WorldWideScience

Sample records for silica encapsulated gold

  1. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    Science.gov (United States)

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Enhanced lifetime characteristics in flexible polymer light-emitting devices by encapsulation of epoxy/silica-coated gold nanoparticles resin (ESGR)

    International Nuclear Information System (INIS)

    Chiu, Pin-Hsiang; Huang, Chien-Jung; Yang, Cheng-Fu; Meen, Teen-Hang; Wang, Yeong-Her

    2010-01-01

    This paper reports the effects of a new multilayer encapsulation for the lifetime of flexible PLEDs on plastic substrate. The multilayer encapsulation consisted of a novel epoxy/silica-coated gold nanoparticles resin (ESGR) as the pre-encapsulation layer and a SiO 2 layer as the encapsulation cap. The ESGR was prepared by mixing UV-curable epoxy resin and powders of silica-coated gold nanoparticles. The silica-coated gold nanoparticles is a necessity because the epoxy resin is not a good moisture barrier. The flexible PLEDs with multilayer encapsulation exhibited no dark spots after being stored for over 300 h at 25 deg. C and 60% relative humidity. Also, the operational half-luminance decay time of device was 1360 h, seven times longer than that of a device without encapsulation. These results confirmed that the multilayer encapsulation, which restricted the moisture that penetrated into the devices, could be applied to the encapsulation of flexible PLEDs.

  3. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  4. Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kunov-Kruse, Andreas Jonas; Kegnæs, Søren

    2017-01-01

    Formic acid has recently attracted considerable attention as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we show that silica encapsulated and amine functionalised gold nanoparticles are highly active catalysts for the production...... of hydrogen by vapour phase decomposition of formic acid. The core-shell catalysts are prepared in a reverse micelle system that makes it possible to control the size of the Au nanoparticles and the thickness of the SiO2 shells, which has a large impact on the catalytic activity. The smallest gold...... nanoparticles are 2.2 ± 0.3 nm in diameter and have a turnover frequency (TOF) of up to 958 h−1 at a temperature of 130 °C. Based on detailed in situ ATR-FTIR studies and results from kinetic isotope labelling experiments we propose that the active site is a low-coordinated and amine functionalised Au atom...

  5. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with ...

  6. Innovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous Silicas

    KAUST Repository

    Kerdi, Fatmé ; Caps, Valerie; Tuel, Alain

    2011-01-01

    precursor and the composite material is heated at 900 °C under vacuum or nitrogen. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high

  7. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  8. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  9. The interaction of encapsulated pharmaceutical drugs with a silica matrix.

    Science.gov (United States)

    Morais, Everton C; Correa, Gabriel G; Brambilla, Rodrigo; Radtke, Claudio; Baibich, Ione Maluf; dos Santos, João Henrique Z

    2013-03-01

    A series of seven drugs, namely, fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol and tetracycline, were encapsulated. The encapsulated systems were characterized using a series of complementary techniques: Fourier-transform infrared spectroscopy (FT-IR), diffusive reflectance spectroscopy in the UV-vis region (DRS) and X-ray photoelectron spectroscopy (XPS). According to the DRS spectra, most of the encapsulated systems showed a band shift of the maximum absorption when compared with the corresponding bare pharmaceutical. Additionally, after encapsulation, the drugs exhibited infrared band shifts toward higher wavenumbers, which in turn provided insight into potential sites for interaction with the silica framework. The amine group showed a band shift in the spectra of almost all the drugs (except nifedipine and tetracycline). This finding indicates the possibility of a hydrogen bonding interaction between the drug and the silica via electron donation from the amine group to the silica framework. XPS confirmed this interaction between the pharmaceuticals and the silica through the amine group. A correlation was observed between the textural characteristics of the solids and the spectroscopic data, suggesting that the amine groups from the pharmaceuticals were more perturbed upon encapsulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Innovative preparation of Au/C by replication of gold-containing mesoporous silica catalysts

    KAUST Repository

    Kerdi, Fatmé

    2010-01-01

    A new strategy, based on the nanocasting concept, has been used to prepare gold nanoparticles (NPs) highly dispersed in meso-structured carbons. Gold is first introduced in various functionalized mesostructured silicas (MCM-48 and SBA-15) and particles are formed inside the porosity upon reduction of Au 3+ cations. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900°C under vacuum. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive. © 2010 Elsevier B.V. All rights reserved.

  11. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  12. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  13. Innovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous Silicas

    KAUST Repository

    Kerdi, Fatmé

    2011-12-23

    Gold-catalyzed aerobic epoxidations in the liquid phase are generally performed in low-polarity solvents, in which conventional oxide-supported catalysts are poorly dispersed. To improve the wettability of the catalytic powder and, thus, the efficiency of the catalyst, gold nanoparticles (NPs) have been dispersed on meso-structured carbons. Gold is first introduced in functionalized mesostructured silica and particles are formed inside the porosity. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900 °C under vacuum or nitrogen. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive.

  14. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  15. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  16. Radiosensitizing Silica Nanoparticles Encapsulating Docetaxel for Treatment of Prostate Cancer.

    Science.gov (United States)

    Belz, Jodi; Castilla-Ojo, Noelle; Sridhar, Srinivas; Kumar, Rajiv

    2017-01-01

    The applications of nanoparticles in oncology include enhanced drug delivery, efficient tumor targeting, treatment monitoring, and diagnostics. The "theranostic properties" associated with nanoparticles have shown enhanced delivery of chemotherapeutic drugs with superior imaging capabilities and minimal toxicities. In conventional chemotherapy, only a fraction of the administered drug reaches the tumor site or cancer cells. For successful translation of these formulations, it is imperative to evaluate the design and properties of these nanoparticles. Here, we describe the design of ultra-small silica nanoparticles to encapsulate a radiosensitizing drug for combined chemoradiation therapy. The small size of nanoparticles allows for better dispersion and uptake of the drug within the highly vascularized tumor tissue. Silica nanoparticles are synthesized using an oil-in-water microemulsion method. The microemulsion method provides a robust synthetic route in which the inner hydrophobic core is used to encapsulate chemotherapy drug, docetaxel while the outer hydrophilic region provides dispersibility of the synthesized nanoparticles in an aqueous environment. Docetaxel is commonly used for treatment of resistant or metastatic prostate cancer, and is known to have radiosensitizing properties. Here, we describe a systematic approach for synthesizing these theranostic nanoparticles for application in prostate cancer.

  17. Europium polyoxometalates encapsulated in silica nanoparticles - characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Cristina S.; Granadeiro, Carlos M.; Cunha-Silva, Luis; Eaton, Peter; Balula, Salete S.; Pereira, Eulalia [REQUIMTE/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto (Portugal); Ananias, Duarte [CICECO, Departamento de Quimica, Universidade de Aveiro (Portugal); Gago, Sandra [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Feio, Gabriel [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Carvalho, Patricia A. [ICEMS/Departamento de Bioengenharia, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-06-15

    The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW{sub 11}){sub x} (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, {sup 31}P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW{sub 11}){sub x} rate at SiO{sub 2} nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    Science.gov (United States)

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  19. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  20. Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Kawashita, M, E-mail: zhixia@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University (Japan)

    2011-10-29

    We attempted to prepare {alpha}-Fe-encapsulating silica ({alpha}FeSi) microspheres by a sol-gel process using tetramethoxysilane (TMOS) in water-in-oil emulsion. The effect of preparation conditions on the structure, magnetic and heating properties of resultant products were investigated. Oil phase consisted of kerosene with 32 wt% of surfactants (sorbitan monooleate / sorbitan monostearate in 3:1 weight ratio). Water phase consisted of TMOS, ethanol (CH{sub 2}CH{sub 3}OH), water and iron nitrate (Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O) with TMOS / CH{sub 2}CH{sub 3}OH/H{sub 2}O/Fe{sup 3+} in 1:7.4:16.2:0.4{approx}1.2 molar ratio. Fe{sup 3+}-containing silica gel (FeSiG) microspheres 5 to 30 {mu}m in size were successfully obtained by adding the water phase into the oil phase at 60 deg. C under stirring of 1500 rpm for 100 min. {alpha}FeSi microspheres was obtained by heating the FeSiG microspheres at 850deg. C in argon atmosphere. The obtained {alpha}FeSi microspheres have a saturation magnetization (Ms) up to 21 emu g{sup -1} and a coercive force (Hc) of 133 Oe. The in vitro heating generation was evaluated under an alternating current (AC) magnetic field of 300 Oe and 100 kHz.

  1. GOLD NANOPARTICLES ENCAPSULATED IN A POLYMERIC MATRIX OF SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    Oana Lelia POP

    2016-11-01

    Full Text Available Plasmonic nanoparticles can be used as building blocks for the design of multifunctional systems based on polymeric capsules. The use of functionalised particles in therapeutics and imaging and understanding their effect on the cell functions are among the current challenges in nanobiotechnology and nanomedicine. The aim of the study was to manufacture and characterize polymeric microstructures by encapsulating plasmonic gold nanoparticles in biocompatible matrix of sodium alginate. The gold nanoparticles were obtained by reduction of tetracluoroauric acid with sodium citrate. To characterize the microcapsules, UV-Vis and FTIR spectroscopy, optical and confocal microscopy experiments were performed. In vitro cytotoxicity tests on HFL-1 cells were also performed. The capsules have spherical shape and 120 μm diameter. The presence of encapsulated gold nanoparticles is also shown by confocal microscopy. In vitro tests show that the microcapsules are not cytotoxic upon 24 h of cells exposure to microcapsules concentrations ranging from 2.5 to 25 capsules per cell. The obtained microcapsules of sodium alginate loaded with plasmonic gold nanoparticles could potentially be considered as release systems for biologically relevant molecules.

  2. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  3. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Respirable dust and respirable silica exposure in Ontario gold mines.

    Science.gov (United States)

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  5. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    Directory of Open Access Journals (Sweden)

    Joachim Allouche

    2014-07-01

    Full Text Available The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  6. Fabrication and optical characterization of gold-infiltrated silica opals

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Gang; Tang Fangqiong; Tam, W.Y.; Li Jensen; Chan, C T; Sheng Ping

    2005-01-01

    We report the fabrication of metal-infiltrated silica opals for optical studies. Highly mono-dispersed silica microspheres are fabricated and assembled by a force packing method to form opals with large domain sizes. The opals are then infiltrated with gold by an electroplating technique. The optical properties of the infiltrated opals in the visible range are studied and model calculations based on a multiple-scattering formalism are used to interpret the experimental results. The calculated position of the directional gap of the silica opal agrees very well with experimental observation. We found that the optical properties of the infiltrated sample can be explained using a model system in which the voids in the silica opal are partially filled with Au and the surface of the slab is covered with a thin layer of Au

  7. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  8. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    International Nuclear Information System (INIS)

    Wang Jiexin; Wang Zhihui; Chen Jianfeng; Yun, Jimmy

    2008-01-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N 2 adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 μm, and had a specific surface area of about 306 m 2 /g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties

  9. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zwe-Ling, E-mail: kongzl@mail.ntou.edu.tw; Chang, Jenq-Sheng; Chang, Ke Liang B. [National Taiwan Ocean University, Department of Food Science (China)

    2013-09-15

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  10. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Science.gov (United States)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  11. Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Vincent [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Rivolta, Ilaria [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Vincent, Julien [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Raccurt, Olivier [CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN) (France); Rouzaud, Jean-Noel [Ecole Normale superieure de Paris, Laboratoire de Geologie (France); Miserrochi, Giuseppe [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Doris, Eric [CEA, Service de Chimie Bioorganique et de Marquage, iBiTecS (France); Reynaud, Cecile; Herlin-Boime, Nathalie, E-mail: nathalie.herlin@cea.fr [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France)

    2012-02-15

    This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core-shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core-shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.

  12. Innovative preparation of Au/C by replication of gold-containing mesoporous silica catalysts

    KAUST Repository

    Kerdi, Fatmé ; Caps, Valerie; Tuel, Alain

    2010-01-01

    A new strategy, based on the nanocasting concept, has been used to prepare gold nanoparticles (NPs) highly dispersed in meso-structured carbons. Gold is first introduced in various functionalized mesostructured silicas (MCM-48 and SBA-15

  13. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.

    2016-08-19

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  14. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.; Gó mez-Suá rez, Adriá n; Nolan, Steven P.; Reek, Joost N. H.

    2016-01-01

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  15. The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber.

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Ishizaki, Takayuki; Solovyev, Andrey; Trögl, J.; Ripp, S.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 467 ISSN 1996-1944 Institutional support: RVO:67985858 Keywords : bioluminescent biosensor * silica gel * encapsulation Subject RIV: CC - Organic Chemistry Impact factor: 2.654, year: 2016

  16. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    Science.gov (United States)

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  17. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    Science.gov (United States)

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  18. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan–silica nanoparticles strongly depends on the metabolic activity type of the cell line

    International Nuclear Information System (INIS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-01-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica–chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica–chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica–chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan–silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line

  19. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  20. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    Science.gov (United States)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  1. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    Directory of Open Access Journals (Sweden)

    Josef Trögl

    2015-02-01

    Full Text Available The phospholipid fatty acid (PLFA content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS. Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm of the input microbial suspension (R2 = 0.99. After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0 to their metabolic precursors (16:1ω7 + 18:1ω7, an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.

  2. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  3. Preparation of DNA/Gold Nanoparticle Encapsulated in Calcium Phosphate

    Directory of Open Access Journals (Sweden)

    Tomoko Ito

    2011-01-01

    Full Text Available Biocompatible DNA/gold nanoparticle complex with a protective calcium phosphate (CaP coating was prepared by incubating DNA/gold nanoparticle complex coated by hyaluronic acid in SBF (simulated body fluid with a Ca concentration above 2 mM. The CaP-coated DNA complex was revealed to have high compatibility with cells and resistance against enzymatic degradation. By immersion in acetate buffer (pH 4.5, the CaP capsule released the contained DNA complex. This CaP capsule including a DNA complex is promising as a sustained-release system of DNA complexes for gene therapy.

  4. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  5. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco; Guillois, Kevin; Tuel, Alain; Petit, Corine; Basset, Jean-Marie; Caps, Valerie

    2016-01-01

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  6. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco

    2016-01-20

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  7. Optical encoding of microbeads based on silica particle encapsulated quantum dots and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xiaoxia; Cao Yuancheng; Jin Xin; Yang Jie; Hua Xiaofeng; Wang Haiqiao; Liu Bo; Wang Zhan; Wang Jianhao; Yang Liang; Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei, 430074 (China)

    2008-01-16

    A novel method concerning the coding technology of polystyrene beads with Si encapsulated quantum dot (QD) particles (Si - QDs particles) is studied in this paper. In the reverse microemulsion system containing tetraethoxysilane (TEOS), water-soluble QDs (emission peak at 600 nm) were enveloped within the silica shell, forming Si - QDs particles. The Si - QDs particles were characterized by TEM, showing good uniform size, with an average diameter of about 167.0 nm. In comparison with the pure water-soluble QDs, the encapsulation of water-soluble QDs in the silica shell led to an enhancement in anti-photobleaching by providing inert barriers for the QDs. Images presented by SEM and confocal laser scanning microscopy demonstrated that the Si - QDs particles were equably coated on the surface of carboxyl functionalized polystyrene (PS) beads. Then, with the assistance of ethyl-3-(dimethyl aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), human IgG could be successfully crosslinked to Si - QDs particle coated PS-COOH beads. Furthermore, the Si - QDs coated PS-COOH beads with human IgG were examined in immunoassay experiments, and the results indicated that these beads could be applied in the specific recognition of goat-anti-human IgG in solution. This investigation is expected to provide a new route to bead coding in the field of suspension microarrays, based on the use of QDs.

  8. Remote micro-encapsulation of curium-gold cermets

    International Nuclear Information System (INIS)

    Coops, M.S.; Voegele, A.L.; Hayes, W.N.; Sisson, D.H.

    1980-01-01

    A technique is described for fabricating minature, high-density capsules of curium-244 oxide contained in three concentric jackets of metallic gold (or silver), with the outer surface being free of alpha contamination. The completed capsules are right circular cylinders 0.2500-inch diameter and 0.125-inch tall, with each level of containment soldered (or brazed) closed. A typical capsule would contain approx. 70 mg of 244 Cm (5.7 Ci) mixed with 120 mg of gold powder in the form of a cermet wafer clad in three concentric, 0.010-inch thick, liquid tight jackets. This method of fabrication eliminates voids between the jackets and produces a minimum size, maximum density capsule. Cermet densities of 11.5 g/cc were obtained, with an overall density of 17.3 g/cc for the finished capsule

  9. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  10. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials

    International Nuclear Information System (INIS)

    Sardar, R; Shem, P M; Pecchia-Bekkum, C; Bjorge, N S; Shumaker-Parry, J S

    2010-01-01

    We report a simple route to produce fluorophore-encapsulated gold nanoparticles (AuNPs) in a single step under aqueous conditions using the fluorophore 1-pyrenemethylamine (PMA). Different amounts of PMA were used and the resulting core-shell gold nanoparticles were analyzed using UV-visible absorption spectroscopy, fluorescence spectroscopy, and transmission and scanning electron microscopy. Electron microscopy analysis shows nanoparticles consisting of a gold nanoparticle core which is encapsulated with a lower contrast shell. In the UV-visible spectra, we observed a significant red shift (37 nm) of the localized surface plasmon resonance (LSPR) absorption maximum (λ max ) compared to citrate-stabilized AuNPs of a similar size. We attribute the prominent LSPR wavelength shift for PMA-AuNP conjugates to the increase in the local dielectric environment near the gold nanoparticles due to the shell formation. This simple, aqueous-based synthesis is a new approach to the production of fluorophore-encapsulated AuNPs that could be applicable in biological sensing systems and photonic device fabrication.

  11. Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery

    Science.gov (United States)

    Chi, Hao-Hsin

    This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure

  12. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.

    Science.gov (United States)

    François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier

    2011-11-04

    Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    International Nuclear Information System (INIS)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-01-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO_2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO_2@mSiO_2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO_2 and AuNFs@SiO_2@mSiO_2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  14. Gold nanoflowers with mesoporous silica as "nanocarriers" for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Science.gov (United States)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-04-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  15. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenzhi; Gong, Junxia [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Wang, Yuqian [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Yan [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Zhang, Hongmei [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Yin, Wanzhong, E-mail: yinwanzhong88@hotmail.com [First Clinical Hospital of Jilin University, Department of Otorhinolaryngology (China); Yang, Wensheng, E-mail: wsyang@mail.jlu.edu.cn [College of Chemistry, The Key Laboratory of Surface and Interface Chemistry of Jilin Province (China)

    2016-04-15

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO{sub 2}) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO{sub 2}@mSiO{sub 2}), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO{sub 2} and AuNFs@SiO{sub 2}@mSiO{sub 2} exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  16. Hydroformylation of dihydrofurans catalyzed by rhodium complex encapsulated hexagonal mesoporous silica

    KAUST Repository

    Khokhar, Munir; Shukla, Ram S.; Jasra, Raksh Vir

    2015-01-01

    HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica (HMS) is found to be an efficient heterogeneous catalyst for the selective hydroformylation of 2,3-dihydrofuran (2,3DHF) and 2,5-dihydrofuran (2,5DHF). The Rh-complex encapsulated in situ in the organic phase of template inside the pores of HMS was found to act as nano phase reactors. Conversion of 2,3-DHF and 2,5-DHF and selectivity of the corresponding aldehydes were thoroughly investigated by studying the reaction parameters: catalyst amount, substrate concentration, partial as well as total pressure of CO and H2, and temperature. The selectivity for the formation of tetrahydrofuran-2-carbaldehyde (THF-2-carbaldehyde) from the hydroformylation of 2,3-DHF was found to be more than the selectivity of the formation of tetrahydrofuran-3-carbaldehyde (THF-3-carbaldehyde) from 2,5-DHF. The reaction paths are suggested and discussed for the selective formation of the corresponding aldehydes. The catalyst was elegantly separated and effectively recycled for six times.

  17. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    Graphical abstract: - Highlights: • A novel Ag-loading and TiO 2 -coating technique was used to prepare samples. • The photocatalytic activity of the product was evaluated by removing of Rh B. • The as-synthesized samples showed an excellent photocatalytic activity. - Abstract: A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5–10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO 2 nanocrystals

  18. Hydroformylation of dihydrofurans catalyzed by rhodium complex encapsulated hexagonal mesoporous silica

    KAUST Repository

    Khokhar, Munir

    2015-05-01

    HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica (HMS) is found to be an efficient heterogeneous catalyst for the selective hydroformylation of 2,3-dihydrofuran (2,3DHF) and 2,5-dihydrofuran (2,5DHF). The Rh-complex encapsulated in situ in the organic phase of template inside the pores of HMS was found to act as nano phase reactors. Conversion of 2,3-DHF and 2,5-DHF and selectivity of the corresponding aldehydes were thoroughly investigated by studying the reaction parameters: catalyst amount, substrate concentration, partial as well as total pressure of CO and H2, and temperature. The selectivity for the formation of tetrahydrofuran-2-carbaldehyde (THF-2-carbaldehyde) from the hydroformylation of 2,3-DHF was found to be more than the selectivity of the formation of tetrahydrofuran-3-carbaldehyde (THF-3-carbaldehyde) from 2,5-DHF. The reaction paths are suggested and discussed for the selective formation of the corresponding aldehydes. The catalyst was elegantly separated and effectively recycled for six times.

  19. Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

    Science.gov (United States)

    Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan

    2018-04-01

    Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.

  20. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate.

    Science.gov (United States)

    Simó, Guillermo; Vila-Crespo, Josefina; Fernández-Fernández, Encarnación; Ruipérez, Violeta; Rodríguez-Nogales, José Manuel

    2017-06-28

    Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.

  1. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT). Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template

    Directory of Open Access Journals (Sweden)

    Noel Peter Bengzon Tan

    2015-12-01

    Full Text Available This data article describes the synthesis of temperature-sensitive and amine-rich microgel particle as a dual reductant and template to generate smart gold/polymer nanocomposite particle. TEM images illustrate the influence of reaction temperature on the formation and in-site encapsulation of gold nanoparticles using the temperature-sensitive microgel template. Thermal stability of the resultant gold/polymer composite particles was also examined.

  3. Effectiveness of amorphous silica encapsulation technology on welding fume particles and its impact on mechanical properties of welds

    International Nuclear Information System (INIS)

    Wang, Jun; Wu, Chang-Yu; Franke, Gene

    2014-01-01

    Highlights: • A novel welding shielding gas containing a silica precursor. • Up to 76% of the welding fume particles encapsulated in an amorphous silica layer. • No statistical difference between different types of welds in mechanical tests. • Can potentially reduce the toxicity of welding fume particles. - Abstract: Stainless steel welding generates nano-sized fume particles containing toxic metals which may cause serious health effects upon inhalation. The objective of this study was to investigate the effectiveness of an amorphous silica encapsulation (ASE) technology by evaluating its silica coating efficiency (SCE), particle morphology, and its impact on the weld’s mechanical properties. Tetramethylsilane (TMS) added to the welding shielding gas decomposed at the high-temperature arc zone to enable the silica coating. Collected welding fume particles were digested by two acid mixtures with different degrees of silica solubility, and the measured mass differences in the digests were used to determine the SCE. The SCEs were around 48–64% at the low and medium primary shielding gas flow rates. The highest SCE of 76% occurred at the high shielding gas flow rate (30 Lpm) with a TMS carrier gas flow of 0.64 Lpm. Transmission electron microscopy (TEM) images confirmed the amorphous silica layer on the welding fume particles at most gas flow rates, as well as abundant stand-alone silica particles formed at the high gas flow rate. Metallography showed that welds from the baseline and from the ASE technology were similar except for a tiny crack found in one particular weld made with the ASE technology. Tensile tests showed no statistical difference between the baseline and the ASE welds. All the above test results confirm that welding equipment retrofitted with the ASE technology has the potential to effectively address the toxicity problem of welding fume particles without affecting the mechanical properties of the welds

  4. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis.

