus, Cristiana, E-mail: cristiana.figus@dsf.unica.it; Quochi, Francesco, E-mail: cristiana.figus@dsf.unica.it; Artizzu, Flavia, E-mail: cristiana.figus@dsf.unica.it; Saba, Michele, E-mail: cristiana.figus@dsf.unica.it; Marongiu, Daniela, E-mail: cristiana.figus@dsf.unica.it; Mura, Andrea; Bongiovanni, Giovanni [Dipartimento di Fisica - University of Cagliari, S.P. Km 0.7, I-09042 Monserrato (Canada) (Italy); Floris, Francesco; Marabelli, Franco; Patrini, Maddalena; Fornasari, Lucia [Dipartimento di Fisica - University of Pavia, Via Agostino Bassi 6, I-27100 Pavia (PV) (Italy); Pellacani, Paola; Valsesia, Andrea [Plasmore S.r.l. -Via Grazia Deledda 4, I-21020 Ranco (Vatican City State, Holy See) (Italy)

    2014-10-21

    Plasmonics has recently received considerable interest due to its potentiality in many fields as well as in nanobio-technology applications. In this regard, various strategies are required for modifying the surfaces of plasmonic nanostructures and to control their optical properties in view of interesting application such as bio-sensing, We report a simple method for depositing silica layers of controlled thickness on planar plasmonic structures. Tetraethoxysilane (TEOS) was used as silica precursor. The control of the silica layer thickness was obtained by optimizing the sol-gel method and dip-coating technique, in particular by properly tuning different parameters such as pH, solvent concentration, and withdrawal speed. The resulting films were characterized via atomic force microscopy (AFM), Fourier-transform (FT) spectroscopy, and spectroscopic ellipsometry (SE). Furthermore, by performing the analysis of surface plasmon resonances before and after the coating of the nanostructures, it was observed that the position of the resonance structures could be properly shifted by finely controlling the silica layer thickness. The effect of silica coating was assessed also in view of sensing applications, due to important advantages, such as surface protection of the plasmonic structure.

  16. Positron and positronium annihilation in low-dielectric-constant films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Yu, R.S.; Shioya, Y.; Ichikawa, H.; Hosomi, H.; Ishikiriyama, K.; Shirataki, H.; Matsuno, S.; Xu, J.

    2004-01-01

    Positron and positronium annihilation in porous low-dielectric-constant (low-k) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and spin-on dielectric (SOD) have been investigated by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The ortho-positronium (o-Ps) lifetime strongly depends on the deposition condition. In general, PECVD low-k films have shorter o-Ps lifetimes than SOD low-k films, indicating PECVD low-k films have smaller pores. Since o-Ps diffusion and escaping from the surface occurs in most of porous SOD films, three-gamma annihilation measurement is important. To investigate o-Ps behavior in SOD films, we have carried out two-dimensional (2D) PALS measurement, which measures annihilation time and pulse-height of the scintillation detector simultaneously. Monte-Carlo simulation of the o-Ps diffusion and escaping in porous films has been carried out to simulate the 2D-PALS results. (orig.)

  17. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  18. X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film

    International Nuclear Information System (INIS)

    Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.

    2005-01-01

    The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm 2 , it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm 2 , we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix

  19. Steady state and time resolved fluorescence studies of azadioxatriangulenium (ADOTA) fluorophore in silica and PVA thin films

    DEFF Research Database (Denmark)

    Chib, Rahul; Raut, Sangram; Shah, Sunil

    2015-01-01

    A cationic azadioxatriangulenium dye was entrapped in silica thin films obtained by the sol-gel process and in poly (vinyl) alcohol (PVA) thin films. Azadioxatriangulenium is a red emitting fluorophore with a long fluorescence lifetime of ∼20 ns. The fluorescent properties of azadioxatriangulenium...

  20. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties.

    Science.gov (United States)

    Mumin, Md Abdul; Xu, William Z; Charpentier, Paul A

    2015-08-07

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (∼65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (∼90%) and decreased UV transmission (∼75%).

  1. Facile fabrication of nano-structured silica hybrid film with superhydrophobicity by one-step VAFS approach

    Science.gov (United States)

    Jia, Yi; Yue, Renliang; Liu, Gang; Yang, Jie; Ni, Yong; Wu, Xiaofeng; Chen, Yunfa

    2013-01-01

    Here we report a novel one-step vapor-fed aerosol flame synthesis (VAFS) method to attain silica hybrid film with superhydrophobicity on normal glass and other engineering material substrates using hexamethyldisiloxane (HMDSO) as precursor. The deposited nano-structured silica films represent excellent superhydrophobicity with contact angle larger than 150° and sliding angle below 5°, without any surface modification or other post treatments. SEM photographs proved that flame-made SiO2 nanoparticles formed dual-scale surface roughness on the substrates. It was confirmed by FTIR and XPS that the in situ formed organic fragments on the particle surface as species like (CH3)xSiO2-x/2 (x = 1, 2, 3) which progressively lowered the surface energy of fabricated films. Thus, these combined dual-scale roughness and lowered surface energy cooperatively produced superhydrophobic films. IR camera had been used to monitor the real-time flame temperature. It is found that the inert dilution gas inflow played a critical role in attaining superhydrophobicity due to its cooling and anti-oxidation effect. This method is facile and scalable for diverse substrates, without any requirement of complex equipments and multiple processing steps. It may contribute to the industrial fabrication of superhydrophobic films.

  2. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  3. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.

    Science.gov (United States)

    Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2010-04-26

    This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

  4. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  5. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  6. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NARCIS (Netherlands)

    Elam, F.M.; Starostin, S.A.; Meshkova, A.S.; Van Der Velden-Schuermans, B.C.A.M.; Van De Sanden, M.C.M.; De Vries, H.W.

    2017-01-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense 'barrier layer' and comparatively porous 'buffer layer' onto a flexible polyethylene 2,6

  7. Flexible and robust N-doped carbon nanofiber film encapsulating uniformly silica nanoparticles: Free-standing long-life and low-cost electrodes for Li- and Na-Ion batteries

    International Nuclear Information System (INIS)

    Li, Liye; Liu, Pengcheng; Zhu, Kongjun; Wang, Jing; Tai, Guoan; Liu, Jinsong

    2017-01-01

    With the wearable electronics progressing rapidly, the demand for flexible, long-life and low-cost electrodes of Li-ion batteries (LIBs) becomes more and more urgent. Due to the abundant resources and low cost, silica (SiO_2), especially the amorphous one, has attracted a lot of interests on the application of anode materials for LIBs. However, SiO_2 still suffer from the poor cycling performance mainly caused by the huge volume change during cycling like other alloy-type materials. Furthermore, it remains a challenge to fabricate the SiO_2–based flexible electrode. Herein, we propose a facile in situ strategy to fabricate the electrospun robust free-standing SiO_2/carbon nanofibers (denoted as in-SCNFs) film constructed by N-doped carbon nanofibers encapsulating uniformly amorphous SiO_2 nanoparticles. The in situ synthesized finer SiO_2 nanoparticles in the in-SCNFs are uniformly encapsulated in flexible carbon nanofibers, which can effectively buffer the volume change. Furthermore, the robust in-SCNFs film possesses the excellent mechanical flexibility and strength. So, when served as the free-standing anode of LIBs, the in-SCNFs film exhibits superior cycling performance. A discharge specific capacity of 405 mAh/g can be delivered even after a long-term 1000 cycles at a large current density of 500 mA/g, and the retention is up to 115%. It is an exciting finding that the in-SCNFs film is also a long-life anode of Na-ion batteries (NIBs). The 99% of initial capacity can be kept after 250 cycles at 500 mA/g. To our best knowledge, this is the first report on the application of SiO_2/C composite for NIBs. These results suggest that the as-fabricated in-SCNFs film can become one promising free-standing long-life anode for LIBs and NIBs.

  8. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  9. Synthesis And Characterization Of Pure-Silica- Zeolite-Beta Membrane

    Directory of Open Access Journals (Sweden)

    Yeong Yin Fong

    2017-11-01

    Full Text Available The semiconductor industry needs low dielectric constant (low k-value materials to more advance microprocessor and chips by reducing the size of the device features. In fabricate this context, a new material with lower k value than conventional silica ( k = 3.9 - 4.2 is needed in order to improve the circuit performance. As per the recent International Semiconductor Technology plan, a low-k material with a k = 1.6 will be needed by 2010. The choice of the inorganic zeolite membrane is an attractive option for low k material and suitable for microprocess application.  In the present study, a pure silica zeolite beta membrane coated on the non-porous stainless steel support was synthesized using in situ crystallization of a gel with the composition of  SiO2 : 0.6 TEAOH : 0.6 HF : 10.1 H2O. The crystallization was carried in the presence of tetraethylammonium hydroxide TEA(OH as structure directing agent, fumed silica, HF and deionized water at pH value of 9. The crystallization under hydrothermal conditions at 130oC was carried out for the time period of 14 days. The membrane was characterized by X-Ray Diffraction ( XRD ,  Thermogravimetric Analysis ( TGA , Nitrogen Adsorption and Scanning Electron Microscope ( SEM .   SEM micrographs show highly crystalline, truncated square bipyramidal morphology of pure silica zeolite beta was coated on the non-porous stainless steel support. The membrane dielectric constant, k-value was measured as 2.64 which makes it suitable for the microprocessor applications.

  10. Spin-on nanostructured silicon-silica film displaying room-temperature nanosecond lifetime photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y.; Hatton, B.; Miguez, H.; Coombs, N.; Fournier-Bidoz, S.; Ozin, G.A. [Materials Chemistry Research Group, Department of Chemistry, Lash Miller Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada); Grey, J.K.; Beaulac, R.; Reber, C. [Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2003-04-17

    A yellow transparent mesoporous silica film has been achieved by the incorporation of silicon nanoclusters into its channels. The resulting nanocomposite - fabricated using a combination of evaporation induced self- assembly and chemical vapor deposition - emits light brightly at visible wavelengths and has nanosecond radiative lifetimes at room temperature when excited by ultraviolet light (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NARCIS (Netherlands)

    Elam, F. M.; Starostin, S. A.; Meshkova, A. S.; van der Velden, B. C. A. M.; van de Sanden, M. C. M.; de Vries, H. W.

    2017-01-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense ‘barrier layer’ and comparatively porous ‘buffer layer’ onto a flexible polyethylene 2,6

  12. Submicrometric gratings fabrication from photosensitive organo-silica-hafnia thin films elaborated by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Janyce [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Barnier, Vincent, E-mail: barnier@emse.fr [Ecole Nationale Superieure des Mines, SMS-EMSE, CNRS:UMR 5146, LCG, F-42023 Saint-Etienne (France); Vocanson, Francis, E-mail: francis.vocanson@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Gamet, Emilie; Lesage, Maryline [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Jamon, Damien [Universite de Lyon, F-42023 Saint-Etienne (France); Laboratoire Claude Chappe, Telecom Saint-Etienne, 42000 Saint-Etienne Cedex 2 (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France); Jourlin, Yves [Universite de Lyon, F-42023 Saint-Etienne (France); CNRS, UMR 5516, Laboratoire Hubert Curien, 42023 Saint-Etienne (France); Universite de Saint-Etienne, Jean-Monnet, F-42023 Saint-Etienne (France)

    2012-07-31

    The aim of this study is the elaboration of a high index sol-gel material in order to prepare submicrometric grating. The gratings were obtained after few seconds of UV exposure in one step using an organically modified silica-hafnia matrix. The chemical composition of thin films after UV and annealing treatments were studied using Fourier Transform Infrared Spectroscopy and X-Ray Photoelectron Spectroscopy. The study of optical properties revealed that the annealed films are transparent from 200 to 1000 nm and have a refractive index from 1.550 to 1.701 depending on the hafnium concentration. - Highlights: Black-Right-Pointing-Pointer Silica-hafnia matrix with high refractive index was prepared using sol-gel process. Black-Right-Pointing-Pointer Organic and inorganic networks formation of thin films was investigated. Black-Right-Pointing-Pointer Optical properties are influenced by annealing treatment and initial hafnium amount. Black-Right-Pointing-Pointer The use of high Si:Hf molar ratio can lead to a loss transmittance below 300 nm. Black-Right-Pointing-Pointer Submicrometric grating period can be prepared using a holographic method.

  13. Piezoresistive polysilicon film obtained by low-temperature aluminum-induced crystallization

    International Nuclear Information System (INIS)

    Patil, Suraj Kumar; Celik-Butler, Zeynep; Butler, Donald P.

    2010-01-01

    A low-temperature deposition process employing aluminum-induced crystallization has been developed for fabrication of piezoresistive polycrystalline silicon (polysilicon) films on low cost and flexible polyimide substrates for force and pressure sensing applications. To test the piezoresistive properties of the polysilicon films, prototype pressure sensors were fabricated on surface-micromachined silicon nitride (Si 3 N 4 ) diaphragms, in a half-Wheatstone bridge configuration. Characterization of the pressure sensor was performed using atomic force microscope in contact mode with a specially modified probe-tip. Low pressure values ranging from 5 kPa to 45 kPa were achieved by this method. The resistance change was found to be - 0.1% to 0.5% and 0.07% to 0.3% for polysilicon films obtained at 500 o C and 400 o C, respectively, for the applied pressure range.

  14. Towards low-voltage organic thin film transistors (OTFTs with solution-processed high-k dielectric and interface engineering

    Directory of Open Access Journals (Sweden)

    Yaorong Su

    2015-11-01

    Full Text Available Although impressive progress has been made in improving the performance of organic thin film transistors (OTFTs, the high operation voltage resulting from the low gate capacitance density of traditional SiO2 remains a severe limitation that hinders OTFTs'development in practical applications. In this regard, developing new materials with high-k characteristics at low cost is of great scientific and technological importance in the area of both academia and industry. Here, we introduce a simple solution-based technique to fabricate high-k metal oxide dielectric system (ATO at low-temperature, which can be used effectively to realize low-voltage operation of OTFTs. On the other hand, it is well known that the properties of the dielectric/semiconductor and electrode/semiconductor interfaces are crucial in controlling the electrical properties of OTFTs. By optimizing the above two interfaces with octadecylphosphonic acid (ODPA self-assembled monolayer (SAM and properly modified low-cost Cu, obviously improved device performance is attained in our low-voltage OTFTs. Further more, organic electronic devices on flexible substrates have attracted much attention due to their low-cost, rollability, large-area processability, and so on. Basing on the above results, outstanding electrical performance is achieved in flexible devices. Our studies demonstrate an effective way to realize low-voltage, high-performance OTFTs at low-cost.

  15. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  16. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Unit of Microelectronics and Nanotechnology, Al. Armii Krajowej 36, 42–201 Czestochowa (Poland); Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, ul. Radzikowskiego 152 (Poland); Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Unit of Microelectronics and Nanotechnology, Al. Armii Krajowej 36, 42–201 Czestochowa (Poland); Dulski, Mateusz, E-mail: mateusz.dulski@us.edu.pl [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41–500 Chorzów (Poland); Wojtyniak, Marcin, E-mail: marcin.wojtyniak@us.edu.pl [University of Silesia, Institute of Physics, Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41–500 Chorzów (Poland); Fitta, Magdalena, E-mail: magdalena.fitta@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31–342 Krakow, ul. Radzikowskiego 152 (Poland); Balanda, Maria, E-mail: Maria.Balanda@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31–342 Krakow, ul. Radzikowskiego 152 (Poland)

    2016-09-15

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.

  17. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  18. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films

    Science.gov (United States)

    Ahn, C. W.; Y Lee, S.; Lee, H. J.; Ullah, A.; Bae, J. S.; Jeong, E. D.; Choi, J. S.; Park, B. H.; Kim, I. W.

    2009-11-01

    We have fabricated K0.5Na0.5NbO3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V-1, which is comparable to that of polycrystalline PZT thin films.

  19. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films

    International Nuclear Information System (INIS)

    Ahn, C W; Bae, J S; Jeong, E D; Lee, S Y; Lee, H J; Ullah, A; Kim, I W; Choi, J S; Park, B H

    2009-01-01

    We have fabricated K 0.5 Na 0.5 NbO 3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V -1 , which is comparable to that of polycrystalline PZT thin films.

  20. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2016-09-07

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

  1. Effect of ultraviolet curing wavelength on low-k dielectric material properties and plasma damage resistance

    Energy Technology Data Exchange (ETDEWEB)

    Marsik, Premysl, E-mail: marsik@physics.muni.c [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Urbanowicz, Adam M. [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Verdonck, Patrick [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); De Roest, David; Sprey, Hessel [ASM Belgium, Kapeldreef 75, 3001 Leuven (Belgium); Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2011-03-31

    A set of SiCOH low dielectric constant films (low-k) has been deposited by plasma enhanced chemical vapor deposition using variable flow rates of the porogen (sacrificial phase) and matrix precursors. During the deposition, two different substrate temperatures and radio frequency power settings were applied. Next, the deposited films were cured by the UV assisted annealing (UV-cure) using two industrial UV light sources: a monochromatic UV source with intensity maximum at {lambda} = 172 nm (lamp A) and a broadband UV source with intensity spectrum distributed below 200 nm (lamp B). This set of various low-k films has been additionally exposed to NH{sub 3} plasma (used for the CuO{sub x} reduction during Cu/low-k integration) in order to evaluate the effect of the film preparation conditions on the plasma damage resistance of low-k material. Results show that the choice of the UV-curing light source has significant impact on the chemical composition of the low-k material and modifies the porogen removal efficiency and subsequently the material porosity. The 172 nm photons from lamp A induce greater changes to most of the evaluated properties, particularly causing undesired removal of Si-CH{sub 3} groups and their replacement with Si-H. The softer broadband radiation from lamp B improves the porogen removal efficiency, leaving less porogen residues detected by spectroscopic ellipsometry in UV range. Furthermore, it was found that the degree of bulk hydrophilization (plasma damage) after NH{sub 3} plasma exposure is driven mainly by the film porosity.

  2. Growth and physical properties of highly oriented La-doped (K,Na)NbO3 ferroelectric thin films

    International Nuclear Information System (INIS)

    Vendrell, X.; Raymond, O.; Ochoa, D.A.; García, J.E.; Mestres, L.

    2015-01-01

    Lead-free (K,Na)NbO 3 (KNN) and La doped (K,Na)NbO 3 (KNN-La) thin films are grown on SrTiO 3 substrates using the chemical solution deposition method. The effect of adding different amounts of Na and K excess (0–20 mol%) is investigated. The results confirm the necessity of adding 20 mol% excess amounts of Na and K precursor solutions in order to avoid the formation of the secondary phase, K 4 Nb 6 O 17 , as confirmed by X-ray diffraction and Raman spectroscopy. Moreover, when adding a 20 mol% of alkaline metal excess, the thin films are highly textured with out-of-plane preferential orientation in the [100] direction of the [100] orientation of the substrate. Doping with lanthanum results in a decrease of the leakage current density at low electric field, and an increase in the dielectric permittivity across the whole temperature range (80–380 K). Although the (100)-oriented KNN and KNN-La films exhibited rounded hysteresis loops, at low temperatures the films show the typical ferroelectric hysteresis loops. - Highlights: • (K 0.5 Na 0.5 )NbO 3 and [(K 0.5 Na 0.5 ) 0.985 La 0.005 ]NbO 3 thin films have been prepared. • The obtained thin films show an excellent (100) preferred orientation. • Doping with lanthanum results in a decrease of the leakage current density. • The dielectric properties are enhanced when doping with lanthanum

  3. Structure and oxygen incorporation in low pressure sputtered YBCO films

    International Nuclear Information System (INIS)

    Chaudhary, S.; Pandya, D. K.; Kashyap, S. C.

    2002-01-01

    Thin films of YBa 2 Cu 3 O 7- δ (YBCO) have been successfully grown by reactive RF-magnetron sputtering technique at low pressure. The oxygen partial pressure of 0.95 mTorr, a total pressure (argon and oxygen) of 1.9 mTorr, and a substrate temperature of 775 grad C resulted in good quality films with T C (R=0) = 85.3 K and J Cmag (4.2 K) ≅ 2x10 7 A/cm 2 . The incorporation of oxygen in the as-grown films has been controlled by using different ambient - oxygen, air or argon during in-situ cooling. The superconducting behaviour of the films was studied using resistance-temperature and low field ac-susceptibility measurements and correlated with their structure. All the films exhibited metallic conduction in the normal state. The oxygen- and air- cooled films were superconducting, possessing the usual orthorhombic structure. The argon-cooled films were non-superconducting possessing the tetragonal structure, thus implying that the structure of the film during deposition is tetragonal which transforms to either of the oxygen rich orthorhombic-I or -II phases depending upon the oxygen/air ambient. The 'δ' values of 0.14, 0.32 and 0.70 and higher 'c'-parameters of 1.1785, 1.180 and 1.183 nm have been obtained for oxygen, air and argon cooled films respectively. (Authors)

  4. Stability of erbium and silver implanted in silica-titania sol-gel films

    International Nuclear Information System (INIS)

    Ramos, A.R.; Marques, C.; Alves, E.; Marques, A.C.; Almeida, R.M.

    2005-01-01

    We implanted silica-titania sol-gel films with 3 x 10 15 at./cm 2 , 180 keV Er + and 6 x 10 16 at./cm 2 , 140 keV Ag + ions. The energies were chosen so that the profiles of Ag and Er overlap. RBS and ERDA were used to study the behaviour of Ag, Er and H during the heat treatments used to density the films. Implantation causes H depletion at the film surface and an increase in H concentration just beneath the implanted Ag and Er profiles. The total H content decreases by 27% to 75% during implantation. During annealing the H content decreases, with an almost complete H loss after annealing for 35 min at 800 deg. C. The Ag profile remains stable up to 600 deg. C. Above 700 deg. C Ag becomes increasingly mobile. Annealing at 800 deg. C for 35 min results in a nearly constant Ag distribution in the film. The Er profile remains unchanged with heat treatment up to the maximum temperature used (800 deg. C)

  5. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    International Nuclear Information System (INIS)

    Sulyaeva, Veronica S.; Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A.; Kesler, Valerii G.; Kirienko, Viktor V.

    2014-01-01

    Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC x N y films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC x N y films were found to be high optical transparent layers (93%). • BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9

  6. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  7. Synchrotron x-ray study of a low roughness and high efficiency K2CsSb photocathode during film growth

    International Nuclear Information System (INIS)

    Xie, Junqi; Demarteau, Marcel; Wagner, Robert; Schubert, Susanne; Gaowei, Mengjia; Attenkofer, Klaus; Walsh, John; Smedley, John; Ben-Zvi, Ilan; Wong, Jared; Feng, Jun; Padmore, Howard; Ruiz-Oses, Miguel; Ding, Zihao; Liang, Xue; Muller, Erik

    2017-01-01

    Reduction of roughness to the nm level is critical of achieving the ultimate performance from photocathodes used in high gradient fields. The thrust of this paper is to explore the evolution of roughness during sequential growth, and to show that deposition of multilayer structures consisting of very thin reacted layers results in an nm level smooth photocathode. Synchrotron x-ray methods were applied to study the multi-step growth process of a high efficiency K 2 CsSb photocathode. A transition point of the Sb film grown on Si was observed at the film thickness of ∼40 Å with the substrate temperature at 100 °C and the growth rate at 0.1 Å s −1 . The final K 2 CsSb photocathode exhibits a thickness of around five times that of the total deposited Sb film regardless of how the Sb film was grown. The film surface roughening process occurs first at the step when K diffuses into the crystalline Sb. The photocathode obtained from the multi-step growth exhibits roughness in an order of magnitude lower than the normal sequential process. X-ray diffraction measurements show that the material goes through two structural changes of the crystalline phase during formation, from crystalline Sb to K 3 Sb and finally to K 2 CsSb. (paper)

  8. Fabrication of transparent superhydrophobic glass with fibered-silica network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Shi, Zhenwu, E-mail: zwshi@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Jiang, Yingjie; Xu, Chengyun; Wu, Zhuhui; Wang, Yanyan [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Peng, Changsi, E-mail: changsipeng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2017-06-15

    Highlights: • Superhydrophobic fibred-silica film with water contact angle of 166° and sliding angle of 1° was efficiently prepared using soot as template by CVD. • The film showed transmittance of 88% in visible range. • The superhydrophobic film possesses excellent mechanical robustness, chemical corrosion resistance, and thermal stability. • The superhydrophobic film showed outstanding self-cleaning behavior. - Abstract: In this paper, silica was deposited on the soot film pre-coated glass via chemical vapor deposition. Through calcination at 500 °C with the assistance of O{sub 2} airflow, the soot film was removed and a novel robust fibered-silica network film was then decorated onto the glass substrate. After modification with fluorosilane, the surface water contact angle (WCA) was 166° and sliding angle (SA) was 1° which behaves a good self-cleaning for the as-prepared glass. And its average transmittance was still over 88% in visible wavelength. Moreover, this fibered-silica coating showed a strong tolerance for heavy water droplets, acid/alkali corrosion, salt solution immersion and thermal treatment.

  9. Nb3Al thin film deposition for low-noise terahertz electronics

    International Nuclear Information System (INIS)

    Dochev, D; Pavolotsky, A B; Belitsky, V; Olofsson, H

    2008-01-01

    Higher energy gap superconducting materials were always interesting for low-noise mixer applications such as superconductor-insulator-superconductor tunnel junctions (SIS) and hot-electron bolometer (HEB) used in sub-millimeter and terahertz parts of electro-magnetic spectrum. Here, we report a novel approach for producing Nb 3 Al thin film by co-sputtering from two confocally arranged Nb and Al dc-magnetrons onto substrate heated up to 830 deg. C. Characterization of the deposited films revealed presence of the A15 phase and measured critical temperature was up to 15.7 K with the transition width 0.2-0.3 K for a 300 nm thick film. We measured the film critical magnetic field and studied influence of annealing on the film properties. We have investigated compositional depth profile of the deposited films by spectroscopy of reflected electrons

  10. Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres.

    Science.gov (United States)

    Lee, Byeongdu; Park, Young-Hee; Hwang, Yong-Taek; Oh, Weontae; Yoon, Jinhwan; Ree, Moonhor

    2005-02-01

    Integrated circuits that have improved functionality and speed in a smaller package and that consume less power are desired by the microelectronics industry as well as by end users, to increase device performance and reduce costs. The fabrication of high-performance integrated circuits requires the availability of materials with low or ultralow dielectric constant (low-k: k noise in interconnect conductors, but also minimize power dissipation by reducing the capacitance between the interconnects. Here we describe the preparation of low- and ultralow-k nanoporous organosilicate dielectrics from blends of polymethylsilsesquioxane (PMSSQ) precursor with globular ethyl acrylate-terminated polypropylenimine dendrimers, which act as porogens. These dendrimers are found to mix well with the PMSSQ precursor and after their sacrificial thermal decompositions result in closed, spherical pores of <2.0 nm radius with a very narrow distribution even at high loading. This pore size and distribution are the smallest and the narrowest respectively ever achieved in porous spin-on dielectrics. The method therefore successfully delivers low- and ultralow-k PMSSQ dielectric films that should prove very useful in advanced integrated circuits.

  11. Low-temperature specific heat and thermal conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Sleator, T.; Bernasconi, A.; Posselt, D.

    1991-01-01

    Specific-heat and thermal-conductivity measurements were made on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Evidence for a crossover between regimes of characteristically different excitations was observed. The data analysis indicates a "bump" in the density...

  12. Study of silica sol-gel materials for sensor development

    Science.gov (United States)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  13. Production of low-silicon molten iron from high-silica hematite using biochar

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Tang∗; Xiu-feng Fu; Yan-qi Qin; Shi-yu Zhao; Qing-guo Xue

    2017-01-01

    A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was ex-perimentally investigated and the results show that the method is feasible.In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89 mass% at temperature of 1 373 K, biochar mixing ratio of 0.8-0.9, and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage, molten iron with a carbon content of 0.02-0.03 mass% and silicon content of 0.02-0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%-91% and impurities in the obtained metal were negligible.

  14. Low-temperature transport in ultra-thin tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Chiatti, Olivio [Neue Materialien, Institut fuer Physik, Humboldt-Univ. Berlin (Germany); London Centre for Nanotechnology, University College London (United Kingdom); Nash, Christopher; Warburton, Paul [London Centre for Nanotechnology, University College London (United Kingdom)

    2012-07-01

    Tungsten-containing films, fabricated by focused-ion-beam-induced chemical vapour deposition, are known to have an enhanced superconducting transition temperature compared to bulk tungsten, and have been investigated previously for film thickness down to 25 nm. In this work, by using ion-beam doses below 50 pC/{mu}m{sup 2} on a substrate of amorphous silicon, we have grown continuous films with thickness below 20 nm. The electron transport properties were investigated at temperatures down to 350 mK and in magnetic fields up to 3 T, parallel and perpendicular to the films. The films in this work are closer to the limit of two-dimensional systems and are superconducting at low temperatures. Magnetoresistance measurements yield upper critical fields of the order of 1 T, and the resulting coherence length is smaller than the film thickness.

  15. Phosphazene like film formation on InP in liquid ammonia (223 K)

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, A.-M., E-mail: goncalves@chimie.uvsq.fr; Njel, C.; Mathieu, C.; Aureau, D.; Etcheberry, A.

    2013-07-01

    An anodic photo-galvanostatic treatment at low current density (1 μA·cm{sup −2}) is carried out on n-InP semiconductor in liquid ammonia (223 K). The gradual chemical evolution of the surface is studied as a function of the anodic charge. Proof and reproducibility of the chemical transformation of the surface are clearly evidenced by X-ray photoelectron spectroscopy (XPS) analyses. Like by cyclic voltammetry, the perfect coverage of the InP surface by a thin phosphazene like film is also revealed by XPS data. However, a low anodic charge (≈ 0.5 mC·cm{sup −2}) is required by photo-galvanostatic treatment while a higher anodic charge (≈ 7 mC·cm{sup −2}) is involved by cyclic voltammetry. The excess of charge could be related to ammonia oxidation during the formation of the passivating film. This result proves the electrochemical oxidation of the solvent as a determinant step of the mechanism film formation. - Highlights: ► Cyclic voltammetry and galvanostatic modes on n-InP in liquid ammonia (223 K). ► A thin film growth is reached by photo-anodic polarization. ► The same phosphazene like film is evidenced by X-ray photoelectron spectroscopy. ► An excess of charge is observed by cyclic voltammetry. ► An electrochemical oxidation step of the solvent is assumed.

  16. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  17. Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film

    Directory of Open Access Journals (Sweden)

    Lokesh R. Rane

    2014-01-01

    Full Text Available The purpose of this study is to improve the performance properties of K-carrageenan (K-CRG by utilizing nanosilica (NSI as the reinforcing agent. The composite films were prepared by solution casting method. NSI was added up to 1.5% in the K-CRG matrix. The prepared films were characterized for mechanical (tensile strength, tensile modulus, and elongation at break, thermal (differential scanning calorimetry, thermogravimetric analysis, barrier (water vapour transmission rate, morphological (scanning electron microscopy, contact angle, and crystallinity properties. Tensile strength, tensile modulus, and crystallinity were found to have increased by 13.8, 15, and 48% whereas water vapour transmission rate was found to have decreased by 48% for 0.5% NSI loaded K-CRG composite films. NSI was found to have formed aggregates for concentrations above 0.5% as confirmed by scanning electron microscopy. Melting temperature, enthalpy of melting, and degradation temperature of K-CRG increased with increase in concentration of NSI in K-CRG. Contact angle also increased with increase in concentration of NSI in K-CRG, indicating the decrease in hydrophilicity of the films improving its water resistance properties. This knowledge of the composite film could make beneficial contributions to the food and pharmaceutical packaging applications.

  18. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    Science.gov (United States)

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  19. Chemical mechanical polishing of BTO thin film for vertical sidewall patterning of high-density memory capacitor

    International Nuclear Information System (INIS)

    Kim, Nam-Hoon; Ko, Pil-Ju; Seo, Yong-Jin; Lee, Woo-Sun

    2006-01-01

    Most high-k materials cannot to be etched easily. Problems such as low etch rate, poor sidewall angle, plasma damage, and process complexity have emerged in high-density DRAM fabrication. Chemical mechanical polishing (CMP) by the damascene process has been used to pattern high-k materials for high-density capacitor. Barium titanate (BTO) thin film, a typical high-k material, was polished with three types of silica slurry having different pH values. Sufficient removal rate with adequate selectivity to realize the pattern mask of tetra-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle was obtained. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible. Planarization was also achieved for the subsequent multilevel processes. Our new CMP approach will provide a guideline for effective patterning of high-k materials by CMP

  20. Perovskite oxynitride LaTiOxNy thin films: Dielectric characterization in low and high frequencies

    International Nuclear Information System (INIS)

    Lu, Y.; Ziani, A.; Le Paven-Thivet, C.; Benzerga, R.; Le Gendre, L.; Fasquelle, D.; Kassem, H.