    Science.gov (United States)

    Zhang, Tingting; Zhao, Hongyu; He, Shengnan; Liu, Kai; Liu, Hongyang; Yin, Yadong; Gao, Chuanbo

    2014-07-22

    Ultrasmall gold nanoparticles (us-AuNPs, gold hydroxide nanoparticles, which have excellent affinity to silica, then carrying out controllable silica coating in reverse micelles, and finally converting gold hydroxide particles into well-protected us-AuNPs. With a single-core/shell configuration that prevents sintering of nearby us-AuNPs and amino group modification of the Au/SiO2 interface that provides additional coordinating interactions, the resulting us-AuNP@SiO2 nanospheres are highly stable at high temperatures and show high activity in catalytic CO oxidation reactions. A dramatic and continuous increase in the catalytic activity has been observed when the size of the us-AuNPs decreases from 2.3 to 1.5 nm, which reflects the intrinsic size effect of the Au nanoparticles on an inert support. The synthesis scheme described in this work is believed to be extendable to many other ultrasmall metal@oxide nanostructures for much broader catalytic applications.

  5. Stability of anti-reflection coatings via the self-assembly encapsulation of silica nanoparticles by diazo-resins

    Science.gov (United States)

    Metzman, Jonathan S.; Ridley, Jason I.; Khalifa, Moataz B.; Heflin, James R.

    2015-12-01

    A modified silica nanoparticle (MSNP) solution was formed by the encapsulation of negatively charged silica nanoparticles by the UV-crosslinkable polycation oligomer diazo-resin (DAR). Appropriate DAR encapsulation concentrations were determined by use of zeta-potential and dynamic light scattering measurements. The MSNPs were used in conjunction with poly(styrene sulfonate) (PSS) to grow homogenous ionic self-assembled multilayer anti-reflection coatings. Stability was induced within the films by the exposure of UV-irradiation that allowed for crosslinking of the DAR and PSS. The films were characterized by UV/vis/IR spectroscopy and field emission scanning electron microscopy. The transmission and reflection levels were >98.5% and <0.05%, respectively. The refractive indices resided in the 1.25-1.26 range. The solvent stability was tested by sonication of the films in a ternary solvent (H2O/DMF/ZnCl2 3:5:2 w/w/w).

  6. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  7. Effect of Photon Radiations in Semi-Rigid Artificial Tissue Sensitized by Protoporphyrin IX Encapsulated with Silica Nanoparticles

    Science.gov (United States)

    Makhadmeh, Ghaseb N.; Aziz, Azlan Abdul; Razak, Khairunisak Abdul; Al-Akhras, M.-Ali H.

    2018-02-01

    This study involves the synthesis of Protoporphyrin IX (PpIX) encapsulated with Silica Nanoparticles (SiNPs) as an application for Photodynamic therapy. Semi-rigid artificial tissues with optical features similar to human tissue were used as sample materials to ascertain the efficacy of PpIX encapsulated with SiNPs. The disparity in optical characteristics (transmittance, reflectance, scattering, and absorption) of tissues treated with encapsulated PpIX and naked PpIX under light exposure (Intensity at 408 nm ~1.19 mW/cm2) was explored. The optimal exposure times required for naked PpIX and SiNPs encapsulated PpIX to engulf Red Blood Cells (RBCs) in the artificial tissue were subsequently measured. Comparative analysis showed that the encapsulated PpIX has a 91.5 % higher efficacy than naked PpIX. The results prove the applicability of PpIX encapsulated with SiNP on artificial tissue and possible use on human tissue.

  8. Effects of europium polyoxometalate encapsulated in silica nanoparticles (nanocarriers) in soil invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Bicho, Rita C., E-mail: ritabicho@ua.pt; Soares, Amadeu M.V.M. [Universidade de Aveiro, Departamento de Biologia & CESAM (Portugal); Nogueira, Helena I.S. [Universidade de Aveiro, Departamento de Química & CICECO (Portugal); Amorim, Mónica J.B. [Universidade de Aveiro, Departamento de Biologia & CESAM (Portugal)

    2016-12-15

    Polyoxometalates (POMs) are metal oxo clusters that have been investigated for several applications in material sciences, catalysis, and biomedicine; these gained increasing interest in the field of nanotechnology as nanocarriers for drug delivery. Associated to the increasing applications, there is the need for information regarding the effects on the environment of these compounds, which is completely absent in the literature. In the present study, the effects of europium polyoxometalates encapsulated into silica nanoparticles (Eu-POM/SiO{sub 2} NPs) were assessed on the soil representative Enchytraeus crypticus. The individual materials were also assessed (Eu-POMs and SiO{sub 2} NPs). Toxicity was evaluated in various test media with increasing complexity: water, soil/water extracts, and soil. Toxicity was only observed for Eu-POM/SiO{sub 2} NPs and in the presence of soil components. Despite the fact that effects were observed for concentrations higher than current predicted environmental concentration (PEC), attention should be given to the growing use of these compounds. The present study shows the importance of assessing the effects in soil media, also compared to water. Moreover, results of “no effect” are critically needed and often unpublished. The present study can contribute to the improvement of the OECD guidelines for safety of manufactured nanomaterials on environmental toxicity in the soil compartment providing an improved test alternative.

  9. Effects of europium polyoxometalate encapsulated in silica nanoparticles (nanocarriers) in soil invertebrates

    International Nuclear Information System (INIS)

    Bicho, Rita C.; Soares, Amadeu M.V.M.; Nogueira, Helena I.S.; Amorim, Mónica J.B.

    2016-01-01

    Polyoxometalates (POMs) are metal oxo clusters that have been investigated for several applications in material sciences, catalysis, and biomedicine; these gained increasing interest in the field of nanotechnology as nanocarriers for drug delivery. Associated to the increasing applications, there is the need for information regarding the effects on the environment of these compounds, which is completely absent in the literature. In the present study, the effects of europium polyoxometalates encapsulated into silica nanoparticles (Eu-POM/SiO 2 NPs) were assessed on the soil representative Enchytraeus crypticus. The individual materials were also assessed (Eu-POMs and SiO 2 NPs). Toxicity was evaluated in various test media with increasing complexity: water, soil/water extracts, and soil. Toxicity was only observed for Eu-POM/SiO 2 NPs and in the presence of soil components. Despite the fact that effects were observed for concentrations higher than current predicted environmental concentration (PEC), attention should be given to the growing use of these compounds. The present study shows the importance of assessing the effects in soil media, also compared to water. Moreover, results of “no effect” are critically needed and often unpublished. The present study can contribute to the improvement of the OECD guidelines for safety of manufactured nanomaterials on environmental toxicity in the soil compartment providing an improved test alternative.

  10. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  11. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  12. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    Science.gov (United States)

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which

  13. Synthesis of Pt-immobilized on silica and polystyrene-encapsulated silica and their applications as electrocatalysts in the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yi, Sung-Chul; Kim, Chang Young; Jung, Chi Young; Jeong, Sung Hoon; Kim, Wha Jung

    2011-01-01

    Nano sized Pt particles were successfully immobilized onto SiO 2 and polystyrene-encapsulated silica core shell (SiO 2 @PS). To make the immobilization of Pt onto both silica and polystyrene-encapsulated silica core shell, SiO 2 was first functionalized with -NH 2 using 3-amino propyl trimethoxysilane (APTMS) while for core shell, the negatively charged surface of polystyrene (PS) was changed with positive charge by cationic surfactant such as cetyltrimethylammonium chloride (CTACl) to make the formation of SiO 2 shell on preformed PS sphere. Transmission electron micrograph (TEM) images shows that Pt nanoparticles immobilized onto SiO 2 and SiO 2 @PS were to be 3-4 nm without agglomeraiton. The energy dispersive spectroscope (EDS) shows that Pt contents on both SiO 2 and SiO 2 @PS were to be 21.45% and 20.28%, respectively. In case of Pt-SiO 2 @PS, it is believed that Pt should have been immobilized onto PS surface and pore within SiO 2 shell as well as SiO 2 surface. The MEA fabricated with Pt-SiO 2 @PS shows better cell performance than of Pt-SiO 2 .

  14. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    Directory of Open Access Journals (Sweden)

    Veeranarayanan S

    2012-07-01

    Full Text Available Srivani Veeranarayanan, Aby Cheruvathoor Poulose, M Sheikh Mohamed, Yutaka Nagaoka, Seiki Iwai, Yuya Nakagame, Shosaku Kashiwada, Yasuhiko Yoshida, Toru Maekawa, D Sakthi KumarBio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, JapanAbstract: This paper presents the synthesis of aqueous cadmium sulfide (CdS quantum dots (QDs and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such

  15. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    International Nuclear Information System (INIS)

    Gu Jinlou; Fan Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-01-01

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15. - Graphical abstract: A facile and novel strategy has been developed to incorporate gold nanoparticles into the pore channels of mesoporous SBA-15 assisted by microwave radiation (MR) with mild reaction condition and rapid reaction speed. Due to the rapid and homogeneous nucleation, simultaneous propagation and termination by MR, the size of gold nanoparticles are effectively controlled

  16. Silica Exposures in Artisanal Small-Scale Gold Mining in Tanzania and Implications for Tuberculosis Prevention.

    Science.gov (United States)

    Gottesfeld, Perry; Andrew, Damian; Dalhoff, Jeffrey

    2015-01-01

    Gold miners exposed to crystalline silica are at risk of silicosis, lung cancer, and experience higher incidence rates of pulmonary tuberculosis (TB). Although the hazards associated with mercury exposure in artisanal small-scale gold mining (ASGM) have been well documented, no published data was available on crystalline silica exposures in this population. Air sampling was conducted in the breathing zone of workers in five villages in Tanzania with battery-operated sampling pumps and bulk samples were collected to measure the type and concentration of crystalline silica in the ore. Samples were analyzed at an accredited laboratory with X-ray diffraction. Airborne crystalline silica exposures exceeded recommended limits for all tasks monitored with an average exposure of 16.85 mg/m(3) for underground drilling that was 337 fold greater than the recommended exposure limit (REL) published by the U.S. National Institute for Occupational Safety and Health (NIOSH) and 0.19 mg/m(3) for aboveground operations or 4-fold greater than the REL. The exposures measured raise concern for possible acute and chronic silicosis and are known to significantly contribute to TB incidence rates in mining communities. The use of wet methods could greatly reduce exposures and the risk of TB and silicosis in ASGM. Ongoing efforts to address mercury and other hazards in ASGM should incorporate crystalline silica dust controls.

  17. Gradual growth of gold nanoseeds on silica for SiO2-gold homogeneous nano core/shell applications by the chemical reduction method

    International Nuclear Information System (INIS)

    Rezvani Nikabadi, H; Shahtahmasebi, N; Rezaee Rokn-Abadi, M; Bagheri Mohagheghi, M M; Goharshadi, E K

    2013-01-01

    In this paper, a facile method for the synthesis of gold nanoseeds on the functionalized surface of silica nanoparticles has been investigated. Mono-dispersed silica particles and gold nanoparticles were prepared by the chemical reduction method. The thickness of the Au shell was well controlled by repeating the reduction time of HAuCl 4 on silica/3-aminopropyltriethoxysilane (APTES)/initial gold nanoparticles. The prepared SiO 2 -gold core/shell nanoparticles were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and ultraviolet visible (UV-Vis) spectroscopy. The TEM images indicated that the silica nanoparticles were spherical in shape with 100 nm diameters and functionalizing silica nanoparticles with a layer of bi-functional APTES molecules and tetrakis hydroxy methyl phosphonium chloride. The gold nanoparticles show a narrow size of up to 5 nm and by growing gold nanoseeds over the silica cores a red shift in the maximum absorbance of UV-Vis spectroscopy from 524 to 637 nm was observed.

  18. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage.

    Science.gov (United States)

    Wang, Hongkang; Yang, Xuming; Wu, Qizhen; Zhang, Qiaobao; Chen, Huixin; Jing, Hongmei; Wang, Jinkai; Mi, Shao-Bo; Rogach, Andrey L; Niu, Chunming

    2018-04-24

    To address the volume-change-induced pulverization problems of electrode materials, we propose a "silica reinforcement" concept, following which silica-reinforced carbon nanofibers with encapsulated Sb nanoparticles (denoted as SiO 2 /Sb@CNFs) are fabricated via an electrospinning method. In this composite structure, insulating silica fillers not only reinforce the overall structure but also contribute to additional lithium storage capacity; encapsulation of Sb nanoparticles into the carbon-silica matrices efficiently buffers the volume changes during Li-Sb alloying-dealloying processes upon cycling and alleviates the mechanical stress; the porous carbon nanofiber framework allows for fast charge transfer and electrolyte diffusion. These advantageous characteristics synergistically contribute to the superior lithium storage performance of SiO 2 /Sb@CNF electrodes, which demonstrate excellent cycling stability and rate capability, delivering reversible discharge capacities of 700 mA h/g at 200 mA/g, 572 mA h/g at 500 mA/g, and 468 mA h/g at 1000 mA/g each after 400 cycles. Ex situ as well as in situ TEM measurements confirm that the structural integrity of silica-reinforced Sb@CNF electrodes can efficiently withstand the mechanical stress induced by the volume changes. Notably, the SiO 2 /Sb@CNF//LiCoO 2 full cell delivers high reversible capacities of ∼400 mA h/g after 800 cycles at 500 mA/g and ∼336 mA h/g after 500 cycles at 1000 mA/g.

  19. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  20. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    International Nuclear Information System (INIS)

    Kim, Sungwoo; Park, Jeongju; Cho, Jinhan

    2010-01-01

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au NP ), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au NP , which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au NP are structurally transformed into colloidal or network CAT-Au NP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au NP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au NP , and resultantly exhibit a highly catalytic activity toward H 2 O 2 .

  1. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    Science.gov (United States)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  2. Photochemical oxygen reduction by zinc phthalocyanine and silver/gold nanoparticle incorporated silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Manas; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Azad, Uday Pratap

    2012-12-15

    Silver or gold nanoparticles are synthesized using a borohydride reduction method and are anchored simultaneously into/onto the mercaptopropyl functionalized silica. Later, zinc phthalocyanine is adsorbed onto the above materials. Thin films of these materials are prepared by coating an aqueous colloidal suspension of the respective material onto glass plates. Visible light irradiation of these films in oxygen saturated, stirred aqueous solutions effectively reduces oxygen to hydrogen peroxide. The photocatalytic reduction of oxygen is explained on the basis of the semiconducting properties of the silica films. The back electron transfer reaction is largely prevented by means of a sacrificial electron donor, triethanolamine. - Highlights: Black-Right-Pointing-Pointer Zinc phthalocyanine adsorbed silica materials were prepared. Black-Right-Pointing-Pointer Thin films of these materials photocatalytically reduce oxygen. Black-Right-Pointing-Pointer The photocatalysis is explained based on semiconductor properties of the materials. Black-Right-Pointing-Pointer Metal nanoparticles increase the photocatalytic efficiency of the materials.

  3. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy){sub 3}{sup 2+}-encapsulated silica nanosphere labels

    Energy Technology Data Exchange (ETDEWEB)

    Qian Jing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Zhou Zhenxian [Nanjing Second Hospital, Nanjing, 210003 (China); Cao Xiaodong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Liu Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2010-04-14

    Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy){sub 3}{sup 2+}-encapsulated silica nanoparticle (SiO{sub 2}-Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO{sub 2}-Ru nanoparticles. The as-synthesized SiO{sub 2}-Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy){sub 3}{sup 2+} inside the silica shell and of {alpha}-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy){sub 3}{sup 2+} into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy){sub 3}{sup 2+} and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy){sub 3}{sup 2+}. The as-synthesized SiO{sub 2}-Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL{sup -1} with linear relation from 0.05 to 20 ng mL{sup -1} and a detection limit of 0.035 ng mL{sup -1} at 3{sigma}. The resulting immunosensors possess high sensitivity and good analytical performance.

  4. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)(3)(2+)-encapsulated silica nanosphere labels.

    Science.gov (United States)

    Qian, Jing; Zhou, Zhenxian; Cao, Xiaodong; Liu, Songqin

    2010-04-14

    Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)(3)(2+)-encapsulated silica nanoparticle (SiO(2)@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO(2)@Ru nanoparticles. The as-synthesized SiO(2)@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)(3)(2+) inside the silica shell and of alpha-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)(3)(2+) into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)(3)(2+) and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)(3)(2+). The as-synthesized SiO(2)@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL(-1) with linear relation from 0.05 to 20 ng mL(-1) and a detection limit of 0.035 ng mL(-1) at 3sigma. The resulting immunosensors possess high sensitivity and good analytical performance. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Controlled epitaxial growth of mesoporous silica/gold nanorod nanolollipops and nanodumb-bells

    International Nuclear Information System (INIS)

    Huang, Ching-Mao; Chung, Ming-Fang; Lo, Leu-Wei; Souris, Jeffrey S.

    2014-01-01

    In this work, we describe the controlled synthesis of novel heterogeneous nanostructures comprised of mesoporous silica-coated gold nanorods (MSGNRs) in the form of core–shell nanolollipops and nanodumb-bells, using a seed-mediated sol–gel method. Although MSGNR core–shell (θ-MSGNR) structures have been reported previously by us and others, we herein discuss the first ever fabrication of MSGNR nanolollipops (φ-MSGNR) and nanodumb-bells (β-MSGNR), achieved by simply controlling the aging time of gold nanorods (GNRs), the residual cetyltrimethylammonium bromide (CTAB) coating of GNRs, and the addition of dimethyl formamide during incubation, centrifugation, and sonication, respectively. Transmission electron microscopy revealed two bare GNR isoforms, with aspect ratios of approximately 4 and 6, while scanning electron microscopy was used to further elucidate the morphology of φ-MSGNR and β-MSGNR heterostructures. In agreement with the smaller dielectric constants afforded by incomplete silica encasement, spectroscopic studies of φ-MSGNR and β-MSGNR, surface plasmon resonance (SPR) bands revealed 20-40 nm blue shifts relative to the SPR of θ-MSGNR. On the basis of the attributes and applications of more conventional θ-MSGNRs, φ-MSGNRs and β-MSGNRs are anticipated to provide most of the utility of θ-MSGNRs, but with the additional functionalities that accompany their incorporation of both bare gold and mesoporous silica encased tips; with significant/unique implications for biomedical and catalytic applications

  6. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  7. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  8. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  9. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  10. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.

    Science.gov (United States)

    Bouzalakos, S; Dudeney, A W L; Chan, B K C

    2016-07-01

    We report on the leaching of heavy elements from cemented waste flowable fill, known as controlled low-strength materials (CLSM), for potential mine backfill application. Semi-dynamic tank leaching tests were carried out on laboratory-scale monoliths cured for 28 days and tested over 64 days of leaching with pure de-ionised water as leachant. Mineral processing waste include flotation tailings from a Spanish nickel-copper sulphide concentrate, and two bioleach neutralisation precipitates (from processing at 35°C and 70°C) from a South African arsenopyrite concentrate. Encapsulated CLSM formulations were evaluated to assess the reduction in leaching by encapsulating a 'hazardous' CLSM core within a layer of relatively 'inert' CLSM. The effect of each bioleach waste in CLSM core and tailings in CLSM encapsulating medium, are assessed in combination and in addition to CLSM with ordinary silica sand. Results show that replacing silica sand with tailings, both as core and encapsulating matrix, significantly reduced leachability of heavy elements, particularly As (from 0.008-0.190 mg/l to 0.008-0.060 mg/l), Ba (from 0.435-1.540 mg/l to 0.050-0.565 mg/l), and Cr (from 0.006-0.458 mg/l to 0.004-0.229 mg/l), to below the 'Dutch List' of groundwater contamination intervention values. Arsenic leaching was inherently high from both bioleach precipitates but was significantly reduced to below guideline values with encapsulation and replacing silica sand with tailings. Tailings proved to be a valuable encapsulating matrix largely owing to small particle size and lower hydraulic conductivity reducing diffusion transport of heavy elements. Field-scale trials would be necessary to prove this concept of encapsulation in terms of scale and construction practicalities, and further geochemical investigation to optimise leaching performance. Nevertheless, this work substantiates the need for alternative backfill techniques for sustainable management of hazardous finely-sized bulk

  11. Fabrication and optical characterization of silica optical fibers containing gold nanoparticles.

    Science.gov (United States)

    de Oliveira, Rafael E P; Sjödin, Niclas; Fokine, Michael; Margulis, Walter; de Matos, Christiano J S; Norin, Lars

    2015-01-14

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  12. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungwoo; Park, Jeongju [School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Cho, Jinhan, E-mail: jinhan71@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-09-17

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au{sub NP}), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au{sub NP}, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au{sub NP} are structurally transformed into colloidal or network CAT-Au{sub NP} nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au{sub NP} induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au{sub NP}, and resultantly exhibit a highly catalytic activity toward H{sub 2}O{sub 2}.

  13. Synthesis of silica nanoparticles for encapsulation of oncology drugs with low water solubility: effect of processing parameters on structural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bürglová, Kristýna; Hlaváč, Jan [Institute of Molecular and Translational Medicine, Palacký University Olomouc, Faculty of Medicine and Dentistry (Czech Republic); Bartlett, John R., E-mail: JBartlett@usc.edu.au [University of the Sunshine Coast, Faculty of Science, Health, Education and Engineering (Australia)

    2015-12-15

    Silica nanoparticles with tailored properties have been developed for a variety of biomedical applications, with particular emphasis on their use as carriers for the encapsulation and controlled release of bioactive species. Among the various strategies described, silica nanoparticles with uniform mesoporosity (MSN) prepared in aqueous solution at elevated temperatures using cetyltrimethylammonium bromide as a template have a range of desirable properties. However, the processing windows available to control the dimensions and other key properties of such nanoparticles prepared using fluoride salts as catalysts have not been elucidated, with mixed products containing gel fragments and non-uniform products obtained under many conditions. Here, we present a parametric study of the synthesis of MSN under fluoride-catalysed conditions using tetraethylorthosilicate as silica precursor. The processing conditions required to produce uniform nanoparticles with controlled dimensions are elucidated, together with the conditions under which dried powders can be re-dispersed in aqueous solution after long-term storage to regenerate unaggregated nanospheres with dimensions (as measured by dynamic light scattering) comparable to those measured via scanning electron microscopy analysis of the dried material. The ability to dry and store such powders for extended periods of time is an important requirement for the use of such materials in drug delivery applications. Preliminary results demonstrating the use of such MSNs as hosts for oncology drugs [substituted 3-hydroxyquinolinones (3-HQ)] with low water solubility (≪1 µg/g H{sub 2}O) are presented, with loadings of several wt% demonstrated. The ability of the silica host to protect the 3-HQ from oxidative degradation during impregnation and release is discussed.