    2011-01-01

    Lanthanum titanium oxynitride (LaTiO x N y ) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO x N y thin films deposited on conductive single crystal Nb–STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiO x N y polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO 2 /Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO x N y films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).

  1. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  2. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  3. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaeva, Veronica S., E-mail: veronica@niic.nsc.ru [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A. [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, Valerii G. [Laboratory of Physical Principles for Integrated Microelectronics, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kirienko, Viktor V. [Laboratory of Nonequilibrium Semiconductors Systems, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2014-05-02

    Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers (93%). • BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9.

  4. Low-temperature specific-heat and thermal-conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    Specific heat, C(p), and thermal conductivity, lambda, have been measured on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Results for both C(p)(T) and lambda(T) confirm that the different length-scale regions observed in the aerogel structure are reflected...

  5. Hall effect of K-doped superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Son, Eunseon; Lee, Nam Hoon; Kang, Won Nam [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Tae Jong; Kim, Dong Ho [Dept. of physics, Yeungnam University, Gyeongsan(Korea, Republic of)

    2013-09-15

    We have studied Hall effect for potassium (K)-doped BaFe{sub 2}As{sub 2}superconducting thin films by analyzing the relation between the longitudinal resistivity (ρ{sub xy}) and the Hall resistivity (ρ{sub xy}). The thin films used in this study were fabricated on Al{sub O3} (000l) substrates by using an ex-situ pulsed laser deposition (PLD) technique under a high-vacuum condition of ∼10{sup -6} Torr. The samples showed the high superconducting transition temperatures (T{sub C}) of ∼40 K. The ρ{sub xx} and ρ{sub xy}the for K-doped BaFeAs{sub 2} thin films were measured by using a physical property measurement system (PPMS) with a temperature sweep (T-sweep) mode at an applied current density of 100 A/cm{sup 2} and at magnetic fields from 0 up to 9 T. We report the T-sweep results of the ρ{sub xx} and the ρ{sub xy} to investigate Hall scaling behavior on the basis of the relation of ρ{sub xy} = A(ρ{sub xy}){sup β}. The ρ{sub xx} values are 3.0 ± 0.2 in the c-axis-oriented K-doped BaFeAs{sub 2} thin films, whereas the thin films with various oriented-directions like a polycrystal showed slightly lower β than that of c-axis-oriented thin films. Interestingly, the β value is decreased with increasing magnetic fields.

  6. Study of radon transport through concrete modified with silica fume

    International Nuclear Information System (INIS)

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  7. Nb{sub 3}Al thin film deposition for low-noise terahertz electronics

    Energy Technology Data Exchange (ETDEWEB)

    Dochev, D; Pavolotsky, A B; Belitsky, V; Olofsson, H [Group for Advanced Receiver Development and Onsala Space Observatory, Department of Radio- and Space Science, Chalmers University of Technology, SE 412 96 Gothenburg (Sweden)], E-mail: dimitar.dochev@chalmers.se

    2008-02-01

    Higher energy gap superconducting materials were always interesting for low-noise mixer applications such as superconductor-insulator-superconductor tunnel junctions (SIS) and hot-electron bolometer (HEB) used in sub-millimeter and terahertz parts of electro-magnetic spectrum. Here, we report a novel approach for producing Nb{sub 3}Al thin film by co-sputtering from two confocally arranged Nb and Al dc-magnetrons onto substrate heated up to 830 deg. C. Characterization of the deposited films revealed presence of the A15 phase and measured critical temperature was up to 15.7 K with the transition width 0.2-0.3 K for a 300 nm thick film. We measured the film critical magnetic field and studied influence of annealing on the film properties. We have investigated compositional depth profile of the deposited films by spectroscopy of reflected electrons.

  8. Crystallization and segregation in vitreous rutile films annealed at high temperature

    International Nuclear Information System (INIS)

    Omari, M.A.; Sorbello, R.S.; Aita, C.R.

    2005-01-01

    Vitreous titania films with rutile short-range order were sputter deposited on unheated fused silica substrates, sequentially annealed at 973 and 1273 K, and examined by Raman microscopy, scanning electron microscopy, and x-ray diffraction. A segregated microstructure developed after the 1273 K anneal. This microstructure consists of supermicron-size craters dispersed in a matrix of submicron rutile crystals. Ti-O short-range order in the craters is characteristic of a mixture of two high pressure phases, m-TiO 2 (monoclinic P2 1 /c space group) and α-TiO 2 (tetragonal Pbcn space group). We calculated that a high average compressive stress parallel to the substrate must be accommodated in the films at 1273 K, caused by the difference in the thermal expansion coefficients of titania and fused silica. The formation of the segregated microstructure is modeled by considering two processes at work at 1273 K to lower a film's internal energy: crystallization and nonuniform stress relief. The Gibbs-Thomson relation shows that small m-TiO 2 crystallites are able to form directly from vitreous TiO 2 at 1273 K. However, the preferred mechanism for forming α-TiO 2 is likely to be by epitaxial growth at crystalline rutile twin boundaries (secondary crystallization). Both phases are denser than crystalline rutile and reduce the average thermal stress in the films

  9. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  10. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites

    Directory of Open Access Journals (Sweden)

    Soliman Abdalla

    2016-02-01

    Full Text Available Nano-composite films have been the subject of extensive work for developing the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of four highly pure amorphous polymer films: polymethyl methacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher breakdown performance is a character of polyimide (PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  11. Etching Enhancement Followed by Nitridation on Low-k SiOCH Film in Ar/C5F10O Plasma

    Science.gov (United States)

    Miyawaki, Yudai; Shibata, Emi; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Okamoto, Hidekazu; Sekine, Makoto; Hori, Masaru

    2013-02-01

    The etching rates of low-dielectric-constant (low-k), porous SiOCH (p-SiOCH) films were increased by nitrogen-added Ar/C5F10O plasma etching in dual-frequency (60 MHz/2 MHz)-excited parallel plate capacitively coupled plasma. Previously, perfluoropropyl vinyl ether [C5F10O] provided a very high density of CF3+ ions [Nagai et al.: Jpn. J. Appl. Phys. 45 (2006) 7100]. Surface nitridation on the p-SiOCH surface exposed to Ar/N2 plasma led to the etching of larger amounts of p-SiOCH in Ar/C5F10O plasma, which depended on the formation of bonds such as =C(sp2)=N(sp2)- and -C(sp)≡N(sp).

  12. Low-cost flexible thin-film detector for medical dosimetry applications.

    Science.gov (United States)

    Zygmanski, P; Abkai, C; Han, Z; Shulevich, Y; Menichelli, D; Hesser, J

    2014-03-06

    The purpose of this study is to characterize dosimetric properties of thin film photovoltaic sensors as a platform for development of prototype dose verification equipment in radiotherapy. Towards this goal, flexible thin-film sensors of dose with embedded data acquisition electronics and wireless data transmission are prototyped and tested in kV and MV photon beams. Fundamental dosimetric properties are determined in view of a specific application to dose verification in multiple planes or curved surfaces inside a phantom. Uniqueness of the new thin-film sensors consists in their mechanical properties, low-power operation, and low-cost. They are thinner and more flexible than dosimetric films. In principle, each thin-film sensor can be fabricated in any size (mm² - cm² areas) and shape. Individual sensors can be put together in an array of sensors spreading over large areas and yet being light. Photovoltaic mode of charge collection (of electrons and holes) does not require external electric field applied to the sensor, and this implies simplicity of data acquisition electronics and low power operation. The prototype device used for testing consists of several thin film dose sensors, each of about 1.5 cm × 5 cm area, connected to simple readout electronics. Sensitivity of the sensors is determined per unit area and compared to EPID sensitivity, as well as other standard photodiodes. Each sensor independently measures dose and is based on commercially available flexible thin-film aSi photodiodes. Readout electronics consists of an ultra low-power microcontroller, radio frequency transmitter, and a low-noise amplification circuit implemented on a flexible printed circuit board. Detector output is digitized and transmitted wirelessly to an external host computer where it is integrated and processed. A megavoltage medical linear accelerator (Varian Tx) equipped with kilovoltage online imaging system and a Cobalt source are used to irradiate different thin-film

  13. Low-Temperature Solution-Processed Gate Dielectrics for High-Performance Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Jaekyun Kim

    2015-10-01

    Full Text Available A low-temperature solution-processed high-k gate dielectric layer for use in a high-performance solution-processed semiconducting polymer organic thin-film transistor (OTFT was demonstrated. Photochemical activation of sol-gel-derived AlOx films under 150 °C permitted the formation of a dense film with low leakage and relatively high dielectric-permittivity characteristics, which are almost comparable to the results yielded by the conventionally used vacuum deposition and high temperature annealing method. Octadecylphosphonic acid (ODPA self-assembled monolayer (SAM treatment of the AlOx was employed in order to realize high-performance (>0.4 cm2/Vs saturation mobility and low-operation-voltage (<5 V diketopyrrolopyrrole (DPP-based OTFTs on an ultra-thin polyimide film (3-μm thick. Thus, low-temperature photochemically-annealed solution-processed AlOx film with SAM layer is an attractive candidate as a dielectric-layer for use in high-performance organic TFTs operated at low voltages.

  14. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  15. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zheng, Zeke; Xiong, Mei; Zhang, Xiaochen; Li, Xiaoqing; Ning, Honglong; Fang, Zhiqiang; Xie, Weiguang; Lu, Xubing; Peng, Junbiao

    2018-03-01

    In this work, low temperature fabrication of a sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors (TFTs) on polyimide substrates was investigated. The effects of Ar-pressure during the sputtering process and then especially the post-annealing treatments at low temperature (≤200 °C) for HfO2 on reducing the density of defects in the bulk and on the surface were systematically studied. X-ray reflectivity, UV-vis and X-ray photoelectron spectroscopy, and micro-wave photoconductivity decay measurements were carried out and indicated that the high quality of optimized HfO2 film and its high dielectric properties contributed to the low concentration of structural defects and shallow localized defects such as oxygen vacancies. As a result, the well-structured HfO2 gate dielectric exhibited a high density of 9.7 g/cm3, a high dielectric constant of 28.5, a wide optical bandgap of 4.75 eV, and relatively low leakage current. The corresponding flexible a-IGZO TFT on polyimide exhibited an optimal device performance with a saturation mobility of 10.3 cm2 V-1 s-1, an Ion/Ioff ratio of 4.3 × 107, a SS value of 0.28 V dec-1, and a threshold voltage (Vth) of 1.1 V, as well as favorable stability under NBS/PBS gate bias and bending stress.

  17. Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network

    International Nuclear Information System (INIS)

    Liu Fengyi; Fu Lianshe; Wang Jun; Liu Ze; Li Huanrong; Zhang Hongjie

    2002-01-01

    Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propyltriethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by 1 H NMR, IR and MS. The monomer acts as a ligand for Tb 3+ ion and as a sol-gel precursor. Band emission from Tb 3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb 3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the 5 D 4 level of Tb 3+ ion falls in the exciting range to sensitize Tb 3+ ion fluorescence

  18. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of CHF3 Plasma Treatment on the Characteristics of SiCOH Low-k Film

    International Nuclear Information System (INIS)

    Xing Zhenyu; Ye Chao; Yuan Jing; Xu Yijun; Ning Zhaoyuan

    2009-01-01

    The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF 3 ) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage V FB and leakage current of the Cu/SiCOH/Si structure, and the hydrophobic property of the SiCOH film were obtained by the measurements of capacitance-voltage, current-voltage and water contact angle. The structures of the SiCOH film were also analyzed by Fourier transform infrared spectroscopy and atomic force microscopy. The CHF 3 plasma treatment of the SiCOH film led to a reduction in both the flat-band voltage V FB shift and leakage current of the Cu/SiCOH/Si structure, a decrease in surface roughness, and a deterioration of the hydrophobic property. The changes in the film's characteristics were related to the formation of Si-F bond, the increase in Si-OH bond, and the C:F deposition at the surface of the SiCOH film.

  20. Influence of Magnetic Field on Electric Charge Transport in Holomiun Thin Films at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Jan Dudas

    2005-01-01

    Full Text Available Holmium thin films were prepared by evaporation in ultrahigh vacuum (UHV and high precision electrical resistance measurements were performed on them as well as on holomium bulk sample in the wide temperature range from 4,2 K up to the room temperature. Electric charge transport is profoundly influenced by the magnetic structure at low temperatures and a "knee-like" resistance anomaly was observed near the transportation from paramagnetic state to basal-plane spiral structure in bulk with the Neel temperature TN=128,9 K and below ~ 122 K in thin Ho films in a thickness range from 98 nm to 215 nm. Unexpected resistance minimum at ~ 9 K and a slope´s charge of the R vs. T curve near ~ 170 K was observed in 215 nm thin film. Application of magnetic field parallel to the substrate and thin film plane for temperatures below ~ 150 K caused the decrease of resistence value with increasing magnetic flux density. Increasing suppression of the TN value up to ~ 5 K with increasing flux density value up to 5 T was observed in Ho films

  1. Structure of ultrathin Pd films determined by low-energy electron microscopy and diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Santos, B; De la Figuera, J [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Puerta, J M; Cerda, J I [Instituto de Ciencia de Materiales, CSIC, Madrid 28049 (Spain); Herranz, T [Instituto de Quimica-Fisica ' Rocasolano' , CSIC, Madrid 28006 (Spain); McCarty, K F [Sandia National Laboratories, Livermore, CA 94550 (United States)], E-mail: benitosantos001@gmail.com

    2010-02-15

    Palladium (Pd) films have been grown and characterized in situ by low-energy electron diffraction (LEED) and microscopy in two different regimes: ultrathin films 2-6 monolayers (ML) thick on Ru(0001), and {approx}20 ML thick films on both Ru(0001) and W(110). The thinner films are grown at elevated temperature (750 K) and are lattice matched to the Ru(0001) substrate. The thicker films, deposited at room temperature and annealed to 880 K, have a relaxed in-plane lattice spacing. All the films present an fcc stacking sequence as determined by LEED intensity versus energy analysis. In all the films, there is hardly any expansion in the surface-layer interlayer spacing. Two types of twin-related stacking sequences of the Pd layers are found on each substrate. On W(110) the two fcc twin types can occur on a single substrate terrace. On Ru(0001) each substrate terrace has a single twin type and the twin boundaries replicate the substrate steps.

  2. Characterization of spin-on-glass very-low-k polymethylsiloxane with copper metallization

    International Nuclear Information System (INIS)

    Aw, K.C.; Salim, N.T.; Gao, W.; Li, Z.

    2006-01-01

    Cu diffusion is one major problem that inhibits low-k dielectric to be integrated with existing fabrication technology effectively. This paper demonstrates the effects of surface modification towards polymethylsiloxane low-k dielectric (LKD 5109) from JSR Micro using gas mixture of H 2 + N 2 plasma in order to improve Cu diffusion barrier. C-V plots indirectly indicated that plasma treatment reduces Cu + ions penetration during Cu deposition using magnetron sputtering. XPS confirmed that short duration (10 to 30 s) of H 2 + N 2 plasma treatment could cause surface densification of LKD 5109 low-k thin film through formation of N-C bonds. However, the negative effect of plasma treatment is the increment of dielectric constant (k) due to possible surface densification

  3. The anomalous low temperature resistivity of thermally evaporated α-Mn thin film

    International Nuclear Information System (INIS)

    Ampong, F.K.; Boakye, F.; Nkum, R.K.

    2010-01-01

    Electrical resistivity measurements have been carried out on thermally evaporated α-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10 -6 Torr. The results show a resistance minimum, a notable characteristic of α-Mn but at a (rather high) temperature of 194±1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 μΩm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  4. The anomalous low temperature resistivity of thermally evaporated alpha-Mn thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ampong, F.K., E-mail: kampxx@yahoo.co [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Boakye, F.; Nkum, R.K. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2010-08-15

    Electrical resistivity measurements have been carried out on thermally evaporated alpha-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10{sup -6} Torr. The results show a resistance minimum, a notable characteristic of alpha-Mn but at a (rather high) temperature of 194+-1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 muOMEGAm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  5. Preparation and characterization of silica/fluorinated acrylate copolymers hybrid films and the investigation of their icephobicity

    International Nuclear Information System (INIS)

    Huang Yanfen; Hu Mingjie; Yi Shengping; Liu Xinghai; Li Houbin; Huang Chi; Luo Yunbai; Li Yan

    2012-01-01

    Inexpensive hydrophobic and icephobic coatings and films were obtained by a simple method. These coatings were prepared by mixing silica sol and fluorinated acrylate copolymers. There was a phase separation process in the film-forming which can provide the excellent performance. Small amount (about 2 wt.%) of fluorinated (methyl) acrylate was used in all of these coatings. The coatings were eco-friendly by using ethanol as the solvent system. Scanning electron microscopy, atomic force microscope, energy dispersive X-ray fluorescence spectrometer, water contact angle, thermal gravimetric analysis and tests of adhesion and hardness had been performed to characterize the morphological feature, chemical composition, hydrophobicity and icephobicity of the surface, thermal stability and mechanical properties of the coatings. The results showed that the films had good hydrophobicity, high thermal stability and excellent mechanical properties of adhesion strength and pencil hardness. Furthermore, by testing their properties of delaying water droplet from icing, it was found that ice formation was delayed for 90 min compared with the glass surface at − 5.6 °C. The hybrid coatings may be suitable for large-scale and practical application owing to its flexibility and simplicity. - Highlights: ► Coatings were prepared by mixing fluorinated acrylate copolymer and silica. ► Mechanical properties and anti-icing performance of the coatings were examined. ► Water contact angle increased with raising SiO 2 (sol)/monomers weight ratio. ► Ice formation was delayed for 90 min at − 5.6 °C.

  6. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  7. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  8. Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing; Chen, Zheng [Jingdezhen Ceramic Institute, Jingdezhen (China). Key Lab. of Inorganic Membrane; Yu, Yun [Shanghai Institute of Ceramics, Shanghai (China). Key Lab. of Inorganic Coating Materials; Zhang, Xiaozhen; Wang, Yongqing; Zhou, Jianer [Jingdezhen Ceramic Institute, Jingdezhen (China). Dept. of Materials Engineering

    2018-03-01

    Graphene-based conductive films have already attracted great attention due to their unique and outstanding physical properties. In this work, in order to develop a novel, effective method to produce these films with good electrical conductivity, a simple and green method is reported to rapidly and effectively reduce graphene oxide film using a low temperature heat treatment. The reduction of graphene oxide film is verified by XRD, FT-IR and Raman spectroscopy. Compared with graphene oxide film, the obtained reduced graphene oxide film has better electrical conductivity and its sheet resistance decreases from 25.3 kΩ x sq{sup -1} to 3.3 kΩ x sq{sup -1} after the heat treatment from 160 to 230 C. The mechanism of thermal reduction of the graphene oxide film mainly results from the removal of the oxygen-containing functional groups and the structural changes. All these results indicate that the low temperature heat treatment is a suitable and effective method for the reduction of graphene oxide film.

  9. Ta penetration into template-type porous low-k material during atomic layer deposition of TaN

    International Nuclear Information System (INIS)

    Furuya, Akira; Ohtsuka, Nobuyuki; Misawa, Kaori; Shimada, Miyoko; Ogawa, Shinichi

    2005-01-01

    Ta penetration into a planar template-type porous low-k film during atomic layer deposition of TaN has been investigated by evaluating relations between Ta penetration and number of deposition cycles, exposure time of Ta precursor per deposition cycle, substrate temperature, and porosity of the porous low-k. The precursors were pentakisdimethylaminotantalum [PDMAT:Ta(N(CH 3 ) 2 ) 5 ] and NH 3 . The porous low-k was a methylsiloxane (MSX) whose pore size in the maximum distribution and porosity of the porous low-k were 0-1.9 nm and 0%-47%. Depth profile of the Ta penetration was measured by transmission electron microscopy and energy dispersive x-ray spectroscopy. The amount of penetrated and the penetration depth depended on the porosity. It was found that the precursors penetrate into the MSX film dominantly by gas phase diffusion through pores connecting from the surface to the inside. Increased surface area of the MSX film due to the pores results in a depletion of precursor at the wafer edge, and that this depletion causes the penetration characteristics at the edge of wafer differ from those at the center of the wafer. Moreover, the thickness required for the pore sealing by additive liner deposition is discussed

  10. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    Science.gov (United States)

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  11. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.

    Science.gov (United States)

    Wang, Kaikai; He, Junhui

    2018-04-04

    Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO 2 ) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.

  12. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  13. Influence of the ion bombardment of O{sub 2} plasmas on low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick, E-mail: verdonck@imec.be [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Samara, Vladimir [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Goodyear, Alec [Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferchichi, Abdelkarim; Van Besien, Els; Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Braithwaite, Nicholas [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2011-10-31

    In this study, special tests were devised in order to investigate the influence of ion bombardment on the damage induced in low-k dielectrics by oxygen plasmas. By placing a sample that suffered a lot of ion bombardment and one which suffered little ion bombardment simultaneously in the same plasma, it was possible to verify that ion bombardment in fact helped to protect the low-k film against oxygen plasma induced damage. Exhaustive analyses (ellipsometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, porosimetry, capacitance-voltage (C-V) measurements, water contact angle analysis) show that ion bombardment induced the formation of a denser top layer in the film, which then hampered further penetration of active oxygen species deeper into the bulk. This was further confirmed by other tests combining capacitively and inductively coupled plasmas. Therefore, it was possible to conclude that, at least for these plasmas, ion bombardment may help to reduce plasma induced damage to low-k materials.

  14. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  15. Structural, morphological and optical properties of Na and K dual doped CdS thin film

    International Nuclear Information System (INIS)

    Mageswari, S.; Dhivya, L.; Palanivel, Balan; Murugan, Ramaswamy

    2012-01-01

    Highlights: ► Effect of incorporation of Na, K and Na,K dual dopants into CdS thin film was investigated. ► Thin films were prepared by simple chemical bath deposition technique. ► The XRD analysis revealed cubic phase for all the investigated films. ► AFM analysis revealed uniform surface with crack free and densely packed morphology for CdS:Na,K film. ► The band gap value increases for CdS:Na, CdS:K and CdS:Na,K thin films compared to CdS film. - Abstract: CdS, sodium doped CdS (CdS:Na), potassium doped CdS (CdS:K) and sodium and potassium dual doped CdS (CdS:Na,K) thin films were deposited on glass substrate by chemical bath deposition (CBD) technique. Structural, morphological and optical properties of the as-grown films were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and ultraviolet visible (UV–VIS) spectroscopy. The XRD analysis revealed cubic phase for ‘as-deposited’ CdS, CdS:Na, CdS:K and CdS:Na,K dual doped thin films. AFM analysis revealed uniform film surface with crack free and densely packed morphology for CdS:Na,K film. The absorption edge in the optical absorption spectra shifts towards the shorter wavelength for CdS:Na, CdS:K and CdS:Na,K thin films compared to CdS film. The optical band gap of CdS, CdS:Na, CdS:K and CdS:Na,K thin films was found to be 2.31, 2.35, 2.38 and 2.34 eV, respectively.

  16. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  17. Synchrotron radiation photoemission spectrum study on K3C60 film

    Institute of Scientific and Technical Information of China (English)

    李宏年; 徐亚伯; 鲍世宁; 李海洋; 何丕模; 钱海杰; 刘风琴; 奎热西·易卜拉欣

    2000-01-01

    K3C60 single crystal film was prepared on the cleaved (111) surface of C60 single crystal. Synchrotron radiation angle-resolved photoemission spectra were measured at normal emission with sample temperature at - 150K. Up to four subpeaks of LUMO-derived band were observed. These sub-peaks exhibit distinct energy dispersions which resemble in general the theoretical ones calculated for K3C60 at low temperature with the so-called one-dimensional disordered structure. But there is large deviation of experimental sub-band intervals from the theoretical values. This result is meaningful for the studies of the physical properties of alkali-doped C60 solids, e.g. the mechanism for superconductivity.

  18. Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks

    International Nuclear Information System (INIS)

    Gacoin, T; Besson, S; Boilot, J P

    2006-01-01

    Tremendous work achieved in the last 20 years on nanoparticle synthesis has allowed us to study many new physical properties that are found in the nanometre size range. New developments are now expected when considering assemblies of nanoparticles such as 2D or 3D organized arrays. These systems are indeed expected to exhibit original physical properties resulting from particle-particle interactions. Studies in this field are clearly dependent on the elaboration of materials with controlled particle size, organization and interparticle distance. This paper presents a strategy of elaboration that is based on the use of organized mesoporous silica films as templates. These films are made by sol-gel polymerization around surfactant assemblies and further elimination of the surfactant. This provides porous matrices with a pore organization that is the almost perfect replica of the initial micellar structure. The use of such films for the elaboration of organized arrays of nanoparticles is detailed in the case of CdS and Ag particles. The formation of particles inside the pores is achieved through impregnation with precursors that are allowed to diffuse inside the pores. This leads to particles with a size and a spatial arrangement that is directly related to the initial pore structure of the films. This process opens a wide range of investigations due to the relative ease of fabrication over large surfaces and the numerous possibilities offered by the elaboration of porous films with different pore sizes and organizations

  19. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    Science.gov (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  20. Porogen residues detection in optical properties of low-k dielectrics cured by ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Marsik, Premysl, E-mail: marsik@physics.muni.c [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Verdonck, Patrick [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); De Roest, David [ASM Belgium, Kapeldreef 75, 3001 Leuven (Belgium); Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2010-05-31

    The optical properties of low dielectric constant (low-k) films have been determined by variable angle spectroscopic ellipsometry in the range from 2 eV to 9 eV to characterize the process of porogen removal during the UV-cure. The studied carbon doped oxide (SiCOH) porous dielectric films have been prepared by plasma enhanced chemical vapor deposition. The films have been deposited as a composition of a matrix precursor and an organic porogen. After deposition, the films have been cured by thermal annealing and UV irradiation ({lambda} = 172 nm) to remove the porogen and create a porosity of 33%, reaching a dielectric constant of 2.3. The process of porogen decomposition and removal has been studied on series of low-k samples, UV-cured for various times. Additional samples have been prepared by the deposition and curing of the porogen film, without SiCOH matrix, and the matrix material itself, without porogen. The analysis of the optical response of the porous dielectric as a mixture of matrix material, porogen and voids, together with Fourier transform infrared analysis, allows the sensitive detection of the volume of the porogen and indicates the existence of decomposed porogen residues inside the pores, even for long curing time. The variation of the deposition and curing conditions can control the amount of the porogen residues and the final porosity.

  1. Influence of Nano Silica on Alkyd Films

    DEFF Research Database (Denmark)

    Nikolic, Miroslav

    . The present work centers on the reinforcement of alkyd binders emulsified in water and used in exterior wood coatings with nano silica. Raman spectroscopy was used throughout the study to maintain the reproducibility of results as it was found that colloidal nano silica can increase or decrease the speed...... of alkyd curing affecting the tested mechanical properties. Hydrophilic, colloidal nano silica was seen to have limited effect in improving the mechanical properties due to problems in properly dispersing and attaining good surface interactions with the hydrophobic alkyd polymer. Efforts in increasing...... the interactions with the alkyd polymer while keeping the nano filler stable in the water phase did not show further improvements of mechanical properties. The best results in respect to mechanical properties, as measured under static and dynamic loading, were obtained with the use of hexamethyldisilazane treated...

  2. The effects of surface roughness on low haze ultrathin nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kanniah, Vinod [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Tru Vue, Inc. 9400 West, 55th St, McCook, IL 60525 (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Druffel, Thad [Vision Dynamics LLC, 1950 Production Court, Louisville, KY 40299 (United States); Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States)

    2013-07-31

    Control of surface roughness in optical applications can have a large impact on haze. This work compares surface roughness and haze for self-assembled experimental surface structures as well as simulated surface structures for ultrathin nanocomposite films. Ultrathin nanocomposite films were synthesized from an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles as the dispersed phase. An in-house spin coating deposition technique was used to make thin nanocomposite films on hydrophilic (glass) and hydrophobic (polycarbonate) substrates. Manipulating the size ratios of the silica nanoparticle mixtures generated multimodal height distributions, varied the average surface roughness (σ) and changed lateral height–height correlations (a). For the simulated surfaces, roughness was estimated from their morphologies, and haze was calculated using simplified Rayleigh scattering theory. Experimental data for haze and morphologies of nanocomposite films corresponded well to these properties for simulated tipped pyramid surfaces. A correlation based on simple Rayleigh scattering theory described our experimental data well, but the exponent on the parameter, σ/λ (λ is the wavelength of incident light), does not have the expected value of 2. A scalar scattering model and a prior Monte Carlo simulation estimated haze values similar to those of our experimental samples. - Highlights: • Bidisperse nanoparticle mixtures created structured surfaces on thin films. • Monodisperse discrete phases created unimodal structure distributions. • Bidisperse discrete phases created multimodal structure distributions. • Multimodal structures had maximum heights ≤ 1.5 D{sub large} over our variable range. • Simplified Rayleigh scattering theory linked roughness to haze and contact angle.

  3. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Witoon, Thongthai, E-mail: fengttwi@ku.ac.th [National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand)

    2012-11-15

    In this work, bimodal (meso-macro) porous silicas with different mesopore diameters synthesized by using rice husk ash as a low-cost silica source and chitosan as a natural template were used as a polyethyleneimine (PEI) support for CO{sub 2} capture. Unimodal porous silica supports with equivalent mesopore diameters to bimodal porous silica supports have been prepared for purpose of comparison. Effects of different PEI contents (10, 20, 30, 40 and 50 wt%) on CO{sub 2} sorption capacity have been systematically investigated. The porous silica supports and the PEI-loaded porous silica supports were characterized by N{sub 2}-sorption analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. CO{sub 2} sorption measurements of all PEI-loaded porous silica supports were performed at different adsorption temperatures (60, 75, 85, 90, 95 and 105 Degree-Sign C). At low PEI contents (10-20 wt%), the CO{sub 2} sorption of all adsorbents was found to decrease as a function of adsorption temperature, which was a characteristic of a thermodynamically-controlled regime. A transition from the thermodynamically-controlled regime to a kinetically-controlled regime was found when the PEI content was increased up to 30 wt% for PEI-loaded unimodal porous silicas and 40 wt% for PEI-loaded bimodal porous silicas. At high PEI contents (40-50 wt%), the CO{sub 2} capturing efficiency of the PEI-loaded bimodal porous silicas was found to be considerably greater than that of the PEI-loaded unimodal porous silicas, indicating that most of the amine groups of PEI molecules loaded on the unimodal porous silica supports was useless, and thus the appeared macroporosity of the bimodal porous silica supports could provide a higher effective amine density to adsorb CO{sub 2}. Highlights: Black-Right-Pointing-Pointer PEI-impregnated bimodal porous silica as low-cost sorbent for CO{sub 2} capture. Black-Right-Pointing-Pointer Macropores enhances

  4. Spectroscopic studies of organic-inorganic composite film cured by low energy electron beam

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ibrahim Abdullah; Eda Yuhana Ariffin

    2009-01-01

    Liquid epoxidized natural rubber acrylate (LENRA) film was reinforced with silica particles formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethyl orthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reactions was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. The compounds that contain silica were crosslinked by electron beam. Structural properties studies were carried out by Fourier Transform Infrared Spectrometer (FTIR). It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. Morphology study by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at any concentrations of TEOS. (author)

  5. Investigation of high- k yttrium copper titanate thin films as alternative gate dielectrics

    International Nuclear Information System (INIS)

    Monteduro, Anna Grazia; Ameer, Zoobia; Rizzato, Silvia; Martino, Maurizio; Caricato, Anna Paola; Maruccio, Giuseppe; Tasco, Vittorianna; Lekshmi, Indira Chaitanya; Hazarika, Abhijit; Choudhury, Debraj; Sarma, D D

    2016-01-01

    Nearly amorphous high- k yttrium copper titanate thin films deposited by laser ablation were investigated in both metal–oxide–semiconductor (MOS) and metal–insulator–metal (MIM) junctions in order to assess the potentialities of this material as a gate oxide. The trend of dielectric parameters with film deposition shows a wide tunability for the dielectric constant and AC conductivity, with a remarkably high dielectric constant value of up to 95 for the thick films and conductivity as low as 6  ×  10 −10 S cm −1 for the thin films deposited at high oxygen pressure. The AC conductivity analysis points out a decrease in the conductivity, indicating the formation of a blocking interface layer, probably due to partial oxidation of the thin films during cool-down in an oxygen atmosphere. Topography and surface potential characterizations highlight differences in the thin film microstructure as a function of the deposition conditions; these differences seem to affect their electrical properties. (paper)

  6. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8570 (Japan)

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO){sub 20}(PO){sub 70}(EO){sub 20}) or F127 ((EO){sub 106}(PO){sub 70}(EO){sub 106}), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films.

  7. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nakamura, Hitomi; Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro

    2014-01-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO) 20 (PO) 70 (EO) 20 ) or F127 ((EO) 106 (PO) 70 (EO) 106 ), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films

  8. Plasma Polymerization of Acetylene onto silica: and Approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, Jacobus W.M.; Ooij, W.J.; Dierkes, Wilma K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water

  9. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  10. Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Xu Weilin; Lu Tianhong; Liu Changpeng; Xing Wei

    2005-01-01

    Nafion/silica/phosphotungstic acid (PWA) composite membranes were studied for low temperature ( max = 70 mW/cm 2 ) than those of commercial Nafion without treatment (OCV = 0.68 V, P max = 62 mW/cm 2 ) at 80 deg. C

  11. Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser.

    Science.gov (United States)

    Shiraz, Hana; Peake, Simon J; Davey, Tim; Cameron, Neil R; Tabor, Rico F

    2018-05-15

    Film-forming polymer latex particles of diameter acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40). It was found that pH control before polymerisation using methacrylic acid (MAA) facilitated the formation of armoured latexes, and mechanistic features of this process are discussed. An alternative, more robust protocol was developed whereby addition of vinyltriethoxysilane (VTES) to control wettability resulted in latexes completely armoured in colloidal nano-silica. The latexes were characterised using SEM, cryo-TEM and AFM imaging techniques. The mechanism behind the adsorption was investigated through surface pressure and contact angle measurements to understand the factors that influence this irreversible adsorption. Results indicate that nanoparticle attachment (but intriguingly not latex size) is dependent on particle wettability, providing new insight into the formation of nanoparticle-armoured latexes, along with opportunities for further development of diversely functionalized inorganic/organic polymer composite particles. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  13. Spectroscopy of nanosized composites silicon-organic polymer/nanoporous silicas

    International Nuclear Information System (INIS)

    Ostapenko, N.; Kozlova, N.; Suto, S.; Watanabe, A.

    2006-01-01

    Fluorescence and excitation spectra (T=5-290 K) of nanosized silicon-organic polymers poly(di-n-hexylsilane) and poly(methyl(phenyl)silane) incorporated into porous silica materials MCM-41 and SBA-15 have been studied with varying pore diameter from 2.8 to 10 nm. The controlled variation of the pore diameter in a wide range (2.8-10 nm) permitted us, for the first time, to investigate the optical properties of the polymers on their transition from isolated macromolecules to a film. It is found that this transition depends on polymer type and occurs via the formation of new spatially independent structures of the polymers not observed in the spectra of the film, namely, via the formation of disordered and (or) ordered conformations of polymer chains and clusters

  14. K3[Fe(CN)6].3H2O supported on silica gel: An efficient and selective ...

    Indian Academy of Sciences (India)

    Department of Chemistry, Payame Noor University, 19395-4697 Tehran, I. R. of IRAN e-mail: ... K3[Fe(CN)6].3H2O, Silica gel; oxime; aldehyde; ketone. 1. Introduction .... ysis, hydrogenation, etc., using organic and inorganic reagents. Besides ...

  15. Low-energy excitations in amorphous films of silicon and germanium

    International Nuclear Information System (INIS)

    Liu, X.; Pohl, R.O.

    1998-01-01

    We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society

  16. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  17. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    International Nuclear Information System (INIS)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie; Gu, Changzhi

    2014-01-01

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3 K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63 nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity

  18. Synthesis and silica coating of calcia-doped ceria/plate-like titanate (K0.8Li0.27Ti1.73O4) nanocomposite by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Sato, Tsugio

    2007-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The plate-like particles are required to enhance the coverage ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/plate-like potassium lithium titanate (K 0.8 Li 0.27 Ti 1.73 O 4 ) nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was prepared by soft chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR

  19. Studies on functional polymer films utilizing low energy electron beam

    International Nuclear Information System (INIS)

    Ando, Masayuki

    1992-01-01

    Also in adhesives and tackifiers, with the expansion of the fields of application, the required characteristics have become high grade and complex. As one of them, the instantaneous hardening of adhesives can be taken up. In the field of lamination works, the low energy type electron beam accelerators having the linear filament of accelerating voltage below 300 kV were developed in 1970s, and the interest in the development of electron beam-handened adhesives has heightend. The authors have carried out research aiming at heightening the functions of the polymer films obtained by electron beam hardening reaction, and developed the adhesives. In this report, the features of electron beam hardening reaction, the structure and properties of electron beam-hardened polymer films and the molecular design of electron beam-hardened monomer oligomers are described. The feature of electron beam hardening reaction is the cross-linking of high degree as the structure of oligomers is maintained. By controlling the structure at the time of electron beam hardening, the heightening of the functions of electron beam-hardened polymer films is feasible. (K.I.)

  20. Study of PECVD films containing flourine and carbon and diamond like carbon films for ultra low dielectric constant interlayer dielectric applications

    Science.gov (United States)

    Sundaram, Nandini Ganapathy

    Lowering the capacitance of Back-end-of-line (BEOL) structures by decreasing the dielectric permittivity of the interlayer dielectric material in integrated circuits (ICs) lowers device delay times, power consumption and parasitic capacitance. a:C-F films that are thermally stable at 400°C were deposited using tetrafluorocarbon and disilane (5% by volume in Helium) as precursors. The bulk dielectric constant (k) of the film was optimized from 2.0 / 2.2 to 1.8 / 1.91 as-deposited and after heat treatment. Films, with highly promising k-values but discarded for failing to meet shrinkage rate requirements were salvaged by utilizing a novel extended heat treatment scheme. Film properties including chemical bond structure, F/C ratio, refractive index, surface planarity, contact angle, dielectric constant, flatband voltage shift, breakdown field potential and optical energy gap were evaluated by varying process pressure, power, substrate temperature and flow rate ratio (FRR) of processing gases. Both XPS and FTIR results confirmed that the stoichiometry of the ultra-low k (ULK) film is close to that of CF2 with no oxygen. C-V characteristics indicated the presence of negative charges that are either interface trapped charges or bulk charges. Average breakdown field strength was in the range of 2-8 MV/cm while optical energy gap varied between 2.2 eV and 3.4 eV. Irradiation or plasma damage significantly impacts the ability to integrate the film in VSLI circuits. The film was evaluated after exposure to oxygen plasma and HMDS vapors and no change in the FTIR spectra or refractive index was observed. Film is resistant to attack by developers CD 26 and KOH. While the film dissolves in UVN-30 negative resist, it is impermeable to PGDMA. A 12% increase in dielectric constant and a decrease in contact angle from 65° to 47° was observed post e-beam exposure. The modified Gaseous Electronics Conference (mGEC) reference cell was used to deposit DLC films using CH4 and Argon as

  1. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  2. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    Science.gov (United States)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  3. Perovskite oxynitride LaTiO{sub x}N{sub y} thin films: Dielectric characterization in low and high frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Ziani, A. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Le Paven-Thivet, C., E-mail: claire.lepaven@univ-rennes1.fr [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Benzerga, R.; Le Gendre, L. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Fasquelle, D. [Laboratoire d' Etude des Materiaux et des Composants pour l' Electronique (LEMCEL) UPRES-EA 2601, University of Littoral-Cote d' Opale, 50 rue Ferdinand Buisson, F-62228 Calais cedex (France); Kassem, H. [Laboratoire de l' Integration du Materiau au Systeme(IMS) UMR-CNRS 5218, groupe Materiaux, University of Bordeaux 1, 16 avenue Pey-Berland, 33607 Pessac (France); and others

    2011-11-01

    Lanthanum titanium oxynitride (LaTiO{sub x}N{sub y}) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO{sub x}N{sub y} thin films deposited on conductive single crystal Nb-STO show a dielectric constant {epsilon} Prime Almost-Equal-To 140 with low losses tan{delta} = 0.012 at 100 kHz. For the LaTiO{sub x}N{sub y} polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO{sub 2}/Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO{sub x}N{sub y} films deposited on MgO substrate present a high dielectric constant with low losses ({epsilon} Prime Almost-Equal-To 170, tan{delta} = 0.011, 12 GHz).

  4. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  5. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  6. Relevant parameters in the micro silica selection for the self-flowing ultra-low cement castables production

    International Nuclear Information System (INIS)

    Studart, A.R.; Pandolfelli, V.C.; Rodrigues, J.A.; Vendrasco, S.L.

    1997-01-01

    Self-flowing ultra-low cement castables typically contain a large fraction of the particles, usually fume silica, which increase their flowability and mechanical strength at low temperatures. Fume silicas available in the market differ mainly from their amount of impurities. It is assumed that the content of soluble alkali and free carbon containing in this raw-material affects strongly the processing of self-flowing castable. In this work high alumina castables with gap-sized particle size distribution were prepared to evaluate their flowability, workability and mechanical strength for each sort of fume silica studied. It was observed that the amount of impurities affects both deflocculation and setting time of the castables and their cold and hot mechanical strength. Considerations regarding the physical and chemical characteristics relevant for selecting fume silicas for the production of self-flowing castables are presented and discussed. (author)

  7. Measurements of Schottky barrier at the low-k SiOC:H/Cu interface using vacuum ultraviolet photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Pei, D.; Zheng, H.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Lin, Y.-H.; Fung, H.-S.; Chen, C.-C. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-12-07

    The band alignment between copper interconnects and their low-k interlayer dielectrics is critical to understanding the fundamental mechanisms involved in electrical leakage in low-k/Cu interconnects. In this work, vacuum-ultraviolet (VUV) photoemission spectroscopy is utilized to determine the potential of the Schottky barrier present at low-k a-SiOC:H/Cu interfaces. By examining the photoemission spectra before and after VUV exposure of a low-k a-SiOC:H (k = 3.3) thin film fabricated by plasma-enhanced chemical-vapor deposition on a polished Cu substrate, it was found that photons with energies of 4.9 eV or greater can deplete accumulated charge in a-SiOC:H films, while VUV photons with energies of 4.7 eV or less, did not have this effect. These critical values were identified to relate the electric potential of the interface barrier between the a-SiOC:H and the Cu layers. Using this method, the Schottky barrier at the low-k a-SiOC:H (k = 3.3)/Cu interface was determined to be 4.8 ± 0.1 eV.

  8. Direct submillimeter absorptivity measurements on epitaxial Ba1-xKxBiO3films at 2K

    International Nuclear Information System (INIS)

    Miller, D.; Richards, P.L.; Nicol, E.J.; Hellman, E.S.; Hartford, E.H. Jr.; Platt, C.E.; Schweinfurth, R.A.; VanHarlingen, D.J.; Amano, J.

    1993-04-01

    We have used a bolometric technique to obtain accurate low temperature loss data for epitaxial thin films of Ba 0.6 K 0.4 BiO 3 from 30 to 700 cm -1 . These films were grown on MgO and SrTiO 3 substrates by MBE, off-axis sputtering and laser deposition techniques. All films show a strong absorption onset near the BCS tunneling gap of 3.5k B T c . We have analyzed these data using a Kramers-Kronig transformation and have corrected for finite film thickness effects. Results indicate that the absorption onset is consistent with a superconducting energy gap. Comparison is made with predictions based on strong coupling Eliashberg theory using α 2 F(ω) spectra obtained from the literature. While we are able to fit the overall measured absorptivity, we are unable to fit the structure observed in our data

  9. Ce+3-and Tb+3-luminescence in glasses. Ce+3-activated bulk silica and silica thin films. An α-particle detector based on a Ce+3-activated silica thin film. A Ce+3-Tb+3-energy transfer in a high melting point phosphate glass

    International Nuclear Information System (INIS)

    Heindl, R.; Loriers, J.; Sella, J.C.; Robert, A.

    1984-07-01

    While many Ce +3 -activated glasses of different type emit strongly under UV (253,7 nm) and β-ray excitation, only the commercial silicate glass NE 905 shows an useful emission when exposed to α-particles. Only phosphate glasses have give the green Tb +3 -emission, when doped by it, under UV and α and β radiation. Sputtered films of Ce +3 -activated silica have appropriate luminescence properties, adherence to the substrate and a perfect chemical resistance to hot nitric acid. An α-particle detector has been built which has permitted the quantitative detection of plutonium in the presence of other radiative ions

  10. Assembly of crosslinked oxo-cyanoruthenate and zirconium oxide bilayers: Application in electrocatalytic films based on organically modified silica with templated pores

    International Nuclear Information System (INIS)

    Rutkowska, Iwona A.; Sek, Jakub P.; Mehdi, B. Layla; Kulesza, Pawel J.; Cox, James A.

    2014-01-01

    Electrochemical deposition of crosslinked oxo-cyanoruthenate, Ru-O/CN-O, from a mixture of RuCl 3 and K 4 Ru(CN) 6 is known to yield a film on glassy carbon that promotes oxidations by a combination of electron and oxygen transfer. Layer-by-layer (LbL) deposition of this species at a film formed by cycling of the electrode potential in a ZrO 2 solution systematically increases the number of catalytically active sites of the Ru-O/CN-O on the electrode. The evaluation of the electrocatalytic activity was by cyclic voltammetric oxidation of cysteine at pH 2. Plots of the anodic peak current vs. the square root of scan rate were indicative of linear diffusion control of this oxidation, even in the absence of ZrO 2 , but the slopes of these linear plots increased with bilayer number, n, of (ZrO 2 | Ru-O/CN-O) n . The latter observation is hypothesized to be due to an increased number of active sites for a given geometric electrode area, but proof requires further study. To optimize utilization of the catalyst and to provide a size-exclusion characteristic to the electrode, the study was extended to LbL deposition of the composite in 50-nm pores of an organically modified silica film deposited by electrochemically assisted sol-gel processing using surface-bound poly(styrene sulfonate) nanospheres as a templating agent

  11. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing

    2009-01-01

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t 90% ) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 μM and the linear detect range is about from 4.0 μM to 87.98 μM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K M app ) is estimated using the Lineweaver-Burk equation and the K M app value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  12. Moessbauer spectroscopic characterisation of catalysts obtained by interaction between tetra-n-butyl-tin and silica or silica supported rhodium

    International Nuclear Information System (INIS)

    Millet, J.M.M.; Toyir, J.; Didillon, B.; Candy, J.P.; Nedez, C.; Basset, J.M.

    1997-01-01

    Moessbauer spectroscopy at 78 K was used to study the interaction between tetra-n-butyl-tin and the surfaces of silica or silica supported rhodium. At room temperature, the tetra-n-butyl-tin was physically adsorbed on the surfaces. After reaction under hydrogen at 373 K, the formation of grafted organometallic fragments on the Rh surface was confirmed whereas with pure silica, ≡SiO-Sn(n-C 4 H 9 ) 3 moieties were observed. After treatment at 523 K, the rhodium grafted organometallic species was completely decomposed and there was formation of a defined bimetallic RhSn compound

  13. Surface reactions during low-k etching using H2/N2 plasma

    International Nuclear Information System (INIS)

    Fukasawa, Masanaga; Tatsumi, Tetsuya; Oshima, Keiji; Nagahata, Kazunori; Uchida, Saburo; Takashima, Seigo; Hori, Masaru; Kamide, Yukihiro

    2008-01-01

    We investigated the relationship between the hard mask faceting that occurs during organic low-k etching and the ion energy distribution function of a capacitively coupled plasma reactor. We minimized the hard mask faceting by precisely controlling the ion energy. This precise control was obtained by selecting the optimum bottom frequency and bias power. We measured the amount of damage done to a SiOCH film exposed to H 2 /N 2 plasma in order to find the H 2 /N 2 ratio at which the plasma caused the least damage. The amount of moisture uptake by the damaged SiOCH film is the dominant factor controlling the dielectric constant increase (Δk). To suppress Δk, the incident ion species and ion energies have to be precisely controlled. This reduces the number of adsorption sites in the bulk SiOCH and maintains the hydrophobic surface that suppresses water permeation during air exposure

  14. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  15. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: Mesoporous silica foam as a first case study

    KAUST Repository

    Shekhah, Osama; Fu, Lei; Sougrat, Rachid; Belmabkhout, Youssef; Cairns, Amy; Giannelis, Emmanuel P.; Eddaoudi, Mohamed

    2012-01-01

    Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems. © 2012 The Royal Society of Chemistry.

  16. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.

    2016-01-01

    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  17. Spectrophotometric determination of silica in water. Low range

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-07-01

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 μg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  18. Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    A hybrid low pressure MOCVD process is described for reproducible preparation of superconducting thin films of YBa 2 Cu 3 O 7 . The process uses a single solution source of Y, Ba, and Cu β-diketonates dissolved in suitable organic solvents. This liquid precursor is atomized using an ultrasonic aerosol generator and transported as small droplets (∼1μm) into a CVD reactor where solvent and precursor are first evaporated before deposition takes place at low pressure on heated substrates in a cold wall geometry. This process allows, with stable evaporation rates for all three precursors, to grow in-situ superconducting films with constant composition from film to film. Thin and thick films with high critical temperatures and critical currents have been obtained (Tc>80K, Jc>10 4 A/cm 2 at 77K in self field) which are highly c-axis oriented. Experimental details of this new process are described and the effects of different process parameters are studied in order to improve the quality of the deposited layers. (orig.)

  19. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  20. Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods.

    Science.gov (United States)

    Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W

    2013-06-28

    This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.

  1. Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers

    Directory of Open Access Journals (Sweden)

    Shuye Zhang

    2018-01-01

    Full Text Available Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test.

  2. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    Science.gov (United States)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  3. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    Science.gov (United States)

    X. Guo; J.E. Jakes; S. Banna; Y. Nishi; J.L. Shohet

    2014-01-01

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes...

  4. Newtech - Comparison of three 1 kW thin-film solar cell installations; Newtech. Vergleich 3 x 1 kWp Duennschichtzellenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Renken, C.; Haeberlin, H.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made on 3 types of thin-film solar cells by the photovoltaics laboratory at the University of Applied Science in Burgdorf, Switzerland. The three 1-kW{sub p} installations are all mounted on the flat roof of an industrial building and deliver the power produced to the local electricity utility. The thin-film technologies tested are described. These include copper-indium-diselenide (CIS) cells, amorphous silicon tandem cells and amorphous silicon triple cells. The measurement equipment used is described and the results obtained are discussed. These showed that the CIS cells had the highest annual specific yield and that the triple cells had a relatively high performance ratio at low irradiance levels. The performance of the thin-film modules is also compared to that of conventional, crystalline modules installed at a nearby location.

  5. Two-dimensional silica opens new perspectives

    Science.gov (United States)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  6. THIN FILMS OF A NEW ORGANIC SINGLE-COMPONENT FERROELECTRIC 2-METHYLBENZIMIDAZOLE

    Directory of Open Access Journals (Sweden)

    E. V. Balashova

    2016-09-01

    Full Text Available Subject of Research.We present results of structural and dielectric study of organic ferroelectric 2-methylbenzimidazole (MBI thin films. Method. The films have been grown on substrates of leuco-sapphire, fused and crystalline silica, neodymium gallate, bismuth germanate, gold, aluminium, platinum. The films have been grown by two different methods: substrate covering by ethanol solution of MBI and subsequent ethanol evaporation; sublimation at the temperature near 375 K under atmospheric pressure. Crystallographic orientation studies have been performed by means of «DRON-3» X-ray diffractometer, block structure of the films has been determined by «LaboPol-3» polarizing microscope. Small-signal dielectric response has been received with the use of «MIT 9216A» digital LCR-meter, while strong-signal dielectric response has been studied by Sawyer-Tower circuit. Main Resuts. We have shown that the films obtained by evaporation are continuous and textured. Obtained film structure depends on the concentration of the solution. Films may consist of blocks that are splitted crystals like spherulite. Spontaneous polarization components in such films may be directed both perpendicularly and in the film plane. We have also obtained structures consisting of single-crystal blocks with spontaneous polarization components being allocated in the film plane. Block sizes vary from a few to hundreds of microns. Films obtained by sublimation are amorphous or dendritic. The dielectric properties of the films obtained by evaporation have been studied. We have shown that the dielectric constant and dielectric loss tangent increase under heating. The dielectric hysteresis loops are observed at the temperature equal to 291-379 K. The remnant polarization increases with temperature for constant amplitude of the external electric field, and achieves 4.5mC/cm2, while the coercive field remains constant. We propose that such behavior is explained by increase of the

  7. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of Na on Cu-K-In-Se thin film growth

    Science.gov (United States)

    Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.

    2018-04-01

    Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ∼ 0.85 and K/(K + Cu) ∼ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu1-xKxInSe2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe2 + KInSe2 mixed-phase films. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S)2 absorbers to optimize both initial and long-term photovoltaic power generation.

  9. A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor.

    Science.gov (United States)

    Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi

    2016-06-01

    A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.

  10. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  11. Nanodrilling of fused silica using nanosecond laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P., E-mail: pierre.lorenz@iom-leipzig.de; Zajadacz, J.; Bayer, L.; Ehrhardt, M.; Zimmer, K.

    2015-10-01

    Graphical abstract: - Highlights: • Low-fluence irradiation of 10 nm Mo on SiO{sub 2} results in the formation of Mo droplets. • High-fluence irradiation of droplets results in the formation of holes in the SiO{sub 2}. • The process allows the formation of randomly distributed and periodic holes. • The randomly distributed hole density ρ{sub h} depends on the fluence (ρ{sub h} ≤ 1.3 μm{sup −2}). • The interaction of the laser beam with Mo/SiO{sub 2} was simulated by FEM. - Abstract: The fast laser drilling of dielectric surfaces with hole diameters in the sub-μm range and a high aspect ratio is a challenge for laser methods. In this study, a novel laser structuring method for the production of randomly and periodically distributed holes in a fused silica surface will be presented using a self-assembling process. A fused silica surface was covered with a 10 nm thick magnetron-sputtered molybdenum film. The metal film was irradiated by a KrF excimer laser (wavelength λ = 248 nm, pulse duration Δt{sub p} = 25 ns) with low laser fluences (Φ < 1 J/cm{sup 2}) and the laser-induced heating resulting in a melting of the metal film and finally in a self-assembled formation of randomly distributed metal droplets due to the surface tension of the metal liquid phase using a top hat beam profile. Furthermore, the usage of a periodically modulated laser beam profile allows the fabrication of periodically distributed droplet pattern. The multi-pulse irradiation of the laser-generated metal droplets with higher laser fluences results in a stepwise evaporation of the metal and in a partial evaporation of the fused silica near the metal droplets. Finally, the laser-induced stepwise evaporation process results in a formation of cone-like holes in the fused silica surface where the resultant holes are dependent on the size of the generated metal droplets and on the laser parameters. The “drilling” process allows the fabrication of holes with a depth up to 1

  12. A Review on Reinforcement of Natural Rubber by Silica Fillers for Use in Low-Rolling Resistance Tires

    NARCIS (Netherlands)

    Sarkawi, S.S.; Kaewsakul, Wisut; Sahakaro, Kannika; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2015-01-01

    High dispersion silica has recently become the preferred alternative to carbon black for low rolling resistance tyres. However, the combination of natural rubber with silica and a coupling agent remains a challenge, but also offers a tremendous potential for reduction of energy consumption of

  13. Improvement of Low-Grade Silica Sand Deposits in Um Bogma Area-West Central Sinai, Egypt

    International Nuclear Information System (INIS)

    Abdel-Rahman, I.F.; El Shennawy, A.A.

    2012-01-01

    There are several silica sand deposits in Sinai, but they require upgrading to provide a raw materials acceptable for the glass manufacture. This study records beneficiation of low-grade silica sand deposits near Um Bogma at west central Sinai. The improvement techniques of ore dressing involving wet sieving, attrition scrubbing, decantation, gravimetric and magnetic separations have been applied depending on the physical properties of the constituents.

  14. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    International Nuclear Information System (INIS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ∼1.78eV with high absorption coefficient ∼10 6 /m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ∼2.6Ωm and the films showed good photo response

  15. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  16. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  17. Thermal expansion at low temperatures of glass-ceramics and glasses

    Energy Technology Data Exchange (ETDEWEB)

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  18. Scanning tunneling spectroscopic studies of superconducting NbN single crystal thin films at 4.2 K

    International Nuclear Information System (INIS)

    Kashiwaya, S.; Koyanagi, M.; Matsuda, M.; Shoji, A.; Shibata, H.

    1991-01-01

    This paper reports on a Low Temperature Scanning Tunneling Microscope (LTSTM) constructed to study the microscopic properties of superconductors. It has atomic resolution from room temperature to 4.2 K. Conductance spectra obtained between a Pt tip and a NbN thin film agreed well with theoretical curves based on the BCS theory

  19. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  20. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  1. Leakage current phenomena in Mn-doped Bi(Na,K)TiO_3-based ferroelectric thin films

    International Nuclear Information System (INIS)

    Walenza-Slabe, J.; Gibbons, B. J.

    2016-01-01

    Mn-doped 80(Bi_0_._5Na_0_._5)TiO_3-20(Bi_0_._5K_0_._5)TiO_3 thin films were fabricated by chemical solution deposition on Pt/TiO_2/SiO_2/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, there were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ_i_o_n ≈ 1.7 × 10"−"1"2 cm"2 V"−"1 s"−"1 and E_A_,_i_o_n ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.

  2. Infrared characterization of strontium titanate thin films

    International Nuclear Information System (INIS)

    Almeida, B.G.; Pietka, A.; Mendes, J.A.

    2004-01-01

    Strontium titanate thin films have been prepared at different oxygen pressures with various post-deposition annealing treatments. The films were deposited by pulsed laser ablation at room temperature on Si(0 0 1) substrates with a silica buffer layer. Infrared reflectance measurements were performed in order to determine relevant film parameters such as layer thicknesses and chemical composition. The infrared reflectance spectra were fitted by using adequate dielectric function forms for each layer. The fitting procedure provided the extraction of the dielectric functions of the strontium titanate film, the silica layer and the substrate. The as-deposited films are found to be amorphous, and their infrared spectra present peaks corresponding to modes with high damping constants. As the annealing time and temperature increases the strontium titanate layer becomes more ordered so that it can be described by its SrTiO 3 bulk mode parameters. Also, the silica layer grows along with the ordering of the strontium titanate film, due to oxidation during annealing

  3. Hydrothermal Diamond Anvil Cell Investigations Into the Alumina-Silica-Water System up to 1073 K and 4 GPa

    Science.gov (United States)

    Davis, M. K.; Stixrude, L. P.

    2004-12-01

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubility of different mineral assemblages in predominantly water-rich fluid along with pressure and temperature conditions control the chemical structure of the aqueous fluid and govern the transport opportunities for various chemical components away from the subducting slab. In-situ Raman experiments were performed in the alumina-silica-water system in an externally heated Bassett-type hydrothermal diamond anvil cell in the Department of Geological Sciences at the University of Michigan. Natural quartz samples (from the Owl Creek Mountains, Wyoming) were used as the silica source and synthetic ruby was used for the alumina source. Temperatures inside the diamond cell were monitored using type-K thermocouples wrapped around the diamonds and the pressure calibrated by the Raman shift of diamond or quartz or the fluorescence of ruby depending on conditions. Raman measurements of the aluminosilicate fluid show the presence of multiple alumina, silica, and mixed species. As predicted by calculations an aluminosilicate specie possibly of the form (HO)3SiOAl(OH)32- as well as the silica monomer and dimer specie were observed in the aluminosilicate fluid. There also appeared to be at least one hydrous alumina specie based on the presence of a Raman peaks at 228 cm-1, 339 cm-1 and 970 cm-1 in the fluid and a comparative analysis between Raman peaks in aqueous fluid in the silica-water, alumina-water, and alumina-silica-water systems. Solid phases formed during experiments (diaspore, kyanite) were confirmed with Raman spectroscopy.

  4. Combinatorial study of low-refractive Mg-F-Si-O nano-composites deposited by magnetron co-sputtering from compound targets

    Science.gov (United States)

    Mertin, Stefan; Länzlinger, Tony; Sandu, Cosmin S.; Scartezzini, Jean-Louis; Muralt, Paul

    2018-03-01

    Deposition of nano-composite Mg-F-Si-O films on optical grade silica glass was studied employing RF magnetron co-sputtering from magnesium fluoride (MgF2) and fused silica (SiO2) targets. The aim was to obtain a stable and reliable sputtering process for optical coatings exhibiting a refractive index lower than the one of quartz glass (1.46 at 550 nm) without adding gaseous fluorine to the deposition process. The two magnetrons were installed in a confocal way at 45° off-axis with respect to a static substrate, thus creating a lateral gradient in the thin-film composition. The deposited Mg-F-Si-O coatings were structurally analysed by electron dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The obtained films consist of MgF2 nanocrystals embedded in a SiO2-rich amorphous matrix. Spectroscopic ellipsometry and spectrophotometry measurements showed that they are highly transparent exhibiting a very-low extinction coefficient k and a refractive index n in the desired range between the one of MgF2 (1.38) and SiO2 (1.46). Films with n = 1.424 and 1.435 at 550 nm were accomplished with absorption below the detection threshold.

  5. Kaolinite and Silica Dispersions in Low-Salinity Environments: Impact on a Water-in-Crude Oil Emulsion Stability

    Directory of Open Access Journals (Sweden)

    Vladimir Alvarado

    2011-10-01

    Full Text Available This research aims at providing evidence of particle suspension contributions to emulsion stability, which has been cited as a contributing factor in crude oil recovery by low-salinity waterflooding. Kaolinite and silica particle dispersions were characterized as functions of brine salinity. A reference aqueous phase, representing reservoir brine, was used and then diluted with distilled water to obtain brines at 10 and 100 times lower Total Dissolved Solid (TDS. Scanning Electron Microscope (SEM and X-ray Diffraction (XRD were used to examine at the morphology and composition of clays. The zeta potential and particle size distribution were also measured. Emulsions were prepared by mixing a crude oil with brine, with and without dispersed particles to investigate emulsion stability. The clay zeta potential as a function of pH was used to investigate the effect of particle charge on emulsion stability. The stability was determined through bottle tests and optical microscopy. Results show that both kaolinite and silica promote emulsion stability. Also, kaolinite, roughly 1 mm in size, stabilizes emulsions better than larger clay particles. Silica particles of larger size (5 µm yielded more stable emulsions than smaller silica particles do. Test results show that clay particles with zero point of charge (ZPC at low pH become less effective at stabilizing emulsions, while silica stabilizes emulsions better at ZPC. These result shed light on emulsion stabilization in low-salinity waterflooding.

  6. SEM and Raman studies of CNT films on porous Si

    Science.gov (United States)

    Belka, R.; Keczkowska, J.; Suchańska, M.; Firek, P.; Wronka, H.; Kozłowski, M.; Radomska, J.; Czerwosz, E.; Craciunoiu, F.

    2017-08-01

    Carbon nanotube (CNT) films deposited on different porous silica substrates were studied by Scanning Electron Microscopy (SEM) and Raman Spectroscopy (RS). The films samples were prepared by a two-step method consisting of PVD and CVD processes. In the first step the nanocomposite Ni-C film was obtained by evaporation in dynamic vacuum from two separated sources of fullerenes and nickel acetate. Those films were deposited on porous silica and DLC/porous silica substrates. Analysis of SEM imaging showed that the obtained film are composed of carbon nanotubes, the distribution, size and quality of which depend on the type of substrate. The CNT films were studied by RS method to determine the influence of the substrate type on disordering of carbonaceous structure and quality of CNT in deposited films.

  7. Silica/Perfluoropolymer nanocomposites fabricated by direct melt-compounding: a novel method without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Hirose, Masaki; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko

    2007-07-01

    A novel method for the fabrication of silica/perfluoropolymer nanocomposites was investigated, whereby nano-sized silica particles without surface modification were dispersed uniformly through mechanical breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages. The first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, poly(tetrafluoroethyleneco-perfluoropropylvinylether), with the loose silica agglomerates prepared in the first stage. In the first stage, the packing structure and the fracture strength of the silica agglomerate were controlled by destabilizing an aqueous colloidal silica solution with a mean primary diameter of 190 nm via pH control and salt addition. In the next stage, the silica/perfluoropolymer nanocomposite was fabricated by breaking down the prepared loose silica agglomerates with low fracture strength by means of a shear force inside the polymer melt during melt-compounding.