  14. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.; Sarawade, Pradip B.; Hussain, Irshad; Zhu, Haibo; Al-Johani, Hind; Anjum, Dalaver H.; Hedhili, Mohamed N.; Maity, Niladri; D'Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.

    2016-04-13

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi [Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India); Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2011-09-15

    Core-shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug 'Methylene blue' (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core-shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

  17. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NARCIS (Netherlands)

    Elam, F.M.; Starostin, S.A.; Meshkova, A.S.; Van Der Velden-Schuermans, B.C.A.M.; Van De Sanden, M.C.M.; De Vries, H.W.

    2017-01-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense 'barrier layer' and comparatively porous 'buffer layer' onto a flexible polyethylene 2,6

  18. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NARCIS (Netherlands)

    Elam, F. M.; Starostin, S. A.; Meshkova, A. S.; van der Velden, B. C. A. M.; van de Sanden, M. C. M.; de Vries, H. W.

    2017-01-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense ‘barrier layer’ and comparatively porous ‘buffer layer’ onto a flexible polyethylene 2,6

  19. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  20. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods

    Science.gov (United States)

    Jokerst, Jesse V.; Thangaraj, Mridhula; Gambhir, Sanjiv S.

    2014-03-01

    Imaging is crucial for stem cell therapy to monitor the location(s), numbers, and state of the implanted cells. Real-time imaging in particular can ensure proper cell delivery for best engraftment. However, established imaging tools such as MRI are limited by their temporal resolution for guidance during delivery. In contrast, photoacoustic imaging is ideally suited for real time, image-guided therapy. Here, we use silica-coated gold nanorods as photoacoustic contrast agents and deploy them to image and quantitate mesenchymal stem cells during implant into the muscle tissue of live mice. Silica-coated gold nanorods (SiGNRs) were created with standard methods and loaded into mesenchymal stem cells (MSCs) without transfection agents. There was no significant (pmuscle tissue to simulate a muscular dystrophy patient. Mice (N=5) treated with these SiGNRlabeled MSCs exhibited no adverse events and implants up to 5 mm deep were easily visualized. The in vivo detection limit was 90,000 cells in a 100 uL bolus in mouse thigh muscle. Here, the B-mode signal is useful for orienting the treatment area and visualizing the delivery catheter while the photoacoustic mode offers cell-specific content. The photoacoustic signal was validated with histology a long-term fluorescent tracking dye after MSC transplant.

  1. Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles

    KAUST Repository

    Kerdi, Fatmé

    2011-04-01

    The preparation and characterization of highly dispersed gold nanoparticles in ordered mesoporous carbons CMK-3 are reported. These carbons were obtained using gold-containing functionalized SBA-15 silicas as hard templates. Two series of Au/SiO2 templates were prepared, depending on the nature of the functionalization molecule. While ammonium-functionalized silicas gave gold particles with a size determined by the pores of the silica support, the use of mercaptopropyltrimethoxysilane as grafting molecule afforded the possibility to control the particle size inside the mesopores. Both series gave highly ordered mesoporous carbons with gold particles incorporated in the carbon nanorods. However, the gold particle size in mesoporous carbons was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis, solid-state nuclear magnetic resonance and transmission electron microscopy. They were also used as catalysts in the aerobic oxidation of cyclohexene and trans-stilbene in the liquid phase. © 2010 Elsevier Inc. All rights reserved.

  2. Biological responses of T cells encapsulated with polyelectrolyte-coated gold nanorods and their cellular activities in a co-culture system

    Science.gov (United States)

    Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong

    2017-11-01

    Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.

  3. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Nanopatterning Gold by Templated Solid State Dewetting on the Silica Warp and Weft of Diatoms

    Directory of Open Access Journals (Sweden)

    Jon Hiltz

    2016-01-01

    Full Text Available The diatom, Nitzschia palea, exhibits complex silica shell (frustule topography that resembles the warp and weft pattern of woven glass. The surface is perforated with a rhombic lattice of roughly oblong pores between periodically undulating transverse weft costae. Exfoliated frustules can be used to template gold nanoparticles by thermally induced dewetting of thin gold films. Acting as templates for the process, the frustules give rise to two coexisting hierarchies of particle sizes and patterned distributions of nanoparticles. By examining temperature dependent dewetting of 5, 10, and 15 nm Au films for various annealing times, we establish conditions for particle formation and patterning. The 5 nm film gives distributions of small particles randomly distributed over the surface and multiple particles at the rhombic lattice points in the pores. Thicker films yield larger faceted particles on the surface and particles that exhibit shapes that are roughly conformal with the shape of the pore container. The pores and costae are sources of curvature instabilities in the film that lead to mass transport of gold and selective accumulation in the weft valleys and pores. We suggest that, with respect to dewetting, the frustule comprises 2-dimensional sublattices of trapping sites. The pattern of dewetting is radically altered by interposing a self-assembled molecular adhesive of mercaptopropyltrimethoxysilane between the Au film overlayer and the frustule. By adjusting the interfacial energy in this manner, a fractal-like overlay of Au islands coexists with a periodic distribution of nanoparticles in the pores.

  5. Direct hydrothermal synthesis of iron-containing mesoporous silica SBA-15 : potential as a support for gold nanoparticles

    NARCIS (Netherlands)

    Li, Y.; Guan, Y.; Santen, van R.A.; Kooyman, P.J.; Dugulan, A.I.; Li, C.; Hensen, E.J.M.

    2009-01-01

    The preparation of mesoporous silica SBA-15 with high iron loadings (14-90 wt % Fe2O3) as a suitable support for gold nanoparticles to be used in CO oxidation catalysis has been investigated. The support materials were prepared by a direct hydrothermal two-step pH adjusting method which consisted of

  6. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitava; Singla, Sumit K; Shah, Vijay H [Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905 (United States); Mukherjee, Priyabrata; Mukhopadhyay, Debabrata; Patra, Chitta Ranjan [Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905 (United States); Guturu, Praveen [Department of Internal Medicine, UTMB, Galveston, TX 77555 (United States); Frost, Megan C, E-mail: patra.chittaranjan@mayo.edu, E-mail: patra.chitta@gmail.com [Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-07-30

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 deg. C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  7. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    International Nuclear Information System (INIS)

    Das, Amitava; Singla, Sumit K; Shah, Vijay H; Mukherjee, Priyabrata; Mukhopadhyay, Debabrata; Patra, Chitta Ranjan; Guturu, Praveen; Frost, Megan C

    2010-01-01

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 deg. C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  8. Encapsulation of dye molecules into mesoporous polymer resin and mesoporous polymer-silica films by an evaporation-induced self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Chi Yue; Li Nan; Tu Jinchun; Zhang Yujie [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Li Xiaotian, E-mail: xiaotianli@jlu.edu.c [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Shao Changlu, E-mail: clshao@nenu.edu.c [Center for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun 130024 (China)

    2010-03-15

    Polymer resin and polymer-silica films with highly ordered mesostructure have been used as host materials to encapsulate DCM (4-(dicyanomethylene) -2-methyl-6-(4-dimethylaminostyryl)-4h-pyran), a kind of fluorescent dye, through evaporation-induced self-assembly method (EISA). After encapsulation, the composites show significant blue-shift in photoluminescence (PL) spectra. Particularly, by changing the excitation wavelength, the samples show different emission bands. These phenomena are related to the mesostructure and the positions of DCM molecules in the host.

  9. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    International Nuclear Information System (INIS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  10. Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Tao, Liang; Zhang, Chunmei; Sun, Yuanjie; Jin, Boquan; Yang, Kun; Li, Xiaohua; Zhang, Zhujun; Zhang, Jinpeng; Yan, Kuocheng

    2016-01-01

    A chemiluminescent immunoassay for the staphylococcal enterotoxin C1 (SEC1) based on the use of dye-encapsulated mesoporous silica nanoparticles (m-SiNPs) as a label is described. The dyes are retained in the m-SiNPs via strong hydrophobic interactions. The assay comprises the following steps: (a) Microplates coated with antibody against SEC1 are filled with sample upon which the SEC antigen will be bound to the surface; (b) following a washing step, secondary antibody linked to m-SiNPs (that were covalently labeled with rhodamine 6G and fluorescein) were added to form the sandwich complex; (c) after another washing step, bis(2,4,6-trichlorophenyl) oxalate, H_2O_2 and imidazole are added to generate chemiluminescence whose intensity is proportional to the number of m-SiNPs and thus to the number of antigen (SEC) molecules. It is found that the use of functionalized m-SiNPs strongly amplifies the signal. Enterotoxin SEC1 can be detected by this method in the 0.025 to 2 ng⋅mL"-"1 concentration range, the detection limit is 19 pg⋅mL"-"1 (at 3σ), and the relative standard deviation (for 11 parallel measurements at a 1 ng⋅mL"-"1 level) is 4.6 %. The use of an automated chemiluminescence analyzer further improves detection. (author)

  11. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    Science.gov (United States)

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin; Liu, Jinyong; Wang, Peng; Werth, Charles; Strathmann, Timothy J.

    2014-01-01

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  13. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  14. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions.

    Science.gov (United States)

    Weaver, James L; Tobin, Grainne A; Ingle, Taylor; Bancos, Simona; Stevens, David; Rouse, Rodney; Howard, Kristina E; Goodwin, David; Knapton, Alan; Li, Xiaohong; Shea, Katherine; Stewart, Sharron; Xu, Lin; Goering, Peter L; Zhang, Qin; Howard, Paul C; Collins, Jessie; Khan, Saeed; Sung, Kidon; Tyner, Katherine M

    2017-07-17

    As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.

  15. Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters

    Science.gov (United States)

    Aukema, Kelly G.; Kasinkas, Lisa; Aksan, Alptekin

    2014-01-01

    The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4. PMID:24907321

  16. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection

    International Nuclear Information System (INIS)

    Shi Yupeng; Zhang Heng; Zhang Zhaomin; Yi Changqing; Yue Zhenfeng; Teng, Kar-Seng; Li Meijin; Yang Mengsu

    2013-01-01

    Advances in the controlled assembly of nanoscale building blocks have resulted in functional devices which can find applications in electronics, biomedical imaging, drug delivery etc. In this study, novel covalent nanohybrid materials based upon [Ru(bpy) 3 ] 2+ -doped silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs), which could be conditioned as OFF–ON probes for glutathione (GSH) detection, were designed and assembled in sequence, with the disulfide bonds as the bridging elements. The structural and optical properties of the nanohybrid architectures were characterized using transmission electron microscopy, UV–vis spectroscopy and fluorescence spectroscopy, respectively. Zeta potential measurements, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were employed to monitor the reaction processes of the SiNPs–S–S–COOH and SiNPs–S–S–AuNPs synthesis. It was found that the covalent nanohybrid architectures were fluorescently dark (OFF state), indicating that SiNPs were effectively quenched by AuNPs. The fluorescence of the OFF–ON probe was resumed (ON state) when the bridge of the disulfide bond was cleaved by reducing reagents such as GSH. This work provides a new platform and strategy for GSH detection using covalent nanohybrid materials. (paper)

  17. Substrate Size-Selective Catalysis with Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Laursen, Anders Bo; Højholt, Karen Thrane; Lundegaard, L.F.

    2010-01-01

    The Dark Crystal: A hybrid material is reported that is comprised of 1-2 nm sized gold nanoparticles, accessible only through zeolite micropores in a silicalite-1 crystal, as shown by three-dimensional TEM tomography (see picture). Calcination experiments indicate that the embedded nanoparticles...

  18. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  19. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment

    International Nuclear Information System (INIS)

    Pustovalov, V; Astafyeva, L; Jean, B

    2009-01-01

    Recently, several groups of investigators (Anderson, Halas, Zharov, El-Sayed and their co-workers (Pitsillides et al 2003 Biophys. J. 84 4023-31, Zharov et al 2003 Appl. Phys. Lett. 83 4897-9, Zharov et al 2004 Proc. SPIE 5319 291-9, Loo et al 2005 Nano Lett. 5 709-11, Gobin et al 2007 Nano Lett. 7 1929-34, Fu et al 2008 Nanotechnology 19 045103, Huang et al 2006 J. Am. Chem. Soc. 128 2115-20, Jain et al 2006 J. Phys. Chem. B 110 7238-48, Jain et al 2007 Nano Today 2 18-29)) demonstrated, through pioneering results, the great potential of laser thermal therapy of cells and tissues conjugated with gold nanoparticles. It was also proposed to use combined diagnostics and therapy on the basis of nanoparticle selection for achievement of efficient contrast for laser imaging applications, as well as for photothermal therapy. However, the current understanding of the relationship between optical properties (absorption, backscattering) of nanoparticles, the efficiency of nanoparticle heating and the possibility to use them for combined imaging and therapy is limited. Here, we report the results of computer modeling of optical absorption and backscattering properties and laser heating of gold and silica-gold spherical nanoparticles for laser combined imaging and photothermal treatment of cells and tissues conjugated with nanoparticles. The efficiencies of nanoparticle heating and backscattering by nanoparticles, depending upon their radii, structure and optical properties of the metal, were investigated. This paper focuses on the analysis and determination of appropriate ranges of nanoparticle sizes for the purposes of laser combined imaging and photothermal treatment. The possibility to use spherical gold and silica-gold nanoparticles in determined ranges of radii for these purposes for laser wavelengths 532 and 800 nm is investigated.

  20. Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2

    OpenAIRE

    Kulkarni, Ashish A.; Fuller-Schaefer, Cynthia; Korman, Henry; Weiss, Alison A.; Iyer, Suri S.

    2010-01-01

    Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae, cause life-threatening conditions that include hemolytic-uremic syndrome (HUS), kidney failure and neurological complications. Cellular entry is mediated by the B subunit of the AB5 toxin, which recognizes cell surface glycolipids present in lipid raft like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These...

  1. Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited, amorphous silica

    Directory of Open Access Journals (Sweden)

    Webb TR

    2006-01-01

    Full Text Available Abstract The aim of this study was to evaluate the acute lung toxicity in rats of intratracheally instilled TiO2 particles that have been substantially encapsulated with pyrogenically deposited, amorphous silica. Groups of rats were intratracheally instilled either with doses of 1 or 5 mg/kg of hydrophilic Pigment A TiO2 particles or doses of 1 or 5 mg/kg of the following control or particle-types: 1 R-100 TiO2 particles (hydrophilic in nature; 2 quartz particles, 3 carbonyl iron particles. Phosphate-buffered saline (PBS instilled rats served as additional controls. Following exposures, the lungs of PBS and particle-exposed rats were evaluated for bronchoalveolar lavage (BAL fluid inflammatory markers, cell proliferation, and by histopathology at post-instillation time points of 24 hrs, 1 week, 1 month and 3 months. The bronchoalveolar lavage results demonstrated that lung exposures to quartz particles, at both concentrations but particularly at the higher dose, produced significant increases vs. controls in pulmonary inflammation and cytotoxicity indices. Exposures to Pigment A or R-100 TiO2 particles produced transient inflammatory and cell injury effects at 24 hours postexposure (pe, but these effects were not sustained when compared to quartz-related effects. Exposures to carbonyl iron particles or PBS resulted only in minor, short-term and reversible lung inflammation, likely related to the effects of the instillation procedure. Histopathological analyses of lung tissues revealed that pulmonary exposures to Pigment A TiO2 particles produced minor inflammation at 24 hours postexposure and these effects were not significantly different from exposures to R-100 or carbonyl iron particles. Pigment A-exposed lung tissue sections appeared normal at 1 and 3 months postexposure. In contrast, pulmonary exposures to quartz particles in rats produced a dose-dependent lung inflammatory response characterized by neutrophils and foamy (lipid

  2. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  3. Continuous laser irradiation under ambient conditions: A simple way for the space-selective growth of gold nanoparticles inside a silica monolith

    International Nuclear Information System (INIS)

    El Hamzaoui, Hicham; Bernard, Remy; Chahadih, Abdallah; Chassagneux, Fernand; Bois, Laurence; Capoen, Bruno; Bouazaoui, Mohamed

    2011-01-01

    Highlights: → Visible continuous laser direct-write gold nanoparticles inside a silica monolith. → The presence of the additive (Na 2 CO 3 ) is not necessary to the growth of gold nanoparticles. → A simple heat treatment leads to precipitation of gold nanoparticles inside the silica matrices with, or without, the additive. → The local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism. -- Abstract: Thanks to the potential and various applications of metal-dielectric nanocomposites, their syntheses constitute an interesting subject in material research. In this work, we demonstrate the achievement of gold nanocrystals growth through a visible and continuous laser irradiation. The in situ and direct space-selective generation of metallic nanoparticles is localized under the surface within transparent silica monoliths. For that purpose, the porous silica monoliths are prepared using a sol-gel route and post-doped with gold precursors before the irradiation. The presence of Au nanoparticles inside the irradiated areas was evidenced using absorption spectroscopy, X-ray diffraction analysis and transmission electron microscopy. The comparison between the results obtained after a laser irradiation and by a simple heat-treatment reveals that the local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism.

  4. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    Science.gov (United States)

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.

  5. Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo.

    Science.gov (United States)

    Gao, Fei; Bai, Linyi; Liu, Siyu; Zhang, Ruochong; Zhang, Jingtao; Feng, Xiaohua; Zheng, Yuanjin; Zhao, Yanli

    2017-01-07

    Photoacoustic tomography has emerged as a promising non-invasive imaging technique that integrates the merits of high optical contrast with high ultrasound resolution in deep scattering medium. Unfortunately, the blood background in vivo seriously impedes the quality of imaging due to its comparable optical absorption with contrast agents, especially in conventional linear photoacoustic imaging modality. In this study, we demonstrated that two hybrids consisting of gold nanorods (Au NRs) and zinc tetra(4-pyridyl)porphyrin (ZnTPP) exhibited a synergetic effect in improving optical absorption, conversion efficiency from light to heat, and thermoelastic expansion, leading to a notable enhancement in both linear (four times greater) and nonlinear (more than six times) photoacoustic signals as compared with conventional Au NRs. Subsequently, we carefully investigated the interesting factors that may influence photoacoustic signal amplification, suggesting that the coating of ZnTPP on Au NRs could result in the reduction of gold interfacial thermal conductance with a solvent, so that the heat is more confined within the nanoparticle clusters for a significant enhancement of local temperature. Hence, both the linear and nonlinear photoacoustic signals are enhanced on account of better thermal confinement. The present work not only shows that ZnTPP coated Au NRs could serve as excellent photoacoustic nanoamplifiers, but also brings a perspective for photoacoustic image-guided therapy.

  6. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    International Nuclear Information System (INIS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-01-01

    Gold nanoparticles (Au NPs) in three different silica based sol–gel matrixes with and without surfactants are prepared. They are characterized by UV–vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol–gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200–280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5–15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  7. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Uday Pratap; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Pal, Manas [Banaras Hindu University, Department of Chemistry, Faculty of Science (India)

    2011-09-15

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  8. Catalytic behavior of ‘Pt-atomic chain encapsulated gold nanotube’: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, Sandeep, E-mail: snigam@barc.gov.in; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-05-23

    With an aim to design novel material and explore its catalytic performance towards CO oxidation, Pt atomic chain was introduced inside gold nanotube (Au-NT). Theoretical calculations at the level of first principles formalism was carried out to investigate the atomic and electronic properties of the composite. Geometrically Pt atoms prefer to align in zig-zag fashion. Significant electronic charge transfer from inside Pt atoms to the outer wall Au atoms is observed. Interaction of O{sub 2} with Au-NT wall follows by injection of additional electronic charge in the anti-bonding orbital of oxygen molecule leading to activation of the O-O bond. Further interaction of CO molecule with the activated oxygen molecule leads to spontaneous oxidation reaction and formation of CO{sub 2}.

  9. Separation of pharmacologically active nitrogen-containing compounds on silica gels modified with 6,10-ionene, dextran sulfate, and gold nanoparticles

    Science.gov (United States)

    Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.

    2017-12-01

    New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.

  10. Gold nanostructure-integrated silica-on-silicon waveguide for the detection of antibiotics in milk and milk products

    Science.gov (United States)

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2012-10-01

    Antibiotics are extensively used in veterinary medicine for the treatment of infectious diseases. The use of antibiotics for the treatment of animals used for food production raised the concern of the public and a rapid screening method became necessary. A novel approach of detection of antibiotics in milk is reported in this work by using an immunoassay format and the Localized Surface Plasmon Resonance property of gold. An antibiotic from the penicillin family that is, ampicillin is used for testing. Gold nanostructures deposited on a glass substrate by a novel convective assembly method were heat-treated to form a nanoisland morphology. The Au nanostructures were functionalized and the corresponding antibody was absorbed from a solution. Solutions with known concentrations of antigen (antibiotics) were subsequently added and the spectral changes were monitored step by step. The Au LSPR band corresponding to the nano-island structure was found to be suitable for the detection of the antibody antigen interaction. The detection of the ampicillin was successfully demonstrated with the gold nano-islands deposited on glass substrate. This process was subsequently adapted for the integration of gold nanostructures on the silica-on-silicon waveguide for the purpose of detecting antibiotics.

  11. Development of Solid-State Electrochemiluminescence (ECL Sensor Based on Ru(bpy32+-Encapsulated Silica Nanoparticles for the Detection of Biogenic Polyamines

    Directory of Open Access Journals (Sweden)

    Anna-Maria Spehar-Délèze

    2015-05-01

    Full Text Available A solid state electrochemiluminescence (ECL sensor based on Ru(bpy32+-encapsulated silica nanoparticles (RuNP covalently immobilised on a screen printed carbon electrode has been developed and characterised. RuNPs were synthesised using water-in-oil microemulsion method, amino groups were introduced on their surface, and they were characterised by transmission electron microscopy. Aminated RuNPs were covalently immobilised on activate screen-printed carbon electrodes to form a solid state ECL biosensor. The biosensor surfaces were characterised using electrochemistry and scanning electron microscopy, which showed that aminated nanoparticles formed dense 3D layers on the electrode surface thus allowing immobilisation of high amount of Ru(bpy32+. The developed sensor was used for ECL detection of biogenic polyamines, namely spermine, spermidine, cadaverine and putrescine. The sensor exhibited high sensitivity and stability.

  12. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    Science.gov (United States)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  13. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  14. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  16. ENCAPSULATION OF HORSERADISH PEROXIDASE-GLUCOSE OXIDASE (HRP-GOx IN SILICA AQUAGEL SYNTHESIZED FROM RICE HULL ASH FOR ENZYMATIC REACTION OF GLUCOSE

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In recent years, the sol-gel technique has attracted increasing interest as a unique approach to immobilize biomolecules for bioanalytical applications as well as biochemical and biophysical studies. In this research, encapsulation of Horseradish peroxidase-Glucose oxidase (HRP-GOx enzymes in silica aquagel from rice hull ash by sol-gel process has been carried out. In addition, the effect of several parameters (weight ratio of HRP to GOx, pH, temperature, sodium ion concentration on enzyme activity was studied, as well. Rice hull ash, which was produced by ashing at 700 °C, was extracted it's silika by NaOH solution 1 M at 100 °C for two hours to produce sodium silikate (Na2SiO3 solution. The Na2SiO3 solution with pH of 13 was added with a strong cation exchanger resin, to produce sol solution with the pH of 4. Encapsulation was emphasized by mixing sol solution and phosphate buffer pH 7 containing HRP-GOx solution at volume ratio of buffer to sol solution 1:5. The mixture was transferred into 96-microwell plate and was aged for 24 hours. Enzymatic reaction was carried out by adding chromogenic solution of phenol and 4-aminoantipyrine (4-AAP and b-D-glucose solution (as substrate into the microwell. Enzymatic activity was examined by measuring absorbance of product solution at 490 nm with ELISA reader. Result of enzymatic activity for encapsulated enzymes (SGE was compared to that for free enzymes (EB. Results showed that at the investigated condition, HRP-GOx enzymes gave high activity at weight ratio of HRP to GOx 10:1 and pH 7 for both SGE and EB. Encapsulation caused the enzymes activity decrease to 53.0±0.2 %. However, SGE was observed to be more stable on pH and temperature changes than EB. Study on the effect of sodium concentration showed that the increase of sodium concentration from 0.10 to 0.37 M decreased the enzymatic activity to 56±0.2%. Reusability test showed that the synthesized SGE was reusable with activity decrease of 60

  17. 3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Manera, M. G.; Colombelli, A.; Resta, V.; Taurino, A.; Cesaria, M.; Leo, C.; Convertino, A.; Klini, A.; Perrone, A.; Rella, R.; Martino, M.

    2016-05-01

    Silica two-dimensional substrates and nanowires (NWs) forests have been successfully decorated with Au nanoparticles (NPs) through laser ablation by using a pulsed ArF excimer laser, for sensor applications. A uniform coverage of both substrate surfaces with NPs has been achieved controlling the number of laser pulses. The annealing of the as-deposited particles resulted in a uniform well-defined distribution of spherical NPs with an increased average diameter up to 25 nm. The deposited samples on silica NWs forest present a very good plasmonic resonance which resulted to be very sensitive to the changes of the environment (ethanol/water solutions with increasing concentration of ethanol) allowing the detection of changes on the second decimal digit of the refractive index, demonstrating its potentiality for further biosensing functionalities.

  18. Luminescent ultra-small gold nanoparticles obtained by ion implantation in silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Maurizio, C.; Kalinic, B.; Scian, C. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Dorsoduro 2137, I-30123 Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy)

    2014-05-01

    The room temperature photoluminescence properties of ultra-small Au nanoclusters (made by 5–10 atoms) obtained by ion implantation in silica are presented. The results show a broad and intense luminescent emission in three different spectral regions around 750 nm, 980 nm and 1150 nm. The luminescence properties of the molecule-like Au clusters have been also correlated to the energy-transfer process to Er{sup 3+} ions in Au–Er co-implanted silica samples. A partial quenching of the 980 nm component is observed due to the Er{sup 3+} absorption level at 980 nm that acts as a de-excitation channel through which the photon energy is transferred from the Au nanoclusters to the Er ions, eventually producing the Er-related emission at 1.5 microns.

  19. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance

    International Nuclear Information System (INIS)

    Li, Chong; Li, Yujie; Ling, Yunyang; Lai, Yangwei; Wu, Chuanliu; Zhao, Yibing

    2014-01-01

    Ultrathin silica coating (UTSC) has emerged as an effective way to improve the compatibility and stability of nanoparticles without attenuating their intrinsic optical properties. Exploration strategies to probe the growth process of ultrathin silica shells on the surface of nanoparticles would represent a valuable innovation that would benefit the development of ultrathin silica coated nanoparticles and their relevant applications. In this work, we report a unique, very effective and straightforward strategy for probing the growth of ultrathin silica shells on the surface of gold nanorods (Au NRs), which exploits the localized surface plasmon resonance (LSPR) as a reporting signal. The thickness of the ultrathin silica shells on the surface of Au NRs can be quantitatively measured and predicted in the range of 0.5–3.5 nm. It is demonstrated that the LSPR shift accurately reflects the real-time change in the thickness of the ultrathin silica shells on Au NRs during the growth process. By using the developed strategy, we further analyze the growth of UTSC on the surface of Au NRs via feeding of Na 2 SiO 3 in a stepwise manner. The responsiveness analysis of LSPR also provides important insight into the shielding effect of UTSC on the surface of Au NRs that is not accessible with conventional strategies. This LSPR-based strategy permits exploration of the surface-mediated sol–gel reactions of silica from a new point of view. (paper)

  20. Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion

    International Nuclear Information System (INIS)

    Inose, Tomoya; Oikawa, Takahiro; Shibuya, Kyosuke; Tokunaga, Masayuki; Hatoyama, Keiichiro; Nakashima, Kouichi; Kamei, Takashi; Gonda, Kohsuke; Kobayashi, Yoshio

    2017-01-01

    This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) in a colloidal solution, assessed their property of photothermal conversion, and investigated their ability to kill cancer cells using photothermal conversion. Au-seed nanoparticles were produced by reducing hydrogen tetrachloroaurate (HAuCl 4 ) with sodium borohydride (NaBH 4 ) in aqueous n-hexadecyltrimethylammonium bromide (CTAB) solution. AuNRs were then fabricated by reducing HAuCl 4 and silver nitrate (AgNO 3 ) with L-ascorbic acid in the aqueous CTAB solution in the presence of Au-seed nanoparticles. The as-prepared AuNRs were washed by a process composed mainly of centrifugation to remove the CTAB. The washed AuNRs were coated with silica by mixing the AuNR colloidal solution, an aqueous solution of (3-aminopropyl)trimethoxysilane, and tetraethylorthosilicate/ethanol solution with a water/ethanol solution. We found that the addition of AuNR/SiO 2 in water, in mice, and in a culture medium with cancer cells, followed by irradiation with a laser, cause an increase in temperature, demonstrating that AuNR/SiO 2 have the ability of photothermal conversion. In addition, the cancer cells in the culture medium were found to be killed due to the increase in temperature caused by the photothermal conversion. - Highlights: • This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) colloidal solution. • The AuNR/SiO 2 had the ability of photothermal conversion. • The AuNR/SiO 2 also had the ability to kill cancer cells using the photothermal conversion.

  1. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Cesaria, M.; Resta, V.; Taurino, A.; Colombelli, A.; Leo, C.; Klini, A.; Manousaki, A.; Convertino, A.; Rella, R.; Martino, M.; Perrone, A.

    2017-10-01

    The ablation of a metal target at laser energy densities in the range of 1-10 TW/cm2 leads to the generation of nanoparticles (NP) of the ablated material. This aspect is of particular interest if the immobilization of NPs on three-dimensional (3D) substrates is necessary as for example in sensing applications. In this work the deposition of Au NP by irradiation of a Au bulk target with a sub-picosecond laser beam (500 fs; 248 nm; 10 Hz) on 2D (silica and Si(100)) and 3D substrates (silica nanowire forests) is reported for different number of laser pulses (500, 1000, 1500, 2000, 2500). A uniform coverage of small Au NPs (with a diameter of few nm) on both kinds of substrates has been obtained using a suitable number of laser pulses. The presence of spherical droplets, with a diameter ranging from tens of nm up to few μm was also detected on the substrate surface and their presence can be explained by the weak electron-phonon coupling of Au. The optical characterization of the samples on 2D and 3D substrates evidenced the surface plasmon resonance peak characteristic of the Au NPs although further improvements of the size-distribution are necessary for future applications in sensing devices.

  2. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  3. Gold-silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study

    International Nuclear Information System (INIS)

    Mishra, Y K; Mohapatra, S; Avasthi, D K; Kabiraj, D; Lalla, N P; Pivin, J C; Sharma, Himani; Kar, Rajarshi; Singh, Neeta

    2007-01-01

    We report the structural and optical properties of Au nanoparticles embedded in a silica matrix synthesized by atom beam co-sputtering. The presence of surface plasmon resonant absorption indicates the formation of Au nanoparticles. Transmission electron microscopy (TEM) studies show the presence of Au nanoparticles with an average size ranging from ∼1.8 to 5.4 nm with narrow size distributions depending on the relative areas of Au and SiO 2 . We discuss the process of nucleation and growth of Au nanoparticles in the nanocomposite films formed by co-sputtering. The present method of nanoparticle synthesis is compared with other ion beam based techniques such as ion implantation and ion beam mixing. Preliminary experiments for the detection of human ovarian cancer cells using these Au nanoparticles are described

  4. Langmuir isoterms of 4-methylbenzenethiol encapsulated gold nanoparticles and two kinds of poly(ethyleneoxide) derivatives with incorporated Li ions

    International Nuclear Information System (INIS)

    Capan, I.

    2004-01-01

    Surface pressure - area isotherms are used to investigate the behavior of monolayers on a water surface by recording surface pressure (□) during reduction of the confinernem area (A). A number of isotherms have been recorded using gold thiol nanoparticles and polymers in different ratios and with LiClO 4 -. salt to provide ions within the monolayer. lt is seen that the area per molecule reduces in size when gold thiol is added to Poly(Ethyleneoxide) derivatives. AIso adding lithium ions modifies the area per molecule for both polymers. A mixed monolayer containing both POlY(Ethyleneoxide)derivatives and gold thiol with Li ions all mixed together shows a plateau region representing a phase transition. All these results will be discussed and isotherms will be used to find out behaviors of the monolayers on the water surface

  5. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    Science.gov (United States)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  6. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  7. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis.

    Science.gov (United States)

    Pandey, Prem C; Pandey, Govind; Narayan, Roger J

    2017-03-27

    Mesoporous silica nanoparticles (MSNPs) have been used as an efficient and safe carrier for drug delivery and biocatalysis. The surface modification of MSNPs using suitable reagents may provide a robust framework in which two or more components can be incorporated to give multifunctional capabilities (e.g., synthesis of noble metal nanoparticles within mesoporous architecture along with loading of a bioactive molecule). In this study, the authors reported on a new synthetic route for the synthesis of gold nanoparticles (AuNPs) within (1) unmodified MSNPs and (2) 3-trihydroxysilylpropyl methylphosphonate-modified MSNPs. A cationic polymer, polyethylenimine (PEI), and formaldehyde were used to mediate synthetic incorporation of AuNPs within MSNPs. The AuNPs incorporated within the mesoporous matrix were characterized by transmission electron microscopy, energy dispersive x-ray analysis, and high-resolution scanning electron microscopy. PEI in the presence of formaldehyde enabled synthetic incorporation of AuNPs in both unmodified and modified MSNPs. The use of unmodified MSNPs was associated with an increase in the polycrystalline structure of the AuNPs within the MSNPs. The AuNPs within modified MSNPs showed better catalytic activity than those within unmodified MSNPs. MSNPs with an average size of 200 nm and with a pore size of 4-6 nm were used for synthetic insertion of AuNPs. It was found that the PEI coating enabled AuNPs synthesis within the mesopores in the presence of formaldehyde or tetrahydrofuran hydroperoxide at a temperature between 10 and 25 °C or at 60 °C in the absence of organic reducing agents. The as-made AuNP-inserted MSNPs exhibited enhanced catalytic activity. For example, these materials enabled rapid catalytic oxidation of the o-dianisidine substrate to produce a colored solution in proportion to the amount of H 2 O 2 generated as a function of glucose oxidase-catalyzed oxidation of glucose; a linear concentration range from 80 to

  8. Novel ion-imprinted polymer coated on nanoporous silica as a highly selective sorbent for the extraction of ultratrace quantities of gold ions from mine stone samples

    International Nuclear Information System (INIS)

    Ebrahimzadeh, H.; Moazzen, E.; Amini, M.; Sadeghi, O.

    2013-01-01

    We have developed a gold ion-imprinted polymer (GIP) by incorporating a dipyridyl ligand into an ethylene glycol dimethacrylate matrix which then was coated onto porous silica particles. The material was used for the selective extraction of ultratrace quantities of gold ion from mine stones, this followed by its quantitation by FAAS. The effects of concentration and volume of eluent, pH of the solution, flow rates of sample and eluent, and effect of potentially interfering ions, especially palladium and platinum, was investigated. The limit of detection is -1 , the precision (RSD%) is 1.03 %, and recoveries are >99 %. In order to show the high selectivity and efficiency of the new sorbent, the results were compared to those obtained with more simple sorbents possessing the same functional groups. The accuracy of the method was demonstrated by the accurate determination of gold ions in a certified reference material. To the best of our knowledge, there is no report so far on an imprint for gold ions that has such a selectivity over Pd(II) and Pt(II) ions. (author)

  9. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  10. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  11. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters.

    Science.gov (United States)

    Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang

    2017-05-15

    Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  13. Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles

    KAUST Repository

    Kerdi, Fatmé ; Caps, Valerie; Tuel, Alain

    2011-01-01

    was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis

  14. Silica-Immobilized Enzyme Reactors; Application to Cholinesterase-Inhibition Studies

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Johnson, Glenn R; Spain, Jim C

    2006-01-01

    ...) using silica-encapsulated equine butyrycholinestearse (BuChE) as a model system. Peptide-mediated silica formation was used to encapsulate BuChE, directly immobilizing the enzyme within a commercial pre-packed column...

  15. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.; Zhang, Dingyuan; Alsaiari, Shahad K.; Lu, Jie; Deng, Lin; Tamanoi, Fuyuhiko; Zink, Jeffrey I.; Khashab, Niveen M.

    2016-01-01

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  16. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.

    2016-03-23

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  17. Novel Schiff base (DBDDP) selective detection of Fe (III): Dispersed in aqueous solution and encapsulated in silica cross-linked micellar nanoparticles in living cell.

    Science.gov (United States)

    Gai, Fangyuan; Yin, Li; Fan, Mengmeng; Li, Ling; Grahn, Johnny; Ao, Yuhui; Yang, Xudong; Wu, Xuming; Liu, Yunling; Huo, Qisheng

    2018-03-15

    This work demonstrated the synthesis of (4E)-4-(4-(diphenylamino)benzylideneamino)-1,2-dihydro-1,5- dimethyl-2-phenylpyrazol-3-one (DBDDP) for Fe (III) detection in aqueous media and in the core of silica cross-linked micellar nanoparticles in living cells. The free DBDDP performed fluorescence enhancement due to Fe (III)-promoted hydrolysis in a mixed aqueous solution, while the DBDDP-doped silica cross-linked micellar nanoparticles (DBDDP-SCMNPs) performed an electron-transfer based fluorescence quenching of Fe (III) in living cells. The quenching fluorescence of DBDDP-SCMNPs and the concentration of Fe (III) exhibited a linear correlation, which was in accordance with the Stern-Volmer equation. Moreover, DBDDP-SCMNPs showed a low limit of detection (LOD) of 0.1 ppm and an excellent selectivity against other metal ions. Due to the good solubility and biocompatibility, DBDDP-SCMNPs could be applied as fluorescence quenching nanosensors in living cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Ramasamy M

    2017-04-01

    Full Text Available Mohankandhasamy Ramasamy, Jin-Hyung Lee, Jintae Lee School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea Abstract: Emerging resistance to antibiotics is a mounting worldwide health concern and increases the need for nonantibiotic strategies to combat infectious diseases caused by bacterial pathogens. In this study, the authors used the antibiofilm activity of the naturally occurring antimicrobial cinnamaldehyde (CNMA conjugated to the surface of gold nanoparticles (GNPs to deliver CNMA efficiently and eradicate biofilms of Gram-negative organisms (enterohemorrhagic Escherichia coli O157:H7, and Pseudomonas aeruginosa, Gram positive (methicillin-sensitive Staphylococcus aureus organisms, and methicillin-resistant Staphylococcus aureus bacteria. CNMA-GNPs containing 0.005% (v/v of CNMA were found to inhibit biofilm formation efficiently. The distributions of nanoparticles in biofilm cells and their biofilm disruption activities, including distorted cell morphology, were determined by transmission electron microscopy. In addition to their antibiofilm activities, CNMA-GNPs attenuated S. aureus virulence and protected Caenorhabditis elegans (C. elegans worms. Here, the authors report the antibiofilm effects of CNMA-GNPs and suggest that they could be used to treat pathogenic bacterial infections in vivo. Keywords: antibiofilm, biocompatible, Caenorhabditis elegans, cinnamaldehyde, gold nanoparticles, Staphylococcus aureus

  19. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica

    International Nuclear Information System (INIS)

    Torres-Torres, C; López-Suárez, A; Oliver, A; Can-Uc, B; Rangel-Rojo, R; Tamayo-Rivera, L

    2015-01-01

    The study of the third-order optical nonlinear response exhibited by a composite containing gold nanoparticles and silicon quantum dots nucleated by ion implantation in a high-purity silica matrix is presented. The nanocomposites were explored as an integrated configuration containing two different ion-implanted distributions. The time-resolved optical Kerr gate and z-scan techniques were conducted using 80 fs pulses at a 825 nm wavelength; while the nanosecond response was investigated by a vectorial two-wave mixing method at 532 nm with 1 ns pulses. An ultrafast purely electronic nonlinearity was associated to the optical Kerr effect for the femtosecond experiments, while a thermal effect was identified as the main mechanism responsible for the nonlinear optical refraction induced by nanosecond pulses. Comparative experimental tests for examining the contribution of the Au and Si distributions to the total third-order optical response were carried out. We consider that the additional defects generated by consecutive ion irradiations in the preparation of ion-implanted samples do not notably modify the off-resonance electronic optical nonlinearities; but they do result in an important change for near-resonant nanosecond third-order optical phenomena exhibited by the closely spaced nanoparticle distributions. (paper)

  20. Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study

    Science.gov (United States)

    Madsen, Steen J.; Shih, En-Chung; Peng, Qian; Christie, Catherine; Krasieva, Tatiana; Hirschberg, Henry

    2016-01-01

    Moderate hyperthermia (MHT) has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of commonly used chemotherapeutic agents with MHT induced by near-infrared (NIR) activation of gold nanoshell (AuNS)-loaded macrophages (Ma). AuNS-loaded murine Ma combined with human FaDu squamous cells, in hybrid monolayers, were subjected to three cytotoxic drugs (doxorubicin, bleomycin, cisplatin) with or without NIR laser irradiation. For all three drugs, efficacy was increased by NIR activation of AuNS-loaded Ma. The results of this in vitro study provide proof-of-concept for the use of AuNS-loaded Ma for photothermal enhancement of the effects of chemotherapy on squamous cell carcinoma.

  1. Combined treatment of tyrosine kinase inhibitor labeled gold nanorod encapsulated albumin with laser thermal ablation in a renal cell carcinoma model

    Science.gov (United States)

    This manuscript served to characterize and evaluate Human Serum Albumin-encapsulated Nanoparticles (NPs) for drug delivery of a tyrosine kinase inhibitor combined with induction of photothermal ablation (PTA) combination therapy of Renal Cell Carcinoma (RCC). RCC is the most common type of kidney c...

  2. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    Science.gov (United States)

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  3. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields

    Directory of Open Access Journals (Sweden)

    Ferchichi S

    2016-06-01

    Full Text Available Soumaya Ferchichi,1 Hamdi Trabelsi,1 Inès Azzouz,1 Amel Hanini,2 Ahmed Rejeb,3 Olfa Tebourbi,1 Mohsen Sakly,1 Hafedh Abdelmelek1 1Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, 2Laboratory of Vascular Pathology, Carthage University, Carthage 3Laboratory of Pathological Anatomy, National School of Veterinary Medicine of Sidi Thabet, Manouba Univeristy, Manouba, Tunisia Abstract: The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs and static magnetic fields (SMFs; 128 mT exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally and were exposed to SMFs, over 14 days (1 h/day. Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes. Keywords: malondialdehyde, catalase, superoxide dismutase, glutathione peroxidase, bronchus-associated lymphoid tissue, nanotoxicity, histopathological study

  4. Flexible and robust N-doped carbon nanofiber film encapsulating uniformly silica nanoparticles: Free-standing long-life and low-cost electrodes for Li- and Na-Ion batteries

    International Nuclear Information System (INIS)

    Li, Liye; Liu, Pengcheng; Zhu, Kongjun; Wang, Jing; Tai, Guoan; Liu, Jinsong

    2017-01-01

    With the wearable electronics progressing rapidly, the demand for flexible, long-life and low-cost electrodes of Li-ion batteries (LIBs) becomes more and more urgent. Due to the abundant resources and low cost, silica (SiO_2), especially the amorphous one, has attracted a lot of interests on the application of anode materials for LIBs. However, SiO_2 still suffer from the poor cycling performance mainly caused by the huge volume change during cycling like other alloy-type materials. Furthermore, it remains a challenge to fabricate the SiO_2–based flexible electrode. Herein, we propose a facile in situ strategy to fabricate the electrospun robust free-standing SiO_2/carbon nanofibers (denoted as in-SCNFs) film constructed by N-doped carbon nanofibers encapsulating uniformly amorphous SiO_2 nanoparticles. The in situ synthesized finer SiO_2 nanoparticles in the in-SCNFs are uniformly encapsulated in flexible carbon nanofibers, which can effectively buffer the volume change. Furthermore, the robust in-SCNFs film possesses the excellent mechanical flexibility and strength. So, when served as the free-standing anode of LIBs, the in-SCNFs film exhibits superior cycling performance. A discharge specific capacity of 405 mAh/g can be delivered even after a long-term 1000 cycles at a large current density of 500 mA/g, and the retention is up to 115%. It is an exciting finding that the in-SCNFs film is also a long-life anode of Na-ion batteries (NIBs). The 99% of initial capacity can be kept after 250 cycles at 500 mA/g. To our best knowledge, this is the first report on the application of SiO_2/C composite for NIBs. These results suggest that the as-fabricated in-SCNFs film can become one promising free-standing long-life anode for LIBs and NIBs.

  5. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells.

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V; Guha, Sushovan; Pautler, Robia G; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.

  6. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  7. Respiratory health effects of exposure to crystalline silica epidemiology.

    CSIR Research Space (South Africa)

    Hnzido, E

    1999-01-01

    Full Text Available The present report describes two additional studies of exposure-response relationship between respiratory disease and silica dust in gold mines. Section 3 describes a study of pulmonary tuberculosis in relation to silica dust, and section 4...

  8. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  9. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.

    Science.gov (United States)

    Huang, Liang; Wu, Qiong; Wang, Jing; Foda, Mohamed; Liu, Jiawei; Cai, Kai; Han, Heyou

    2014-03-18

    A "hydrophobic layer in silica" structure was designed to integrate a compact quantum dot (QD) layer with high quantum yield into scalable silica hosts containing desired functionality. This was based on metal affinity driven assembly of hydrophobic QDs with versatile silica substrates and homogeneous encapsulation of organosilica/silica layers.

  10. Towards the Development of Phospholipid-Encapsulated Gold Nanorod Chains for Enhanced Raman-Scattering and the Improvement of Student Scientific Communication Skills in Undergraduate Classroom and Laboratory Settings

    Science.gov (United States)

    Stewart, Alexander F.