  8. Nanocrystalline transparent SnO{sub 2}-ZnO films fabricated at lower substrate temperature using a low-cost and simplified spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K.; Sakthivel, B.; Philominathan, P. [P. G. and Research Department of Physics, AVVM. Sri Pushpam College, Poondi, Thanjavur, Tamilnadu 613503 (India)

    2010-03-15

    Nanocrystalline and transparent conducting SnO{sub 2}- ZnO films were fabricated by employing an inexpensive, simplified spray technique using a perfume atomizer at relatively low substrate temperature (360{+-}5 C) compared with conventional spray method. The structural studies reveal that the SnO{sub 2}-ZnO films are polycrystalline in nature with preferential orientation along the (101) plane. The dislocation density is very low (1.48 x 10{sup 15}lines/m{sup 2}), indicating the good crystallinity of the films. The crystallite size of the films was found to be in the range of 26-34 nm. The optical transmittance in the visible range and the optical band gap are 85% and 3.6 eV respectively. The sheet resistance increases from 8.74 k{omega}/{open_square} to 32.4 k{omega}/{open_square} as the zinc concentration increases from 0 to 40 at.%. The films were found to have desirable figure of merit (1.63 x 10{sup -2} ({omega}/{open_square}){sup -1}), low temperature coefficient of resistance (-1.191/K) and good thermal stability. This simplified spray technique may be considered as a promising alternative to conventional spray for the massive production of economic SnO{sub 2} - ZnO films for solar cells, sensors and opto-electronic applications. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Science.gov (United States)

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  10. Effect of large compressive strain on low field electrical transport in La0.88Sr0.12MnO3 thin films

    International Nuclear Information System (INIS)

    Prasad, Ravikant; Gaur, Anurag; Siwach, P K; Varma, G D; Kaur, A; Singh, H K

    2007-01-01

    We have investigated the effect of large in-plane compressive strain on the electrical transport in La 0.88 Sr 0.12 MnO 3 in thin films. For achieving large compressive strain, films have been deposited on single crystal LaAlO 3 (LAO, a = 3.798 A) substrate from a polycrystalline bulk target having average in-plane lattice parameter a av = (a b + b b )/2 = 3.925 A. The compressive strain was further relaxed by varying the film thickness in the range ∼6-75 nm. In the film having least thickness (∼6 nm) large increase (c = 3.929 A) in the out-of-plane lattice parameter is observed which gradually decreases towards the bulk value (c bulk = 3.87 A) for ∼75 nm thick film. This shows that the film having the least thickness is under large compressive strain, which partially relaxes with increasing film thickness. The T IM of the bulk target ∼145 K goes up to ∼235 K for the ∼6 nm thin film and even for partially strain relaxed ∼75 nm thick film T IM is as high as ∼200 K. This enhancement in T IM is explained in terms of suppression of Jahn-Teller distortion of the MnO 6 octahedra by the large in-plane compressive strain. We observe a large enhancement in the low field magnetoresistance (MR) just below T IM in the films having partial strain relaxation. Thick films of 6 and 20 nm have MR ∼14% at 3 kOe that almost doubles in 35 nm film to ∼27%. Similar enhancement is also obtained in the case of the temperature coefficient of resistivity. The near doubling of low field MR is explained in terms of delocalization of weakly localized carriers around T IM by small magnetic fields

  11. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  12. Investigations of the mechanical loss of tantala films between 5 and 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Hudl, Matthias; Nawrodt, Ronny; Zimmer, Anja; Nietzsche, Sandor; Vodel, Wolfgang; Seidel, Paul [Friedrich Schiller University (Germany); Tuennermann, Andreas [Institute of Solid-State Physics, Helmholtzweg 5, D-07743 Jena (Germany),; Friedrich Schiller University-Institute of Applied Physics, Jena (Germany)

    2007-07-01

    Mechanical losses in dielectric mirror coatings of interferometric gravitational wave detectors are a main issue for the proposed advanced generation of gravitational wave detectors. Recent investigations have shown that the mechanical loss of the dielectric mirror coatings (tantala/silica stacks) is probably the main contribution to the detector noise. There are indications that among both coating materials tantala gives the major contribute to mechanical loss. Experimental details of a measuring setup and investigations of the temperature dependency of the mechanical dissipation in thin tantala films on different substrates are presented.

  13. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    Science.gov (United States)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  14. Characterization of electron beam deposited thin films of HfO2 and binary thin films of (HfO2:SiO2) by XRD and EXAFS measurements

    International Nuclear Information System (INIS)

    Das, N.C.; Sahoo, N.K.; Bhattacharyya, D.; Thakur, S.; Kamble, N.M.; Nanda, D.; Hazra, S.; Bal, J.K.; Lee, J.F.; Tai, Y.L.; Hsieh, C.A.

    2009-10-01

    In this report, we have discussed the microstructure and the local structure of composite thin films having varying hafnia and silica compositions and prepared by reactive electron beam evaporation. XRD and EXAFS studies have confirmed that the pure hafnium oxide thin film has crystalline microstructure whereas the films with finite hafnia and silica composition are amorphous. The result of EXAFS analysis has shown that the bond lengths as well as coordination numbers around hafnium atom change with the variation of hafnia and silica compositions in the thin film. Finally, change of bond lengths has been correlated with change of refractive index and band gap of the composite thin films. (author)

  15. Electrical transport in La1−xCaxMnO3 thin films at low temperatures

    Indian Academy of Sciences (India)

    quadratic temperature dependence at low temperatures is attributed to the collapse of the minority spin band. The two-magnon and electron–phonon processes contribute to scattering of carriers in the temperature range above 120 K. Keywords. La1−x Cax MnO3 thin films; electrical transport; low temperature resistivity; ...

  16. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  17. Preparation of Ultra Low-κ Porous SiOCH Films from Ring-Type Siloxane with Unsaturated Hydrocarbon Side Chains by Spin-On Deposition

    International Nuclear Information System (INIS)

    Chun-Xiao, Yang; Chi, Zhang; Qing-Qing, Sun; Sai-Sheng, Xu; Li-Feng, Zhang; Yu, Shi; Shi-Jin, Ding; Wei, Zhang

    2010-01-01

    An ultra-low-dielectric-constant (ultra low-k, or ULK) porous SiOCH film is prepared using a single ring-type siloxane precursor of the 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane by means of spin-on deposition, followed by crosslinking reactions between the precursor monomers under UV irradiation. The as-prepared film has an ultra low k of 2.41 at 1 MHz due to incorporation of pores and hydrocarbon crosslinkages, a leakage current density of 9.86 × 10 −7 A/cm 2 at 1 MV/cm, as well as a breakdown field strength of ∼1.5 MV/cm. Further, annealing at 300°C results in lower k (i.e., 1.94 at 1 MHz), smaller leakage current density (2.96 × 10 −7 A/cm 2 at 1 MV/cm) and higher breakdown field strength (about 3.5 MV/cm), which are likely caused by the short-ranged structural rearrangement and reduction of defects in the film. Finally, the mechanical properties and surface morphology of films are also evaluated after different temperature annealing. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Relaxation of excited surface states of thin Ge-implanted silica films probed by OSEE spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, A.F., E-mail: a.f.zatsepin@urfu.ru [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Buntov, E.A.; Mikhailovich, A.P.; Slesarev, A.I. [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Schmidt, B. [Research Center Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, D-01314 Dresden (Germany); Czarnowski, A. von; Fitting, Hans-Joachim [Institute of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany)

    2016-01-15

    As an example of thin silica films, 30 nm SiO{sub 2}–Si heterostructures implanted with Ge{sup +} ions (10{sup 16} cm{sup −2} fluence) and rapid thermally annealed (RTA) at 950 °C are studied by means of optically stimulated electron emission (OSEE) in the spectral region of optical transparency for bulk silica. Quartz glass samples were used as references. Experimental data revealed a strong dependence between electron emission spectral features and RTA annealing time. The spectral contributions of both surface band tail states and interband transitions were clearly distinguished. The application of emission Urbach rule as well as Kane and Pässler equations allowed to analyze the OSEE spectra at different optical excitation energy ranges and to retrieve the important microstructural and energy parameters. The observed correlations between parameter values of Urbach- and Kane-related models suggest the implantation-induced conversion of both the vibrational subsystem and energy band of surface and interface electronic states. - Highlights: • Peculiarities of electron emission from excited surface states of SiO{sub 2}:Ge structures are studied. • Spectral contributions of surface band tails and interband transitions are distinguished. • Urbach and Kane models allow to examine photo-thermal emission mechanism. • Surface energy gap and structural disorder parameters are determined.

  19. Characterization of k-carrageenan/Locust bean gumbased films with b-carotene emulsion

    OpenAIRE

    Martins, Joana; Silva, H. D.; Rojas, R.; Aguilar, Cristóbal N.; Vicente, A. A.

    2014-01-01

    New bio-based materials have been exploited to develop biodegradable and edible films as an effort to extend shelf life and improve quality of food while reducing packaging waste. The objective of this study was to investigate physicochemical properties of k-carrageenan/locust bean gum (k-car/LBG) films with different bcarotene emulsion concentrations. To prepare oil-in-water emulsions, b-carotene (0.03% v/v) was dissolved in mediumchain triglycerides (MCTs), and the solution was mixed ...

  20. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    International Nuclear Information System (INIS)

    Starostin, S A; Premkumar, P Antony; Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M; De Vries, H; Paffen, R M J

    2009-01-01

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N 2 /O 2 /hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density (∼0.7 A cm -2 ) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  1. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    Energy Technology Data Exchange (ETDEWEB)

    Starostin, S A; Premkumar, P Antony [Materials Innovation Institute (M2i), Mekelweg 2, 2600 GA Delft, The Netherland (Netherlands); Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); De Vries, H; Paffen, R M J [FUJIFILM Manufacturing Europe B.V, PO Box 90156, Tilburg (Netherlands)

    2009-11-15

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N{sub 2}/O{sub 2}/hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density ({approx}0.7 A cm{sup -2}) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  2. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  3. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  4. A study on the silica removal in primary system using the membrane process

    International Nuclear Information System (INIS)

    Kim, Bong Jin; Lee, Sang Jin; Yang, Ho Yeon; Kim, Kyung Duk; Jung, Hee Chul; Jo, Hang Rae

    2005-01-01

    Silica in primary system combines with an alkali grammatical particle metal and forms the zeolite layer which is hindering the heat transfer on the surface of the cladding. Zeolite layer becomes the cause of the damage in this way. The problems of the NPP's primary system have been issued steadily by EPRI. Through a series of experiments of the laboratory scale, we confirmed the applicability of NF membrane for silica removal, as silica rejection rate of NF membrane is about 60 ∼ 70% and boron rejection rate is about 10 ∼ 20%. We accomplished a site experiment about four NF membranes manufactured by FilmTec and Osmonics Inc. In experiment using 400L of SFP water, when operation pressure is 10kg f /cm 2 , we confirmed that the silica rejection rate of NF90-2540 manufactured by FilmTec Inc. is about 98%, boron rejection rate is about 43%. The silica rejection rate of NF270-2540 is about 38%, boron rejection rate is about 3.5%. Afterward, through additional experiments, such as long term characteristic experiments, we are going to design a optimum NF membrane system for silica removal

  5. A study on the silica removal in primary system using the membrane process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Jin; Lee, Sang Jin; Yang, Ho Yeon; Kim, Kyung Duk [Korea Hydro and Nuclear Power Co., LTD., Taejeon (Korea, Republic of); Jung, Hee Chul; Jo, Hang Rae [Korea Hydro and Nuclear Power Co., LTD., Uljin (Korea, Republic of)

    2005-06-15

    Silica in primary system combines with an alkali grammatical particle metal and forms the zeolite layer which is hindering the heat transfer on the surface of the cladding. Zeolite layer becomes the cause of the damage in this way. The problems of the NPP's primary system have been issued steadily by EPRI. Through a series of experiments of the laboratory scale, we confirmed the applicability of NF membrane for silica removal, as silica rejection rate of NF membrane is about 60 {approx} 70% and boron rejection rate is about 10 {approx} 20%. We accomplished a site experiment about four NF membranes manufactured by FilmTec and Osmonics Inc. In experiment using 400L of SFP water, when operation pressure is 10kg{sub f}/cm{sup 2}, we confirmed that the silica rejection rate of NF90-2540 manufactured by FilmTec Inc. is about 98%, boron rejection rate is about 43%. The silica rejection rate of NF270-2540 is about 38%, boron rejection rate is about 3.5%. Afterward, through additional experiments, such as long term characteristic experiments, we are going to design a optimum NF membrane system for silica removal.

  6. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  7. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  8. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  9. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  10. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  11. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  12. Tracking silica in Earth's upper mantle using new sound velocity data for coesite to 5.8 GPa and 1073 K: Tracking Silica in Earth's Upper Mantle

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Liebermann, Robert C. [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Mineral Physics Institute, Stony Brook University, Stony Brook New York USA; Zou, Yongtao [Mineral Physics Institute, Stony Brook University, Stony Brook New York USA; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun China; Li, Ying [Mineral Physics Institute, Stony Brook University, Stony Brook New York USA; Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration, Beijing China; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Li, Baosheng [Department of Geosciences, Stony Brook University, Stony Brook New York USA; Mineral Physics Institute, Stony Brook University, Stony Brook New York USA

    2017-08-12

    The compressional and shear wave velocities for coesite have been measured simultaneously up to 5.8 GPa and 1073 K by ultrasonic interferometry for the first time. The shear wave velocity decreases with pressure along all isotherms. The resulting contrasts between coesite and stishovite reach ~34% and ~45% for P and S wave velocities, respectively, and ~64% and ~75% for their impedance at mantle conditions. The large velocity and impedance contrasts across coesite-stishovite transition imply that to generate the velocity and impedance contrasts observed at the X-discontinuity, only a small amount of silica would be required. The velocity jump dependences on silica, d(lnVP)/d(SiO2) = 0.38 (wt %)-1 and d(lnVS)/d(SiO2) = 0.52 (wt %)-1, are utilized to place constraints on the amount of silica in the upper mantle and provide a geophysical approach to track mantle eclogite materials and ancient subducted oceanic slabs.

  13. Influence of polymer matrix and adsorption onto silica materials on the migration of alpha-tocopherol into 95% ethanol from active packaging.

    Science.gov (United States)

    Heirlings, L; Siró, I; Devlieghere, F; Van Bavel, E; Cool, P; De Meulenaer, B; Vansant, E F; Debevere, J

    2004-11-01

    In this study, the effect of polymer materials with different polarity, namely low density polyethylene (LDPE) and ethylene vinyl acetate (EVA), on the migration behaviour of alpha-tocopherol from active packaging was investigated. The antioxidant was also adsorbed onto silica materials, namely SBA-15 (Santa Barbara-15) and Syloblock, in order to protect the antioxidant during extrusion and to ensure a controlled and sufficient release during the shelf-life of the food product. Migration experiments were performed at 7.0 +/- 0.5 degrees C and 95% ethanol was used as fatty food simulant. All films contained a high concentration of alpha-tocopherol, approximately 2000 mg kg(-1), to obtain an active packaging. Polymer matrix had a small influence on the migration profile. The migration of 80% of total migrated amount of antioxidant was retarded for 2.4 days by using LDPE instead of EVA. When alpha-tocopherol was adsorbed onto both silica materials, the migration of 80% of total migrated amount of antioxidant was retarded for 3.4 days in comparison to pure alpha-tocopherol. No difference was seen between the migration profiles of alpha-tocopherol adsorbed onto both silica materials. In the case of pure alpha-tocopherol, 82% of the initial amount of alpha-tocopherol in the film migrated into the food simulant at a rather fast migration rate. In the case of adsorption on silica materials, a total migration was observed. These antioxidative films can have positive food applications.

  14. Low-temperature behavior of core-softened models: Water and silica behavior

    International Nuclear Information System (INIS)

    Jagla, E. A.

    2001-01-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water

  15. Kinetics Study of Gas Pollutant Adsorption and Thermal Desorption on Silica Gel

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-06-01

    Full Text Available Silica gel is a typical porous desiccant material. Its adsorption performance for gaseous air pollutants was investigated to determine its potential contribution to reducing such pollutants. Three gaseous air pollutants, toluene, carbon dioxide, and methane, were investigated in this paper. A thermogravimetric analyzer was used to obtain the equilibrium adsorption capacity of gases on single silica gel particles. The silica gel adsorption capacity for toluene is much higher than that for carbon dioxide and methane. To understand gas pollutant thermal desorption from silica gel, the thermogravimetric analysis of toluene desorption was conducted with 609 ppm toluene vapor at 313 K, 323 K, and 333 K. The overall regeneration rate of silica gel was strongly dependent on temperature and the enthalpy of desorption. The gas pollutant adsorption performance and thermal desorption on silica gel material may be used to estimate the operating and design parameters for gas pollutant adsorption by desiccant wheels.

  16. Encapsulation of dye molecules into mesoporous polymer resin and mesoporous polymer-silica films by an evaporation-induced self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Chi Yue; Li Nan; Tu Jinchun; Zhang Yujie [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Li Xiaotian, E-mail: xiaotianli@jlu.edu.c [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Shao Changlu, E-mail: clshao@nenu.edu.c [Center for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun 130024 (China)

    2010-03-15

    Polymer resin and polymer-silica films with highly ordered mesostructure have been used as host materials to encapsulate DCM (4-(dicyanomethylene) -2-methyl-6-(4-dimethylaminostyryl)-4h-pyran), a kind of fluorescent dye, through evaporation-induced self-assembly method (EISA). After encapsulation, the composites show significant blue-shift in photoluminescence (PL) spectra. Particularly, by changing the excitation wavelength, the samples show different emission bands. These phenomena are related to the mesostructure and the positions of DCM molecules in the host.

  17. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

    International Nuclear Information System (INIS)

    Gurav, Jyoti L.; Rao, A. Venkateswara; Bangi, Uzma K.H.

    2009-01-01

    In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH 4 OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H 2 O:basic H 2 O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

  18. Wideband two-port beam splitter of a binary fused-silica phase grating.

    Science.gov (United States)

    Wang, Bo; Zhou, Changhe; Feng, Jijun; Ru, Huayi; Zheng, Jiangjun

    2008-08-01

    The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

  19. Low temperature excitonic spectroscopy and dynamics as a probe of quality in hybrid perovskite thin films.

    Science.gov (United States)

    Sarang, Som; Ishihara, Hidetaka; Chen, Yen-Chang; Lin, Oliver; Gopinathan, Ajay; Tung, Vincent C; Ghosh, Sayantani

    2016-10-19

    We have developed a framework for using temperature dependent static and dynamic photoluminescence (PL) of hybrid organic-inorganic perovskites (PVSKs) to characterize lattice defects in thin films, based on the presence of nanodomains at low temperature. Our high-stability PVSK films are fabricated using a novel continuous liquid interface propagation technique, and in the tetragonal phase (T > 120 K), they exhibit bi-exponential recombination from free charge carriers with an average PL lifetime of ∼200 ns. Below 120 K, the emergence of the orthorhombic phase is accompanied by a reduction in lifetimes by an order of magnitude, which we establish to be the result of a crossover from free carrier to exciton-dominated radiative recombination. Analysis of the PL as a function of excitation power at different temperatures provides direct evidence that the exciton binding energy is different in the two phases, and using these results, we present a theoretical approach to estimate this variable binding energy. Our findings explain this anomalous low temperature behavior for the first time, attributing it to an inherent fundamental property of the hybrid PVSKs that can be used as an effective probe of thin film quality.

  20. Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Ozaki, S.; Nakamura, T. [FUJITSU LABORATORIES Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)

    2014-06-19

    We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoride residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.

  1. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  2. Synthesis, Structure, and Film Properties of Novel low-k UV-active Polycarbosilanes with Embedded Disilacyclobutanes

    Science.gov (United States)

    LeFevre, Scott W.

    The phenylene-bridged cyclolinear polycarbosilane (PBCLPCS) was synthesized via Grignard coupling from 1,4-bis(bromomagnesio)benzene with 1,3-dichloro-, and 1,3-diethoxy-1,3-disilacyclobutanes (DCDSCB, and DEDSCB respectively). Investigation of the resulting chemical structures by nuclear magnetic resonance spectroscopy (NMR) revealed a wide array of possible end groups and thus termination mechanisms. Temperature-gradient interaction chromatography (TGIC) was employed as an effective separation tool to achieve a predominantly monomer-by-monomer separation of the low molecular weight reaction products. Further analysis of the TGIC fractions by matrix-assisted laser desorption ionization mass spectrometry with time of flight detection (MALDI-ToF) allowed for a much more detailed study of chemical structure, revealing very different primary modes of termination for the two synthesis schemes. While the slightly more reactive Si-Cl groups from DCDSCB are more sensitive to multiple side reactions including hydrolysis, it was shown that the primary end groups were phenyl rings, indicating a possible imbalance in stoichiometry favoring the aryl-Grignard reagent. The DEDSCB-based synthesis has fewer side reactions, as indicated by few groupings of MALDI peaks at regular intervals equal to the repeat unit molecular weight; however the primary end groups were unreacted ethoxy moieties, and a bromine terminated phenyl ring. This indicates that the primary modes of termination were either limited chain growth from the less reactive ethoxy groups, or incomplete formation of the di-Grignard. The optical, UV-curing and thin film characteristics of PBCLPCS were investigated to gain an understanding of the unique film properties of this new class of material. Upon UV-curing PBCLPCS, the chromophore blue shifts 11nm but still absorbs appreciably at 254nm, leading to UV attenuation at greater depths within a film. The thickness dependent UV-curing characteristics were investigated

  3. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    Science.gov (United States)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  4. High magnetoresistance at low magnetic fields in self-assembled ZnO-Co nanocomposite films.

    Science.gov (United States)

    Jedrecy, N; Hamieh, M; Hebert, C; Perriere, J

    2017-07-27

    The solid phase growth of self-assembled nanocrystals embedded in a crystalline host matrix opens up wide perspectives for the coupling of different physical properties, such as magnetic and semiconducting. In this work, we report the pulsed laser growth at room temperature of thin films composed of a dispersed array of ferromagnetic Co (0001) nanoclusters with an in-plane mono-size width of 1.3 nm, embedded in a ZnO (0001) crystalline matrix. The as-grown films lead to very high values of magnetoresistance, ranging at 9 T from -11% at 300 K to -19% at 50 K, with a steep decrease of the magnetoresistance at low magnetic fields. We establish the relationship between the magnetoresistance behavior and the magnetic response of the Co nanocluster assembly. A spin-dependent tunneling of the electrons between the Co nanoclusters through and by the semi-insulating ZnO host is achieved in our films, promising with regard to magnetic field sensors or Si-integrated spintronic devices. The effects of thermal annealing are also discussed.

  5. Subnanopore filling during water vapor adsorption on microporous silica thin films as seen by low-energy positron annihilation

    Science.gov (United States)

    Ito, Kenji; Yoshimoto, Shigeru; O'Rourke, Brian E.; Oshima, Nagayasu; Kumagai, Kazuhiro

    2018-02-01

    Positron annihilation lifetime spectroscopy (PALS) using a low-energy positron microbeam extracted into air was applied to elucidating molecular-level pore structures formed in silicon-oxide-backboned microporous thin films under controlled humidity conditions; as a result, a direct observation of the interstitial spaces in the micropores filled with water molecules was achieved. It was demonstrated that PALS using a microbeam extracted into air in combination with water vapor adsorption is a powerful tool for the in-situ elucidation of both open and closed subnanoscaled pores of functional thin materials under practical conditions.

  6. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  7. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miller, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamilton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  8. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  9. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  10. Effect of nano silica based modifying agent for hydrophobic coating application

    International Nuclear Information System (INIS)

    Nurul Huda Mudri; Nik Ghazali Nik Salleh; Mek Zah Salleh

    2016-01-01

    Hydrophobic coatings find wide application in industry due to their unique features such as water repellent and self-cleaning properties. In this study, modifying agent was synthesized by way of nano silica particles dispersion in polydimethyl siloxane with addition of surfactant, catalyst and stabilizer using high speed distemper. The modifying agent was added into coating formulation and cured under UV exposure. Scanning Electron Microscopy image of the film found that the nano silica particles were distributed well on substrate. Contact angle measurement gave the highest reading of 116 degree for 20 % wt of the modifying agent. The optical properties of the film were evaluated via transmission and haze test. (author)

  11. Effect of low dose rate irradiation on doped silica core optical fibers

    International Nuclear Information System (INIS)

    Friebele, E.J.; Askins, C.G.; Gingerich, M.E.

    1984-01-01

    The optical attenuation induced in multimode doped silica core optical fiber waveguides by a year's exposure to low dose rate (1 rad/day) ionizing radiation was studied, allowing a characterization of fibers deployed in these environments and a determination of the permanent induced loss in the waveguides. Variations in the induced attenuation at 0.85 μm have been observed with changes in the dose rate between 1 rad/day and 9000 rads/min. These dose rate dependences have been found to derive directly from the recovery that occurs during the exposure; the recovery data predict little or no dose rate dependence of the damage at 1.3 μm. The low dose rate exposure has been found to induce significant permanent attenuation in the 0.7-1.7-μm spectral region in all fibers containing P in the core, whether doped uniformly across the diameter or constrained to a narrow spike on the centerline. Whereas permanent loss was induced at 0.85 μm in a P-free binary Ge-doped silica core fiber by the year's exposure, virtually no damage was observed at 1.3 μm

  12. Vapor phase reactions in polymerization plasma for divinylsiloxane-bis-benzocyclobutene film deposition

    International Nuclear Information System (INIS)

    Kinoshita, Keizo; Nakano, Akinori; Kawahara, Jun; Kunimi, Nobutaka; Hayashi, Yoshihiro; Kiso, Osamu; Saito, Naoaki; Nakamura, Keiji; Kikkawa, Takamaro

    2006-01-01

    Vapor phase reactions in plasma polymerization of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) low-k film depositions on 300 mm wafers were studied using mass spectrometry, in situ Fourier transform infrared, and a surface wave probe. Polymerization via Diels-Alder cycloaddition reaction was identified by the detection of the benzocyclohexene group. Hydrogen addition and methyl group desorption were also detected in DVS-BCB monomer and related large molecules. The dielectric constant k of plasma polymerized DVS-BCB with a plasma source power range up to 250 W was close to ∼2.7 of thermally polymerized DVS-BCB, and increased gradually over 250 W. The electron density at 250 W was about 1.5x10 10 cm -3 . The increase of the k value at higher power was explained by the decrease of both large molecular species via multistep dissociation and incorporation of silica components into the polymer. It was found that the reduction of electron density as well as precursor residence time is important for the plasma polymerization process to prevent the excess dissociation of the precursor

  13. Effect of the Silica Content of Diatoms on Protozoan Grazing

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2017-06-01

    Full Text Available This study examined the effect that silica content in diatom cells has on the behavior of protists. The diatoms Thalassiosira weissflogii and T. pseudonana were cultured in high or low light conditions to achieve low and high silica contents, respectively. These cells were then fed to a heterotrophic dinoflagellate Noctiluca scintillans and a ciliate Euplotes sp. in single and mixed diet experiments. Our results showed that in general, N. scintillans and Euplotes sp. both preferentially ingested the diatoms with a low silica content rather than those with a high silica content. However, Euplotes sp. seemed to be less influenced by the silica content than was N. scintillans. In the latter case, the clearance and ingestion rate of the low silica diatoms were significantly higher, both in the short (6-h and long (1-d duration grazing experiments. Our results also showed that N. scintillans required more time to digest the high silica-containing cells. As the high silica diatoms are harder to digest, this might explain why N. scintillans exhibits a strong preference for the low silica prey. Thus, the presence of high silica diatoms might limit the ability of the dinoflagellate to feed. Our findings suggest that the silica content of diatoms affects their palatability and digestibility and, consequently, the grazing activity and selectivity of protozoan grazers.

  14. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  15. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  16. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; Menon, G; Sloboda, R [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  17. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  18. Related electrical, superconducting and structural characteristics of low temperature indium films

    International Nuclear Information System (INIS)

    Belevtsev, B.I.; Pilipenko, V.V.; Yatsuk, L.Ya.

    1981-01-01

    Reported are results of a complex study of electrical, superconducting and structural properties of indium films vacuum evaporated onto a liquid helium-cooled substrate. Structural electron diffraction investigations gave a better insight into the general features of the annealing during the warming-up of cold-deposited films. It is found that the annealing of indium films to about 80 to 100 K entails an irreversible growth of interplanar separations due to decreasing inhomogeneous microstresses. As the films are warmed from 100 to 300 K, the principal annealing processes are determined by crystallite growth and development of dominating orientation. The changes in the residual resistance and in Tsub(c) with warming the cold-deported films are explained on the base of structural data obtained. In particular, a direct relationship is revealed between the crystallite size and Tsub(c) [ru

  19. Maintaining K+ balance on the low-Na+, high-K+ diet

    Science.gov (United States)

    Cornelius, Ryan J.; Wang, Bangchen; Wang-France, Jun

    2016-01-01

    A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the “Western” high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances. PMID:26739887

  20. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  1. Photooxidation of ethylene over Cu-modified and unmodified silica

    OpenAIRE

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  2. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J; Akbarzadeh, Johanna; Peterlik, Herwig; Giannelis, Emmanuel P

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  3. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J

    2013-02-04

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  4. Fragile-to-strong transition in liquid silica

    Science.gov (United States)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2016-03-01

    We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  5. Fragile-to-strong transition in liquid silica

    Directory of Open Access Journals (Sweden)

    Julian Geske

    2016-03-01

    Full Text Available We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  6. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  7. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Sumana, G. [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2010-11-30

    Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 {mu}M (6 mg/dl) to 0.39 {mu}M (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 k{Omega} {mu}M{sup -1}.

  8. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Gupta, Vinay; Malhotra, B.D.

    2010-01-01

    Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 μM (6 mg/dl) to 0.39 μM (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 kΩ μM -1 .

  9. Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing

    International Nuclear Information System (INIS)

    Siva Kumar, V.V.; Singh, F.; Kumar, Amit; Avasthi, D.K.

    2006-01-01

    Thin films with ZnO nanocrystals in silica were synthesized by rf reactive magnetron co-sputter deposition and post-annealing. The films were deposited from a ZnO/Si composite target in an rf oxygen plasma. The deposited films were annealed in air/vacuum at high temperatures to grow ZnO nanocrystals. The deposited and annealed films were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), uv-vis spectroscopy (UV-VIS) and photoluminescence (PL) measurements. FT-IR results of the films show the vibrational features of Si-O-Si and Zn-O bonds. UV-VIS spectra of the deposited film shows the band edge of ZnO. The XRD results of the films annealed at 750 deg. C and 1000 deg. C indicate the growth of ZnO nanocrystals with average crystallite sizes between 7 nm and 26 nm. PL measurements of the deposited film show a broad visible luminescence peak which can be due to ZnO. These results suggest the growth of ZnO nanocrystals in silica matrix

  10. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    International Nuclear Information System (INIS)

    Borja, Juan; Plawsky, Joel L.; Gill, William N.; Lu, T.-M.; Bakhru, Hassaram

    2014-01-01

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k 0 ⋅(t+1) β−1 , where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films

  11. Use of alpha-particle excited x-rays to measure the thickness of thin films containing low-Z elements

    International Nuclear Information System (INIS)

    Hanser, F.A.; Sellers, B.; Ziegler, C.A.

    1976-01-01

    The thickness of thin surface films containing low Z elements can be determined by measuring the K X-ray yields from alpha particle excitation. The samples are irradiated in a helium atmosphere by a 5 mCi polonium-210 source, and the low energy X-rays detected by a flow counter with a thin-stretched polypropylene window. The flow counter output is pulse height sorted by a single channel analyzer (SCA) and counted to give the X-ray yield. Best results have been obtained with Z = 6 to 9 (C, N, O, and F), but usable yields are obtained even for Z = 13 or 14 (Al and Si). The low energy of the X-rays (0.28 to 1.74 keV) limits the method to films of several hundred nm thickness or less and to situations where the substrate does not produce interfering X-rays. It is possible to determine the film thickness with 50 percent accuracy by direct calculation using the measured alpha-particle spectrum and known or calculated K X-ray excitation cross sections. By calibration with known standards the accuracy can be increased substantially. The system has thus far been applied to SiO 2 on Si, Al 2 O 3 on Al, and CH 2 on Al

  12. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces.

    Science.gov (United States)

    Tsai, Hui-Jung; Lee, Yuh-Lang

    2007-12-04

    A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.

  13. Physical properties of drawn very low density polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S. [Yeungnam University, Kyongsan (Korea, Republic of); Lee, J.Y. [Korea Institute of Footwear and Leather Technology, Pusan (Korea, Republic of)

    1998-05-01

    Very low density polyethylene (VLDPE) films were prepared by quenching the pressed melt in ice water. The films were drawn with universal testing machine under constant temperature at four different temperatures, 30, 60, 80, and 110 {sup o} C. Thermal, mechanical properties, grossity, and gas permeability of the drawn VLDPE films as a function of draw ratio were investigated to examine their applicability to packaging. The films showed tow melting peaks, i.e., low temperature endotherm (LTE) and high temperature endotherm (HTE). The melting temperatures were increased with the draw ratio and the drawing temperature. The mechanical properties of the VLDPE film drawn at 80 {sup o} C were superior to those drawn at 110 {sup o} C. The grossity and gas permeability of the VLDPE film drawn at 110 {sup o} C were found to be best among the drawn films.

  14. Comparison of low contrast detectability of computed tomography and screen/film mammography systems

    International Nuclear Information System (INIS)

    Noriah Jamal; Kwan Hoong Ng; McLean, D.

    2006-01-01

    The objective of this study was to compare low contrast detectability of computed radiography (CR) and screen/film (SF) mammography systems. The Nijimegen contrast detail test object (CDMAM type 3.4) was imaged at 28 kV, in automatic exposure control mode separately. Six medical imaging physicists read each CDMAM phantom image. Contrast detail curves were plotted to compare low contrast detectability of CR (soft copy and hard copy) and SF mammography systems. Effect of varying exposure parameters, namely kV, object position inside the breast phantom, and entrance surface exposure (ESE) on the contrast detail curve were also investigated using soft copy CR. The significant of the difference of contrast between CR and SF, and for each exposure parameter was tested using non-parametric Kruskal-Wallis test. We found that the low contrast detectability of CR (soft copy and hard copy) system is not significantly different to that of SF system (p>0.05, Kruskal-Wallis test). For CR soft copy, no significant relationship (p>0.05, Kruskal-Wallis test) was seen for variation of kV, object position inside the breast phantom and ESE. This indicates that CR is comparable with SF for useful detection and visualization of low contrast objects such as small low contrast areas corresponding to breast pathology

  15. Low-k SiOCH Film Etching Process and Its Diagnostics Employing Ar/C5F10O/N2 Plasma

    Science.gov (United States)

    Nagai, Mikio; Hayashi, Takayuki; Hori, Masaru; Okamoto, Hidekazu

    2006-09-01

    We proposed an environmental harmonic etching gas of C5F10O (CF3CF2CF2OCFCF2), and demonstrated the etching of low-k SiOCH films employing a dual-frequency capacitively coupled etching system. Dissociative ionization cross sections for the electron impact ionizations of C5F10O and c-C4F8 gases have been measured by quadrupole mass spectroscopy (QMS). The dissociative ionization cross section of CF3+ from C5F10O gas was much higher than those of other ionic species, and 10 times higher than that of CF3+ from C4F8 gas. CF3+ is effective for increasing the etching rate of SiO2. As a result, the etching rate of SiOCH films using Ar/C5F10O/N2 plasma was about 1000 nm/min, which is much higher than that using Ar/C4F8/N2 plasma. The behaviours of fluorocarbon radicals in Ar/C5F10O/N2 plasma, which were measured by infrared diode laser absorption spectroscopy, were similar to those in Ar/C4F8/N2 plasma. The densities of CF and CF3 radicals were markedly decreased with increasing N2 flow rate. Etching rate was controlled by N2 flow rate. A vertical profile of SiOCH with a high etching rate and less microloading was realized using Ar/C5F10O/N2 plasma chemistry.

  16. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  17. Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shun, E-mail: shun.yokoyama.c2@tohoku.ac.jp; Motomiya, Kenichi; Takahashi, Hideyuki; Tohji, Kazuyuki [Tohoku University, Graduate School of Environmental Studies (Japan)

    2016-11-15

    Films made of closely packed Cu nanoparticles (NPs) were obtained by drop casting Cu NP inks. The capillary immersion force exerted during the drying of the inks caused the Cu NPs to attract each other, resulting in closely packed Cu NP films. The apparent density of the films was found to depend on the type of solvent in the ink because the capillary immersion force is affected by the solvent surface tension and dispersibility of Cu NPs in the solvent. The closely packed particulate structure facilitated the sintering of Cu NPs even at low temperature, leading to low-resistivity Cu films. The sintering was also enhanced with a decrease in the size of NPs used. We demonstrated that a closely packed particulate structure using Cu NPs with a mean diameter 61.7 nm showed lower resistivity (7.6 μΩ cm) than a traditionally made Cu NP film (162 μΩ cm) after heat treatment.

  18. Surface texture modification of spin-coated SiO2 xerogel thin films ...

    Indian Academy of Sciences (India)

    hydrolysis and condensation of tetraethylorthosilicate (TEOS) with ethanol as a solvent. Further, the deposited thin films were ... termed as hydrolysis and condensation that occur simultane- ously in the formation of silica films. ... rial leads to capillary tensions, which destroy the structure of silica (Naik and Ghosh 2009).

  19. Advanced three dimensional characterization of silica-based ultraporous materials

    OpenAIRE

    Foray , Genevieve; Roiban , L.; Rong , Q.; Perret , A.; Ihiawakrim , D.; Masenelli-Varlot , K.; Maire , E.; Yrieix , B.

    2016-01-01

    International audience; Whatever the field of application (building, transportation, packaging, etc.) energy losses must be reduced to meet the government target of a 40% cut in CO 2 emissions. This leads to a challenge for materials scientists: designing materials with thermal conductivities lower than 0.015 W m À1 K À1 under ambient conditions. Such a low value requires reducing air molecule mobility in highly porous materials, and silica-based superinsulation materials (SIM) made of packed...

  20. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  1. Comparison of precursors for pulsed metal-organic chemical vapor deposition of HfO2 high-K dielectric thin films

    International Nuclear Information System (INIS)

    Teren, Andrew R.; Thomas, Reji; He, Jiaqing; Ehrhart, Peter

    2005-01-01

    Hafnium oxide films were deposited on Si(100) substrates using pulsed metal-organic chemical vapor deposition (CVD) and evaluated for high-K dielectric applications. Three types of precursors were tested: two oxygenated ones, Hf butoxide-dmae and Hf butoxide-mmp, and an oxygen-free one, Hf diethyl-amide. Depositions were carried out in the temperature range of 350-650 deg. C, yielding different microstructures ranging from amorphous to crystalline, monoclinic, films. The films were compared on the basis of growth rate, phase development, density, interface characteristics, and electrical properties. Some specific features of the pulsed injection technique are considered. For low deposition temperatures the growth rate for the amide precursor was significantly higher than for the mixed butoxide precursors. A thickness-dependent amorphous to crystalline phase transition temperature was found for all precursors. There is an increase of the film density along with the deposition temperature from values as low as 5 g/cm 3 at 350 deg. C to values close to the bulk value of 9.7 g/cm 3 at 550 deg. C. Crystallization is observed in the same temperature range for films of typically 10-20 nm thickness. However, annealing studies show that this density increase is not simply related to the crystallization of the films. Similar electrical properties could be observed for all precursors and the dielectric constant of the films reaches values similar to the best values reported for bulk crystalline HfO 2

  2. Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications

    Science.gov (United States)

    Pereira, Antonio; Bonhommeau, Sébastien; Sirotkin, Sergey; Desplanche, Sarah; Kaba, Mamadouba; Constantinescu, Catalin; Diallo, Abdou Karim; Talaga, David; Penuelas, Jose; Videlot-Ackermann, Christine; Alloncle, Anne-Patricia; Delaporte, Philippe; Rodriguez, Vincent

    2017-10-01

    We show that high-quality pentacene (P5) thin films of high crystallinity and low surface roughness can be produced by pulsed laser deposition (PLD) without inducing chemical degradation of the molecules. By using Raman spectroscopy and X-ray diffraction measurements, we also demonstrate that the deposition of P5 on Au layers result in highly disordered P5 thin films. While the P5 molecules arrange within the well-documented 1.54-nm thin-film phase on high-purity fused silica substrates, this ordering is indeed destroyed upon introducing an Au interlayer. This observation may be one explanation for the low electrical performances measured in P5-based organic thin film transistors (OTFTs) deposited by laser-induced forward transfer (LIFT).

  3. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  4. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  5. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  6. Construction of proton exchange membranes under ultrasonic irradiation based on novel fluorine functionalizing sulfonated polybenzimidazole/cellulose/silica bionanocomposite.

    Science.gov (United States)

    Esmaielzadeh, Sheida; Ahmadizadegan, Hashem

    2018-03-01

    Novel sulfonated polybenzimidazole (s-PBI)/cellulose/silica bionanocomposite membranes were prepared from fluorine-containing s-PBI copolymer with a cellulose/silica precursor and a bonding agent. The introduction of the bonding agent results in the reinforcing interfacial interaction between s-PBI chains and the cellulose/silica nanoparticles. Commercially available silica nanoparticles were modified with biodegradable nanocellolose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composites were well dispersed in the s-PBI matrix on a nanometer scale. The mechanical properties and the methanol barrier ability of the s-PBI films were improved by the addition of cellulose/silica. The modulus of the s-PBI/10 wt% cellulose/silica nanocomposite membranes had a 45% increase compared to the pure s-PBI films, and the methanol permeability decreased by 62% with respect to the pure s-PBI membranes. The conductivities of the s-PBI/cellulose/silica nanocomposites were slightly lower than the pure s-PBI. The antibacterial activity of (s-PBI)/cellulose/silica was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7 and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of cellulose/silica. All of the synthesized (s-PBI)/cellulose/silica were found to have high antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Supercritical carbon dioxide behavior in porous silica aerogel

    International Nuclear Information System (INIS)

    Ciccariello, Salvino; Melnichenko, Yuri B.; He, Lilin

    2011-01-01

    Analysis of the tails of the small-angle neutron scattering (SANS) intensities relevant to samples formed by porous silica and carbon dioxide at pressures ranging from 0 to 20 MPa and at temperatures of 308 and 353 K confirms that the CO2 fluid must be treated as a two-phase system. The first of these phases is formed by the fluid closer to the silica wall than a suitable distance (delta) and the second by the fluid external to this shell. The sample scattering-length densities and shell thicknesses are determined by the Porod invariants and the oscillations observed in the Porod plots of the SANS intensities. The resulting matter densities of the shell regions (thickness 15-35 (angstrom)) are approximately equal, while those of the outer regions increase with pressure and become equal to the bulk CO2 at the higher pressures only in the low-temperature case.

  8. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  9. Effect of neutron irradiation on the density of low-energy excitations in vitreous silica

    International Nuclear Information System (INIS)

    Smith, T.L.

    1979-01-01

    Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity were made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C/sub ex/, the thermal conductivity kappa, and the anomalous temperature dependence of the ultrasound velocity Δv/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that kappa and Δv/v are determined by the same localized excitations responsible for C/sub ex/, but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. A consistent account for the measured C/sub ex/, kappa, and Δv/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model

  10. Cytotoxicity Evaluation of Anatase and Rutile TiO₂ Thin Films on CHO-K1 Cells in Vitro.

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L; Soto, Enrique

    2016-07-26

    Cytotoxicity of titanium dioxide (TiO₂) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO₂ thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO₂ films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO₂ films' thickness values fell within the nanometer range (290-310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO₂ thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO₂ thin films, the number of CHO-K1 cells on the control substrate and on all TiO₂ thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO₂ films annealed at 800 °C. These results indicate that TiO₂ thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO₂ thin films in biomedical science.

  11. Influences of surface charge, size, and concentration of colloidal nanoparticles on fabrication of self-organized porous silica in film and particle forms.

    Science.gov (United States)

    Nandiyanto, Asep Bayu Dani; Suhendi, Asep; Arutanti, Osi; Ogi, Takashi; Okuyama, Kikuo

    2013-05-28

    Studies on preparation of porous material have attracted tremendous attention because existence of pores can provide material with excellent performances. However, current preparation reports described successful production of porous material with only partial information on charges, interactions, sizes, and compositions of the template and host materials. In this report, influences of self-assembly parameters (i.e., surface charge, size, and concentration of colloidal nanoparticles) on self-organized porous material fabrication were investigated. Silica nanoparticles (as a host material) and polystyrene (PS) spheres (as a template) were combined to produce self-assembly porous materials in film and particle forms. The experimental results showed that the porous structure and pore size were controllable and strongly depended on the self-assembly parameters. Materials containing highly ordered pores were effectively created only when process parameters fall within appropriate conditions (i.e., PS surface charge ≤ -30 mV; silica-to-PS size ratio ≤0.078; and silica-to-PS mass ratio of about 0.50). The investigation of the self-assembly parameter landscape was also completed using geometric considerations. Because optimization of these parameters provides significant information in regard to practical uses, results of this report could be relevant to other functional properties.

  12. Optically driven self-oscillations of a silica nanospike at low gas pressures

    Science.gov (United States)

    Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.

    2016-09-01

    We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.

  13. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  14. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  15. One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Mani Ganesh

    2017-05-01

    Full Text Available Li, Zr doped porous silica was synthesized in one pot and investigated for low temperature CO2 adsorption. The synthesized nanoparticle was characterized by X-ray diffraction (XRD, N2 adsorption–desorption measurement, thermogravimetric analysis (TGA and scanning electron microscopy (SEM. The specific surface area, average pore diameter and pore volume were determined to be 962 m2/g, 2.3 nm and 0.56 cm3/g respectively. ICP-AES analysis revealed a metal content of 4 wt.% (Zr and 3.42 wt.% (Li. Their CO2 adsorption capacity was tested at room temperature and atmospheric pressure. An uptake of about 5 wt.% was observed and regenerable at a low temperature of 200 °C. This adsorption and desorption temperature of the sorbent is lower than the reported lithium silicate. The CO2 adsorption–desorption cyclic performance studies illustrated that Li, Zr doped porous silica is a recyclable, selective and potential sorbent for CO2 adsorption.

  16. Low-temperature preparation of rutile-type TiO2 thin films for optical coatings by aluminum doping

    Science.gov (United States)

    Ishii, Akihiro; Kobayashi, Kosei; Oikawa, Itaru; Kamegawa, Atsunori; Imura, Masaaki; Kanai, Toshimasa; Takamura, Hitoshi

    2017-08-01

    A rutile-type TiO2 thin film with a high refractive index (n), a low extinction coefficient (k) and small surface roughness (Ra) is required for use in a variety of optical coatings to improve the controllability of the reflection spectrum. In this study, Al-doped TiO2 thin films were prepared by pulsed laser deposition, and the effects of Al doping on their phases, optical properties, surface roughness and nanoscale microstructure, including Al distribution, were investigated. By doping 5 and 10 mol%Al, rutile-type TiO2 was successfully prepared under a PO2 of 0.5 Pa at 350-600 °C. The nanoscale phase separation in the Al-doped TiO2 thin films plays an important role in the formation of the rutile phase. The 10 mol%Al-doped rutile-type TiO2 thin film deposited at 350 °C showed excellent optical properties of n ≈ 3.05, k ≈ 0.01 (at λ = 400 nm) and negligible surface roughness, at Ra ≈ 0.8 nm. The advantages of the superior optical properties and small surface roughness of the 10 mol%Al-doped TiO2 thin film were confirmed by fabricating a ten-layered dielectric mirror.

  17. Development Of Silica Potassium Fertilizers From Trass Rock With Calcination Process

    Science.gov (United States)

    Wahyusi, KN; Siswanto

    2018-01-01

    Rocks and sand mines have important benefits for life. With the many benefits of rocks, it is a pity if Indonesia has a lot of raw material reserves waste it. Examples of the benefits of rocks that can be converted into silica potassium fertilizer by reacting with potassium hydroxide. Examples of rocks that can be taken trass rock. The procedure for making silica potassium is by reacting 100 mesh trass rock with KOH and K2CO3 reagents whose composition is arranged by weight ratio, where the base of the trass rock is 100 gr. The process is carried out at a temperature of 1.250 °C with a reaction time of 1 hour. The results obtained are the best silica potassium fertilizer for K2CO3 reagent which is 500gr: 74gr with SiO2 content: 26.8% and K2O content: 27.3%, with water solubility 24.02%, while for silica potassium fertilizer product from The best trass rock for KOH reagent is with a mol ratio of 400 gr : 60 gr with SiO2 content : 23.6% and K2O content: 22.2%, with 25.65% water solubility. The pore size of silica potassium fertilizer product of this trass rock, the range 350 - 1000 nm.

  18. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Atienza, A.; Serrano, E.; Linares, N. [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain); Svedlindh, P. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Seisenbaeva, G., E-mail: Gulaim.Seisenbaeva@slu.se [Department of Chemistry and Biotechnology, BioCenter SLU, Box 7015, SE-75007 Uppsala (Sweden); García-Martínez, J., E-mail: j.garcia@ua.es [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain)

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.

  19. Fabrication Flexible and Luminescent Nanofibrillated Cellulose Films with Modified SrAl2O4: Eu, Dy Phosphors via Nanoscale Silica and Aminosilane

    Directory of Open Access Journals (Sweden)

    Longfei Zhang

    2018-05-01

    Full Text Available Flexible 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO-oxidized nanofibrillated cellulose (ONFC films with long afterglow luminescence containing modified SrAl2O4: Eu2+, Dy3+ (SAOED phosphors were fabricated by a template method. Tetraethyl orthosilicate (TEOS and (3-aminopropyl trimethoxy-silane (APTMS were employed cooperatively to improve the water resistance and compatibility of the SAOED particles in the ONFC suspension. The structure and morphology after modification evidenced the formation of a superior SiO2 layer and coarse amino-compounds on the surface of the phosphors. Homogeneous dispersions containing ONFC and the modified phosphors were prepared and the interface of composite films containing the amino-modified particles showed a more closely packed structure and had less voids at the interface between the cellulose and luminescent particles than that of silica-modified phosphors. The emission spectra for luminescent films showed a slight blue shift (3.2 nm at around 512 nm. Such flexible films with good luminescence, thermal resistance, and mechanical properties can find applications in fields like luminous flexible equipment, night indication, and portable logo or labels.

  20. Wetting phenomena in films of molecular hydrogen isotopes

    International Nuclear Information System (INIS)

    Albrecht, U.; Conradt, R.; Herminghaus, S.; Leiderer, P.

    1996-01-01

    We have investigated various aspects of the wetting behavior of hydrogen films (including the heavier isotopes) using surface plasmon resonance, light scattering, and photoelectron emission. Studies in the vicinity of the triple point (T 3 (H 2 )=13,96 K) confirmed the known >, and gave no indications for a prewetting transition in this range. At low temperatures (T 3 /3) the equilibrium film thickness reaches only a few monolayers. Thicker films, prepared by quench-condensation of H 2 gas at 1.5 K, undergo a dewetting process during annealing: most of the film material contracts to clusters, and in between the films thins down to its equilibrium thickness. This surface diffusion process is thermally activated, with an activation energy of 23 K (in the case of H 2 ). The dewetting kinetics has not revealed any indication for a surface-molten layer on the solid films at low temperatures, or for a superfluid component

  1. Solid-phase microextraction Ni-Ti fibers coated with functionalised silica particles immobilized in a sol-gel matrix.

    Science.gov (United States)

    Azenha, Manuel; Ornelas, Mariana; Fernando Silva, A

    2009-03-20

    One of the possible approaches for the development of novel solid-phase microextraction (SPME) fibers is the physical deposition of porous materials onto a support using high-temperature epoxy glue. However, a major drawback arises from decomposition of epoxy glue at temperatures below 300 degrees C and instability in some organic solvents. This limitation motivated us to explore the possibility of replacing the epoxy glue with a sol-gel film, thermally more stable and resistant to organic solvents. We found that functionalised silica particles could be successfully attached to a robust Ni-Ti wire by using a UV-curable sol-gel film. The particles were found to be more important than the sol-gel layer during the microextraction process, as shown by competitive extraction trials and by the different extraction profiles observed with differently functionalised particles. If a quality control microscopic-check aiming at the rejection of fibers exhibiting unacceptably low particle load was conducted, acceptable (6-14%) reproducibility of preparation of C(18)-silica fibers was observed, and a strong indication of the durability of the fibers was also obtained. A cyclohexyldiol-silica fiber was used, as a simple example of applicability, for the successful determination of benzaldehyde, acetophenone and dimethylphenol at trace level in spiked tap water. Recoveries: 95-109%; limits of detection: 2-7 microg/L; no competition effects within the studied range (

  2. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  3. Optical Degradation of Colloidal Eu-Complex Embedded in Silica Glass Film Using Reprecipitation and Sol-Gel Methods.

    Science.gov (United States)

    Fukuda, Takeshi; Kurabayashi, Tomokazu; Yamaki, Tatsuki

    2016-04-01

    A reprecipitation method has been investigated for fabricating colloidal nanoparticles using Eu-complex. Herein, we investigated optical degradation characteristics of (1,10-phenanthroline)tris [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium(III) colloidal nanoparticles, which were embedded into a silica glass film fabricated by a conventional sol-gel process. At first, we tried several types of good solvents for the reprecipitation method, and dimethyl sulfoxide (DMSO) is found to be a suitable solvent for realizing the small diameter and the high long-term stability against the ultraviolet irradiation even though the boing point of DMSO is higher than that of water used as a poor solvent. By optimizing the good solvent and the concentration of Eu-complex, the relative photoluminescence intensity of 0.96 was achieved even though the ultraviolet light was continuously irradiated for 90 min. In addition, the average diameter of 106 nm was achieved when DMSO was used as a good solvent, resulting in the high transmittance at a visible wavelength region. Therefore, we can achieve the transparent emissive thin film with a center wavelength of 612 nm, and the optical degradation was drastically reduced by forming nanoparticles.

  4. Mesoporous silica as carrier of antioxidant for food packaging materials

    Science.gov (United States)

    Buonocore, Giovanna Giuliana; Gargiulo, Nicola; Verdolotti, Letizia; Liguori, Barbara; Lavorgna, Marino; Caputo, Domenico

    2014-05-01

    Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packaging.

  5. Fused silica thermal conductivity dispersion at high temperature

    International Nuclear Information System (INIS)

    Bouchut, P.; Decruppe, D.; Delrive, L.

    2004-01-01

    A continuous CO 2 laser is focused to locally anneal small fused silica spots. A noncontact radiometry diagnostic enables us to follow surface temperature variation that occurs from site to site. A 'steady state' dispersion of surface temperature is observed across our sample. We show that nonhomogeneous silica thermal conductivity, above 1000 K is responsible for this temperature dispersion

  6. Comparison of low-contrast detectability of computed radiography and screen/ film mammography systems

    International Nuclear Information System (INIS)

    Noriah Jamal; Kwan-Hoong Ng; McLean, D.; McLean, D.

    2008-01-01

    The objective of this study is to compare low-contrast detectability of computed radiography (CR) and screen/ film (SF) mammography systems. The Nijimegen contrast detail test object (CDMAM type 3.4) was imaged at 28 kV, in automatic exposure control mode separately. Six medical imaging physicists read each CDMAM phantom image. Contrast detail curves were plotted to compare low-contrast detectability of CR (soft copy and hard copy) and SF mammography systems. Effect of varying exposure parameters, namely kV, object position inside the breast phantom, and entrance surface exposure (ESE) on the contrast detail curve were also investigated using soft copy CR. The significance of the difference in contrast between CR and SF, and for each exposure parameter, was tested using non-parametric Kruskal-Wallis test. The low-contrast detectability of the CR (soft copy and hard copy) system was found to be not significantly different to that of the SF system (p> 0.05, Kruskal-Wallis test).For CR soft copy, no significant relationship (p>0.05, Kruskal-Wallis test) was seen for variation of kV, object position inside the breast phantom and ESE. This indicates that CR is comparable with SF for useful detection and visualization of low-contrast objects such as small low-contrast areas corresponding to breast pathology. (Author)

  7. Characterization of nanoparticle and porous ultra low-k using positron beam

    International Nuclear Information System (INIS)

    Xu, Jun; Moxom, J.; Suzuki, R.; Ohdaira, T.; Mills, A.P. Jr.

    2003-01-01

    Nanoparticle materials are important because they exhibit unique properties due to size effects, quantum tunneling, and quantum confinement. As particle sizes are reduced to the nanometer scale, presence of vacancy clusters is expected to affect properties of nanomaterials. A combination of positron lifetime spectroscopy, which tells size of vacancy clusters, and coincidence Doppler broadening of annihilation radiation, which tell where vacancy clusters are located was used to study defect structures on nanomaterials of Au nanoparticles embedded in MgO. Vacancy clusters were found on the surfaces of Au nanoparticles. When the packing density between multilevel interconnects in microelectronic devices increases, a low dielectric constant material is needed to minimize RC delay. Porous oxide films are some of these new low-k materials that have been actively studied by the microelectronics industry. An ideal porous material would consist of a network of closed, small pores with narrow size distribution. However, large and interconnected pores, so called 'killer pores', result in high current leakage and poor mechanical strength. Clearly, characterization and understanding of pore size and interconnectivity are important to optimize the design of porous materials. Using positron beam, we have found that pore percolation in porous methyl-silsesquioxane (MSQ) films strongly depends on the molecular mass of pore generators. (author)

  8. Reaction kinetics for preparation of silica film with Stoeber method

    International Nuclear Information System (INIS)

    Shang Mengying; Jiang Xiaodong; Liu Miao; Luo Xuan; Tang Yongjian; Cao Linhong

    2013-01-01

    A new formula was proposed to investigate the relationship between reaction time and tetraethylorthosilicate (TEOS) conversion rate for preparation of silica sol with Stöber method, by studying the reaction kinetics of TEOS hydrolytic process. An appropriate conversion rate was then determined and used to calculate the theoretical optimal reaction time. Meanwhile, silica sols were prepared by sol-gel process using TEOS as precursor and ammonia as catalyst. It was found that the reaction time decreases with an increasing amount of ammonia and water. The values of experimental optimal reaction time were obtained, and agree with the theoretical results (the errors are within 5%), which shows good applicability of our formula. (authors)

  9. Optimization of the low-temperature MOCVD process for PZT thin films

    CERN Document Server

    Wang, C H; Choi, D J

    2000-01-01

    Pb(Zr sub X Ti sub 1 sub - sub X)O sub 3 (PZT) thin films of about 0.34 nm were successfully grown at a low temperature of 500 .deg. C by metalorganic chemical vapor deposition with a beta-diketonate complex of Pb(tmhd) sub 2 , zirconium t-butoxide, and titanium isopropoxide as source precursors. Ferroelectric capacitors of a Pt/PZT/Pt configuration were fabricated, and their structural and electrical properties were investigated as a function of the input Pb/(Zr+Ti) and Zr/(Zr+Ti) source ratios. The structure of the as-grown films at 500 .deg. C changed from tetragonal to pseudocubic with increasing the Zr/(Zr+Ti) ratio above an input Pb/(Zr+Ti) source ratio of 5.0 while a 2nd phase of ZrO sub 2 was only observed below Pb/(Zr+Ti) ratio of 5.0, regardless of the Zr/(Zr+Ti) ratio. The dielectric constant and loss of the PZT films were 150-1200 and 0.01-0.04 at 100 kHz, respectively, Leakage current densities decreased with increasing the Zr/(Zr+Ti) ratio. The process window for growing a single phase PZT is ve...

  10. Patternable Poly(chloro-p-xylylene Film with Tunable Surface Wettability Prepared by Temperature and Humidity Treatment on a Polydimethylsiloxane/Silica Coating

    Directory of Open Access Journals (Sweden)

    Yonglian Yu

    2018-03-01

    Full Text Available Poly(chloro-p-xylylene (PPXC film has a water contact angle (WCA of only about 84°. It is necessary to improve its hydrophobicity to prevent liquid water droplets from corroding or electrically shorting metallic circuits of semiconductor devices, sensors, microelectronics, and so on. Herein, we reported a facile approach to improve its surface hydrophobicity by varying surface pattern structures under different temperature and relative humidity (RH conditions on a thermal curable polydimethylsiloxane (PDMS and hydrophobic silica (SiO2 nanoparticle coating. Three distinct large-scale surface patterns were obtained mainly depending on the contents of SiO2 nanoparticles. The regularity of patterns was mainly controlled by the temperature and RH conditions. By changing the pattern structures, the surface wettability of PPXC film could be improved and its WCA was increased from 84° to 168°, displaying a superhydrophobic state. Meanwhile, it could be observed that water droplets on PPXC film with superhydrophobicity were transited from a “Wenzel” state to a “Cassie” state. The PPXC film with different surface patterns of 200 μm × 200 μm and the improved surface hydrophobicity showed wide application potentials in self-cleaning, electronic engineering, micro-contact printing, cell biology, and tissue engineering.

  11. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.

    Science.gov (United States)

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-06-03

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.

  12. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  13. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  14. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  15. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  16. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  17. Organic-Silica Interactions in Saline: Elucidating the Structural Influence of Calcium in Low-Salinity Enhanced Oil Recovery.

    Science.gov (United States)

    Desmond, J L; Juhl, K; Hassenkam, T; Stipp, S L S; Walsh, T R; Rodger, P M

    2017-09-08

    Enhanced oil recovery using low-salinity solutions to sweep sandstone reservoirs is a widely-practiced strategy. The mechanisms governing this remain unresolved. Here, we elucidate the role of Ca 2+ by combining chemical force microscopy (CFM) and molecular dynamics (MD) simulations. We probe the influence of electrolyte composition and concentration on the adsorption of a representative molecule, positively-charged alkylammonium, at the aqueous electrolyte/silica interface, for four electrolytes: NaCl, KCl, MgCl 2 , and CaCl 2 . CFM reveals stronger adhesion on silica in CaCl 2 compared with the other electrolytes, and shows a concentration-dependent adhesion not observed for the other electrolytes. Using MD simulations, we model the electrolytes at a negatively-charged amorphous silica substrate and predict the adsorption of methylammonium. Our simulations reveal four classes of surface adsorption site, where the prevalence of these sites depends only on CaCl 2 concentration. The sites relevant to strong adhesion feature the O - silica site and Ca 2+ in the presence of associated Cl - , which gain prevalence at higher CaCl 2 concentration. Our simulations also predict the adhesion force profile to be distinct for CaCl 2 compared with the other electrolytes. Together, these analyses explain our experimental data. Our findings indicate in general how silica wettability may be manipulated by electrolyte concentration.

  18. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    International Nuclear Information System (INIS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-01-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4

  19. Electro-hydrodynamic spray synthesis and low temperature spectroscopic characterization of Perovskite thin films

    Science.gov (United States)

    Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani

    Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  20. Low temperature interdiffusion in Cu/Ni thin films

    International Nuclear Information System (INIS)

    Lefakis, H.; Cain, J.F.; Ho, P.S.

    1983-01-01

    Interdiffusion in Cu/Ni thin films was studied by means of Auger electron spectroscopy in conjunction with Ar + ion sputter profiling. The experimental conditions used aimed at simulating those of typical chip-packaging fabrication processes. The Cu/Ni couple (from 10 μm to 60 nm thick) was produced by sequential vapor deposition on fused-silica substrates at 360, 280 and 25 0 C in 10 - 6 Torr vacuum. Diffusion anneals were performed between 280 and 405 0 C for times up to 20 min. Such conditions define grain boundary diffusion in the regimes of B- and C-type kinetics. The data were analyzed according to the Whipple-Suzuoka model. Some deviations from the assumptions of this model, as occurred in the present study, are discussed but cannot fully account for the typical data scatter. The grain boundary diffusion coefficients were determined allowing calculation of respective permeation distances. (Auth.)

  1. Development of empirical potentials for amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Carre, A.

    2007-09-15

    potential shows a better agreement with the CP data than the BKS ones: pair correlation functions, angular distribution functions, structure factors, density of states and pressure/density were improved. At low temperature, the diffusion coefficients appear to be three times higher than those predicted by the BKS model, however showing a similar temperature dependence. Calculations have also been carried out on crystalline samples in order to check the transferability of the potential. The equilibrium geometry as well as the elastic constants of {alpha}-quartz at 0 K are well described by our new potential although the crystalline phases have not been considered for the parameterization. We have developed a new potential for silica which represents an improvement over the pair potentials class proposed so far. Furthermore, the fitting methodology that has been developed in this work can be applied to other network forming systems such as germania as well as mixtures of SiO{sub 2} with other oxides (e.g. Al{sub 2}O{sub 3}, K{sub 2}O, Na{sub 2}O). (orig.)