    Depending on functionalization, nanospecies can serve effectively as Surface Enhanced Raman Scattering (SERS) probes. Their efficacy can be improved by tuning their shape and concentrating their electric field profile into smaller regions. This tuning is seen particularly well in nanorods, which concentrate such fields near the rod tips or ends, in 'hotspots'. These hotspots can be constructively enhanced through the self-assembly of the nanospecies in question, further increasing the enhancement of Raman-active species within. When considering their potential application as SERS probes, both the separation of end-to-end assembled nanorods (gap size), as well as the degree of assembly (chain length), are factors that must be optimized to obtain maximal signal. This thesis reports on the development of robust and variable methods for assembling gold nanorod species in an end-to-end configuration, and for investigating their effectiveness as SERS probes. Using both polymers and short charged ligands with control over their locations of attachment to gold nanorods, nanorod assembly could be initiated in a longitudinal direction either through changing the solvent system or through the introduction of bridging ligands. Exploitation of the inter-rod gap 'hotspot' region allowed for significant Raman enhancement of species located in said gap. Using phospholipids to encapsulate the assembling nanorod allowed for significant control over the proportions of species, in terms of length of the nanorod chain. This control allowed for further optimization of the Raman signals from species of interest. This thesis also details the investigation, over a period of several academic years, of the success of the Writing Instruction and Training (WIT) program, an initiative to iteratively improve student written communication skills as they related to scientific chemical communication. In courses ranging from first to third year, undergraduates were provided with opportunities to

  11. Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling

    Czech Academy of Sciences Publication Activity Database

    Vilhanová, B.; Václavík, Jiří; Artiglia, L.; Ranocchiari, M.; Togni, A.; van Bokhoven, J. A.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 3414-3418 ISSN 2155-5435 Institutional support: RVO:61388963 Keywords : alkyne coupling * gold * heterogeneous catalysis * hypervalent iodine * subnanometer Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 10.614, year: 2016

  12. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  13. A protecting group approach toward synthesis of Au–silica Janus nanostars

    OpenAIRE

    D. Rodríguez-Fernández; T. Altantzis; H. Heidari; S. Bals; L.M. Liz-Marzán

    2013-01-01

    Abstract: The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.

  14. A protecting group approach toward synthesis of Au-silica Janus nanostars.

    Science.gov (United States)

    Rodríguez-Fernández, Denis; Altantzis, Thomas; Heidari, Hamed; Bals, Sara; Liz-Marzán, Luis M

    2014-01-04

    The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.

  15. Synthesis of uniform carbon at silica nanocables and luminescent silica nanotubes with well controlled inner diameters

    International Nuclear Information System (INIS)

    Qian Haisheng; Yu Shuhong; Ren Lei; Yang Yipeng; Zhang Wei

    2006-01-01

    Uniform carbon at silica nanocables and silica nanotubes with well-controlled inner diameters can be synthesized in an easy way by a sacrificial templating method. This was performed using carbon nanofibres as hard templates that were synthesized previously by a hydrothermal carbonization process. Silica nanotubes with well-controlled inner diameters were synthesized from carbon at silica core-shell nanostructures by removal of the core carbon component. The inner diameters of the as-prepared silica nanotubes can be well controlled from several nanometres to hundreds of nanometres by adjusting the diameters of the carbon nanofibres. The silica nanotubes synthesized by this method display strong photoluminescence in ultraviolet at room temperature. Such uniform silica nanotubes might find potential applications in many fields such as encapsulation, catalysis, chemical/biological separation, and sensing

  16. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  17. POLYETHYLENE ENCAPSULATION

    International Nuclear Information System (INIS)

    Kalb, P.

    2001-01-01

    Polyethylene microencapsulation physically homogenizes and incorporates mixed waste particles within a molten polymer matrix, forming a solidified final waste form upon cooling. Each individual particle of waste is embedded within the polymer block and is surrounded by a durable, leach-resistant coating. The process has been successfully applied for the treatment of a broad range of mixed wastes, including evaporator concentrate salts, soil, sludges, incinerator ash, off-gas blowdown solutions, decontamination solutions, molten salt oxidation process residuals, ion exchange resins, granular activated carbon, shredded dry active waste, spill clean-up residuals, depleted uranium powders, and failed grout waste forms. For waste streams containing high concentrations of soluble toxic metal contaminants, additives can be used to further reduce leachability, thus improving waste loadings while meeting or exceeding regulatory disposal criteria. In this configuration, contaminants are both chemically stabilized and physically solidified, making the process a true stabilization/solidification (S/S) technology. Unlike conventional hydraulic cement grouts or thermosetting polymers, thermoplastic polymers such as polyethylene require no chemical. reaction for solidification. Thus, a stable, solid, final waste form product is assured on cooling. Variations in waste chemistry over time do not affect processing parameters and do not require reformulation of the recipe. Incorporation of waste particles within the polymer matrix serves as an aggregate and improves the mechanical strength and integrity of the waste form. The compressive strength of polyethylene microencapsulated waste forms varies based on the type and quantity of waste encapsulated, but is typically between 7 and 17.2 MPa (1000 and 2500 psi), well above the minimum strength of 0.4 MPa (160 psi) recommended by the U.S. Nuclear Regulatory Commission (NRC) for low-level radioactive waste forms in support of 10 CFR 61

  18. Índice de exposição à sílica na atividade de mineração de ouro Silica exposure index in gold mining

    Directory of Open Access Journals (Sweden)

    Ana Paula Scalia Carneiro

    2006-02-01

    Full Text Available OBJETIVO: Propor um índice que sintetize a exposição cumulativa à sílica, incluindo intensidade, duração e época da exposição e testá-lo em relação à presença e gravidade de silicose. MÉTODOS: Estudo transversal realizado com 140 ex-mineiros de ouro, residentes em duas localidades do Estado de Minas Gerais, examinados entre 11/1997 e 12/1999. Foram analisadas informações sobre história clínica e ocupacional, radiografia de tórax e espirometria. Casos borderline de silicose pela radiografia foram submetidos à tomografia computadorizada de alta resolução. O índice representa a soma dos escores extraídos da transformação logarítmica das taxas de concentração de sílica respirável nas diversas funções, minas e períodos trabalhados. Foram aplicados testes paramétricos para comparação das médias entre os grupos de interesse. RESULTADOS: O índice proposto apresentou-se discriminativo em relação ao desfecho principal (silicose e aos desfechos secundários (enfisema e tuberculose pulmonar no grupo total, incluindo os diversos estágios da doença, com valores p: 0,008, 0,016 e OBJECTIVE: To develop a cumulative silica exposure index, including time period, duration and intensity of exposure, and to test this index as for occurrence and severity of silicosis. METHODS: A cross-sectional study was carried out comprising 140 former gold miners from two localities in Southeastern Brazil between November 1997 and December 1999. Complete data on occupational and medical histories, chest x-rays and spirometry were analyzed. Borderline cases on the x-rays were also submitted to high-resolution chest computed tomography. The exposure index was the sum of scores obtained by logarithmic transformation of respirable silica concentration related to job tasks, mines and work time. Parametric tests were used for comparing averages between the groups of interest. RESULTS: The silica exposure index was able to discriminate the

  19. Method of producing zeolite encapsulated nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal...... nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticles to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent...... to the carbon template coated zeolite, zeolite-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon...

  20. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    Science.gov (United States)

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  1. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  2. Photopolymerizable liquid encapsulants for microelectronic devices

    Science.gov (United States)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  3. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  4. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  5. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  6. The electrical double layer on gold probed by electrokinetic and surface force measurements

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  7. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  8. Encapsulation of biological species in sol-gel matrices

    International Nuclear Information System (INIS)

    Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.

    2000-01-01

    Two examples are given of the gelation of silica sols containing bio catalysts, resulting in their encapsulation in porous matrices. Urease was encapsulated in gels made from a mixture of TMOS and alkyltrimethoxysilane. Enzyme activities, monitored by measuring the rate of production of ammoniacal nitrogen as urea was decomposed, ranged up to 60% of that of the unencapsulated species. Anaerobic sulphate-reducing bacteria were encapsulated in a gel produced from colloidal silica, thus avoiding contact with alcohol. The detection of H 2 S produced in the doped gel indicated that the bacteria were able to continue normal metabolic function within the gel matrix. A gel initially doped with ∼ 5 x 10 5 cells cm -3 , exhibited an optimum sulphate reduction rate of 11 ug h -1 cm -3 ; this reduction rate was quickly re-established after storage of the gel for 14 weeks. Copyright (2000) The Australian Ceramic Society

  9. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  10. Encapsulation plant at Forsmark

    International Nuclear Information System (INIS)

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  11. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  12. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  13. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  14. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  15. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  16. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  17. Encapsulation with structured triglycerides

    Science.gov (United States)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  18. Experimental and theoretical total neutron scattering cross-section of water confined in silica microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G., E-mail: muhrer@lanl.gov [Los Alamos National Laboratory, Los Alamos, 87545 NM (United States); Hartl, M.; Mocko, M.; Tovesson, F.; Daemen, L. [Los Alamos National Laboratory, Los Alamos, 87545 NM (United States)

    2012-07-21

    In the search for moderator materials encapsulated materials have been discussed, but very little is known regarding the effect of encapsulation on neutron moderation properties. As a first step toward a better understanding, we present the measured total neutron cross-section of water confined in silica microspheres and compare the measured data to the predicted theoretical cross-section.

  19. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  20. Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415

  1. Synthesis and characterization of silica–gold core-shell (SiO2@Au ...

    Indian Academy of Sciences (India)

    Abstract. This paper reports a systematic investigation of the growth and attachment of small gold nanoparticles to the functionalized surface of larger silica nanoparticles by three different methods. Nearly monodispersed silica particles and gold nanoparticles were prepared by sol–gel method. The size of the particle could ...

  2. Review of encapsulation technologies

    International Nuclear Information System (INIS)

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms

  3. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    Science.gov (United States)

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  4. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  5. Subcutaneous encapsulated fat necrosis

    DEFF Research Database (Denmark)

    Aydin, Dogu; Berg, Jais O

    2016-01-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help...

  6. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  7. Radiosensitizing Silica Nanoparticles encapsulating Docetaxel for Treatment of Prostate Cancer

    OpenAIRE

    Belz, Jodi; Castilla-Ojo, Noelle; Sridhar, Srinivas; Kumar, Rajiv

    2017-01-01

    The applications of nanoparticles in oncology include enhanced drug delivery, efficient tumor targeting, treatment monitoring and diagnostics. The ‘theranostic properties’ associated with nanoparticles have shown enhanced delivery of chemotherapeutic drugs with superior imaging capabilities and minimal toxicities. In conventional chemotherapy, only a fraction of the administered drug reaches the tumor site or cancer cells. For successful translation of these formulations, it is imperative to ...

  8. Encapsulated Silicon Nanocrystals Formed in Silica by Ion Beam Synthesis

    International Nuclear Information System (INIS)

    Choi, Han Woo; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Hong, Wan; Ji, Young Yong

    2004-01-01

    The photoluminescence (PL) emission of Si nanocrystals synthesized by 400 keV Si ion implanted in SiO 2 is studied as a function of ion dose and annealing time. The formation of nanocrystals at around 600 nm from the surface was confirmed by RBS and HRTEM, and the Si nanocrystals showed a wide and very intense PL emission at 700-900 nm. The intensity of this emission showed a typical behaviour with a fast transitory increase to reach a saturation with the annealing time, however, the red shift increased continuously because of the Ostwald ripening. The oversaturation of dose derived a decrease of PL intensity because of the diminishment of quantum confinement. A strong enhancement of PL intensity by H passivation was confirmed also, and the possible mechanism is discussed

  9. Encapsulation of emulsion droplets by organo–silica shells

    NARCIS (Netherlands)

    Zoldesi, C.; Steegstra, Patrick; Imhof, Arnout

    2007-01-01

    Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic)

  10. Ordered mesoporous silica-based inorganic nanocomposites

    International Nuclear Information System (INIS)

    Wang Qingqing; Shantz, Daniel F.

    2008-01-01

    This article reviews the synthesis and characterization of nanoparticles and nanowires grown in ordered mesoporous silicas (OMS). Summarizing work performed over the last 4 years, this article highlights the material properties of the final nanocomposite in the context of the synthesis methodology employed. While certain metal-OMS systems (e.g. gold in MCM-41) have been extensively studied this article highlights that there is a rich set of chemistries that have yet to be explored. The article concludes with some thoughts on future developments and challenges in this area. - Graphical abstract: HAADF TEM image of gold nanoparticles in amine-functionalized MCM-41 (from Ref. [22])

  11. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  12. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  13. X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film

    International Nuclear Information System (INIS)

    Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.

    2005-01-01

    The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm 2 , it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm 2 , we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix

  14. Silica ecosystem for synergistic biotransformation

    Science.gov (United States)

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  15. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  16. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  17. Optical study of the ultrasonic formation process of noble metal nanoparticles dispersed inside the pores of monolithic mesoporous silica

    CERN Document Server

    Fu Gan Hua; Kan Cai Xia; Li Cun Cheng; Fang Qi

    2003-01-01

    Gold nanoparticles dispersed inside the pores of monolithic mesoporous silica were prepared by soaking the silica in a gold (III) ion solution and subsequent ultrasound irradiation. The formation process of gold nanoparticles in the pores of mesoporous silica was investigated based on optical measurements of wrapped and naked soaked silica after ultrasonic irradiation, and the reduction rate effect in solution and pre-soaking effect. It has been shown that acoustic cavitation cannot occur in nano-sized pores. The gold nanoparticles in silica are not formed in situ within the pores but produced mainly by diffusion of the gold clusters formed in the solution during irradiation into the pores. The radicals formed in solution are exhausted before entering the pores of silica. There exists a critical reduction rate in solution, at which the yield of gold nanoparticles in silica reaches a maximum, and above which there is a decrease in the yield. This is attributed to too quick a growth or aggregation of gold clust...

  18. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    International Nuclear Information System (INIS)

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath; Bhaskaran, Madhu

    2014-01-01

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics

  19. Theranostic Gold Nanoshells And Nanomatryoshkas for Cancer Therapy

    Science.gov (United States)

    Ayala-Orozco, Ciceron

    This dissertation describes the synthesis of multifunctional gold nanoparticles designed for therapy and diagnosis of cancer (theranostics), and the evaluation of their therapeutic efficacy and bioimaging of tumors in mice. The design of these metallic nanoparticles is aimed to incorporate imaging agents (MRI contrasts and fluorophores) in compact structures with dimensions below 100 nm while keeping their NIR-light-absorbing properties and optimum surface chemistry to enhance accumulation in tumor. The therapeutic response of these metallic nanoparticles is derived from the photoexcitation of their plasmon resonance, the collective oscillation of the conduction band electrons, which was advantageously utilized to enhance the quantum yield of fluorophores resonant in the NIR where the penetration of light is maximal in biological tissue and minimally destructive. Gold nanoshells as absorbers of NIR light can convert the absorbed light into heat consequently causing hyperthermia in the surrounding medium which leads to tumor cell death. To extent the application of previously developed theranostic nanoshells to the highly lethal pancreatic cancer, chapter 2 describes a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) receptor in pancreatic cancer. Gold nanoshells (SiO2-Au core-shell nanoshell) resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in a theranostic gold nanoshells, which provided contrast for both T2 weighted MRI and NIR fluorescence optical imaging. The large size of this complex (200 nm) potentially can hinder the accumulation in tumor. Seeking to reduce the size of the theranostic nanoparticles, chapter 3 presents the sub-100 nm Au nanomatryoshkas (Au/SiO2/Au). Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous

  20. Update on cellular encapsulation.

    Science.gov (United States)

    Smith, Kate E; Johnson, Robert C; Papas, Klearchos K

    2018-05-06

    There is currently a significant disparity between the number of patients who need lifesaving transplants and the number of donated human organs. Xenotransplantation is a way to address this disparity and attempts to enable the use of xenogeneic tissues have persisted for centuries. While immunologic incompatibilities have presented a persistent impediment to their use, encapsulation may represent a way forward for the use of cell-based xenogeneic therapeutics without the need for immunosuppression. In conjunction with modern innovations such as the use of bioprinting, incorporation of immune modulating molecules into capsule membranes, and genetic engineering, the application of xenogeneic cells to treat disorders ranging from pain to liver failure is becoming increasingly realistic. The present review discusses encapsulation in the context of xenotransplantation, focusing on the current status of clinical trials, persistent issues such as antigen shedding, oxygen availability, and donor selection, and recent developments that may address these limitations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Swedish encapsulation station review

    International Nuclear Information System (INIS)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G.

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB's document 'Plan 1996'. This has been made through comparisons between the ES and BNFL's Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International's experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation

  2. Swedish encapsulation station review

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G. [NAC International, Zuerich (Switzerland)

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB`s document `Plan 1996`. This has been made through comparisons between the ES and BNFL`s Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International`s experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation 19 refs, 9 figs, 35 tabs

  3. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  4. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  5. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  6. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  7. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  8. Palisaded encapsulated neuroma

    Directory of Open Access Journals (Sweden)

    Adesh S Manchanda

    2015-01-01

    Full Text Available Palisaded encapsulated neuroma (PEN is a benign cutaneous or mucosal neural tumor which, usually, presents as a solitary, firm, asymptomatic, papule or nodule showing striking predilection for the face. It occurs commonly in middle age, and there is no sex predilection. Oral PEN are not common, and these lesions must be distinguished from other peripheral nerve sheath tumors such as the neurofibroma, neurilemma (schwannoma, and traumatic neuroma. The major challenge in dealing with lesions of PEN is to avoid the misdiagnosis of neural tumors that may be associated with systemic syndromes such as neurofibromatosis and multiple endocrine neoplasia syndrome type 2B. Here, we present a case of benign PEN of the gingiva in the left anterior mandibular region, laying importance on immunohistochemical staining in diagnosing such lesions.

  9. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  10. Liposome-encapsulated chemotherapy

    DEFF Research Database (Denmark)

    Børresen, B.; Hansen, A. E.; Kjær, A.

    2018-01-01

    Cytotoxic drugs encapsulated into liposomes were originally designed to increase the anticancer response, while minimizing off-target adverse effects. The first liposomal chemotherapeutic drug was approved for use in humans more than 20years ago, and the first publication regarding its use...... to inherent issues with the enhanced permeability and retention effect, the tumour phenomenon which liposomal drugs exploit. This effect seems very heterogeneously distributed in the tumour. Also, it is potentially not as ubiquitously occurring as once thought, and it may prove important to select patients...... not resolve the other challenges that liposomal chemotherapy faces, and more work still needs to be done to determine which veterinary patients may benefit the most from liposomal chemotherapy....

  11. New process encapsulates

    International Nuclear Information System (INIS)

    Mueller, J.J.

    1982-01-01

    The results of the various aspects of this study indicate that the encapsulation process is not only capable of reducing the percent of Radon-222 emanation but also reduces the possibility of the leaching of toxic elements. Radon-222 emanation after solidification showed a 93.51% reduction from the slurry. The Gamma Spectral Analyses of short-lived Radon daughters supported the above findings. Leach studies on solidified refinery waste and transformer oils indicate there is a significant reduction in the possibility of toxic substances leaching out of the solidified samples. Further studies are needed to confirm the results of this investigation; however, the present findings indicate that the process could substantially reduce Radon-222 exhalation into the environment from uranium tailings ponds and reduce toxic leachates from hazardous waste materials

  12. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  13. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  14. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    OpenAIRE

    Wu, Hong; Huo, Qisheng; Varnum, Susan; Wang, Jun; Liu, Guodong; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-01-01

    We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, Interleukin-6 (IL-6), on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as ...

  15. Characterization of silica particles prepared via urease-catalyzed urea hydrolysis and activity of urease in sol–gel silica matrix

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nishida, Masakazu; Ito, Kimiyasu; Tomita, Masahiro

    2012-01-01

    Highlights: ► Silica precipitation occurred via urease-catalytic reactions. ► Higher urease activity for silica synthesis enables mesostructure of silica–urease composites. ► Urease encapsulating in silica matrix retained high activity. - Abstract: Urease templated precipitation of silica synthesized by sol–gel chemistry produces a composite material allowing high urease activity. This study investigates the structural properties of the composite material that allow for the retention of the urease hydrolysis activity. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a mesoporous structure composed of closely packed spherical structures ∼20–50 nm in diameter. Brunauer–Emmett–Teller (BET) analysis revealed that the surface area and pore volume of the composite prepared under the conditions of 50 mM urea and 25 °C is relatively high (324 m 2 /g and 1.0 cm 3 /g). These values are equivalent to those of usual mesoporous silica materials synthesized from the self-assembly of triblock copolymers as organic templates. In addition, after encapsulating in a sol–gel silica matrix, urease retained high activity (∼90% of the activity compared with native urease). Our results suggest a new method for synthesizing mesoporous silica materials with highly tunable pore sizes and shapes under mild conditions.

  16. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  17. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  18. Improvement of Gold Leaching from a Refractory Gold Concentrate Calcine by Separate Pretreatment of Coarse and Fine Size Fractions

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-05-01

    Full Text Available A total gold extraction of 70.2% could only be reached via direct cyanidation from a refractory As-, S- and C-bearing gold concentrate calcine, and the gold extraction varied noticeably with different size fractions. The reasons for unsatisfactory gold extraction from the calcine were studied through analyses of chemical composition, chemical phase and SEM-EDS of different sizes of particles. It was found that a significant segregation of compositions occurred during the grinding of gold ore before flotation. As a result, for the calcine obtained after oxidative roasting, the encapsulation of gold by iron oxides was easily engendered in finer particles, whilst in coarser particles the gold encapsulation by silicates was inclined to occur likely due to melted silicates blocking the porosity of particles. The improvement of gold leaching from different size fractions was further investigated through pretreatments with alkali washing, acid pickling or sulfuric acid curing-water leaching. Finally, a novel process was recommended and the total gold extraction from the calcine could be increased substantially to 93.6% by the purposeful pretreatment with alkali washing for the relatively coarse size fraction (+37 μm and sulfuric acid curing–water leaching for the fine size fraction (−37 μm.

  19. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  20. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  1. Sclerosing Encapsulating Peritonitis; Review

    Directory of Open Access Journals (Sweden)

    Norman O. Machado

    2016-05-01

    Full Text Available Sclerosing encapsulating peritonitis (SEP is a rare chronic inflammatory condition of the peritoneum with an unknown aetiology. Also known as abdominal cocoon, the condition occurs when loops of the bowel are encased within the peritoneal cavity by a membrane, leading to intestinal obstruction. Due to its rarity and nonspecific clinical features, it is often misdiagnosed. The condition presents with recurrent episodes of small bowel obstruction and can be idiopathic or secondary; the latter is associated with predisposing factors such as peritoneal dialysis or abdominal tuberculosis. In the early stages, patients can be managed conservatively; however, surgical intervention is necessary for those with advanced stage intestinal obstruction. A literature review revealed 118 cases of SEP; the mean age of these patients was 39 years and 68.0% were male. The predominant presentation was abdominal pain (72.0%, distension (44.9% or a mass (30.5%. Almost all of the patients underwent surgical excision (99.2% without postoperative complications (88.1%.