  2. Photoluminescence of Se-related oxygen deficient center in ion-implanted silica films

    International Nuclear Information System (INIS)

    Zatsepin, A.F.; Buntov, E.A.; Pustovarov, V.A.; Fitting, H.-J.

    2013-01-01

    The results of low-temperature time-resolved photoluminescence (PL) investigation of thin SiO 2 films implanted with Se + ions are presented. The films demonstrate an intensive PL band in the violet spectral region, which is attributed to the triplet luminescence of a new variant of selenium-related oxygen deficient center (ODC). The main peculiarity of the defect energy structure is the inefficient direct optical excitation. Comparison with spectral characteristics of isoelectronic Si-, Ge- and SnODCs show that the difference in electronic properties of the new center is related to ion size factor. It was established that the dominating triplet PL excitation under VUV light irradiation is related to the energy transfer from SiO 2 excitons. A possible model of Se-related ODC is considered. -- Highlights: • The low-temperature photoluminescence of thin SiO 2 films implanted with Se + ions was studied. • The 3.4 eV PL band was attributed to triplet luminescence of Se-related ODC. • The peculiarity of SeODC electronic properties is related to ion size factor. • The dominating VUV excitation of triplet PL is related to energy transfer from SiO 2 excitons. • A possible model of Se-related ODC is considered

  3. Low operating voltage InGaZnO thin-film transistors based on Al2O3 high-k dielectrics fabricated using pulsed laser deposition

    International Nuclear Information System (INIS)

    Geng, G. Z.; Liu, G. X.; Zhang, Q.; Shan, F. K.; Lee, W. J.; Shin, B. C.; Cho, C. R.

    2014-01-01

    Low-voltage-driven amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) with an Al 2 O 3 dielectric were fabricated on a Si substrate by using pulsed laser deposition. Both Al 2 O 3 and IGZO thin films are amorphous, and the thin films have very smooth surfaces. The Al 2 O 3 gate dielectric exhibits a very low leakage current density of 1.3 x 10 -8 A/cm 2 at 5 V and a high capacitance density of 60.9 nF/cm 2 . The IGZO TFT with a structure of Ni/IGZO/Al 2 O 3 /Si exhibits high performance with a low threshold voltage of 1.18 V, a high field effect mobility of 20.25 cm 2 V -1 s -1 , an ultra small subthreshold swing of 87 mV/decade, and a high on/off current ratio of 3 x 10 7 .

  4. Systematic discrepancies in Monte Carlo predictions of k-ratios emitted from thin films on substrates

    International Nuclear Information System (INIS)

    Statham, P; Llovet, X; Duncumb, P

    2012-01-01

    We have assessed the reliability of different Monte Carlo simulation programmes using the two available Bastin-Heijligers databases of thin-film measurements by EPMA. The MC simulation programmes tested include Curgenven-Duncumb MSMC, NISTMonte, Casino and PENELOPE. Plots of the ratio of calculated to measured k-ratios ('k calc /k meas ') against various parameters reveal error trends that are not apparent in simple error histograms. The results indicate that the MC programmes perform quite differently on the same dataset. However, they appear to show a similar pronounced trend with a 'hockey stick' shape in the 'k calc /k meas versus k meas ' plots. The most sophisticated programme PENELOPE gives the closest correspondence with experiment but still shows a tendency to underestimate experimental k-ratios by 10 % for films that are thin compared to the electron range. We have investigated potential causes for this systematic behaviour and extended the study to data not collected by Bastin and Heijligers.

  5. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  6. Growth and characterization of MMA/SiO2 hybrid low-k thin films for ...

    Indian Academy of Sciences (India)

    We have successfully incorporated MMA monomer and eliminated the polymerization step to lower the dielectric constant of deposited thin film. The presence of peak of C=C bond in Fourier transform infrared (FTIR) spectra and carbon peak in energy dispersive (EDAX) spectra confirms the incorporation of carbon in the film ...

  7. Comparison of the quality of the chest film between digital radiography and conventional high kV radiography

    International Nuclear Information System (INIS)

    Zeng Qingsi; Cen Renli; Chen Ling; He Jianxun; Lin Hanfei

    2003-01-01

    Objective: To evaluate the quality and usefulness of direct digital radiography system in roentgenogram of chest in clinical practice. Methods: 1000 cases of chest roentgenograms with digital radiography and high kV conventional radiography were selected for analysis by 3 senior radiologists. Results: 1. With digital radiography system, the quality of chest film was assessed as grade A in 50.6%, grade B in 38.5%, grade C in 10.9%, and no waste film. 2. With conventional high kV radiography, the quality of chest film was assessed as grade A in 41.1%, grade B in 44.1%, grade C in 13.3%, and waste film in 1.5%. The direct digital radiography was statistically superior to the conventional high kV radiography. 3. The fine structure of the lungs could be revealed in 100.0% of chest roentgenogram with direct digital radiograph system, which was significantly higher than that acquired with the conventional high KV radiography (78.6%, P < 0.001). Conclusion: Direct digital radiography could provide the chest film with better quality than that with the conventional high kV radiography. The direct digital radiography system is easy to operate, fast in capturing imaging and could provide post-processing techniques, which will facilitate the accurate diagnosis of chest radiography

  8. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keum Hwan; Park, O Ok [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Im, Sang Hyuk, E-mail: imromy@krict.re.kr, E-mail: ookpark@kaist.ac.kr [Korea Research Institute of Chemical Technology (KRICT), 19 Singsungno, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)

    2011-01-28

    The size of silver nanocrystals in polyol synthesis can be simply controlled by tuning the viscosity of the reaction medium such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,5-pentanediol. We found that a higher viscose medium (1,5-pentanediol) led to monodispersed smaller particles thanks to the slow addition of silver atoms into the nuclei. Size-controlled silver nanocrystals of 30 nm were obtained in a viscosity controlled medium of 1,5-pentanediol to synthesize a low refractive index filler by coating with silica and subsequent etching of the silver core. The coated low-reflection layer from the hollow silica nanoparticles on polyethylene terephthalate (PET) film can greatly reduce the reflection of the PET film from 10% to 2% over the entire visible region.

  9. Homogeneity characterization of ethylene-co-vinyl acetate copolymer (EVA) and hydrophobic silica nanocomposite by low field NMR

    International Nuclear Information System (INIS)

    Stael, Giovanni Chaves; Tavares, Maria I.B.

    2005-01-01

    This project proposes the characterization of a polymeric matrix composite material using nanometric scale hydrophobic silica as charge element, with the ethylene-vinyl acetate (EVA), by using the spin-lattice relaxation time measurement applying the low field NMR

  10. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application.

    Science.gov (United States)

    Fouda, Moustafa M G; El-Aassar, M R; El Fawal, G F; Hafez, Elsayed E; Masry, Saad Hamdy Daif; Abdel-Megeed, Ahmed

    2015-03-01

    Biopolymer composite film containing k-carrageenan (KC), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) was formulated by dissolving KC and PVP in water containing PEG. Silver nanoparticles (AgNPs), was produced by Honeybee and added to solution. Finally, all solutions were poured onto dishes and dried overnight at 40°C to form the final films. Tensile strength (TS) and elongation (E %) is evaluated. The water contact angle is inspected. Thermal properties (TGA) and swelling behavior for water were considered. Fungal activity is also examined. Morphology of all films was also explored using scanning electron microscope. AgNPs induced significant hydrophilicity to KC-PVP-PEG film with contact angle of 41.6 and 34.7 for KC-PVP-PEG-AgNPs. Films with AgNPs exhibited higher thermal stability and strength properties than other films without. Films with AgNPs explore lower swelling behavior than other films without. Both SEM and EDX proved the deposition of AgNPs on the surface of films. Films with AgNPs showed higher activity against pathogenic fungi compared with the chemical fungicide; fluconazole. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Addition of Silica Fume to Improve Strength of Cement Paste

    Science.gov (United States)

    Chen, Jiajian; Chen, Hongniao; Li, Gu

    2018-03-01

    This study measured the packing densities of 0 to 30% silica fume (SF) added cementitious materials and strength of the cementitious pastes with various water content. The results revealed that addition of silica fume up to a certain level has great effects on packing density and strength. In-depth analysis illustrated that a lower W/CM ratio would not always result in a higher cube strength, and the range between 0.05 and 0.07 µm would be the amount of water film thickness (WFT) for muximum strength.

  12. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  13. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  14. Growth and applicability of radiation-responsive silica nanowires

    Science.gov (United States)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  15. Low temperature composite bolometers using RuO2 films as a thermistor

    International Nuclear Information System (INIS)

    Chapellier, M.; Rasmussen, F.B.

    1989-01-01

    Results from a massive composite bolometer made of a sapphire crystal and ruthenium oxide films are presented. The properties of such RuO 2 films, in the temperature range [50 mK, 200 mK] have been studied. Individual particle detections, using an 241 Am source, have been used to calibrate the system in this temperature interval. Improvements in the performances of such detectors lead to consider them as realistic candidates for the detection of Dark Matter

  16. Thermal, mechanical and permeation properties of gamma-irradiated multilayer food packaging films containing a buried layer of recycled low-density polyethylene

    International Nuclear Information System (INIS)

    Chytiri, Stavroula; Goulas, Antonios E.; Riganakos, Kyriakos A.; Kontominas, Michael G.

    2006-01-01

    The effect of gamma radiation (doses 5-60kGy) on the thermal, mechanical and permeation properties, as well as on IR-spectra of experimental five-layer food packaging films were studied. Films contained a middle buried layer of recycled low-density polyethylene (LDPE) comprising 25-50% by weight of the multilayer structure. Representative films containing 100% virgin LDPE as the buried layer were taken as controls. Results showed that the percentage of recycled LDPE in the multilayer structure did not significantly (p<0.05) affect the melting temperature, tensile strength, percent elongation at break, Young's modulus, oxygen, carbon dioxide and water vapour transmission rate values and the IR-spectra of the non-irradiated and irradiated multilayer films. Irradiation (mainly the higher dose of 60kGy) induced certain small, but statistically significant (p<0.05) differences in the mechanical properties of multilayer films (with or without recycled LDPE layer) while no significant differences were observed in the thermal properties and in the gas and water vapour permeability of multilayer films. The above findings are discussed in relation to the good quality of the pre-consumer scrap used in the present study

  17. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    International Nuclear Information System (INIS)

    Wang Jinyan; Chen Xinhua; Kang Yingke; Yang Guangbin; Yu Laigui; Zhang Pingyu

    2010-01-01

    Superhydrophobic poly(methyl methacrylate)-SiO 2 (coded as PMMA-SiO 2 ) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO 2 ) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO 2 nanocomposite films was investigated in relation to the dosage of SiO 2 nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO 2 nanocomposite films when hydrophobic SiO 2 nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO 2 nanocomposite films had a static water contact angle of above 162 o , showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  18. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hedwig, Rinda [Department of Computer Engineering, Faculty of Computer Studies, Bina Nusantara University, 9 K.H. Syahdan, Jakarta Barat 11480 (Indonesia); Budi, Wahyu Setia [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Tembalang Campus, Semarang, Central Java (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Nanggroe Aceh Darussalam (Indonesia); Pardede, Marincan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Suliyanti, Maria Margaretha [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Davy Putra [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia)]. E-mail: kurnia18@cbn.net.id; Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, 9-1 bunkyo 3-chome, Fukui 910-8507 (Japan); Tjia, May On [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia)

    2006-12-15

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  19. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    International Nuclear Information System (INIS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-01-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process

  20. Superconductivity in transparent zinc-doped In2O3 films having low carrier density

    Directory of Open Access Journals (Sweden)

    Kazumasa Makise, Nobuhito Kokubo, Satoshi Takada, Takashi Yamaguti, Syunsuke Ogura, Kazumasa Yamada, Bunjyu Shinozaki, Koki Yano, Kazuyoshi Inoue and Hiroaki Nakamura

    2008-01-01

    Full Text Available Thin polycrystalline zinc-doped indium oxide (In2O3–ZnO films were prepared by post-annealing amorphous films with various weight concentrations x of ZnO in the range 0≤x ≤0.06. We have studied the dependences of the resistivity ρ and Hall coefficient on temperature T and magnetic field H in the range 0.5≤T ≤300 K, H≤6 Tfor 350 nm films annealed in air. Films with 0≤x≤0.03 show the superconducting resistive transition. The transition temperature Tc is below 3.3 K and the carrier density n is about 1025–1026 m−3. The annealed In2O3–ZnO films were examined by transmission electron microscopy and x-ray diffraction analysis revealing that the crystallinity of the films depends on the annealing time. We studied the upper critical magnetic field Hc2 (T for the film with x = 0.01. From the slope of dHc2 /dT, we obtain the coherence length ξ (0 ≈ 10 nm at T = 0 K and a coefficient of electronic heat capacity that is small compared with those of other oxide materials.

  1. Transparent Low Electrostatic Charge Films Based on Carbon Nanotubes and Polypropylene. Homopolymer Cast Films

    Directory of Open Access Journals (Sweden)

    Zoe Vineth Quiñones-Jurado

    2018-01-01

    Full Text Available Use of multi-wall carbon nanotubes (MWCNTs in external layers (A-layers of ABA-trilayer polypropylene films was investigated, with the purpose of determining intrinsic and extrinsic factors that could lead to antistatic behavior of transparent films. The incorporation of 0.01, 0.1, and 1 wt % of MWCTNs in the A-layers was done by dilution through the masterbatch method. Masterbatches were fabricated using isotactic polypropylene (iPP with different melt flow indexes 2.5, 34, and 1200 g/10 min, and using different ultrasound assist methods. It was found that films containing MWCNTs show surface electrical resistivity of 1012 and 1016 Ω/sq, regardless of the iPP melt flow index (MFI and masterbatch fabrication method. However, electrostatic charge was found to depend upon the iPP MFI, the ultrasound assist method and MWCNT concentration. A percolation electron transport mechanism was determined most likely responsible for this behavior. Optical properties for films containing MWCNTs do not show significant differences compared to the reference film at MWCNT concentrations below 0.1 wt %. However, an enhancement in brightness was observed, and it was attributed to ordered iPP molecules wrapping the MWCNTs. Bright transparent films with low electrostatic charge were obtained even for MWCNTs concentrations as low as 0.01 wt %.

  2. First observation of the decay B{sub s}{sup 0}{yields}K{sup Low-Asterisk 0}K{sup Macron Low-Asterisk 0}

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Abellan Beteta, C. [Universitat de Barcelona, Barcelona (Spain); Adeva, B., E-mail: Bernardo.Adeva@usc.es [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Albrecht, J.; Alessio, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Alexander, M. [School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Alkhazov, G. [Petersburg Nuclear Physics Institute (PNPI), Gatchina (Russian Federation); Alvarez Cartelle, P. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Alves, A.A. [Sezione INFN di Roma La Sapienza, Roma (Italy); Amato, S. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (Brazil); Amhis, Y. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Anderson, J. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Appleby, R.B. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Aquines Gutierrez, O. [Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg (Germany); Archilli, F. [Laboratori Nazionali dell' INFN di Frascati, Frascati (Italy); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Collaboration: LHCb Collaboration; and others

    2012-03-13

    The first observation of the decay B{sub s}{sup 0}{yields}K{sup Low-Asterisk 0}K{sup Macron Low-Asterisk 0} is reported using 35 pb{sup -1} of data collected by LHCb in proton-proton collisions at a centre-of-mass energy of 7 TeV. A total of 49.8{+-}7.5B{sub s}{sup 0}{yields}(K{sup +}{pi}{sup -})(K{sup -}{pi}{sup +}) events are observed within {+-}50 MeV/c{sup 2} of the B{sub s}{sup 0} mass and 746 MeV/c{sup 2}K{pi}}<1046 MeV/c{sup 2}, mostly coming from a resonant B{sub s}{sup 0}{yields}K{sup Low-Asterisk 0}K{sup Macron Low-Asterisk 0} signal. The branching fraction and the CP-averaged K{sup Low-Asterisk 0} longitudinal polarization fraction are measured to be B(B{sub s}{sup 0}{yields}K{sup Low-Asterisk 0}K{sup Macron Low-Asterisk 0})=(2.81{+-}0.46(stat.){+-}0.45(syst.){+-}0.34(f{sub s}/f{sub d})) Multiplication-Sign 10{sup -5} and f{sub L}=0.31{+-}0.12(stat.){+-}0.04(syst.).

  3. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    Science.gov (United States)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  4. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Science.gov (United States)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  5. Microwave properties of HTS films

    International Nuclear Information System (INIS)

    Cooke, D.W.; Arendt, P.M.; Grey, E.R.; Muenchausen, R.E.; Bennett, B.L.; Foltyn, S.R.; Estler, R.C.; Wu, X.D.; Reeves, G.A.; Elliott, N.E.; Brown, D.R.; Portis, A.M.; Taber, R.C.; Mogrocampero, A.

    1990-01-01

    High-frequency applications of high- temperature superconductors generally fall into two categories: 1) devices that require low values (relative to Cu) of surface resistance R S in ambient surface magnetic fields H rf ; and 2) devices that require low R S in modest fields (H rf ∼ 250 Oe). Moreover, many applications can be realized with small- surface-area films (∼ 1 cm 2 ) whereas others require larger areas - radiofrequency (rf) cavities, for example. Regardless of the application, the potential of HTS films is predicted on satisfying one or both of the above-stated requirements. The authors have measured the surface resistance of small-area (1 cm 2 ) and large-area (6.5 cm 2 ) YBa 2 Cu 3 O 7 (YBCO) films that have been laser ablated onto LaA ell O 3 substrates, large-area (5.1 cm 2 YBCO films that have been e-beam deposited onto LaA ell O 3 , and large-area (11.4 cm 2 ) T ell-based films that have been magnetron sputtered onto metallic substrates. The best R S values are obtained from the 1-cm 2 laser-ablated films; they are 40 μΩ and 340 μΩ at 4 K And 77 K, respectively (ω/2π = 10 GHz). Comparable values for Cu are 6 and 13 mΩ, respectively. Large-area T ell-based films yield typical R S values of 4 mΩ and 14 mΩ at 4 K and 77 K, respectively (ω/2π = 18 GHz). The dependence of R S on H rf for these films indicates that surface fields as large as 55 Oe can be achieved with R S increasing only by a factor of 10. This field dependence is associated with c-axis texturing

  6. Converting Water Adsorption and Capillary Condensation in Usable Forces with Simple Porous Inorganic Thin Films.

    Science.gov (United States)

    Boudot, Mickael; Elettro, Hervé; Grosso, David

    2016-11-22

    This work reports an innovative humidity-driven actuation concept based on conversion of chemical energy of adsorption/desorption using simple nanoporous sol-gel silica thin films as humidity-responsive materials. Bilayer-shaped actuators, consisting of a humidity-sensitive active nanostructured silica film deposited on a polymeric substrate (Kapton), were demonstrated as an original mean to convert water molecule adsorption and capillary condensation in usable mechanical work. Reversible solvation stress changes in silica micropores by water adsorption and energy produced by the rigid silica film contraction, induced by water capillary condensation in mesopores, were finely controlled and used as energy sources. The influence of the film nanostructure (microporosity, mesoporosity) and thickness and the polymeric substrate thickness on actuation force, on movement speed and on displacement amplitude are clearly evidenced and discussed. We show that the global mechanical response of such silica-based actuators can easily be adjusted to fabricate tailor-made actuation systems triggered by humidity variation. This study provides insight into hard ceramic stimulus-responsive materials that seem to be a promising alternative to traditional soft organic materials for surface-chemistry-driven actuation systems.

  7. FY 1999 results of the regional consortium R and D project/the regional consortium energy R and D. 1st year. Development of the energy-saving type production technology of high-purity/transparent silica glass; 1999 nendo kojundo tomei sekiei glass no sho energy gata seizo gijutsu no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of achieving the remarkable energy conservation, high accuracy and low cost in the production of high-purity/transparent silica glass, the developmental research was conducted on slip casting method. In the development of technology to synthesize silica powder by the sol-gel method, monodisperse - polydisperse high-purity colloidal silica was obtained. In the development of technology to make silica power ultra-highly pure, a process was found out in which silica particles can be obtained by applying moderate amounts of ammonium bicarbonate and aqueous ammonia to the solution of silicic acid for heating. In the slip cast forming, a high-density forming body with a mean particle size of 1.5{mu}m was obtained. In the trial manufacture of reflector model, a translucent silica glass sintered body was obtained by transcribing the gypsum type dimensional shape in high purity. Besides, experimental researches were conducted on the examination of gypsum type/resin type and evaluation of physical properties, heat deterioration characteristics of the actual multi-layer film and trial manufacture of the heat resistant film, analysis/evaluation of trace impurities inside silica glass, conditions for the manufacture of dense silica glass sheets, etc. (NEDO)

  8. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  9. Soft magnetic properties and damping parameter of (FeCo-Al alloy thin films

    Directory of Open Access Journals (Sweden)

    Isao Kanada

    2017-05-01

    Full Text Available For high frequency device applications, a systematic study of the soft magnetic properties and magnetization dynamics of (FeCo-Al alloy thin films has been carried out. A low effective damping parameter αeff of 0.002 and a high saturation magnetization of about 1,800 emu/cc are obtained at y=0.2∼0.3 for (Fe1-yCoy98Al2 alloy thin films deposited onto fused silica and MgO(100 at an ambient temperature during deposition. Those films are of the bcc structure with the orientation normal to the film plane. They possess a columnar structure, grown along the film normal. The column width is found to be about 20 nm for y=0.25. It is concluded that the (FeCo-Al thin films with a damping parameter as low as 0.002 and high saturation magnetization of about 1,800 emu/cc have been successfully fabricated, and that they are potential for future high frequency device applications.

  10. Rare earth-based low-index films for IR and multispectral thin film solutions

    Science.gov (United States)

    Stolze, Markus; Neff, Joe; Waibel, Friedrich

    2017-10-01

    Non-thoriated rare-earth fluoride based coating solutions involving DyF3 and YbF3 based films as well as non-wetting fluorohydrocarbon cap layers on such films, have been deposited, analyzed and partly optimized. Intermediate results for DyF3 based films from ion assisted e-gun deposition with O2 and N2 alone and as base for the non-wetting to-player as well as for YbF3 starting material with or without admixtures of CaF2 are discussed for low-loss LWIR and multispectral solutions.

  11. Novel fluorescent poly(glycidyl methacrylate) - silica microspheres

    Czech Academy of Sciences Publication Activity Database

    Grama, Silvia; Boiko, N.; Bilyy, R.; Klyuchivska, O.; Antonyuk, V.; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 56, July (2014), s. 92-104 ISSN 0014-3057 R&D Projects: GA MŠk EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : microspheres * silica * poly(glycidyl methacrylate) Subject RIV: CE - Biochemistry Impact factor: 3.005, year: 2014

  12. Influence of Different Substrates on Laser Induced Damage Thresholds at 1064 nm of Ta2O5 Films

    International Nuclear Information System (INIS)

    Cheng, Xu; Jian-Yong, Ma; Yun-Xia, Jin; Hong-Bo, He; Jian-Da, Shao; Zheng-Xiu, Fan

    2008-01-01

    Ta 2 O 5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta 2 O 5 films on different substrates are investigated before and after annealing at 673K for 12 h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta 2 O 5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta 2 O 5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed

  13. Effects of ultraviolet irradiation treatment on low-k SiOC(-H) ultra-thin films deposited by using TMS/O2 PEALD

    International Nuclear Information System (INIS)

    Kim, Changyoung; Woo, Jongkwan; Choi, Chikyu; Navamathavan, R.

    2012-01-01

    We report on the electrical characteristics for the metal-insulator-semiconductor (MIS) structure of low-dielectric-constant SiOC(-H) films. The SiOC(-H) thin films were deposited on p-Si(100) substrates by using a plasma-enhanced atomic layer deposition (PEALD) system. To improve the structural and the electrical characteristics, we post-treated the SiOC(-H) films deposited using PEALD with ultraviolet (UV) irradiation for various time intervals. The radical intensities in the bulk plasma were observed to be influenced strongly by the radio-frequency (rf) power. A complete dissociation of the trimethylsilane (TMS) precursor took place for rf powers greater than 300 W. As the UV treatment time was increased, the bonding structure of the SiOC(-H) film clearly separated to Si-O-Si and Si-O-C bonds. Also, the fixed charge density and the interface state density on the SiOC(-H)/p-Si(100) interface decreased as the UV treatment time was increased to 6 min. Therefore, we were able to minimize the defects and to reduce the interface charge by adjusting the UV dose.

  14. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  15. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  16. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  17. Text Mining Untuk Analisis Sentimen Review Film Menggunakan Algoritma K-Means

    Directory of Open Access Journals (Sweden)

    Setyo Budi

    2017-02-01

    Full Text Available Kemudahan manusia didalam menggunakan website mengakibatkan bertambahnya dokumen teks yang berupa pendapat dan informasi. Dalam waktu yang lama dokumen teks akan bertambah besar. Text mining merupakan salah satu teknik yang digunakan untuk menggali kumpulan dokumen text sehingga dapat diambil intisarinya. Ada beberapa algoritma yang di gunakan untuk penggalian dokumen untuk analisis sentimen, salah satunya adalah K-Means. Didalam penelitian ini algoritma yang digunakan adalah K-Means. Hasil penelitian menunjukkan bahwa akurasi K-Means dengan dataset digunakan 300 positif dan 300 negatif  akurasinya 57.83%,  700 dokumen positif dan 700  negatif akurasinya 56.71%%, 1000 dokumen positif dan 1000  negatif akurasinya 50.40%%. Dari hasil pengujian disimpulkan bahwa semakin besar dataset yang digunakan semakin rendah akurasi K-Means.   Kata Kunci : Text Mining, Analisis Sentimen, K-Means, Review Film 

  18. Pentacene based thin film transistors with high-k dielectric Nd2O3 as a gate insulator

    International Nuclear Information System (INIS)

    Sarma, R.; Saikia, D.

    2010-01-01

    We have investigated the pentacene based Organic Thin Film Transistors (OTFTs) with high-k dielectric Nd 2 O 3 . Use of high dielectric constant (high-k) gate insulator Nd 2 O 3 reduces the threshold voltage and sub threshold swing of the OTFTs. The calculated threshold voltage -2.2V and sub-threshold swing 1V/decade, current ON-OFF ratio is 1.7 X 10 4 and mobility is 0.13cm 2 /V.s. Pentacene film is deposited on Nd 2 O 3 surface using two step deposition method. Deposited pentacene film is found poly crystalline in nature. (author)

  19. Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite

    Science.gov (United States)

    Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis

    2017-07-01

    We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.

  20. The relationship between milling a new silica-doped zirconia and its resistance to low-temperature degradation (LTD): a pilot study.

    Science.gov (United States)

    Nakamura, Takashi; Usami, Hirofumi; Ohnishi, Hiroshi; Nishida, Hisataka; Tang, Xuehua; Wakabayashi, Kazumichi; Sekino, Tohru; Yatani, Hirofumi

    2012-02-03

    The aim of this study was to determine the machinability of new silica-doped Y-TZP by CAD/CAM and the resistance to low temperature degradation of the milled sample by comparing with a commercial HIP type Y-TZP material. The copings could be milled from silica-doped Y-TZP blocks without chipping, and there was no significant difference between the two types of Y-TZP materials in either the marginal or the inner gap between the abutment and the coping. After aging, the monoclinic content in the commercial Y-TZP copings increased from 25% before testing to 65%, while that of silica-doped Y-TZP copings slightly increased from 23% to 30%. The silica-doped Y-TZP copings did not have any significant difference in fracture load in a comparison between the control group and the aging group, while the commercial Y-TZP copings had a significantly lower fracture load for the aging group than for the control group.

  1. Influence of structural disorder on low-temperature behavior of penetration depth in electron-doped high-TC thin films

    International Nuclear Information System (INIS)

    Lanfredi, A.J.C.; Sergeenkov, S.; Araujo-Moreira, F.M.

    2006-01-01

    To probe the influence of structural disorder on low-temperature behavior of magnetic penetration depth, λ(T), in electron-doped high-T C superconductors, a comparative study of high-quality Pr 1.85 Ce 0.15 CuO 4 (PCCO) and Sm 1.85 Ce 0.15 CuO 4 (SCCO) thin films is presented. The λ(T) profiles are extracted from conductance-voltage data using a highly-sensitive home-made mutual-inductance technique. The obtained results confirm a d-wave pairing mechanism in both samples (with nodal gap parameter Δ 0 /k B T C =2.0 and 2.1 for PCCO and SCCO films, respectively), substantially modified by impurity scattering (which is more noticeable in less homogeneous SCCO films) at the lowest temperatures. More precisely, Δλ(T)=λ(T)-λ(0) is found to follow the Goldenfeld-Hirschfeld interpolation formulae Δλ(T)/λ(0)=AT 2 /(T+T 0 ) with T 0 =ln(2)k B Γ 1/2 Δ 0 1/2 being the crossover temperature which demarcates pure and impure scattering processes (T 0 /T C =0.13 and 0.26 for PCCO and SCCO films, respectively). The value of the extracted impurity scattering rate Γ correlates with the quality of our samples and is found to be much higher in less homogeneous films with lower T C

  2. Preparation and tribological tests of thin fluoroorganic films

    International Nuclear Information System (INIS)

    Cichomski, M.; Grobelny, J.; Celichowski, G.

    2008-01-01

    Adhesion, friction and consequent wear of sliding surfaces are the basic problems that limit the performance and reliability of microelectromechanical devices. Lubrication of these nano- and microscale contacts is different from traditional lubricants. Self-assembled monolayers (SAMs) chemically bonded to the substrate are considered to be the best solution of lubrication. The majority of these monolayers are hydrophobic providing low friction, adhesion and wear. Chemical vapor deposition was used to grow a fluorosilane film on silicon Si(1 0 0) and a condensed monolayer of 3-mercaptopropyltrimethoxysilane (MPTMS) on Au(1 1 1). The films were characterized by means of a contact angle analyzer for hydrophobicity, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) for identification of thin fluoroorganic monolayers deposited on silica surfaces and condensed monolayer MPTMS. Adhesion and friction measurements were performed using atomic force microscopy (AFM) and compared with measurements performed using a microtribometer operating in millinewton (mN) normal load range. Nanotribological measurements indicated that silica and MPTMS modified by fluorosilanes have the lowest friction coefficient and indicated a decrease friction coefficient with increasing fluoric alkyl chain length

  3. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals.

    Science.gov (United States)

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P

    2013-12-01

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  4. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  5. Elaboration of colloidal silica sols in aqueous medium: functionalities, optical properties and chemical detection of coating

    International Nuclear Information System (INIS)

    Le Guevel, X.

    2006-03-01

    The aim of this work was to study surface reactivity of silica nanoparticles through physical and chemical properties of sols and coatings. Applications are numerous and they are illustrated in this work by optical coating preparation for laser components and chemical gas sensor development for nitroaromatics detection. On one hand, protocol synthesis of colloidal silica sols has been developed in water medium using sol-gel process (0 to 100 w%). These sols, so-called BLUESIL, are time-stable during at least one year. Homogeneous coatings having thickness fixed to 200 nm, have been prepared on silica substrate and show high porosity and high transparence. Original films have been developed using catalytic curing in gas atmosphere (ammonia curing) conferring good abrasive resistance to the coating without significant properties modification. In order to reduce film sensitivity to molecular adsorption (water, polluting agents... ), specific BLUESIL coatings have been prepared showing hydrophobic property due to apolar species grafting onto silica nanoparticles. Using this route, coatings having several functional properties such as transparence, hydrophobicity, high porosity and good abrasive resistance have been elaborated. On the other hand, we show that colloidal silica is a material specifically adapted to the detection of nitro aromatic vapors (NAC). Indeed, the use of colloidal silica as chemical gas sensor reveals very high sensitivity, selectivity to NAC compared to Volatile Organic Compound (V.O.C) and good detection performances during one year. Moreover, chemical sensors using functionalized colloidal silica have exhibited good results of detection, even in high humidity medium (≥70 %RH). (author)

  6. Anomalous decrease of resistance at 250 K in ultrathin Au-Nb film on single-crystal silicon

    International Nuclear Information System (INIS)

    Yamamoto, H.; Kawashima, T.; Tanaka, M.

    1986-01-01

    Ultrathin Au-Nb films as thin as 0.2 about 10 nm were deposited on clean surfaces of single-crystal silicon in order to investigate interfacial excitonic superconductivity. The samples were classified into two types, Nb-Au/Si and Au-Nb-Au/Si. In the latter case, the secondary Au film was deposited on the former sample cooled by liquid nitrogen. In the Nb-Au/ Si type of sample, a sheet resistance, R /SUB s/ at room temperature abruptly increased from 10 3 Ωsq -1 order to about 10 5 Ωsq -1 in several days a few months after the sample preparation. Then the sample showed an anomalous decrease of R /SUB s/ at about 250 K and an approximately null resistance at lower temperatures. This phenomenon was not so stable and was observed only for a few days. The Au-Nb-Au/Si type of sample showed low R /SUB s/ (10 2 about 10 3 Ωsq -1 ) at room temperature. A decrease and disappearance of R /SUB s/ were also observed at about 240 K in the sample with comparatively good reproducibility. These phenomena are discussed qualitatively, based on the excitonic superconductive model for an interface of metal/semiconductor by Allender, Bray, and Bardeen

  7. Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications

    Directory of Open Access Journals (Sweden)

    Juliana Lasprilla-Botero

    2018-05-01

    Full Text Available A coating rendering superhydrophobic properties to low-density polyethylene (LDPE films used in packaging applications was herein generated by means of the electrohydrodynamic processing (EHDP technique. To this end, electrospun ultrathin poly(ε-caprolactone (PCL fibers, followed by electrosprayed nanostructured silica (SiO2 microparticles, were deposited on top of the LDPE film. Various electrospinning and electrospraying times were tested and optimized followed by a thermal post-treatment to provide physical adhesion between the bilayer coating and the LDPE substrate. The morphology, hydrophobicity, permeance to limonene, and thermal stability of the resultant nanostructured coatings were characterized. It was observed that by controlling both the deposition time of the electrospun ultrathin PCL fibers and the electrosprayed SiO2 microparticles, as well as the conditions of the thermal post-treatment, effective superhydrophobic coatings were developed onto the LDPE films. The resultant multilayer presented a hierarchical micro/nanostructured surface with an apparent contact angle of 157° and a sliding angle of 8°. The addition of silica reduced, to some extent, the limonene (aroma barrier, likely due to the increased surface-to-volume ratio, which allowed permeant sorption to occur but improved the thermal stability of the LDPE/PCL film. As a result, the developed multilayer system of LDPE/PCL/SiO2 has significant potential for use in easy-to-empty packaging applications of high water activity products.

  8. Interfacial microstructure and mechanical properties of joining electroless nickel plated quartz fibers reinforced silica composite to Invar

    International Nuclear Information System (INIS)

    Lei, Zhao; Lixia, Zhang; Xiaoyu, Tian; Peng, He; Jicai, Feng

    2011-01-01

    Vacuum brazing of electroless nickel plated quartz fibers reinforced silica composite (QFSC) to Invar alloy using Ag-Cu eutectic alloy at various temperatures (1073-1163 K) and times (5-35 min) has been investigated. The scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction examination of the joints showed that the junction between QFSC and Invar produced reaction products like Cu 3.8 Ni, Cu (s, s), Ni (s, s) and Ag (s, s), with the structure of Invar/Cu 3.8 Ni + Ni (s, s)/Ni (s, s) + Cu 3.8 Ni + Ag (s, s) + Cu (s, s)/Cu (s, s) + Cu 3.8 Ni + Ni (s, s) + QFSC. The shear strength of joint was effected by the changes of relative amount of Cu-Ni eutectic structure (Cu 3.8 Ni + Ni (s, s)) and thickness of nickel plating film at different parameters. The shear strength of joint increased when there were proper amount of Cu-Ni eutectic structure and nickel plating film for reinforcement, and decreased while them were consumed excessively in interaction. The maximum shear strength of joint is 29 MPa, which was brazed at 1103 K for 15 min.

  9. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  10. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  11. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    International Nuclear Information System (INIS)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly

    2011-01-01

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  12. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Wienk, I.M.; Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-03-05

    Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol-water mixture comparable with those of conventional ceramic supported membranes made by sol-gel technology (i.e. a water flux of [similar]1.8 kg m'-{sup 2} h{sup -1}, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations.

  13. 100 kV, 80 kJ low-induction capacitor module

    International Nuclear Information System (INIS)

    Andrezen, A.B.; Burtsev, V.A.; Vodovozov, V.M.; Drozdov, A.A.; Makeev, G.M.

    1980-01-01

    A low induction capacitor module has been developed to investigate THETA- and Z-pinch plasma. Energy output time of the module lays in the microsecond range. The 100 kV, 80 kJ module is based on low-induction castor capasitors. The module is equipped with two solid dielectric dischargers, the system of discharger ignition protection system and automatic system for charging of capacitors. The module discharge period T 0 =5.6 μs. The capacitor module has been used in investigations of electric explosions of Al plane foils in the pulverized quartz. The overvoltage Usub(max)/Usub(o) approximately equal to 10 has been received at the maximum intensity of the electric field Esub(max) approximately equal to 12 kV/sm [ru

  14. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  15. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  16. Laser Cutting of Thick Diamond Films Using Low-Power Laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Baik, Y.J. [Korea Institute of Science and Technology, Seoul (Korea)

    2000-02-01

    Laser cutting of thick diamond films is studied rising a low-power(10 W) copper vapor laser. Due to the existence of the saturation depth in laser cutting, thick diamond films are not easily cut by low-power lasers. In this study, we have adopted a low thermal- conductivity underlayer of alumina and a heating stage (up to 500 deg. C in air) to prevent the laser energy from consuming-out and, in turn, enhance the cutting efficiency. Aspect ratio increases twice from 3.5 to 7 when the alumina underlayer used. Adopting a heating stage also increases aspect ratio and more than 10 is obtained at higher temperatures than 400 deg. C. These results show that thick diamond films can be cut, with low-power lasers, simply by modifying the thermal property of underlayer. (author). 13 refs., 5 figs.

  17. Micromagnetic study of single-domain FePt nanocrystals overcoated with silica

    International Nuclear Information System (INIS)

    Hyun, Changbae; Lee, Doh C; Korgel, Brian A; Lozanne, Alex de

    2007-01-01

    Chemically-synthesized FePt nanocrystals must be annealed at a high temperature (>550 deg. C) to induce the hard ferromagnetic L 1 0 phase. Unfortunately, the organic stabilizer covering these nanocrystals degrades at these temperatures and the nanocrystals sinter, resulting in the loss of control over nanocrystal size and separation in the film. We have developed a silica overcoating strategy to prevent nanocrystal sintering. In this study, 6 nm diameter FePt nanocrystals were coated with 17 nm thick shells of silica using an inverse micelle process. Magnetization measurements of the annealed FePt-SiO 2 nanocrystals indicate ferromagnetism with a high coercivity at room temperature. Magnetic force microscopy (MFM) results show that the film composed of nanocrystals behaves as a dipole after magnetization by an 8 T external field. The individual nanocrystals are modelled as single-domain particles with random crystallographic orientations. We propose that the interparticle magnetic dipole interaction is weaker than the magnetocrystalline energy in the remanent state, leading to an unusual material with no magnetic anisotropy and no domains. Films of these nanoparticles are promising candidates for magnetic media with a data storage density of ∼Tb/in 2

  18. Cyclic olefin copolymer-silica nanocomposites foams

    Czech Academy of Sciences Publication Activity Database

    Pegoretti, A.; Dorigato, A.; Biani, A.; Šlouf, Miroslav

    2016-01-01

    Roč. 51, č. 8 (2016), s. 3907-3916 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : cyclic olefin copolymer * nanocomposites * silica Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.599, year: 2016

  19. Easy approach to assembling a biomimetic color film with tunable structural colors.

    Science.gov (United States)

    Wang, Wentao; Tang, Bingtao; Ma, Wei; Zhang, Jian; Ju, Benzhi; Zhang, Shufen

    2015-06-01

    The self-assembly of silica microspheres into a close-packed array is a simple method of fabricating three-dimensional photonic crystal structural color films. However, the color is very dull because of the interferences of scattering and background light. In this study, we added a small quantity of surface-modified carbon black (CB) to the system of colloidal silica in n-propanol. The use of n-propanol as a dispersant is beneficial to the rapid development of photonic crystal films during the process of dip-coating. The doping of CB into silica microspheres can absorb background and scattering light, resulting in vivid structural colors.

  20. Magnetorefractive effect in the La{sub 1−x}K{sub x}MnO{sub 3} thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukov, Yu.P., E-mail: suhorukov@imp.uran.ru [Institute of Metal Physics, Ural Division of RAS, 620990 Ekaterinburg (Russian Federation); Telegin, A.V. [Institute of Metal Physics, Ural Division of RAS, 620990 Ekaterinburg (Russian Federation); Bessonov, V.D. [Institute of Metal Physics, Ural Division of RAS, 620990 Ekaterinburg (Russian Federation); University of Bialystok, 15-424 Bialystok (Poland); Gan’shina, E.A.; Kaul’, A.R.; Korsakov, I.E.; Perov, N.S.; Fetisov, L.Yu. [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Yurasov, A.N. [Moscow State Technical University of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation)

    2014-10-01

    Thin epitaxial La{sub 1−x}K{sub x}MnO{sub 3} films were grown using two-stage procedure. Influence of substitution of La{sup 3+} ions with K{sup +} ions on the optical and electrical properties of La{sub 1−x}K{sub x}MnO{sub 3} films (x=0.05, 0.10, 0.15 i 0.18) has been studied in detail. A noticeable magnetorefractive effect in the films under study was detected in the infrared range. Magnetorefractive effect as well as transverse magneto-optical Kerr effect and magnetoresistance have the maximum in optimally doped sample with x=0.18 corresponding to the highest Curie temperature. The experimental data for compositions close to optimally doped films are in good agreement with the data calculated in the framework of a theory developed for manganites. The resonance-like contribution to magnetoreflection spectra of manganite films has been observed in the vicinity of the phonon bands. It is shown that magnetic and charge inhomogeneities strongly influence on the magneto-optical effects in films. Thin films of La{sub 1−x}K{sub x}MnO{sub 3} with the large values of Kerr and magnetorefractive effect are promising magneto-optical material in the infrared range. - Highlights: • Giant magnetorefractive effect was obtained in La{sub 1−x}K{sub x}MnO{sub 3} films in the infrared. • Inhomogeneity as well as doping level strongly influences the value of magnetorefractive effect. • Resonance-like bands have been observed in the magnetoreflection spectra of the films. • The obtained experimental data can be explained in the framework of the MRE theory.

  1. Structural and optical studies of nano-structure silica gel doped with different rare earth elements, prepared by two different sol -gel techniques

    International Nuclear Information System (INIS)

    Battisha, I.K.; El Beyally, A.; Seliman, S.I.; El Nahrawi, A.S.

    2005-01-01

    Structural and optical characteristics of pure silica gel (silica-xerogel, SiO 2 ) and doped with different concentrations ranging from 1 up to 6% of some rare earth (REEs) ions such as, praseodymium Pr +3 ,and Europium Eu +3 , Erbium Er +3 and Holmium Ho +3 , ions, in the form of thin film and monolith materials were prepared by sol - gel technique, Using tetra-ethoxysilane as precursor materials, which are of particular interest for sol-gel integrated optics applications. Some structural and optical features of sol-gel derived monolith and thin films are analyzed and compared, namely the structure of nano-particle monolith and thin film silica-gel samples, based on X-ray diffraction (XRD). The types of structural information obtainable are compared in detail. It is show that the XRD spectra of a-cristobalite are obtained for the two type materials and even by doping with the four REEs ions. Optical measurements of monolith and thin films were also studied and compared, the normal transmission and specular reflection were measured. The refractive index were calculated and discussed

  2. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique

    International Nuclear Information System (INIS)

    Banerjee, A.N.; Ghosh, C.K.; Chattopadhyay, K.K.; Minoura, Hideki; Sarkar, Ajay K.; Akiba, Atsuya; Kamiya, Atsushi; Endo, Tamio

    2006-01-01

    The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm -1 , respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm -1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 x 10 16 and 3.1 x 10 2 cm -3 , respectively. This report will provide newer applications of ZnO thin films in flexible display technology

  3. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei; Hsu, Chin-Chi; Lee, Pei-Shan; Lin, Chao-Sung

    2011-01-01

    -coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements

  4. Secondary electron emission yield on poled silica based thick films

    DEFF Research Database (Denmark)

    Braga, D.; Poumellec, B.; Cannas, V.

    2004-01-01

    Studies on the distribution of the electric field produced by a thermal poling process in a layer of Ge-doped silica on silicon substrate, by using secondary electron emission yield (SEEY) measurements () are presented. Comparing 0 between poled and unpoled areas, the SEEY at the origin of electr...

  5. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Turov, V.V.; Gun' ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zieba, J.; Leboda, R.; Ryczkowski, J

    2004-05-15

    The effects of organic solvents (dimethylsulfoxide-d{sub 6} (DMSO-d{sub 6}), chloroform-d, acetone-d{sub 6}, and acetonitrile-d{sub 3}) on the properties of interfacial water at surfaces of silica gel Si-40 and partially silylated fumed silica A-380 were studied by means of the {sup 1}H NMR spectroscopy with freezing-out of adsorbed water at 180K. The results of the {sup 1}H NMR investigations were also analysed on the basis of the structural characteristics of silicas and quantum chemical calculations of the chemical shifts {delta}{sub H} and solvent effects. DMSO-d{sub 6} and acetonitrile-d{sub 3} are poorly miscible with water in silica gel pores in contrast to the bulk liquids. DMSO-d{sub 6} and chloroform-d affect the structure of the interfacial water weaker than acetone-d{sub 6} and acetonitrile-d{sub 3} at amounts of liquids greater than the pore volume. Acetone-d{sub 6} and acetonitrile-d{sub 3} can displace water from pores under this condition. The chemical shift of protons in water adsorbed on silica gel is 3.5-6.5 ppm, which corresponds to the formation of two to four hydrogen bonds per molecule. Water adsorbed on partially silylated fumed silica has two {sup 1}H NMR signals at 5 and 1.1-1.7 ppm related to different structures (droplets and small clusters) of the interfacial water.

  6. Apparatus to measure emissivities of metallic films between 90K and room temperature

    International Nuclear Information System (INIS)

    Bekeris, V.I.; Ramos, E.D.; Sanchez, D.H.

    1975-01-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented [pt

  7. Apparatus to measure emissivities of metallic films between 90K and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bekeris, V I [Nunez Univ. Nacional (Argentina). Faculdad de Ciencias Exactas Y Naturales; Ramos, E D [Santa Rosa Univ. Nacional (Argentina). Facultad de Ciencias Exactas Y Naturales; Sanchez, D H [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1975-09-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented.

  8. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  9. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase

    International Nuclear Information System (INIS)

    Saadaoui, Maroua; Sánchez, Alfredo; Díez, Paula; Raouafi, Noureddine; Pingarrón, José M.; Villalonga, Reynaldo

    2016-01-01

    Glassy carbon electrodes were modified with silica materials such as silica nanoparticles, mesoporous silica nanoparticles and mesoporous silica thin films with the aim to introduce scaffolds suitable for the immobilization of enzymes. Xanthine oxidase was selected as a model enzyme, and xanthine as the target analyte. A comparison of the modified electrodes showed the biosensor prepared with mesoporous silica nanoparticles to perform best. By using the respective biosensor, xanthine can be amperometrically determined (via measurement of enzymatically formed hydrogen peroxide) at a working voltage of 0.7 V (vs. Ag/AgCl) with a 0.28 μM detection limit. The biosensor was evaluated in terms of potential interferences, reproducibility and stability, and applied to the determination of fish freshness via sensing of xanthine. (author)

  10. Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3

    International Nuclear Information System (INIS)

    Song, Qiushi; Xu, Qian; Wang, Yang; Shang, Xujing; Li, Zaiyuan

    2012-01-01

    Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl–KCl–K 2 CO 3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO 3 2− ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon. - Highlights: ► Carbon films are prepared on oxide-scale-coated titanium in a LiCl–KCl–K 2 CO 3 melt. ► The films comprise micron-size ‘quasi-spherical’ carbon particles. ► The films present particle-size-gradient. ► The particles contain graphitized and amorphous phases. ► The prepared carbon films are more electrochemically active than graphite.

  11. Amorphous silica in ultra-high performance concrete: First hour of hydration

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Hutter, Frank [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Chair for Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Sextl, Gerhard [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  12. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinyan [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); Chen Xinhua [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Kang Yingke; Yang Guangbin; Yu Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); Zhang Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China)

    2010-12-15

    Superhydrophobic poly(methyl methacrylate)-SiO{sub 2} (coded as PMMA-SiO{sub 2}) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO{sub 2}) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO{sub 2} nanocomposite films was investigated in relation to the dosage of SiO{sub 2} nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO{sub 2} nanocomposite films when hydrophobic SiO{sub 2} nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO{sub 2} nanocomposite films had a static water contact angle of above 162{sup o}, showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  13. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  14. Metal induced crystallization of amorphous silicon thin films studied by x-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Naidu, K Lakshun; Mohiddon, Md Ahamad; Dalba, G; Krishna, M Ghanashyam; Rocca, F

    2013-01-01

    The role of thin metallic layer (Chromium or Nickel) in the crystallization of a-Si film has been studied using X-ray absorption fine structure spectroscopy (XAFS). The films were grown at different substrate temperatures in two different geometrical structures : (a) a 200 nm metal layer (Cr or Ni) was deposited on fused silica (FS) followed by 400 nm of a-Si and (b) the 400 nm a-Si layer was deposited on FS followed by 200 nm of metal layer. XAFS measurements at Cr K-edge and Ni K-edge were done at BM08 – GILDA beamline of the European Synchrotron Research Facility (ESRF, Grenoble, F) in fluorescence mode. To understand the evolution of the local structure of Cr/Ni diffusing from bottom to top and from top to bottom, total reflection and higher incidence angles were employed. The relative content of metal, metal oxide and metal silicides compounds on the upper surface and/or in the bulk of different films has been evaluated as a function of thermal treatment.

  15. Spectral interferometry including the effect of transparent thin films to measure distances and displacements

    International Nuclear Information System (INIS)

    Hlubina, P.

    2004-01-01

    A spectral-domain interferometric technique is applied for measuring mirror distances and displacements in a dispersive Michelson interferometer when the effect of transparent thin films coated onto the interferometer beam splitter and compensator is known. We employ a low-resolution spectrometer in two experiments with different amounts of dispersion in a Michelson interferometer that includes fused-silica optical sample. Knowing the thickness of the optical sample and the nonlinear phase function of the thin films, the positions of the interferometer mirror are determined precisely by a least-squares fitting of the theoretical spectral interferograms to the recorded ones. We compare the results of the processing that include and do not include the effect of transparent thin films (Author)

  16. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko; Fujisawa, Toshiharu

    2009-01-01

    The authors have previously developed a novel method for the fabrication of silica/perfluoropolymer nanocomposites, wherein nano-sized silica particles without surface modification were dispersed uniformly through breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages; the first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, PFA (poly(tetrafluoroethylene-co-perfluoropropylvinylether)), with the loose silica agglomerates. By using this simple method without any lipophilic treatment of the silica surfaces, silica nanoparticles with a primary diameter of 190 nm could be dispersed uniformly into the PFA matrix. The main purpose of the present study is to evaluate the melt flow and tensile properties of silica/PFA nanocomposites fabricated by the above method. In order to elucidate the effects of the size of the dispersed silica in the PFA matrix on the properties of the composites, silica/PFA composite samples exhibiting the dispersion of larger-sized silica particle-clusters were fabricated as negative controls of the silica dispersion state. The results obtained under the present experimental conditions showed that the size of the dispersed silica in the PFA matrix exerts a strong influence on the ultimate tensile properties, such as tensile strength and elongation at break, and the melt flow rate (MFR) of the composite materials. The MFR of the silica/PFA nanocomposite became higher than that of the pure PFA without silica addition, although the MFR of the PFA composites containing larger silica particle-clusters became much lower than that of the pure PFA. Furthermore, uniform dispersion of isolated silica nanoparticles was found to improve not only the Young's modulus but also the ultimate tensile properties of the composite.

  17. Extraction of metal ions using chemically modified silica gel: a PIXE analysis.

    Science.gov (United States)

    Jal, P K; Dutta, R K; Sudarshan, M; Saha, A; Bhattacharyya, S N; Chintalapudi, S N; K Mishra, B

    2001-08-30

    Organic ligand with carboxyhydrazide functional group was immobilised on the surface of silica gel and the metal binding capacity of the ligand-embedded silica was investigated. The functional group was covalently bonded to the silica matrix through a spacer of methylene groups by sequential reactions of silica gel with dibromobutane, malonic ester and hydrazine in different media. Surface area value of the modified silica was determined. The changes in surface area were correlated with the structural change of the silica surface due to chemical modifications. A mixture solution of metal ions [K(I),Cr(III),Co(II),Ni(II),Cu(II),Zn(II),Hg(II) and U(VI)] was treated with the ligand-embedded silica in 10(-3) M aqueous solution. The measurement of metal extraction capacity of the silica based ligand was done by multielemental analysis of the metal complexes thus formed by using Proton Induced X-ray Emission (PIXE) technique.

  18. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging.

    Science.gov (United States)

    Iseppi, Ramona; Pilati, Francesco; Marini, Michele; Toselli, Maurizio; de Niederhäusern, Simona; Guerrieri, Elisa; Messi, Patrizia; Sabia, Carla; Manicardi, Giuliano; Anacarso, Immacolata; Bondi, Moreno

    2008-04-30

    In this study, Enterocin 416K1, a bacteriocin produced by Enterococcus casseliflavus IM 416K1, was entrapped in an organic-inorganic hybrid coating applied to a LDPE (low-density polyethylene) film for its potential use in the active food packaging field. The antibacterial activity of the coated film was evaluated against Listeria monocytogenes NCTC 10888 by qualitative modified agar diffusion assay, quantitative determination in listeria saline solution suspension and direct contact with artificially contaminated food samples (frankfurters and fresh cheeses) stored at room and refrigeration temperatures. All investigations demonstrated that enterocin-activated coatings have a good anti-listeria activity. Qualitative tests showed a clear zone of inhibition in the indicator lawn in contact with and around the coated film. During the quantitative antibacterial evaluation the L. monocytogenes viable counts decreased to 1.5 log units compared to the control. The inhibitory capability was confirmed also in food-contact assays. In all food samples packed with coated films we observed a significant decrease in L. monocytogenes viable counts in the first 24 h compared to the control. This difference was generally maintained up to the seventh day and then decreased, with the exception of the cheese samples stored at refrigeration temperature.

  19. Silica scale prevention technology using organic additive, Geogard SX

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Almario; Garcia, Serafin; Solis, Ramonito; Fragata, Jimmy; Ellseworth, Lucero; Llenarizas, Leonardo; Tabuena, Joseph Erwin (PNOC Energy Development Corporation, Makati City (Philippines))

    1998-09-15

    A field trial on the application of an organic additive, phosphino carboxylic acid copolymer, was conducted in a geothermal system to evaluate its effectiveness in preventing silica deposition from brine containing ultra high silica concentration (1000-1300 ppm). Low polymer concentration was applied for about five months, and treatment efficiency based on silica concentrations in various sampling points ranged from 64 to 98%. Treatment efficiency improved as a function of time. Massive silica scaling in the fluid collection and disposal system was minimized.

  20. Low operating voltage InGaZnO thin-film transistors based on Al{sub 2}O{sub 3} high-k dielectrics fabricated using pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geng, G. Z.; Liu, G. X.; Zhang, Q.; Shan, F. K. [Qingdao University, Qingdao (China); DongEui University, Busan (Korea, Republic of); Lee, W. J.; Shin, B. C. [DongEui University, Busan (Korea, Republic of); Cho, C. R. [Pusan National University, Busan (Korea, Republic of)

    2014-05-15

    Low-voltage-driven amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) with an Al{sub 2}O{sub 3} dielectric were fabricated on a Si substrate by using pulsed laser deposition. Both Al{sub 2}O{sub 3} and IGZO thin films are amorphous, and the thin films have very smooth surfaces. The Al{sub 2}O{sub 3} gate dielectric exhibits a very low leakage current density of 1.3 x 10{sup -8} A/cm{sup 2} at 5 V and a high capacitance density of 60.9 nF/cm{sup 2}. The IGZO TFT with a structure of Ni/IGZO/Al{sub 2}O{sub 3}/Si exhibits high performance with a low threshold voltage of 1.18 V, a high field effect mobility of 20.25 cm{sup 2}V{sup -1}s{sup -1}, an ultra small subthreshold swing of 87 mV/decade, and a high on/off current ratio of 3 x 10{sup 7}.

  1. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    Science.gov (United States)

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  2. Colloidal and electrochemical aspects of copper-CMP

    Science.gov (United States)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  3. Optical absorption of neutron-irradiated silica fibers

    International Nuclear Information System (INIS)

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L.

    1996-01-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10 23 n-m -2 ) and low (10 21 n-m -2 ) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped (∼4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide trademark and superguide trademark fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval ∼800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval ∼800 to 2000 nm, and the high-OH content fibers are the choice for the interval ∼400 to 800 nm

  4. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.

    1998-01-01

    degrees C. The VPP began operation on June 19, 1996. The VPP was used to test surrogate FEMP wastes at melt temperatures between 1130 degrees C and 1350 degrees C. The VPP failed on December 26, 1996 while processing surrogate waste. After the failure of the FEMP VPP, vitrification technology and glass chemistry were reevaluated. This report documents the glass formulation development for K-65 waste completed at SRTC in April, 1993 in conjunction with Associated Technical Consultants (ATC) of Toledo, Ohio. The glass developed for the FEMP was formulated in a lithia substituted soda-lime-silica (SLS) glass per the Savannah River Technology Center (SRTC) patented Lithia Additive Melting Process (LAMP)* to avoid problematic phase separation known to occur in the borosilicate glass system (MO-B 2 O 3 - SiO 2 ), where (MO = CaO, MgO, BaO, and PbO). Lime, MgO, BaO and PbO are all constituents of the FEMP wastes and thus subject to phase separation when vitrified in borosilicate glass. Phase separation is known to compromise waste glass stability. The SRTC soda-lithia-lime- silica (SLLS) glass melted at 1050 degrees C. Similar SLLS glass formulations have recently been demonstrated at the Oak Ridge Reservation (ORR) in a full scale melter with mixed (radioactive and hazardous) wastes.The low melting temperatures achieved with the SLLS glass minimize volatilization of hazardous species such as arsenic, lead, and selenium during vitrification. An 81 percent K-65 waste loading was demonstra

  5. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    Science.gov (United States)

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  6. Stability of anti-reflection coatings via the self-assembly encapsulation of silica nanoparticles by diazo-resins

    Science.gov (United States)

    Metzman, Jonathan S.; Ridley, Jason I.; Khalifa, Moataz B.; Heflin, James R.

    2015-12-01

    A modified silica nanoparticle (MSNP) solution was formed by the encapsulation of negatively charged silica nanoparticles by the UV-crosslinkable polycation oligomer diazo-resin (DAR). Appropriate DAR encapsulation concentrations were determined by use of zeta-potential and dynamic light scattering measurements. The MSNPs were used in conjunction with poly(styrene sulfonate) (PSS) to grow homogenous ionic self-assembled multilayer anti-reflection coatings. Stability was induced within the films by the exposure of UV-irradiation that allowed for crosslinking of the DAR and PSS. The films were characterized by UV/vis/IR spectroscopy and field emission scanning electron microscopy. The transmission and reflection levels were >98.5% and <0.05%, respectively. The refractive indices resided in the 1.25-1.26 range. The solvent stability was tested by sonication of the films in a ternary solvent (H2O/DMF/ZnCl2 3:5:2 w/w/w).

  7. Flux pinning landscape up to 25 T in SmBa2Cu3O y films with BaHfO3 nanorods fabricated by low-temperature growth technique

    Science.gov (United States)

    Tsuchiya, Yuji; Miura, Shun; Awaji, Satoshi; Ichino, Yusuke; Matsumoto, Kaname; Izumi, Teruo; Watanabe, Kazuo; Yoshida, Yutaka

    2017-10-01

    REBa2Cu3O y superconducting tapes are appropriate for high field magnet applications at low temperatures (i.e. below liquid nitrogen temperature). To clarify the morphology and the volume of the effective pinning center at low temperatures, we used a low-temperature growth technique to fabricate SmBa2Cu3O y (SmBCO) films with various amounts of BaHfO3 (BHO) nanorods onto MgO-buffered metal substrates produced by ion-beam-assisted deposition; we investigated their flux pinning properties using a 25 T cryogen-free superconducting magnet that was recently developed at Tohoku University. According to the microstructural analysis using transmission electron microscopy, the BHO nanorods have a content-dependent morphology and are aligned for the higher content. The inclined and discontinuous BHO nanorods were observed in SmBCO films with BHO contents up to 3.8 vol%; they show an excellent flux pinning force density (1.5 TN m-3 at 21 T and 4.2 K) even when the magnetic field is perpendicular to the films. Based on the effective mass model for the flux pinning, the random pinning centers are dominant at low temperatures. The correlated flux pinning is stronger for aligned nanorods; however, the random pinning center becomes weaker in the 4.5 vol% BHO-doped films. Therefore, the optimal BHO doping level is approximately 3.8 vol% in terms of the amplitude of the critical current density and the anisotropy from 4.2 K to 20 K because this provides the best mixture of correlated and random flux pinning centers.

  8. The Effect of Composition on Spinel Crystals Equilibrium in Low-Silica High-Level Waste Glasses

    International Nuclear Information System (INIS)

    Jiricka, Milos; Hrma, Pavel R.; Vienna, John D.

    2003-01-01

    The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. The effects of Al2O3, B2O3, Fe2O3, NiO, SiO2, and ZrO2 on the TL in this region and in glasses with 42 to 56 mass% SiO2 were similar. However, in the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42 to 56 mass% SiO2. The effect of MnO on the TL of the higher SiO2 glasses is not yet understood with sufficient accuracy. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25C to 64C below the TL

  9. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Science.gov (United States)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  10. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Valleti, Krishna; Joshi, Srikant V.; Sundararajan, G.

    2007-01-01

    Arcing is a common phenomenon in the sputtering process. Arcs and glow discharges emit electrons which may influence the physical properties of films. This article reports the properties of tantalum (Ta) thin films prepared by continuous dc magnetron sputtering in normal and arc-suppression modes. The substrate temperature was varied in the range of 300-673 K. The tantalum films were ∼1.8 μm thick and have good adherence to 316 stainless steel and single-crystal silicon substrates. The phase of the Ta thin film determines the electrical and tribological properties. The films deposited at 300 K using both methods were crystallized in a tetragonal structure (β phase) with a smooth surface (grain size of ∼10 nm) and exhibited an electrical resistivity of ∼194 μΩ cm and a hardness of ∼20 GPa. When the substrate temperature was 473 K and higher, the arc-suppression mode appears to influence the films to crystallize in the α phase with a grain size of ∼40 nm, whereas the normal power mode gave mixed phases β and α beyond 473 K, the arc-suppression mode yields larger grain sizes in the Ta thin films and the hardness decreases. These changes in the physical properties in arc-suppression mode are attributed to either the change in plasma characteristics or the energetic particle bombardment onto the substrate, or both

  11. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  12. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  13. Low-temperature atomic layer deposition of MoS{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Jurca, Titel; Wang, Binghao; Tan, Jeffrey M.; Lohr, Tracy L.; Marks, Tobin J. [Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL (United States); Moody, Michael J.; Henning, Alex; Emery, Jonathan D.; Lauhon, Lincoln J. [Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, IL (United States)

    2017-04-24

    Wet chemical screening reveals the very high reactivity of Mo(NMe{sub 2}){sub 4} with H{sub 2}S for the low-temperature synthesis of MoS{sub 2}. This observation motivated an investigation of Mo(NMe{sub 2}){sub 4} as a volatile precursor for the atomic layer deposition (ALD) of MoS{sub 2} thin films. Herein we report that Mo(NMe{sub 2}){sub 4} enables MoS{sub 2} film growth at record low temperatures - as low as 60 C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Enhanced energy storage and pyroelectric properties of highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 thin films derived at low temperature

    Science.gov (United States)

    Zhu, Hanfei; Ma, Hongfang; Zhao, Yuyao

    2018-05-01

    Highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.15, y = 0.05; x = 0.1, y = 0.1; x = 0.05, y = 0.15) thin films were deposited on Pt/Ti/SiO2/Si substrates at a low temperature of 450 °C via a sol-gel route. It was found that all the (Pb1-x-yLaxCay)Ti1-x/4O3 thin films could be completely crystallized and the content of La/Ca showed a significant effect on the electrical properties of films. Among the three films, the (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.1, y = 0.1) thin film exhibited the enhanced overall electrical properties, such as a low dielectric loss (tan ⁡ δ energy density (Wre ∼ 15 J/cm3), as well as a large pyroelectric coefficient (p ∼ 190 μC/m2K) and figure of merit (Fd‧∼ 77 μC /m2K). The findings suggest that the fabricated thin films with a good (100) orientation can be an attractive candidate for applications in Si-based energy storage and pyroelectric devices.