  2. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  3. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  4. gold mineralization in Masjeddaghi area, east of Jolfa, NW Iran

    OpenAIRE

    Ali Imamalipour; Hossein Abdoli; Behzad Hajalilo

    2010-01-01

    Two types of mineralization including porphyry copper and epithermal gold mineralization have occurred in relation with an intermediate volcano-plutonic complex in Masjeddaghi area. Different alterations including silica, advanced argillic, intermediate argillic and propylitic have been distinguished in relation with epithermal mineralization, which have a zonal pattern. Elemental mass gains and losses during alterations were calculated using Zr as an immobile monitor. Silica zone has enriche...

  5. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  6. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  7. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  8. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  9. Application of a Microfluidic Reactor for Screening Cancer Prodrug Activation Using Silica-Immobilized Nitrobenzene Nitroreductase

    Science.gov (United States)

    2006-01-01

    molecules18 can mediate an analogous reaction15 that combines the advantages of silica encapsulation with a signifi- cant reduction in cost... Alltech , Deerfield, IL) with a mobile phase of acetonitrile and water (containing 0.05% and 0.1% trifluoroacetic acid, respectively). The concentration

  10. Improved synthesis of gold and silver nanoshells.

    Science.gov (United States)

    Brito-Silva, Antonio M; Sobral-Filho, Regivaldo G; Barbosa-Silva, Renato; de Araújo, Cid B; Galembeck, André; Brolo, Alexandre G

    2013-04-02

    Metallic nanoshells have been in evidence as multifunctional particles for optical and biomedical applications. Their surface plasmon resonance can be tuned over the electromagnetic spectrum by simply adjusting the shell thickness. Obtaining these particles, however, is a complex and time-consuming process, which involves the preparation and functionalization of silica nanoparticles, synthesis of very small metallic nanoparticles seeds, attachment of these seeds to the silica core, and, finally, growing of the shells in a solution commonly referred as K-gold. Here we present synthetic modifications that allow metallic nanoshells to be obtained in a faster and highly reproducible manner. The main improved steps include a procedure for quick preparation of 2.3 ± 0.5 nm gold particles and a faster approach to synthesize the silica cores. An investigation on the effect of the stirring speed on the shell growth showed that the optimal stirring speeds for gold and silver shells were 190 and 1500 rpm, respectively. In order to demonstrate the performance of the nanoshells fabricated by our method in a typical plasmonic application, a method to immobilize these particles on a glass slide was implemented. The immobilized nanoshells were used as substrates for the surface-enhanced Raman scattering from Nile Blue A.

  11. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  12. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  13. Calibrating the photo-thermal response of magneto-fluorescent gold nanoshells.

    Science.gov (United States)

    Biswal, Nrusingh C; Ayala-Orzoco, Ciceron; Halas, Naomi J; Joshi, Amit

    2011-01-01

    We report the photothermal response and Near Infrared (NIR) imaging sensitivities of magneto-fluorescent silica core gold nanocomplexes designed for molecular image guided thermal therapy of cancer. Approximately 160 nm Silica core gold nanoshells were designed to provide NIR fluorescent and Magnetic Resonance (MR) contrast by incorporating FDA approved dye indocyanine green (ICG) and iron-oxide within an outer silica epilayer. The imaging and therapeutic sensitivity, and the stability of fluorescence contrast for 12 microliters of suspension (containing approximately 7.9 × 10(8) or 1.3 femtoMole nanoshells) buried at depths of 2-8 mm in tissue mimicking scattering media is reported.

  14. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  15. Fabrication of gold-nanoparticle arrays using photolithography and thermal dewetting

    NARCIS (Netherlands)

    de Vreede, Lennart; Göeken, Kristian; Göeken, Kristian; Gill, Ron; Gill, Ron; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    We demonstrate a new manufacturing method using only basic cleanroom techniques to produce an array of 106 100 nm diameter gold-nanoparticles (GNPs) of equal shape and 5 μm spacing on a fused silica surface. Photolithography and sputtering are used to produce gold islets, followed by a simple

  16. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military c...

  17. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  18. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    Science.gov (United States)

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  19. Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

    International Nuclear Information System (INIS)

    Lin, Rong; Yue, Wenbo; Niu, Fangzhou; Ma, Jie

    2016-01-01

    As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Graphene-encapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides (SnO_2, Mn_3O_4), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides with high isoelectric points are not essential for this synthesis method since metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

  20. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  1. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase.

    Science.gov (United States)

    Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan

    2014-11-01

    An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study of silica sol-gel materials for sensor development

    Science.gov (United States)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  3. Development of Magnesium Silicate Hydrate cement system for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R.

    2012-01-01

    A novel low pH cement system for encapsulating nuclear industry wastes containing aluminium has been developed using blends of MgO and silica fume (SF). Identification of the hydrated phases in MgO/silica fume samples showed that brucite formed in early stages of hydration and then reacted with the silica fume to produce a magnesium silicate hydrate (M-S-H) gel phase. When all brucite reacts with silica fume a cement system with an equilibrium pH just below 10 was achieved. Selected mixes have been characterized for hydration reactions, setting time and strength development. Mortar samples with w/s ratios of 0.5 and 50% by weight of sand added achieved compressive strengths in excess of 95 MPa after 28 days. The addition of MgCO 3 buffered the early pH and the addition of fine sand particles eliminated shrinkage cracking. The interaction of the optimised mortar with Al metal has been investigated. Al metal strips were firmly bound into the MgO:SF:sand samples and no H 2 gas detected, and this indicates that the novel systems developed in this work have potential for encapsulating certain types of problematic legacy wastes from the nuclear industry. (authors)

  4. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  5. Device for encapsulating radioactive materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1994-01-01

    A capsule for encapsulating radioactive material for radiation treatment comprising two or more interfitting sleeves, wherein each sleeve comprises a closed bottom portion having a circumferential wall extending therefrom, and an open end located opposite the bottom portion. The sleeves are constructed to fit over one another to thereby establish an effectively sealed capsule container. 3 figs

  6. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  7. Reactants encapsulation and Maillard Reaction

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, V.

    2013-01-01

    In the last decades many efforts have been addressed to the control of Maillard Reaction products in different foods with the aim to promote the formation of compounds having the desired color and flavor and to reduce the concentration of several potential toxic molecules. Encapsulation, already

  8. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  9. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  10. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

    Directory of Open Access Journals (Sweden)

    Azrul Azlan Hamzah

    2008-11-01

    Full Text Available This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.

  11. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    Science.gov (United States)

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Chronic obstructive pulmonary disease and occupational exposure to silica.

    Science.gov (United States)

    Rushton, Lesley

    2007-01-01

    Prolonged exposure to high levels of silica has long been known to cause silicosis This paper evaluates the evidence for an increased risk of chronic obstructive pulmonary disease (COPD) in occupations and industries in which exposure to crystalline silica is the primary exposure, with a focus on the magnitude of risks and levels of exposure causing disabling health effects. The literature suggests consistently elevated risks of developing COPD associated with silica exposure in several occupations, including the construction industry; tunneling; cement industry; brick manufacturing; pottery and ceramic work; silica sand, granite and diatomaceous earth industries; gold mining; and iron and steel founding, with risk estimates being high in some, even after taking into account the effect of confounders like smoking. Average dust levels vary from about 0.5 mg.m3 to over 10 mg.m3 and average silica levels from 0.04 to over 5 mg.m3, often well above occupational standards. Factors influencing the variation from industry to industry in risks associated with exposure to silica-containing dusts include (a) the presence of other minerals in the dust, particularly when associated with clay minerals; (b) the size of the particles and percentage of quartz; (c) the physicochemical characteristics, such as whether the dust is freshly fractured. Longitudinal studies suggest that loss of lung function occurs with exposure to silica dust at concentrations of between 0.1 and 0.2 mg.m3, and that the effect of cumulative silica dust exposure on airflow obstruction is independent of silicosis. Nevertheless, a disabling loss of lung function in the absence of silicosis would not occur until between 30 and 40 years exposure.

  13. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    Science.gov (United States)

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  14. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  15. Zeolite encapsulation of H2

    International Nuclear Information System (INIS)

    Cooper, S.; Lakner, J.F.

    1982-08-01

    Experiments with H 2 have shown that it is possible to encapsulate gases in the structure of certain molecular sieves. This method may offer a better means of temporarily storing and disposing of tritium over some others presently in use. The method may also prove safer, and may enable isotope separation, and removal of 3 He. Initial experiments were performed with H 2 to screen potential candidates for use with tritium

  16. Three-dimensional structure of Au nanoparticles supported on amorphous silica and carbon substrates

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2012-01-01

    Scanning Transmission Electron Microscope (STEM) has been employed to study the three-dimensional structure of gold (Au) nanoparticles deposited by means of thermal evaporation in high vacuum on amorphous silica (a-SiO 2 ) and amorphous carbon (a-C) supports. By performing quantitative analysis on the evolution of the high angle annular dark field (HAADF) images, we studied the influence of the nature and the temperature of support on the growth mode of gold nanoparticles.

  17. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  18. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  19. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  20. Epoxy encapsulant as serendipitous dosimeters during radiological/nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Barkyoumb, J.H. [Carderock Division, Naval Surface Warfare Center, 9500 MacArthur Blvd., West Bethesda, MD 20817-5700 (United States)], E-mail: jhbarky@earthlink.net; Mathur, V.K. [Carderock Division, Naval Surface Warfare Center, 9500 MacArthur Blvd., West Bethesda, MD 20817-5700 (United States)

    2008-02-15

    The radiation response of a smart chip (embedded integrated circuit) module has been reported earlier using the technique of optically stimulated luminescence (OSL). It was found that a smart chip module could be used to evaluate the personnel exposure in the accident dosimetry range. Through subsequent experiments, the radiation sensitivity of the chip module was traced to the epoxy encapsulant provided to protect the chip from the environment and physical damage and that the radiation sensitivity of the epoxy is due to the silica used as the 'filler' for controlling the thixotropic properties of the epoxy used for 'glob top' or 'dam-and-fill' encapsulation. It is desirable to retain the ability to use the smart chip as an accident dosimeter without requiring a modification of standard manufacturing process for which an infrastructure already exists to avoid additional costs. For this reason, we have investigated commercially available filled and unfilled epoxies both as received from the manufacturer and compared their response with epoxies to which commercial fillers are added. In this work we investigate the OSL response of various epoxies commonly used for potting of electronic circuits with and without various filler materials for their potential to be used as a casualty dosimeter in the exposure range of 0.5-10 Gy.

  1. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    Science.gov (United States)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  2. Tin-Platinum catalysts interactions on titania and silica

    International Nuclear Information System (INIS)

    Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.

    2007-01-01

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3 Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated

  3. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

    NARCIS (Netherlands)

    Tourne-Peteilh, C.; Begu, S.; Lerner, D.A.; Galarneau, A.; Lafont, U.; Devoiselle, J.M.

    2011-01-01

    The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a

  4. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  5. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  6. Recovery of gold and uranium from calcines

    Energy Technology Data Exchange (ETDEWEB)

    Livesey-Goldblatt, E.

    1981-10-06

    The invention concerns the recovery of non-ferrous metals, such as gold, uranium or the like from iron oxide containing calcines which have the non-ferrous metal present in solid solution and/or encapsulated within the iron oxide. The calcine is reacted, while stirring vigorously, with sulphuric acid or another strong inorganic acid to cause the iron to form the ferric salt. The material obtained is mixed with water and the liquid and solid phases are separated from each other. The non-ferrous metal is then obtained from at least one of these phases by leaching, or the like.

  7. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules.

    Science.gov (United States)

    Chong, Siow-Feng; Sexton, Amy; De Rose, Robert; Kent, Stephen J; Zelikin, Alexander N; Caruso, Frank

    2009-10-01

    We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto amine-functionalized silica particles. These peptide-coated particles were then used as templates for the layer-by-layer (LbL) deposition of thiolated poly(methacrylic acid) (PMA(SH)) and poly(vinylpyrrolidone) (PVPON) multilayers. Removal of the silica core and disruption of the hydrogen bonding between PMA(SH) and PVPON by altering the solution pH yielded disulfide-stabilized PMA capsules that retain the encapsulated cargo in an oxidative environment. In the presence of a natural reducing agent, glutathione, cleavage of the disulfide bonds causes release of the peptide from the capsules. The developed strategy provides control over peptide loading into polymer capsules and yields colloidally stable micron- and submicron-sized carriers with uniform size and peptide loading. The conjugation and encapsulation procedures were proven to be non-degrading to the peptide vaccines. The peptide-loaded capsules were successfully used to deliver their cargo to APCs and activate CD8 T lymphocytes in a non-human primate model of SIV infection ex vivo. The reported approach represents a novel paradigm in the delivery of peptide vaccines and other therapeutic agents.

  8. A review on chemical methodologies for preparation of mesoporous silica and alumina based materials.

    Science.gov (United States)

    Naik, Bhanudas; Ghosh, Narendra Nath

    2009-01-01

    The discovery of novel family of molecular sieves called M41S aroused a worldwide resurgence in the field of porous materials. According to IUPAC definition inorganic solids that contain pores with diameter in the size range of 20-500 A are considered mesoporous materials. Mesoporous silica and alumina based materials find applications in catalysis, adsorption, host- guest encapsulation etc. This article reviews the current state of art and outline the recent patents in mesoporous materials research in three general areas: Synthesis, various mechanisms involved for porous structure formation and applications of silica and alumina based mesoporous materials.

  9. Encapsulation methods for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  10. Perspective of metal encapsulation of waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-01-01

    A conceptual flow sheet is presented for encapsulating solid, stabilized calcine (e.g., supercalcine) in a solid lead alloy, using existing or developing technologies. Unresolved and potential problem areas of the flow sheet are outlined and suggestions are made as how metal encapsulation might be applied to other solid wastes from the fuel cycle. It is concluded that metal encapsulation is a technique applicable to many forms of solid wastes and is likely to meet future waste isolation criteria and regulations

  11. Nanoporous Silica-Based Protocells at Multiple Scales for Designs of Life and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2015-01-01

    Full Text Available Various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1 to emulate life in order to understand it; and (2 to use biomimicry to engineer desired cellular interactions.

  12. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof

    Science.gov (United States)

    Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas

    2016-03-01

    Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting

  13. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  14. Gold-bearing hydrothermal veins in Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Davidenko, N.M.

    1980-01-01

    Indicators such as the correlation of mineralization to plutonic and vulcanic formations and various facies of metamorphism, the character of the structural-tectonic control of mineralization, characteristics of silica redistribution as well that of calcium, water, and other components in altering ore zones, the specificity of sygenetic fluid inclusions in minerals, morphology, the internal structure and other typomorphic indicators of native gold and its accessories are utilized in the working out of a genetic classification for compiling a complex of diagnostic indicators of post-magmatic mineralization on Chukotka at various depths. Those indicators, in addition to earlier known hydrothermal gold ore formations, can be used to identify still other types of mineralization, particularly pyrite group minerals.

  15. Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Daryoosh Vashaee

    2013-08-01

    Full Text Available Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS and transmission electron microscopy (TEM, which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analyses (TGA, dynamic mechanical thermal analysis (DMTA and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.

  16. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    Science.gov (United States)

    Walton, Nathan Isaac

    hydroboration, to make the nanoparticles into water-dispersible boron carriers that also have potential boron neutron capture therapy (BNCT) applications. Lastly, Chapter 4 provides a general description of NCT, specifically that involving boron-10 and gadolinium-157. It further describes the synthetic methodology used in producing fatty acid coated boron nanoparticles (BNPs). The BNPs are encapsulated with silica to add a hydrophilic shell so that they can potentially be used in biological systems as BNCT agents. The silica shell is also modified with a fluorophore, dansyl chloride, so that the particle hybrid could be imaged during cell studies.

  17. Preliminary investigation of cryopreservation by encapsulation ...

    African Journals Online (AJOL)

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star, a new commercial ornamental orchid hybrid, were cryopreserved by an encapsulation-dehydration technique. The effects of PLB size, various sucrose concentrations in preculture media and sodium alginate concentration for encapsulation were the main ...

  18. Different encapsulation strategies for implanted electronics

    Directory of Open Access Journals (Sweden)

    Winkler Sebastian

    2017-09-01

    Full Text Available Recent advancements in implant technology include increasing application of electronic systems in the human body. Hermetic encapsulation of electronic components is necessary, specific implant functions and body environments must be considered. Additional functions such as wireless communication systems require specialized technical solutions for the encapsulation.

  19. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  20. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  1. Limonene encapsulation in freeze dried gellan systems.

    Science.gov (United States)

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  3. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Prager, L., E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Helmstedt, U. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Herrnberger, H. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Kahle, O. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany); Kita, F. [AZ Electronic Materials Germany GmbH, Rheingaustraße 190-196, 65203 Wiesbaden (Germany); Münch, M. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Pender, A.; Prager, A.; Gerlach, J.W. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Stasiak, M. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany)

    2014-11-03

    Based on results of preceding research and development, thin gas barriers were made by wet application of perhydropolysilazane solution onto polymer films and its subsequent photo-initiated conversion to dense silica layers applying vacuum ultraviolet irradiation. Compared to the state of the art, these layers were sufficiently improved and characterized by spectroscopic methods, by scanning electron microscopy and by gas permeation measurements. Water vapor transmission rates (WVTR) below 10{sup −2} g m{sup −2} d{sup −1} were achieved. In this way, single barrier films were developed and produced on a pilot plant from roll to roll, 250 mm wide, at speeds up to 10 m min{sup −1}. Two films were laminated using adhesives curable with ultraviolet (UV) light and evaluated by peel tests, gas permeation measurement and climate testing. It could be shown that the described high-barrier laminates which exhibit WVTR ≈ 5 × 10{sup −4} g m{sup −2} d{sup −1}, determined by the calcium mirror method, are suitable for encapsulation of flexible thin-film photovoltaic modules. Durability of the encapsulated modules could be verified in several climate tests including damp-heat, thermo-cycle (heating, freezing, wetting) and UV exposures which are equivalent to more than 20 years of endurance at outdoor conditions in temperate climate. In the frame of further research and technical development it seems to be possible to design a cost efficient industrial scale process for the production of encapsulation films for photovoltaic applications. - Highlights: • Dense silica barrier layers were developed by a photochemical approach. • Polymer based barrier films were laminated yielding flexible high-barrier films. • Using these laminates photovoltaic test modules were encapsulated and tested. • A durability of more than 20 years at outdoor conditions could be proved.

  4. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  5. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  6. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Suraja, P V; Binitha, N N; Yaakob, Z; Silija, P P, E-mail: binithann@yahoo.co.in [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-02-15

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4{center_dot}3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  7. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    Science.gov (United States)

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  8. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  9. Silica exposure and silicosis among Ontario hardrock miners: II. Exposure estimates.

    Science.gov (United States)

    Verma, D K; Sebestyen, A; Julian, J A; Muir, D C; Schmidt, H; Bernholz, C D; Shannon, H S

    1989-01-01

    An epidemiological investigation was carried out to determine the relationship between silicosis in hardrock miners in Ontario and cumulative exposure to silica (free crystalline silica--alpha quartz) dust. This second report describes a side-by-side air-sampling program used to derive a konimeter/gravimetric silica conversion curve. A total of 2,360 filter samples and 90,000 konimeter samples were taken over 2 years in two mines representing the ore types gold and uranium, both in existing conditions as well as in an experimental stope in which dry drilling was used to simulate the high dust conditions of the past. The method of calculating cumulative respirable silica exposure indices for each miner is reported.

  10. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  11. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  12. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  13. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    Science.gov (United States)

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  14. Application of Super-Amphiphilic Silica-Nanogel Composites for Fast Removal of Water Pollutants

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2016-10-01

    Full Text Available This work first reports the preparation of super-amphiphilic silica-nanogel composites to reduce the contact angle of water to increase the diffusion of pollutant into adsorbents. In this respect, the silica nanoparticles were encapsulated into nanogels based on ionic and nonionic polyacrylamides by dispersion polymerization technique. The morphologies and the dispersion stability of nanogel composites were investigated to clarify the ability of silica-nanogel composites to adsorb at different interfaces. The feasibility of silica polyacrylamide nanogel composites to act as a high-performance adsorbent for removal of methylene blue (MB dye and heavy metals (Co2+ and Ni2+ from aqueous solution was investigated. The surface tension, contact angle, average pore size, and zeta potential of the silica-nanogel composites have been evaluated. The MB dye and heavy metal adsorption capacity achieved Qmax = 438–387 mg/g which is considerably high. The adsorption capacity results are explained from the changes in the morphology of the silica surfaces as recorded from scanning electron microscopy (SEM.

  15. Interconnected mesopores and high accessibility in UVM-7-like silicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cabero, Monica [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Hungria, Ana B. [Universidad de Cadiz, Departamento de Ciencia de Materiales, Ingenieria Metalurgica y Quimica Inorganica (Spain); Morales, Jose Manuel [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Tortajada, Marta; Ramon, Daniel [Biopolis S. L. (Spain); Moragues, Alaina; El Haskouri, Jamal; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro, E-mail: pedro.amoros@uv.es [Universitat de Valencia, Institut de Ciencia dels Materials (Spain)

    2012-08-15

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  16. Interconnected mesopores and high accessibility in UVM-7-like silicas

    International Nuclear Information System (INIS)

    Pérez-Cabero, Mónica; Hungría, Ana B.; Morales, José Manuel; Tortajada, Marta; Ramón, Daniel; Moragues, Alaina; El Haskouri, Jamal; Beltrán, Aurelio; Beltrán, Daniel; Amorós, Pedro

    2012-01-01

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  17. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  18. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  19. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  20. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  1. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge; Huang Jinfeng; Chen Yuxin; Lan Shi

    2011-01-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  2. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  3. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings

    Science.gov (United States)

    Ruggiero, Ludovica; Crociani, Laura; Zendri, Elisabetta; El Habra, Naida; Guerriero, Paolo

    2018-05-01

    In the last decade many commercial biocides were gradually banned for toxicity. This work reports, for the first time, the synthesis and characterization of silica nanocontainers loaded with a natural product antifoulant (NPA), the zosteric sodium salt which is a non-commercial and environmentally friendly product with natural origin. The synthesis approach is a single step dynamic self-assembly with tetraethoxysilane (TEOS) as silica precursor. Unlike conventional mesoporous silica nanoparticles, the structure of these silica nanocontainers provides loading capacity and allows prolonged release of biocide species. The obtained nanocapsules have been characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The encapsulation was checked by FTIR ATR spectroscopy and thermogravimetric analyses. The results of the release studies show the great potential of the here presented newly developed nanofillers in all applications where a controlled release of non-toxic and environmentally friendly biocides is required.

  4. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures

    NARCIS (Netherlands)

    Hove, ten J.B.; Wang, J.; Leeuwen, van F.W.B.; Velders, A.H.

    2017-01-01

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold

  5. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin

    2012-02-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda\\'s method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  6. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin; Burel, Laurence; Tuel, Alain; Caps, Valerie

    2012-01-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda's method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  7. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays.

    Science.gov (United States)

    Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol

    2017-08-16

    In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al 2 O 3 , Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10 -6 g/m 2 /day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m 2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation

  8. Metal-organic framework templated electrodeposition of functional gold nanostructures

    International Nuclear Information System (INIS)

    Worrall, Stephen D.; Bissett, Mark A.; Hill, Patrick I.; Rooney, Aidan P.; Haigh, Sarah J.; Attfield, Martin P.; Dryfe, Robert A.W.

    2016-01-01

    Highlights: • Electrodeposition of anisotropic Au nanostructures templated by HKUST-1. • Au nanostructures replicate ∼1.4 nm pore spaces of HKUST-1. • Encapsulated Au nanostructures active as SERS substrate for 4-fluorothiophenol. - Abstract: Utilizing a pair of quick, scalable electrochemical processes, the permanently porous MOF HKUST-1 was electrochemically grown on a copper electrode and this HKUST-1-coated electrode was used to template electrodeposition of a gold nanostructure within the pore network of the MOF. Transmission electron microscopy demonstrates that a proportion of the gold nanostructures exhibit structural features replicating the pore space of this ∼1.4 nm maximum pore diameter MOF, as well as regions that are larger in size. Scanning electron microscopy shows that the electrodeposited gold nanostructure, produced under certain conditions of synthesis and template removal, is sufficiently inter-grown and mechanically robust to retain the octahedral morphology of the HKUST-1 template crystals. The functionality of the gold nanostructure within the crystalline HKUST-1 was demonstrated through the surface enhanced Raman spectroscopic (SERS) detection of 4-fluorothiophenol at concentrations as low as 1 μM. The reported process is confirmed as a viable electrodeposition method for obtaining functional, accessible metal nanostructures encapsulated within MOF crystals.

  9. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  10. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  11. Comparison of the Acidity of Heteropolyacids Encapsulated in or Impregnated on SBA-15

    Directory of Open Access Journals (Sweden)

    Pinto Teresa

    2016-03-01

    Full Text Available Heteropolyacids (HPA immobilized onto SBA-15 silica were prepared by two different ways using either impregnation or encapsulation methodologies. Two Keggin-type HPA, H3PW12O40 and H4SiW12O40 were considered in this study. The resulting hybrid materials were fully characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, Raman, diffuse reflectance UV-Vis spectroscopies and 31P MAS NMR. All characterization methods showed that at room temperature the catalysts contained well-dispersed and intact Keggin units throughout the solid. The catalytic activity of these solids was investigated in the isomerization of n-hexane. The impregnated and encapsulated phosphotungstic catalysts performed similarly in catalysis showing that the amount of active sites was nearly the same in both catalysts. On the contrary, the tungstosilicic encapsulated material was completely inactive while its impregnated counterpart was even more active than the phosphotungstic derived catalysts. The acidity of the solids was measured by various methods: microcalorimetry of ammonia adsorption, ammonia desorption followed by Temperature Programmed Desorption (TPD and DRIFT/GC-MS and pyridine adsorption followed by infrared spectroscopy. Only pyridine adsorption and ammonia desorption followed by DRIFT/GC-MS agreed with the catalytic data. Ammonia adsorption followed by microcalorimetry was not able to differentiate between the four catalysts while the TPD experiments led to unreliable results, as not only the evolved ammonia but also other molecules such as water were taken into account in the measurements. The behavior difference between the encapsulated silico- and phosphotungstic acids was explained by a more pronounced encapsulation in the case of silicon.

  12. Nutritional management of encapsulating peritoneal sclerosis with ...

    African Journals Online (AJOL)

    Keywords: intradialytic parenteral nutrition, nutritional management, encapsulating peritoneal sclerosis ... reflection of fluid retention and the underlying inflammatory process, ... The patient appeared weak and frail, with severe generalised muscle ... was recommended on diagnosis of EPS to prevent further peritoneal.

  13. Sclerosing encapsulating peritonitis: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Candido, Paula de Castro Menezes; Werner, Andrea de Freitas; Pereira, Izabela Machado Flores; Matos, Breno Assuncao; Pfeilsticker, Rudolf Moreira; Silva Filho, Raul, E-mail: paulacmcandido@yahoo.com.br [Hospital Felicio Rocho, Belo Horizonte, MG (Brazil)

    2015-01-15

    Sclerosing encapsulating peritonitis, a rare cause of bowel obstruction, was described as a complication associated with peritoneal dialysis which is much feared because of its severity. The authors report a case where radiological findings in association with clinical symptoms have allowed for a noninvasive diagnosis of sclerosing encapsulating peritonitis, emphasizing the high sensitivity and specificity of computed tomography to demonstrate the characteristic findings of such a condition. (author)

  14. Encapsulated Islet Transplantation: Where Do We Stand?

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E

    2017-01-01

    Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.

  15. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  16. Silica research in Glasgow

    International Nuclear Information System (INIS)

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  17. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Toward a Climate-Specific Test

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Hacke, Peter L.; Kempe, Michael D.; Wohlgemuth, John H.; Annigoni, Eleonora; Sculati-Meillaud, Fanny; Ballion, Amal; Kohl, Michael; Bokria, Jayesh G.; Bruckman, Laura S.; French, Roger H.; Burns, David; Phillips, Nancy H.; Feng; Jiangtao; Elliott, Lamont; Scott, Kurt P.; Fowler, Sean; Gu, Xiaohong; Honeker, Christian C.; Khonkar, Hussam; Perret-Aebi, Laure-Emmanuelle; Shioda, Tsy

    2015-06-14

    Reduced optical transmittance of encapsulation resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xe, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests. Index Terms -- reliability, durability, thermal activation.

  18. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  19. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  20. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  1. Encapsulated Nanoparticle Synthesis and Characterization for Improved Storage Fluids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G. C.; Pradhan, S.; Kang, J.; Curtis, C.; Blake, D.

    2010-10-01

    Nanoparticles are typically composed of 50--500 atoms and exhibit properties that are significantly different from the properties of larger, macroscale particles that have the same composition. The addition of these particles to traditional fluids may improve the fluids' thermophysical properties. As an example, the addition of a nanoparticle or set of nanoparticles to a storage fluid may double its heat capacity. This increase in heat capacity would allow a sensible thermal energy storage system to store the same amount of thermal energy in half the amount of storage fluid. The benefit is lower costs for the storage fluid and the storage tanks, resulting in lower-cost electricity. The goal of this long-term research is to create a new class of fluids that enable concentrating solar power plants to operate with greater efficiency and lower electricity costs. Initial research on this topic developed molecular dynamic models that predicted the energy states and transition temperatures for these particles. Recent research has extended the modeling work, along with initiating the synthesis and characterization of bare metal nanoparticles and metal nanoparticles that are encapsulated with inert silica coatings. These particles possess properties that make them excellent candidates for enhancing the heat capacity of storage fluids.

  2. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  3. Enhancement of catalyst performance in the direct propene epoxidation: a study into gold-titanium synergy

    NARCIS (Netherlands)

    Chen, J.; Halin, S.J.A.; Pidko, E.A.; Verhoeven, M.W.G.M.; Perez Ferrandez, D.M.; Hensen, E.J.M.; Schouten, J.C.; Nijhuis, T.A.

    2013-01-01

    Enhanced productivity toward propene oxide in the direct propene epoxidation with hydrogen and oxygen over gold nanoparticles supported on titanium-grafted silica was achieved by adjusting the gold–titanium synergy. Highly isolated titanium sites were obtained by lowering the titanium loading

  4. Kinetics of the water formation in the propene epoxidation over gold-titania catalysts

    NARCIS (Netherlands)

    Nijhuis, T.A.; Weckhuysen, B.M.

    2007-01-01

    The kinetics of the hydrogen oxidation were determined for a number of different gold catalysts supported on titania, silica, and silicalite-1. A dual site Langmuir-Hinshelwood kinetic model was able to describe the reaction well. The kinetic parameters are independent of the support. Water was

  5. Development of gold nanoparticle radiotracers for investigating multiphase system in process industries

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Jaafar Abdullah; Engku Fahmi Engku Chik; Noraishah Othman

    2010-01-01

    This paper describes the development of colloidal 197 Au-SiO 2 with core-shell structure nanoparticle radiotracers. Using conventional citrate-reduction method, gold nanoparticles were prepared from its corresponding metal salts in aqueous solution then coated with uniform shells of amorphous silica via a sol-gel reaction. This target material of radiotracer application used to investigate multiphase system in process industries without disturbing the system operation. The citrate-reduction-based method provides gold nanoparticles with higher concentration and narrow size distribution. By using transmission electron microscopy (TEM), the resultant of particle size and silica coatings could be varied from tens to several hundred of nanometers by controlling the catalyzer and precipitation time. 197 Au-SiO 2 core-shell nano structure is good to prevent the particles from getting conglomerate resulting in a big mass. In addition, silica surface offer very good chances that make the hydrophobicity behavior on the gold nanoparticles. EDXRF spectrum has proven that 197 Au-SiO 2 core-shell nanoparticles sample consists purely of a gold and silica particles. (author)

  6. Gold, nickel and copper mining and processing.

    Science.gov (United States)

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.

  7. Encapsulation in the food industry: a review.

    Science.gov (United States)

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  8. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  9. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  10. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    Science.gov (United States)

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.

  11. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  12. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  13. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Aqeel eAshraf

    2015-08-01

    Full Text Available Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol–gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol–gel SiO2 is non-toxic and safe, whereas the sol–gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  14. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  15. Encapsulation layer design and scalability in encapsulated vertical 3D RRAM

    International Nuclear Information System (INIS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Chen, Gong; Pan, Yue; Yang, Xue; Yin, Minghui; Yang, Yuchao; Li, Ming; Cai, Yimao; Huang, Ru

    2016-01-01

    Here we propose a novel encapsulated vertical 3D RRAM structure with each resistive switching cell encapsulated by dielectric layers, contributing to both the reliability improvement of individual cells and thermal disturbance reduction of adjacent cells due to the effective suppression of unwanted oxygen vacancy diffusion. In contrast to the traditional vertical 3D RRAM, encapsulated bar-electrodes are adopted in the proposed structure substituting the previous plane-electrodes, thus encapsulated resistive switching cells can be naturally formed by simply oxidizing the tip of the metal bar-electrodes. In this work, TaO x -based 3D RRAM devices with SiO 2 and Si 3 N 4 as encapsulation layers are demonstrated, both showing significant advantages over traditional unencapsulated vertical 3D RRAM. Furthermore, it was found thermal conductivity and oxygen blocking ability are two key parameters of the encapsulation layer design influencing the scalability of vertical 3D RRAM. Experimental and simulation data show that oxygen blocking ability is more critical for encapsulation layers in the relatively large scale, while thermal conductivity becomes dominant as the stacking layers scale to the sub-10 nm regime. Finally, based on the notable impacts of the encapsulation layer on 3D RRAM scaling, an encapsulation material with both excellent oxygen blocking ability and high thermal conductivity such as AlN is suggested to be highly desirable to maximize the advantages of the proposed encapsulated structure. The findings in this work could pave the way for reliable ultrahigh-density storage applications in the big data era. (paper)

  16. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  17. A series of intrinsically chiral gold nanocage structures.

    Science.gov (United States)

    Liu, X J; Hamilton, I P

    2017-07-27

    We present a series of intrinsically chiral gold nanocage structures, Au 9n+6 , which are stable for n ≥ 2. These structures consist of an Au 9n tube which is capped with Au 3 units at each end. Removing the Au 3 caps, we obtain a series of intrinsically chiral gold nanotube structures, Au 9n , which are stable for n ≥ 4. The intrinsic chirality of these structures results from the helicity of the gold strands which form the tube and not because an individual Au atom is a chiral center. The symmetry of these structures is C 3 and substructures of gold hexagons with a gold atom in the middle are particularly prominent. We focus on the properties of Au 42 (C 3 ) and Au 105 (C 3 ) which are the two smallest gold nanocage structures to be completely tiled by these Au 7 "golden-eye" substructures. Our main focus is on Au 42 (C 3 ) since gold clusters in the 40-50 atom regime are currently being investigated in gas phase experiments. We show that the intrinsically chiral Au 42 cage structure is energetically comparable with previously reported achiral cage and compact Au 42 structures. Cage structures are of particular interest because species can be encapsulated (and stabilized) inside the cage and we provide strong evidence that Au 6 @Au 42 (C 3 ) is the global minimum Au 48 structure. The intrinsically chiral gold nanocage structures, which exhibit a range of size-related properties, have potential applications in chiral catalysis and as components in nanostructured devices.

  18. Tin-Platinum catalysts interactions on titania and silica

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)], E-mail: tnava@imp.mx; Del Angel, P. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Salmones, J. [Instituto Politecnico Nacional-ESIQIE UPALM, 07738 Mexico, D.F. (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brasil (Brazil); Santiago, P. [Instituto de Fisica, UNAM, Mexico, D. F., 04510 Mexico (Mexico)

    2007-09-30

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO{sub 2} after calcinations, and Pt{sub 3}Sn, PtSn and PtSn{sub 3} after reduction. Rietveld analysis shows that some Ti{sup 4+} are replaced by Sn{sup 4+} atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  19. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  20. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  1. On the formation of protected gold nanoparticles from AuCl4- by the reduction using aromatic amines

    International Nuclear Information System (INIS)

    Subramaniam, Chandramouli; Tom, Renjis T.; Pradeep, T.

    2005-01-01

    Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy

  2. Thiolated Chitosan Masked Polymeric Microspheres with Incorporated Mesocellular Silica Foam (MCF for Intranasal Delivery of Paliperidone

    Directory of Open Access Journals (Sweden)

    Stavroula Nanaki

    2017-11-01

    Full Text Available In this study, mesocellular silica foam (MCF was used to encapsulate paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. MCF with the drug adsorbed was further encapsulated into poly(lactic acid (PLA and poly(lactide-co-glycolide (PLGA 75/25 w/w microspheres and these have been coated with thiolated chitosan. As found by TEM analysis, thiolated chitosan formed a thin layer on the polymeric microspheres’ surface and was used in order to enhance their mucoadhesiveness. These microspheres aimed at the intranasal delivery of paliperidone. The DSC and XRD studies showed that paliperidone was encapsulated in amorphous form inside the MCF silica and for this reason its dissolution profile was enhanced compared to the neat drug. In coated microspheres, thiolated chitosan reduced the initial burst effect of the paliperidone dissolution profile and in all cases sustained release formulations have been prepared. The release mechanism was also theoretically studied and three kinetic models were proposed and successfully fitted for a dissolution profile of prepared formulations to be found.

  3. Nondestructive Assay Options for Spent Fuel Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jansson, Peter [Uppsala Univ. (Sweden)

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  4. Suppression of intrinsic roughness in encapsulated graphene

    DEFF Research Database (Denmark)

    Thomsen, Joachim Dahl; Gunst, Tue; Gregersen, Søren Schou

    2017-01-01

    Roughness in graphene is known to contribute to scattering effects which lower carrier mobility. Encapsulating graphene in hexagonal boron nitride (hBN) leads to a significant reduction in roughness and has become the de facto standard method for producing high-quality graphene devices. We have...... fabricated graphene samples encapsulated by hBN that are suspended over apertures in a substrate and used noncontact electron diffraction measurements in a transmission electron microscope to measure the roughness of encapsulated graphene inside such structures. We furthermore compare the roughness...... of these samples to suspended bare graphene and suspended graphene on hBN. The suspended heterostructures display a root mean square (rms) roughness down to 12 pm, considerably less than that previously reported for both suspended graphene and graphene on any substrate and identical within experimental error...

  5. Encapsulation - how it will be achieved

    International Nuclear Information System (INIS)

    Barlow, P.

    1990-01-01

    The work of the new Encapsulation Plant at British Nuclear Fuel Limited's (BNFL) Sellafield site is described in this article. Intermediate-level radioactive materials are encapsulated in a cement matrix in 500 litre stainless steel drums suitable for storage, transport and disposal. The drums will be stored in an above-ground air-cooled store until UK Nirex Limited have built the planned underground disposal facility. The concept of product specification is explored as it applies to the four stages of nuclear waste management, namely, processing, storage, transport and disposal. By following this approach the encapsulation plant will work within government regulations and the public concerns over safety and environmental issues can be met. U.K

  6. A study on the recovery of valuable resources from abandoned gold mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Young-Bae [Korea Institute of Geology Mining and Materials, Taejon (Korea); Jeong, Soo-Bok; Yoon, Pyoung-Ran [Chonbuk National University, Chonju (Korea)

    1999-08-31

    This study was carried out to, recover gold and silica from abandoned gold mine tailings with about 4.5 g/ton Au and 84.88 wt.% SiO{sub 2}. The beneficiation processes including crushing, screening, magnetic and gravity (humprey spiral, shaking table) separation were employed. Results were feasible to recover the gold concentrates (307.7 g/ton Au:0.60 wt.%, 97.7 g/ton Au:0.27 wt.%, 15.3 g/ton Au:5.23 wt.%, 27.2 g/ton Au:2.42 wt.%) and silica (96.40 wt.% SiO{sub 2}, yield 60.65 wt.%). (author). 6 refs., 5 tabs., 1 fig.

  7. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  8. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  9. Encapsulated social perception of emotional expressions.

    Science.gov (United States)

    Smortchkova, Joulia

    2017-01-01

    In this paper I argue that the detection of emotional expressions is, in its early stages, informationally encapsulated. I clarify and defend such a view via the appeal to data from social perception on the visual processing of faces, bodies, facial and bodily expressions. Encapsulated social perception might exist alongside processes that are cognitively penetrated, and that have to do with recognition and categorization, and play a central evolutionary function in preparing early and rapid responses to the emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Suitability of cement encapsulated ILW for transport

    International Nuclear Information System (INIS)

    Fitzpatrick, J.

    1989-01-01

    ILW arising during the reprocessing of nuclear fuel is to be encapsulated in cement in nominal 500-litre drums. It is important that the waste package produced can be safely transported to a deep repository. Preliminary assessments of the performances of waste packages during transport for a number of the ILW streams to be generated at Sellafield have been carried out. The results show that the proposed encapsulation process produces a waste package which can be transported to an acceptable standard of safety and which does not prejudice any aspects of transport. (author)

  11. Preparation and characterization of quercetin-loaded silica microspheres stabilized by combined multiple emulsion and sol-gel processes

    Directory of Open Access Journals (Sweden)

    Kim Young Ho

    2015-01-01

    Full Text Available Despite exhibiting a wide spectrum of cosmeceutical properties, flavonoids and related compounds have some limitations related to their stability and solubility in distilledwater. In this project, we prepared silica microspheres using a novel method that uses polyol-in-oil-in-water (P/O/W emulsion and sol-gel methods as techniques for stabilizing quercetin. A stable microsphere suspension was successfully preparedusing a mixed solvent system comprising a polyol-phase medium for performing the sol-gel processing of tetraethyl orthosilicate (TEOS as an inorganic precursor with outer water phase. The morphology of the microsphere was evaluated using a scanning electron microscope (SEM, which showed a characteristic spherical particle shape with a smooth surface. Furthermore, SEM/EDSanalysis of a representative microsphere demonstrated that the inner structure of the silica microspheres was filled with quercetin. The mean diameter of the microsphere was in the range 20.6-35.0 μm, and the encapsulation efficiency ranged from 17.8% to 27.5%. The free and encapsulated quercetin samples were incubated in separateaqueous solutions at 25 and 42°C for 28 days. The residualcontent of the quercetin encapsulated by silica microspheres was 82% at 42°C. In contrast, that of the free quercetin stored at 42°C decreased to ~24%.

  12. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    Science.gov (United States)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  13. Relationship between sol-gel conditions and enzyme stability: a case study with β-galactosidase/silica biocatalyst for whey hydrolysis.

    Science.gov (United States)

    Escobar, Sindy; Bernal, Claudia; Mesa, Monica

    2015-01-01

    The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.

  14. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  15. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  16. Alteration zones: are they a good target for gold deposits in Egypt

    International Nuclear Information System (INIS)

    Botros, N.S.

    2002-01-01

    Extensive rock alterations are a clearly visible characteristic of most Egyptian gold deposits and occurrences. The alterations occur either surrounding the auriferous quartz veins and/or structurally controlled by specific structural features, such as fractures and shear surfaces. Some samples of these alteration zones have proved to be anomalously enriched in gold while others are completely barren. Accordingly there is a controversy on the merit of alteration zones as good lead to gold. Here, the various types of wall rocks wall-rock alteration are reviewed with a discussion on the possible reaction that could have generated them. It is concluded that two main styles of alterations could be recognized in the field. The first results during the liberation of gold from the source rocks, and is characterized by being widely distributed and spatial relation to major structures. The second style, however, is related to the deposition of gold and is recognizable only within a few meters of the auriferous quartz veins. The potentiality of each style is discussed and applications of concept are offered. In general, alterations accompanying the liberation of gold are not completely devoid of gold, but may still retain some gold depending on the mineralogical siting of gold in the source rocks. Moreover, this type of alteration is a good criterion for the presence of gold in the nearby sites. Alterations accompanying deposition of gold, on the other hand, constitute a good target for gold particularly the portions that are dissected by minor quartz veins, veinlets and stockworks (silicification) where gold is believed to migrate to such sites with silica liberated during the different types of alterations. The presence of some efficient precipitants, such as sulphides, carbonates, clay minerals, sericites, iron oxides, chlorite and graphite in the alteration zones is a good indicator of the alteration zone. (author)

  17. Process for manufacturing hollow fused-silica insulator cylinder

    Science.gov (United States)

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  18. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART).

    Science.gov (United States)

    Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  19. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    International Nuclear Information System (INIS)

    Lewis, Jason S.

    2012-01-01

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) (1,2). These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) (2). A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) (3). Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles (1). Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  20. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  1. Modeling an array of encapsulated germanium detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A probability model has been presented for understanding the operation of an array of encapsulated germanium detectors generally known as composite detector. The addback mode of operation of a composite detector has been described considering the absorption and scattering of γ-rays. Considering up to triple detector hit events, we have obtained expressions for peak-to-total and peak-to-background ratios of the cluster detector, which consists of seven hexagonal closely packed encapsulated HPGe detectors. Results have been obtained for the miniball detectors comprising of three and four seven hexagonal closely packed encapsulated HPGe detectors. The formalism has been extended to the SPI spectrometer which is a telescope of the INTEGRAL satellite and consists of nineteen hexagonal closely packed encapsulated HPGe detectors. This spectrometer comprises of twelve detector modules surrounding the cluster detector. For comparison, we have considered a spectrometer comprising of nine detector modules surrounding the three detector configuration of miniball detector. In the present formalism, the operation of these sophisticated detectors could be described in terms of six probability amplitudes only. Using experimental data on relative efficiency and fold distribution of cluster detector as input, the fold distribution and the peak-to-total, peak-to-background ratios have been calculated for the SPI spectrometer and other composite detectors at 1332 keV. Remarkable agreement between experimental data and results from the present formalism has been observed for the SPI spectrometer.

  2. Encapsulation of thermal energy storage media

    Science.gov (United States)

    Dhau, Jaspreet; Goswami, Dharendra; Jotshi, Chand K.; Stefanakos, Elias K.