  15. Low-temperature technique for thick film resist stabilization and curing

    Science.gov (United States)

    Minter, Jason P.; Wong, Selmer S.; Marlowe, Trey; Ross, Matthew F.; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    For a range of thick film photoresist applications, including MeV ion implant processing, thin film head manufacturing, and microelectromechanical systems processing, there is a need for a low-temperature method for resist stabilization and curing. Traditional methods of stabilizing or curing resist films have relied on thermal cycling, which may not be desirable due to device temperature limitations or thermally-induced distortion of the resist features.

  16. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  17. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  18. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  19. Characterization of ultraviolet light cured polydimethylsiloxane films for low-voltage, dielectric elastomer actuators

    Science.gov (United States)

    Töpper, Tino; Wohlfender, Fabian; Weiss, Florian; Osmani, Bekim; Müller, Bert

    2016-04-01

    The reduction the operation voltage has been the key challenge to realize of dielectric elastomer actuators (DEA) for many years - especially for the application fields of robotics, lens systems, haptics and future medical implants. Contrary to the approach of manipulating the dielectric properties of the electrically activated polymer (EAP), we intend to realize low-voltage operation by reducing the polymer thickness to the range of a few hundred nanometers. A study recently published presents molecular beam deposition to reliably grow nanometer-thick polydimethylsiloxane (PDMS) films. The curing of PDMS is realized using ultraviolet (UV) radiation with wavelengths from 180 to 400 nm radicalizing the functional side and end groups. The understanding of the mechanical properties of sub-micrometer-thin PDMS films is crucial to optimize DEAs actuation efficiency. The elastic modulus of UV-cured spin-coated films is measured by nano-indentation using an atomic force microscope (AFM) according to the Hertzian contact mechanics model. These investigations show a reduced elastic modulus with increased indentation depth. A model with a skin-like SiO2 surface with corresponding elastic modulus of (2.29 +/- 0.31) MPa and a bulk modulus of cross-linked PDMS with corresponding elastic modulus of (87 +/- 7) kPa is proposed. The surface morphology is observed with AFM and 3D laser microscopy. Wrinkled surface microstructures on UV-cured PDMS films occur for film thicknesses above (510 +/- 30) nm with an UV-irradiation density of 7.2 10-4 J cm-2 nm-1 at a wavelength of 190 nm.

  20. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  1. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  2. Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties.

    Science.gov (United States)

    Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Tringe, Joseph; Castro, Ricardo H R; Faller, Roland; Stroeve, Pieter

    2016-11-08

    Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 ± 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N 2 , Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.

  3. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    Science.gov (United States)

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  4. Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films

    Science.gov (United States)

    Miller, Lawrence W.

    A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic

  5. Pedogenic silica accumulation in chronosequence soils, southern California

    Science.gov (United States)

    Kendrick, K.J.; Graham, R.C.

    2004-01-01

    Chronosequential analysis of soil properties has proven to be a valuable approach for estimating ages of geomorphic surfaces where no independent age control exists. In this study we examined pedogenic silica as an indicator of relative ages of soils and geomorphic surfaces, and assessed potential sources of the silica. Pedogenic opaline silica was quantified by tiron (4,5-dihydroxy-1,3-benzene-disulfonic acid [disodium salt], C6H 4Na2O8S2) extraction for pedons in two different chromosequences in southern California, one in the San Timoteo Badlands and one in Cajon Pass. The soils of hoth of these chronosequences are developed in arkosic sediments and span 11.5 to 500 ka. The amount of pedogenic silica increases with increasing duration of pedogenesis, and the depth of the maximum silica accumulation generally coincides with the maximum expression of the argillic horizon. Pedogenic silica has accumulated in all of the soils, ranging from 1.2% tiron-extractable Si (Sitn) in the youngest soil to 4.6% in the oldest. Primary Si decreases with increasing duration of weathering, particularly in the upper horizons, where weathering conditions are most intense. The loss of Si coincides with the loss of Na and K, implicating the weathering of feld-spars as the likely source of Si loss. The quantity of Si lost in the upper horizons is adequate to account for the pedogenic silica accumulation in the subsoil. Pedogenic silica was equally effective as pedogenic Fe oxides as an indicator of relative soil age in these soils.

  6. Dependence on film thickness of grain boundary low-field magnetoresistance in thin films of La0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Todd, N. K.; Mathur, N. D.; Blamire, M. G.

    2001-01-01

    The magnetoresistance of grain boundaries in the perovskite manganites is being studied, both in polycrystalline materials, and thin films grown on bicrystal substrates, because of interest in low-field applications. In this article we show that epitaxial films grown on SrTiO 3 bicrystal substrates of 45 degree misorientation show magnetoresistance behavior which is strongly dependent on the thickness of the film. Thin films, e.g., 40 nm, can show a large low-field magnetoresistance at low temperatures, with very sharp switching between distinct high and low resistance states for fields applied in plane and parallel to the boundary. Thicker films show a more complex behavior of resistance as a function of field, and the dependence on the angle between the applied field and the grain boundary is altered. These changes in magnetoresistance behavior are linked to the variation in morphology of the films. Thin films are coherently strained, due to the mismatch with the substrate, and very smooth. Thicker films relax, with the formation of defects, and hence different micromagnetic behavior. [copyright] 2001 American Institute of Physics

  7. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  8. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  9. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  10. Hydrothermal synthesis of silica rich zeolites and microporous martials

    International Nuclear Information System (INIS)

    Durrani, S.K.; Chughtai, N.A.; Akhtar, J.; Arif, M.; Ahmed, M.

    1999-01-01

    A fast crystallization method for synthesis of silica rich aluminosilicate and ferro silicate zeotype materials has been reported. The method also permits for the complete crystallization of silico alumino phosphate microporous materials. Aluminosilicate and ferro silicate silica rich zeotype materials and silico alumino phosphate microporous materials have been synthesized from the reaction mixture of colloidal silica sol, reactive aluminum, ferrous and phosphorous salts, and the essential organic templates at 373-473 K and were characterized by TG/DTA/DSC, X-ray diffraction, scanning electron microscopy and other analytical techniques. Crystallinity and unit cell parameters of the synthesized materials were found to be the function of Al and Fe content of zeolites. (author)

  11. Ordered silica particles made by nonionic surfactant for VOCs sorption

    Energy Technology Data Exchange (ETDEWEB)

    Difallah, Oumaima; Hamaizi, Hadj, E-mail: hamaizimizou@yahoo.fr [University of Oran, OranMenaouer (Algeria); Amate, Maria Dolores Urena; Socias-Viciana, Maria Del Mar [University of Almeria (Spain)

    2017-07-15

    Adsorption of light organic compounds such acetone, 1-propanol and carbon dioxide was tested by using mesoporous silica materials made from non ionic surfactant with long chain and silica sources as tetraethyl orthosilicate TEOS and modified Na-X and Li-A Zeolites. X-ray powder diffraction (XRD), nitrogen adsorption-desorption analysis and scanning electron microscopy (SEM) were applied to characterize the silica particles of a variety prepared samples. Acetone, 1-propanol and CO{sub 2} adsorption at 298K was evaluated by a volumetric method and indicate a high sorption capacity of organic compounds depending essentially on the porous texture of adsorbents. An adsorption kinetic model was proposed to describe the adsorption of VOCs over template-free mesoporous silica materials. A good agreement with experimental data was found. (author)

  12. Dynamic studies of nano-confined polymer thin films

    Science.gov (United States)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  13. Silica colloids and their effect on radionuclide sorption. A literature review

    International Nuclear Information System (INIS)

    Hoelttae, P.; Hakanen, M.

    2008-05-01

    Silica sol, commercial colloidal silica manufactured by Eka Chemicals in Bohus, Sweden is a promising inorganic grout material for sealing small fractures in low permeable rock. This literature review collects information about the use of silica sol as an injection grout material, the properties of inorganic, especially silica colloids, colloid contents in granitic groundwater conditions, essential characterization methods and colloid-mediated transport of radionuclides. Objective was to evaluate the release and mobility of silica sol colloids, the effect of the groundwater conditions, the amount of colloids compared with natural colloids in Olkiluoto conditions, radionuclide sorption on colloids and their contribution to radionuclide transport. Silica sol seems to be a feasible material to seal fractures with an aperture as small as 10 μm in low permeable rock. The silica sol gel is sufficiently stable to limit to water ingress during the operational phase, the requirement that the pH should be below 11 is fulfilled and the compatibility with Engineered Barrier System (EBS) materials is expected to be good. No significant influence on the bentonite properties caused by the silica sol is expected when calcium chloride is used as an accelerator but the influence of sodium chloride has not been examined. No significant release of colloids is expected under prevailing groundwater conditions. The long-term (100 y) stability of silica sol gel has not yet been clearly demonstrated and a long-term release of silica colloids cannot be excluded. The question is the amount of colloids, how mobile they are and the influence of possible glacial melt waters. The bentonite buffer used in the EBS system is assumed to be a potential source of colloids. In a study in Olkiluoto, bentonite colloids were found only in low salinity groundwater. In general, low salinity water (total dissolved solids -1 ) favours colloid stability and bentonite colloids can remain stable over long

  14. Aspects of 'low field' magnetotransport in epitaxial thin films of the ferromagnetic metallic oxide SrRuO3

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Baca, E.

    2007-01-01

    Epitaxial thin films of the conductive ferromagnetic oxide SrRuO 3 were grown on an (001) SrTiO 3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (001) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [100] S and [001] S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [001]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ(μ 0 H=9T; T)-ρ( μ 0 H=0T; T)]/ρ( μ 0 H=0T; T) on the order of a few percent, with maximums of ∼6% and ∼4% (right at the Curie temperature, T C ∼160K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T 3 films grown on 2 o miscut (001) STO substrates with the current parallel to the field and parallel to the [1-bar11] direction, which was identified as the easier axis for magnetization

  15. Downflow film boiling in a rod bundle at low pressure

    International Nuclear Information System (INIS)

    Hochreiter, L.E.; Rosal, E.R.; Fayfich, R.R.

    1978-01-01

    A series of low pressure downflow film boiling heat transfer experiments were conducted in a 14-foot (4.27 m) long electrically heater rod bundle containing 336 heater rods. The resulting data was compared with the Dougall-Rohsenow dispersed flow film boiling correlation. The data was found to lie below this correlation as the quality was increased. It is believed that buoyancy effects decreased the heat transfer in downflow film boiling. (author)

  16. Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, S. [Delaware Univ., Inst. of Energy Conversion, Newark, DE (United States)

    2006-07-01

    Thin film solar cells (TFSC) have passed adolescence and are ready to make a substantial contribution to the world's electricity generation. They can have advantages over c-Si solar modules in ease of large area, lower cost manufacturing and in several types of applications. Factors which limit TFSC module performance relative to champion cell performance are discussed along with the importance of increased throughput and yield. The consensus of several studies is that all TFSC can achieve costs below 1 $/W if manufactured at sufficiently large scale >100 MW using parallel lines of cloned equipment with high material utilization and spray-on encapsulants. There is significant new commercial interest in TFSC from small investors and large corporations, validating the thin film approach. Unique characteristics are discussed which give TFSC an advantage over c-Si in two specific markets: small rural solar home systems and building integrated photovoltaic installations. TFSC have outperformed c-Si in annual energy production (kWhrs/kW), have demonstrated outdoor durability comparable to c-Si and are being used in MW scale installations worldwide. The merits of the thin film approach cannot be judged on the basis of efficiency alone but must also account for module performance and potential for low cost. TFSC advocates should promote their unique virtues compared to c-Si: lower cost, higher kWhr/kW output, higher battery charging current, attractive visual appearance, flexible substrates, long-term stability comparable to c-Si, and multiple pathways for deposition with room for innovation and evolutionary improvement. There is a huge market for TFSC even at today's efficiency if costs can be reduced. A brief window of opportunity exists for TFSC over the next few years due the Si shortage. The demonstrated capabilities and advantages of TFSC must be proclaimed more persistently to funding decision-makers and customers without minimizing the remaining

  17. Volatile and non-volatile radiolysis products in irradiated multilayer coextruded food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S; Goulas, A E; Badeka, A; Riganakos, K A; Kontominas, M G

    2005-12-01

    The effects of gamma-irradiation (5-60 kGy) on radiolysis products and sensory changes of experimental five-layer food-packaging films were determined. Films contained a middle buried layer of recycled low-density polyethylene (LDPE) comprising 25-50% by weight (bw) of the multilayer structure. Respective films containing 100% virgin LDPE as the buried layer were used as controls. Under realistic polymer/food simulant contact conditions during irradiation, a large number of primary and secondary radiolysis products (hydrocarbons, aldehydes, ketones, alcohols, carboxylic acids) were produced. These compounds were detected in the food simulant after contact with all films tested, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food preservation). The type and concentration of radiolysis products increased progressively with increasing dose. Generally, there were no significant differences in radiolysis products between samples containing a buried layer of recycled LDPE and those containing virgin LDPE (all absorbed doses), indicating the good barrier properties of external virgin polymer layers. Volatile and non-volatile compounds produced during irradiation affected the sensory properties of potable water after contact with packaging films. Taste transfer to water was observed mainly at higher doses and was more noticeable for multilayer structures containing recycled LDPE, even though differences were slight.

  18. In situ crystallized zirconium phenylphosphonate films with crystals vertically to the substrate and their hydrophobic, dielectric, and anticorrosion properties.

    Science.gov (United States)

    Cui, Zhaohui; Zhang, Fazhi; Wang, Lei; Xu, Sailong; Guo, Xiaoxiao

    2010-01-05

    The in situ crystallization technique has been utilized to fabricate zirconium phenylphosphonate (ZrPP) films with their hexagonal crystallite perpendicular to the copper substrate. The micro/nano roughness surface structure, as well as the intrinsic hydrophobic characteristic of the surface functional groups, affords ZrPP films excellent hydrophobicity with water contact angle (CA) ranging from 134 degrees to 151 degrees , without any low-surface-energy modification. Particularly, in the corrosive solutions such as acidic or basic solutions over a wide pH from 2 to 12, no obvious fluctuation in CA was observed for all the ZrPP film. The k values of the hydrophobic ZrPP films are in the low-k range (k feature is proposed to bear ZrPP film a more stable low-k value in an ambient atmosphere. Besides, the polarization current of ZrPP films is reduced by 2 orders of magnitude, compared to that of the untreated copper substrate. Even deposited in a vacuum oven for 30 days at room temperature, ZrPP films also show excellent corrosion resistance, indicating a stable anticorrosion property.

  19. Magnetic properties of Ni nanoparticles on microporous silica spheres

    International Nuclear Information System (INIS)

    Godsell, Jeffrey F.; Donegan, Keith P.; Tobin, Joseph M.; Copley, Mark P.; Rhen, Fernando M.F.; Otway, David J.; Morris, Michael A.; O'Donnell, Terence; Holmes, Justin D.; Roy, Saibal

    2010-01-01

    Ni nanoparticles (∼32 nm particle diameter) have been synthesized on the walls of microporous (∼1 nm pore diameter) silica spheres (∼2.6 μm sphere diameter) and characterised magnetically to potentially produce a new class of core (silica micro-spheres)-shell (nanometallic)-type nanocomposite material. These magnetic nanocomposite materials display a characteristic increase in coercivity with reducing temperature. The average particle size has been used to calculate the anisotropy constant for the system, K. The discussion postulates the potential mechanisms contributing to the difference between the calculated K value and the magnetocrystalline anisotropy constant of bulk Ni. Various factors such as surface anisotropy and interparticle interactions are discussed as possible contributing factors to the anisotropy values calculated in the paper.

  20. Structural and magnetic study of CoCr{sub 2}O{sub 4} thin films obtained by employing the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Del Toro, A.D.; Garcia, R.P.; Davila, Y.G.; Gomes, J.L.; Goncalves, L.P.; Hernandez, E.P. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: In this work we made a study about the structural and magnetic properties of cobalt chromite. We obtained samples in a film format and also in chromite nanopowder. Both, the powder and films were fabricated by the sol-gel chemical method, the film were deposited by the spin coating technique followed by an appropriate heat treatment at 500 °C. The used substrate was glass based on silica and we studied the rotating speed parameter during deposition. The initial aim of the work was the study of the influence of rotating speed on the quality of cromite films. The crystallinity of samples was confirmed by diffraction X-ray (XRD). The lattice parameters were determined using the Rietveld method from which we calculate grain size of 8.6 nm. The scanning electron microscopy (SEM) showed granular films with good homogeneity and we observed the dependence of the rotating speed on the quality of the deposited films. The magnetic properties were measured using a vibrating sample magnetometer (VSM). For powder samples we obtained Curie temperature of 94 K, which is a phase transition from ferrimagnetic to paramagnetic. The applied magnetic field during in the characterization of the film was oriented parallel to the plane of the substrate and we observed a high coercivity. The Curie temperature value for the films was 93 K, similar to the powder samples. (author)

  1. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  2. Low-temperature photoluminescence of CuSe2 nano-objects in selenium thin films

    Directory of Open Access Journals (Sweden)

    Martina Gilić

    2017-06-01

    Full Text Available Thin films of CuSe2 nanoparticles embedded in selenium matrix were prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by photoluminescence spectroscopy (T=20-300K and UV-VIS spectroscopy (T = 300K. Surface morphology was investigated by scanning electron microscopy. The band gap for direct transition in CuSe2 was found to be in the range of 2.72-2.75 eV and that for indirect transition is in the range of 1.71-1.75 eV determined by UV-VIS spectroscopy. On the other hand, selenium exhibits direct band gap in the range of 2.33-2.36 eV. All estimated band gaps slightly decrease with the increase of the film thickness. Photoluminescence spectra of the thin films clearly show emission bands at about 1.63 and 2.32 eV at room temperature, with no shift observed with decreasing temperature. A model was proposed for explaining such anomaly.

  3. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    Directory of Open Access Journals (Sweden)

    Mónika Sándor

    2016-01-01

    Full Text Available A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS, using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES, added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA, through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES, trimethylethoxysilane (Me3ES, diethoxydimethylsilane (Me2DES and 1,2-bis(triethoxysilylethane (BETES onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  4. Ultra-low damping in lift-off structured yttrium iron garnet thin films

    Science.gov (United States)

    Krysztofik, A.; Coy, L. E.; Kuświk, P.; Załeski, K.; Głowiński, H.; Dubowik, J.

    2017-11-01

    We show that using maskless photolithography and the lift-off technique, patterned yttrium iron garnet thin films possessing ultra-low Gilbert damping can be accomplished. The films of 70 nm thickness were grown on (001)-oriented gadolinium gallium garnet by means of pulsed laser deposition, and they exhibit high crystalline quality, low surface roughness, and the effective magnetization of 127 emu/cm3. The Gilbert damping parameter is as low as 5 ×10-4. The obtained structures have well-defined sharp edges which along with good structural and magnetic film properties pave a path in the fabrication of high-quality magnonic circuits and oxide-based spintronic devices.

  5. Synthesis of Y{sub 2}O{sub 3}:(Li,Eu) films using phosphor powders coated with SiO{sub 2} nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu; Park, Sangmoon [Center for Green Fusion Technology and Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Kang, Seong-Gu [Department of Chemical Engineering, Hoseo University, Chungnam 336-795 (Korea, Republic of); Park, Jung-Chul, E-mail: parkjc@silla.ac.k [Center for Green Fusion Technology and Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2010-08-15

    Y{sub 1.9-x}Li{sub 0.1}Eu{sub x}O{sub 3} (x=0.02, 0.05, 0.08, and 0.12) films were fabricated by spin-coating method. A colloidal silica suspension with Y{sub 1.9-x}Li{sub 0.1}Eu{sub x}O{sub 3} phosphor powder was exploited to obtain the highly stable and effective luminescent films onto the glass substrate. After heating as-prepared Y{sub 1.9-x}Li{sub 0.1}Eu{sub x}O{sub 3} films at 700 {sup o}C for 1 h, the phosphor films exhibit a high luminescent brightness as well as a strong adhesiveness on the glass substrate. The emission spectra of spin-coated and pulse-laser deposited Y{sub 1.82}Li{sub 0.1}Eu{sub 0.08}O{sub 3} films were compared. The cathodoluminescence of the phosphor films was carried out at the anode voltage 1 kV.

  6. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films

    International Nuclear Information System (INIS)

    Liu, Y-L; Liu, C-S; Cho, C-I; Hwu, M-J

    2007-01-01

    Polyhedral oligomeric silsequioxane (POSS) monomer was fixed to a silicon surface by reacting octakis(glycidyldimethylsiloxy)octasilsesquioxane (OG-POSS) with the OH-terminated silicon surface in the presence of tin (II) chloride. The POSS cage layer then served as a nanoporous interlayer to reduce the dielectric constants of polyimide films on silicon surfaces. The chemical structure and surface morphology of OG-POSS modified silicon surfaces were characterized with XPS. With the introduction of a POSS nanopored interlayer, the dielectric constants of polyimide films were reduced

  7. Nuclear medium effects on the K{sup Macron Low-Asterisk} meson

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Molina, Raquel; Oset, Eulogio [Instituto de Fisica Corpuscular (centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, Angels [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2012-05-01

    The K{sup Macron Low-Asterisk} meson in dense matter is analyzed by means of a unitary approach in coupled channels based on the local hidden gauge formalism. The K{sup Macron Low-Asterisk} self-energy and the corresponding K{sup Macron Low-Asterisk} spectral function in the nuclear medium are obtained. We observe that the K{sup Macron Low-Asterisk} develops a width in matter up to five times bigger than in free space. We also estimate the transparency ratio of the {gamma}A{yields}K{sup +}K{sup Low-Asterisk -}A{sup Prime} reaction. This ratio is an excellent tool to detect experimentally modifications of the K{sup Macron Low-Asterisk} meson in dense matter.

  8. Template-mediated, Hierarchical Engineering of Ordered Mesoporous Films and Powders

    Science.gov (United States)

    Tian, Zheng

    techniques to various substrates for low-cost counter-electrodes in dye-sensitized solar cells, as we demonstrate, or as potential high-flux membranes for molecular separations. Inspired by 'one-pot' 'soft'-templating approaches, wherein the pore forming agent and replica precursor are co-assembled, we establish how 'hard'-templating can be carried out in an analogous fashion. Namely, we show how pre-formed silica nanoparticles can be co-assembled from aqueous solutions with a carbon source (glucose), leading to elucidation of a pseudo-phase behavior in which we identify an operating window for synthesis of hierarchically bi-continuous carbon films. Systematic study of the association of carbon precursors with the silica particles in combination with transient coating experiments reveals mechanistic insight into how silica-adsorbed carbon precursor modulates particle assembly and ultimately controls template particle d-spacing. We uncover a critical d-spacing defining the boundary between ordered and disordered mesoporosity within the resulting films. We ultimately extend this thin-film mechanistic insight to realize 'one'-pot, bi-continuous 3DOm carbon powders. Through a combination of X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HR-TEM), we elucidate novel synthesis-structure relations for template-mediated microstructuring of the 3DOm replica carbons. Attractive properties of the resulting bi-continuous porous carbons for applications, for example, as novel electrodes, include high surface areas, large mesopore volumes, and tunable graphitic content (i.e. >50%) and character. We specifically demonstrate their performance, in thin film form, as counter-electrodes in dye-sensitized solar cells. We also demonstrate how they can be exploited in powder form as high-performance supercapacitor electrodes exhibiting attractive retention and absolute capacitance. We conclude the thesis by demonstrating the

  9. Protein adsorption on low temperature alpha alumina films for surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Cloud, A.N., E-mail: acloud@uark.ed [University of Arkansas, Fayetteville, AR 72701 (United States); Kumar, S. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Kavdia, M.; Abu-Safe, H.H.; Gordon, M.H. [University of Arkansas, Fayetteville, AR 72701 (United States)

    2009-08-31

    Bulk alumina has been shown to exhibit reduced protein adsorption, a property that can be exploited for developing alumina-coated surgical instruments and devices. Alpha alumina thin films were deposited on surgical stainless steel substrates to investigate the adsorption of a model protein (BSA, bovine serum albumin). The films were deposited at 480 {sup o}C by AC inverted cylindrical magnetron sputtering. Films were obtained at 6 kW and 50% oxygen partial pressure by volume. The presence of alpha-phase alumina has been shown by transmission electron microscopy. Results indicate that there was a 50% reduction in protein adsorption for samples with the alumina coating compared to those with no coating.

  10. Preparation of Nb3Ge films by chemical transport reaction and their critical properties

    International Nuclear Information System (INIS)

    Oya, G.; Saur, E.J.

    1979-01-01

    Niobium-germanium films have been deposited on sapphire substrates at 900 0 C by a chemical transport reaction method. The highest superconducting transition onset temperature T/sub C,on/ of 22.4K is observed for a nearly stoichiometric Nb 3 Ge film with the A15-type structure (thickness approx.93.5 μm). Lattice constants for the Nb 3 Ge phase formed in the Nb-Ge films with both T/sub C,on/ above 22 K and T/sub C,midpoint/ above 21 K are found to extend from 5.143 to 5.153 A. Deposition rates for the obtained films are in the range of 2-10 μm/min. Critical current densities for the Nb 3 Ge film with the highest T/sub C,on/ value are observed to be relatively low (approx.10 3 A/cm 2 at 19 K at self-field). This is due to the coarse grain structure of the film or the low density of effectual pinning centers in the film. Field variations of the pinning forces operating in this film in magnetic fields both parallel to the film surface and perpendicular to the film surface are found to follow closely b/sup 1/2/ (1-b) 2 , to which the pinning force for flux pinning at the surface of normal regions, such as grain boundaries, film surfaces, etc., is proportional, and where b is the reduced magnetic induction (B/B/sub C2/). A small increase in J/sub C/ at low fields is caused by the presence of a small amount of the Nb 5 Ge 3 phase in a Nb 3 Ge film, and seems attributable to additional flux pinning on Nb 5 Ge 3 -phase particles in the film

  11. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    Directory of Open Access Journals (Sweden)

    Jianying Zhang

    Full Text Available The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino groups to effectively remove arsenic in its toxic As(III form (arsenite predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film and internal (intraparticle diffusion can be rate-determining for As(III adsorption. Fourier transform infrared spectroscopy (FTIR indicated that the thiol and amino groups potentially responsible for As(III adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III and thiol groups, and through the surface complexation between As(III and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III adsorption capacity holds promise for the treatment of As(III containing wastewater.

  12. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    Science.gov (United States)

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  13. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    Science.gov (United States)

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  14. Metal Oxide Thin Films Grafted on Silica Gel Surfaces: Recent Advances on the Analytical Application of these Materials

    Directory of Open Access Journals (Sweden)

    Gushikem Yoshitaka

    2001-01-01

    Full Text Available In the highly dispersed MxOy monolayer film on a porous SiO2 surface, denoted as SiO2/MxOy, the Si-O-M covalent bond formed on the SiO2 surface restricts the mobility of the attached oxide resulting in coordinatively unsaturated metal oxides (LAS in addition to the Brønsted acid sites (BAS. The BAS arise from the MOH and SiOH groups, the latter due to the unreacted silanol groups. As the attached oxides are strongly immobilized on the surface, they are also thermally very stable. The amphoteric character of most of the attached oxides allows the immobilization of various chemical species, acid or bases, resulting in a wide application of these surface modified materials. In this work many of the recent applications of these MxOy coated silica surfaces are described, such as selective adsorbents, in preconcentration processes, as new packing material for use in HPLC, support for immobilization of enzymes, amperometric electrodes, sensors and biosensors

  15. The Silica-Water Interface from the Analysis of Molecular Dynamic Simulations

    KAUST Repository

    Lardhi, Sheikha F.

    2013-05-01

    Surface chemistry is an emerging field that can give detailed insight about the elec- tronic properties and the interaction of complex material surfaces with their neigh- bors. This is for both solid-solid and solid-liquid interfaces. Among the latter class, the silica-water interface plays a major role in nature. Silica is among the most abundant materials on earth, as well in advanced technological applications such as catalysis and nanotechnology. This immediately indicates the relevance of a detailed understanding of the silica-water interface. In this study, we investigate the details of this interaction at microscopic level by analyzing trajectories obtained with ab initio molecular dynamic simulations. The system we consider consists of bulk liquid water confined between two β-cristobalite silica surfaces. The molecular dynamics were generated with the CP2K, an ab initio molecular dynamic simulation tool. The simulations are 25 picoseconds long, and the CP2K program was run on 64 cores on a supercomputer cluster. During the simulations the program integrates Newton’s equations of motion for the system and generates the trajectory for analysis. For analysis, we focused on the following properties that characterize the silica water interface. We calculated the density profile of the water layers from the silica surface, and we also calculated the radial distribution function (RDF) of the hydrogen bond at the silanols on the silica surface. The main focus of this thesis is to write the programs for calculating the atom density profile and the RDF from the generated MD trajectories. The atomic probability density profile shows that water is strongly adsorbed on the (001) cristobalite surface, while the RDF indicates differently ad- sorbed water molecules in the first adsorption layer. As final remark, the protocol and the tools developed in this thesis can be applied to the study of basically any crystal-water interface.

  16. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2014-03-01

    Full Text Available A research has been carried out to develop natural rubber (NR hybrid composites reinforced with marble sludge (MS/Silica and MS/rice husk derived silica (RHS. The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc.

  17. An optimum silica flour-bentonite mixture for an engineered barrier

    International Nuclear Information System (INIS)

    Walker, J.N.; Daffern, D.D.; Emer, D.F.

    1991-01-01

    To dispose of low-level and mixed wastes (MAR) by burial, it is necessary to design an impermeable closure, which limits water infiltration through the waste. Bentonite has very low permeability to water but can be subject to volume alterations. Over time, these alterations can lead to channeling and subsequent permeability increases. The fluid conductivity and bulk properties of silica flour and bentonite mixtures were tested to find a mixture that would retain the low conductivity of the bentonite while maintaining volumetric stability. Silica flour was chosen for its small grain size and spherical shape, and its similarity to silty soil. Test results indicate that a 90% silica flour and 10% bentonite mixture will provide the optimum properties for this application. 5 refs., 2 figs., 2 tabs

  18. Low temperature growth of Co{sub 2}MnSi films on diamond semiconductors by ion-beam assisted sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, M.; Ueda, K., E-mail: k-ueda@numse.nagoya-u.ac.jp; Asano, H. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-05-07

    High quality Schottky junctions using Co{sub 2}MnSi/diamond heterostructures were fabricated. Low temperature growth at ∼300–400 °C by using ion-beam assisted sputtering (IBAS) was necessary to obtain abrupt Co{sub 2}MnSi/diamond interfaces. Only the Co{sub 2}MnSi films formed at ∼300–400 °C showed both saturation magnetization comparable to the bulk values and large negative anisotropic magnetoresistance, which suggests half-metallic nature of the Co{sub 2}MnSi films, of ∼0.3% at 10 K. Schottky junctions formed using the Co{sub 2}MnSi films showed clear rectification properties with rectification ratio of more than 10{sup 7} with Schottky barrier heights of ∼0.8 eV and ideality factors (n) of ∼1.2. These results indicate that Co{sub 2}MnSi films formed at ∼300–400 °C by IBAS are a promising spin source for spin injection into diamond semiconductors.

  19. Nonionic Fluorinated Surfactant Removal from Mesoporous Film Using sc-CO2.

    Science.gov (United States)

    Chavez Panduro, Elvia A; Assaker, Karine; Beuvier, Thomas; Blin, Jean-Luc; Stébé, Marie-José; Konovalov, Oleg; Gibaud, Alain

    2017-01-25

    Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R 8 F (EO) 9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO 2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO 2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R 8 F (EO) 9 /Si equal to 0.1. R 8 F (EO) 9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R 8 F part and the shell is a mixture of (EO) 9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO 2 -philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.

  20. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.; Sedin, A. A.; Feduschak, V. F. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.