    2017-09-19

    In one embodiment, a phase change material is encapsulated by forming a phase change material pellet, coating the pellet with flexible material, heating the coated pellet to melt the phase change material, wherein the phase change materials expands and air within the pellet diffuses out through the flexible material, and cooling the coated pellet to solidify the phase change material.

  3. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    Science.gov (United States)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  4. Magic ferritin: A novel chemotherapeutic encapsulation bullet

    International Nuclear Information System (INIS)

    Simsek, Ece; Akif Kilic, Mehmet

    2005-01-01

    The dissociation of apoferritin into subunits at pH 2 followed by its reformation at pH 7.4 in the presence of doxorubicin-HCl gives rise to a solution containing five doxorubicin-HCl molecules trapped within the apoferritin. This is the first report showing that ferritin can encapsulate an anti-cancer drug into its cavity

  5. Bioactive Compounds And Encapsulation Of Yanang ( Tiliacora ...

    African Journals Online (AJOL)

    Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability ...

  6. Secure Hybrid Encryption from Weakened Key Encapsulation

    NARCIS (Netherlands)

    D. Hofheinz (Dennis); E. Kiltz (Eike); A. Menezes

    2007-01-01

    textabstractWe put forward a new paradigm for building hybrid encryption schemes from constrained chosen-ciphertext secure (CCCA) key-encapsulation mechanisms (KEMs) plus authenticated symmetric encryption. Constrained chosen-ciphertext security is a new security notion for KEMs that we propose. It

  7. Factors influencing insulin secretion from encapsulated islets

    NARCIS (Netherlands)

    de Haan, BJ; Faas, MM; de Vos, P

    2003-01-01

    Adequate regulation of glucose levels by a microencapsulated pancreatic islet graft requires a minute-to-minute regulation of blood glucose. To design such a transplant, it is mandatory to have sufficient insight in factors influencing the kinetics of insulin secretion by encapsulated islets. The

  8. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  9. Nanoprecipitation process: From encapsulation to drug delivery.

    Science.gov (United States)

    Martínez Rivas, Claudia Janeth; Tarhini, Mohamad; Badri, Waisudin; Miladi, Karim; Greige-Gerges, Hélène; Nazari, Qand Agha; Galindo Rodríguez, Sergio Arturo; Román, Rocío Álvarez; Fessi, Hatem; Elaissari, Abdelhamid

    2017-10-30

    Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been used in the pharmaceutical and agricultural research as clean alternative for other drug carrier formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation, growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility. In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles. Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds. Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds. As a whole, process and formulation related parameters in nanoprecipitation technique have critical effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the biodistribution of the active loaded nanoparticles in different organs after administration via various routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two phases: a first phase of "burst release" which is followed by a second phase of prolonged release. Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Antidiabetic activity from cinnamaldydhe encapsulated by nanochitosan

    Science.gov (United States)

    Purbowatingrum; Ngadiwiyana; Fachriyah, E.; Ismiyarto; Ariestiani, B.; Khikmah

    2018-04-01

    Diabetes mellitus (DM) is a disease characterized by chronic hyperglycemia and metabolic disorders of carbohydrates, proteins, and fats due to reduced function of insulin. Treatment of diabetes can be done by insulin therapy or hypoglycemic drugs. Hypoglycemic drugs usually contain compounds that can inhibit the action of α-glucosidase enzymes that play a role in breaking carbohydrates into blood sugar. Cinnamaldehyde has α-glucosidase inhibit activity because it has a functional group of alkene that is conjugated with a benzene ring and a carbonyl group. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74%. Inhibition test result showed that cinnamaldehyde-chitosan nanoparticles at 100 ppm could inhibit α-glucosidase activity in 23.9% with 134,13 in IC50. So it can be concluded that cinnamaldehyde can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  12. Process for encapsulating active agents in gels

    NARCIS (Netherlands)

    Yilmaz, G.; Jongboom, R.O.J.; Oosterhaven, J.

    2001-01-01

    The present invention relates to a process for encapsulating an active agent in a biopolymer in the form of a gel, comprising the steps of: a) forming a dispersion or solution of the biopolymer in water; and b) adding the active agent to the dispersion or solution obtained in step a); wherein the

  13. Treatment of Diabetes with Encapsulated Islets

    NARCIS (Netherlands)

    de Vos, Paul; Spasojevic, Milica; Faas, Marijke M.; Pedraz, JL; Orive, G

    2010-01-01

    Cell encapsulation has been proposed for the treatment of a wide variety of diseases since it allows for transplantation of cells in the absence of undesired immunosuppression. The technology has been proposed to be a solution for the treatment of diabetes since it potentially allows a mandatory

  14. Plastic Encapsulated Microcircuits (PEMs) Reliability Guide

    Science.gov (United States)

    Sandor, M.

    2000-01-01

    It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.

  15. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating

    Directory of Open Access Journals (Sweden)

    Minjeong Kim

    2018-02-01

    Full Text Available The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO3 crystals; layer-by-layer (LbL coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO3 crystal size, which is dependent on CaCl2/Na2CO3 concentration. The microalgal cells could be embedded in CaCO3 crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe3O4 magnetic nanoparticles, and carbon nanotubes (CNTs, by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  16. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

    Science.gov (United States)

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-02-13

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  17. Flash vaporization during earthquakes evidenced by gold deposits

    Science.gov (United States)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  18. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  19. On the crypto-explosive crater and its relation with gold mineralization in larma Au-U deposit

    International Nuclear Information System (INIS)

    Chen Guohua; Jing Hongxiang; Huang Shutao

    1998-01-01

    A new type of gold mineralization-controlling structure-hydrothermal crypto-explosive crater was identified at the Larma gold-uranium deposit in the border regions between Gansu and Sichuan provinces, western China. The hydrothermal crypto-explosive crater is ellipse-shaped at the surface, while funnel-like in profile. A silica-cap composed of hydrothermal siliceous breccia is distributed at the top of the crater, while hydrothermal crypto-explosive breccia are in the centre. The configuration of the crater is roughly consistent with the distribution of gold ore bodies. The formation mechanism of the crater is: first, a silica cap composed of hydrothermal siliceous metasomatic rock was formed at the contact area between the siliceous rock and the slate, and blocked the movement of hydrothermal fluid and resulted in the appearance of over-pressed geothermal environment. Then, at 49.5 Ma, the rejuvenation of the EW-striking faults in larma area resulted in the breaking of the brittle silica cap, followed by the crypto-explosion of hydrothermal fluid. In Larma gold-uranium deposit, the hydrothermal crypto-explosion gave rise to the precipitation of gold from the hydrothermal fluid, while the crypto-explosive crater provided the space for gold mineralization

  20. Photocatalytic degradation of methyl red dye by silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Y. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt); Abd El-Wahed, M.G. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mahmoud, M.A. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: mahmoudchem@yahoo.com

    2008-06-15

    Silica nanoparticles (SiO{sub 2} NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO{sub 2} NPs and SiO{sub 2} NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO{sub 2} NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO{sub 2} NPs, SiO{sub 2} NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO{sub 2} NPs coated with Ag NPs, SiO{sub 2} NPs coated with Au NPs, Ag{sup +}-doped SiO{sub 2} NPs, and Au{sup 3+}-doped SiO{sub 2} NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.

  1. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  2. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  3. Facts and Fantasies about Gold

    OpenAIRE

    Klement, Joachim

    2015-01-01

    Due to the increasing popularity of gold as an investment the demand for effective risk management techniques for gold investments has increased as well. In this paper we analyze several drivers of the price of gold that have been proposed in the past. Our analysis indicates that short-term volatility of the price of gold remains rather unpredictable with many of the explanations like the fund flows in physical gold ETF either unreliable or unstable over time. Our analysis suggests that there...

  4. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  5. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

    Energy Technology Data Exchange (ETDEWEB)

    Loskutov, Alexander I., E-mail: ailoskutov@yandex.ru [Moscow State Technological University STANKIN (Russian Federation); Guskova, Olga A. [Leibniz Institute of Polymer Research Dresden (Germany); Grigoriev, Sergey N.; Oshurko, Vadim B. [Moscow State Technological University STANKIN (Russian Federation); Tarasiuk, Aleksei V. [Russian Academy of Medical Sciences, FSBI “Zakusov Institute of Pharmacology” (Russian Federation); Uryupina, Olga Ya. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2016-08-15

    A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

  6. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Cerium (Ce corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0×10−14 m2s for Ce3+ compared to 2.5×10−13 m2s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  7. Controlled Release from Core-Shell Nano porous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    International Nuclear Information System (INIS)

    Jiang, X.; Rathod, Sh.; Shah, P.; Brinker, C.J.; Jiang, X.; Jiang, Y.; Liu, N.; Xu, H.; Brinker, C.J.

    2011-01-01

    Cerium (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0x10-14 m 2 s for Ce 3+ compared to 2.5x10-13 m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  8. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties.

    Science.gov (United States)

    Mumin, Md Abdul; Xu, William Z; Charpentier, Paul A

    2015-08-07

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (∼65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (∼90%) and decreased UV transmission (∼75%).

  9. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  10. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  11. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  12. Combined photothermo-chemotherapy using gold nanoshells on drug-loaded micelles for colorectal cancer treatment

    Science.gov (United States)

    Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Combined photothermo-chemotherapy is a new strategy for cancer treatment which improves the therapeutic outcome by synergistic effects of both therapies. Here, we presented a multifunctional gold nanoshell that exhibited excellent photothermal conversion and delivered the hydrophobic chemotherapy drug, SN-38. The positively charged SN-38-loaded PDMA-PCL micelles were decorated with a gold layer by in situ reduction of chloroauric acid on the surface of micelles. Scanning and transmission electron microscopy images proved micelles were successfully decorated and the resulting gold nanoshells had a spherical morphology with a narrow size distribution. The synthesized gold nanoshells displayed a broad surface plasmon resonance peak in the near-infrared wavelength region and a great photothermal conversion ability. After pegylation, gold nanoshells were stable in biological media and appeared highly biocompatible in the absence of laser irradiation. Upon near-infrared laser irradiation, incident energy was converted into heat by gold nanoshells on SN-38-loaded micelles (SN-38@pGNS), which causes local temperature increase and triggers the release of encapsulated drug. Compared to SN-38, SN-38-loaded micelles, or laser with drug-free gold nanoshells alone, combined photothermo-chemotherapy using SN-38@pGNS with laser irradiation killed colorectal cancer cells with higher efficacy in vitro and demonstrated significant tumor suppression in vivo, suggesting that gold nanoshells on drug-loaded micelles delivered SN-38 and photothermal therapy in synergistic actions and might be a potential candidate for future colorectal cancer therapy.

  13. Anticorrosives, encapsulates, catalytic supports and other novel ...

    Indian Academy of Sciences (India)

    sol–gel production of silica microspheres allows to control: (i) the sizes of final ... microscopy to determine chemical and textural properties of the hybrid ... specific applications (Novak 1993; Hillmyer 2005). ... hybrid materials at low processing temperatures (Ahmad .... plate was brush-painted with the corresponding coating.

  14. Core-shell fluorescent silica nanoparticles for sensing near-neutral pH values

    International Nuclear Information System (INIS)

    Gao, F.; Chen, X.; Ye, Q.; Yao, Z.; Guo, X.; Wang, L.

    2011-01-01

    pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5. 5 to 9. 0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode. (author)

  15. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  16. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable ...

  17. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan

    2017-08-31

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a membrane filtration system is provided in which a feed solution comprising encapsulated microbubbles is provided to the membrane under conditions that allow the encapsulated microbubbles to embed in a biofilm. Sonication of the embedded, encapsulated microbubbles disrupts the biofilm. Thus, provided herein is a membrane filtration system for performing the methods and encapsulated microbubbles specifically selected for binding to extracellular polymeric substances (EFS) in a biofilm.

  18. Preparation of acridine orange-doped silica nanoparticles for pH measurement

    International Nuclear Information System (INIS)

    Liu, Jinshui; Zang, Lingjie; Wang, Yiru; Liu, Guoning

    2014-01-01

    Acridine orange was first encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. The nanoparticles are all in spherical shape and have a narrow size distribution, and its application as a optical pH sensor has been demonstrated. This novel sensor is based on the pH-dependent fluorescence intensities of acridine orange in different pH value. The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. Under optimum conditions, the changes of fluorescence intensity were proportional to the pH value in the range of 8.00–10.90. In addition, the sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. Furthermore, the effects of ionic strength and co-existing substances were proved to have little influence on the determination of pH. The sensor has been successfully applied to determine the pH of two artificial samples. Hence, the core–shell fluorescent nanoparticles show potential for practical application. -- Highlights: • Acridine orange was encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. • The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. • Its can be used as an optical pH sensor. • The sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. • The sensor has been successfully applied to determine the pH of artificial samples

  19. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  20. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  1. Hybrid chip-on-board LED module with patterned encapsulation

    Science.gov (United States)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan

    2018-02-27

    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than another first set of first light emitting elements (160).

  2. New trends in encapsulation of liposoluble vitamins.

    Science.gov (United States)

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.

  3. Design documentation: Krypton encapsulation preconceptual design

    International Nuclear Information System (INIS)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy

  4. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  5. Design documentation: Krypton encapsulation preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  6. Hanford waste encapsulation: strontium and cesium

    International Nuclear Information System (INIS)

    Jackson, R.R.

    1976-06-01

    The strontium and cesium fractions separated from high radiation level wastes at Hanford are converted to the solid strontium fluoride and cesium chloride salts, doubly encapsulated, and stored underwater in the Waste Encapsulation and Storage Facility (WESF). A capsule contains approximately 70,000 Ci of 137 Cs or 70,000 to 140,000 Ci of 90 Sr. Materials for fabrication of process equipment and capsules must withstand a combination of corrosive chemicals, high radiation dosages and frequently, elevated temperatures. The two metals selected for capsules, Hastelloy C-276 for strontium fluoride and 316-L stainless steel for cesium chloride, are adequate for prolonged containment. Additional materials studies are being done both for licensing strontium fluoride as source material and for second generation process equipment

  7. Encapsulated Ball Bearings for Rotary Micro Machines

    Science.gov (United States)

    2007-01-01

    occurrence as well as the overall tribological properties of the bearing mechanism. Firstly, the number of stainless steel balls influences not only the load...stacks.iop.org/JMM/17/S224 Abstract We report on the first encapsulated rotary ball bearing mechanism using silicon microfabrication and stainless steel balls...The method of capturing stainless steel balls within a silicon race to support a silicon rotor both axially and radially is developed for rotary micro

  8. Encapsulating peritonitis: computed tomography and surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kadow, Juliana Santos; Fingerhut, Carla Jeronimo Peres; Fernandes, Vinicius de Barros; Coradazzi, Klaus Rizk Stuhr; Silva, Lucas Marciel Soares; Penachim, Thiago Jose, E-mail: vinicius.barros.fernandes@gmail.com [Pontificia Universidade Catolica de Campinas (PUC-Campinas), Campinas, SP (Brazil). Hospital e Maternidade Celso Pierro

    2014-07-15

    Sclerosing encapsulating peritonitis is a rare and frequently severe entity characterized by total or partial involvement of small bowel loops by a membrane of fibrous tissue. The disease presents with nonspecific clinical features of intestinal obstruction, requiring precise imaging diagnosis to guide the treatment. The present report emphasizes the importance of computed tomography in the diagnosis of this condition and its confirmation by surgical correlation. (author)

  9. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  10. Ultrasonographic findings of sclerosing encapsulating peritonitis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Kyu; Lee, Hae Kyung; Moon, Chul; Hong, Hyun Sook; Kwon, Kwi Hyang; Choi, Deuk Lin [Soonchunhyangi University College of Medicine, Seoul (Korea, Republic of)

    2001-03-15

    To evaluate the ultrasonographic findings of the patients with sclerosing encapsulating peritonitis (SEP). Thirteen patients with surgically confirmed sclerosing encapsulating peritonitis were involved in this study. Because of intestinal obstruction, all patients had received operations. Among 13 patients, 12 cases had continuous ambulatory peritoneal dialysis (CAPD) for 2 months-12 years and 4 months from (mean; 6 years and 10 months), owing to chronic renal failure and one patient had an operation due to variceal bleeding caused by liver cirrhosis. On ultrasonographic examination, all patients showed loculated ascites which were large (n=7) or small (n=6) in amount with multiple separations. The small bowel loops were tethered posteriorly perisaltic movement and covered with the thick membrane. The ultrasonographic of findings of sclerosing encapsulating peritonitis were posteriorly tethered small bowels covered with a thick membrane and loculated ascites with multiple septa. Ultrasonographic examination can detect the thin membrane covering the small bowel loops in the early phase of the disease, therefore ultrasonography would be a helpful modality to diagnose SEP early.

  11. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  12. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    Science.gov (United States)

    Chiu, Chi-Kai

    Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3

  13. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  14. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  15. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  16. Noble Metal Immersion Spectroscopy of Silica Alcogels and Aerogels

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1998-01-01

    We have fabricated aerogels containing gold and silver nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  17. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  18. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  19. Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.

    Science.gov (United States)

    Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper

    2018-03-07

    The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.

  20. Cryopreservation of PLBs of Brassidium Fly Away Using Encapsulation-Dehydration Technique

    Directory of Open Access Journals (Sweden)

    Arulvilee Rajasegar

    2015-12-01

    Full Text Available In vitro grown protocorm-like bodies (PLBs of Brassidium Fly Away orchid hybrid were cryopreserved using encapsulation- dehydration technique. The viability of the cryopreserved cells was determined by 2,3,5-triphenyltetrazolium chloride (TTC assay. For the preculture treatment, the PLBs were excised into two standard sizes of 1-2 and 4-5 mm and were precultured on half-strength Murashige and Skoog (MS semi solid medium supplemented with diff erent concentrations of sucrose (0, 0.2, 0.4, 0.6, 0.8 and 1.0M. The PLBs size 4-5 mm and 0.6 M sucrose concentration was selected based on highest viability obtained in TTC assay. The PLBs were encapsulated for 30 minutes using 3% (w/v liquid s odium alginate medium supplemented with 0.4M sucrose and 0.1M calcium chl oride and osmoprotected in 0.75M sucrose solution for 24 hours at 25°C. Th e beads were then dehydrated using 50g heat-sterilised silica gel for four hours , cryopreserved for 24 hours, thawed in a 40±2°C water bath for 90 seconds, and r egenerated in semi-solid half-strength. Biochemical analyses were conducted and th e cryopreserved PLBs had produced lower content of chlorophyll while the highest specifi c peroxidase activity was observed in cryopreserved PLBs

  1. Behavior of lateral buds of Hancornia speciosa after cryopreservation by encapsulation-vitrification

    Directory of Open Access Journals (Sweden)

    Débora de Oliveira Prudente

    2017-05-01

    Full Text Available Hancornia speciosa is a fruitful species from Cerrado biome with high economic potential. However, the intense and disordered extractivism have caused a reduction of its population in its endemic area. In addition, seed recalcitrance negatively affects the conventional conservation of the species. Aiming to find alternatives that enable the long-term conservation of this species, the study’s objective was to assess the behavior of lateral bud’s regrowth after cryopreservation procedures by encapsulation-vitrification technique. Sodium alginate capsules containing lateral buds were pre-cultured in liquid WPM supplemented with 1.0 M glycerol, and subsequently exposed to different concentrations of sucrose (0.3; 0.75 and 1.0 M for 24 or 48 hours. The capsules were subjected to dehydration in silica gel or airflow hood for 0, 1, 2 and 3 hours before different incubation times in PVS2 (0, 15, 30, 60 and 120 minutes at 0°C. A high regeneration percentage of lateral buds was observed after cryopreservation of capsules treated with 0.75 M sucrose plus 1.0 M glycerol (24 hours, associated with dehydration in an airflow hood (1 hour and immersion in PVS2 (15 minutes. Encapsulation-vitrification allowed the long-term conservation, and provided high plant material survival rates after cryopreservation of Hancornia speciosa sensitive explants.

  2. Iridium Clusters Encapsulated in Carbon Nanospheres as Nanocatalysts for Methylation of (Bio)Alcohols.

    Science.gov (United States)

    Liu, Qiang; Xu, Guoqiang; Wang, Zhendong; Liu, Xiaoran; Wang, Xicheng; Dong, Linlin; Mu, Xindong; Liu, Huizhou

    2017-12-08

    C-H methylation is an attractive chemical transformation for C-C bonds construction in organic chemistry, yet efficient methylation of readily available (bio)alcohols in water using methanol as sustainable C1 feedstock is limited. Herein, iridium nanocatalysts encapsulated in yolk-shell-structured mesoporous carbon nanospheres (Ir@YSMCNs) were synthesized for this transformation. Monodispersed Ir clusters (ca. 1.0 nm) were encapsulated in situ and spatially isolated within YSMCNs by a silica-assisted sol-gel emulsion strategy. A selection of (bio)alcohols (19 examples) was selectively methylated in aqueous phase with good-to-high yields over the developed Ir@YSMCNs. The improved catalytic efficiencies in terms of activity and selectivity together with the good stability and recyclability were contributable to the ultrasmall Ir clusters with oxidation chemical state as a consequence of the confinement effect of YSMCNs with interconnected nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  4. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  5. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    International Nuclear Information System (INIS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  7. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    Science.gov (United States)

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Synthesis of encapsulated pigments based on Fe, Co and Si by route of polymeric precursors

    International Nuclear Information System (INIS)

    Macedo, D.S.S.M.; Macedo Neto, O.C.; Paskocimas, C.A.; Varela, M.L.N.

    2012-01-01

    The objective is to apply the polymeric precursor method to obtain encapsulated pigments, the basis of oxides of iron and cobalt deposited on silica. The method has advantages such as reduction of time and reproducibility in the conventional methods, and also improves optical properties, thermal stability and morphology. The synthesis was based on the dissolution of the citric acid (complexing agent), addition of oxides of iron and cobalt (ions chromophores) polymerization of ethylene glycol and silica coating. The mixture was pre-calcined to form the precursor powder was analyzed by TG and DTA. Was then split, and calcined at different temperatures (700 ° C - 900 ° C) and analyzed by BET, DRX, MEV and UV-Visible. The pigments were stable thermally, with surface area ranging between 3,09 and 7,65 m² / g, formation of crystalline phases of cobalt ferrite (CoFe 2 O 4 ) and Cristobalite (SiO 2 ) and agglomerates of particles slightly rounded. (author)

  9. Silica Nanofiber Combat Hemostat (SINCH)

    Science.gov (United States)

    2008-10-13

    1.5mg 0.6 65 205 High aspect ratio silica fibers (30um x 60nm) 9mg 0.63 58.9 140 Kaolin (TEG control) 0.2mg n/a 59.8 155 TiO2 high aspect ratio...high surface area to volume ratio and thus the material is difficult to handle in an uncontrolled environment. It is easily dispersed and is not easy

  10. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    International Nuclear Information System (INIS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S K

    2014-01-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core–shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery. (papers)

  11. Lyophilized silica lipid hybrid (SLH) carriers for poorly water-soluble drugs: physicochemical and in vitro pharmaceutical investigations.

    Science.gov (United States)

    Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A

    2014-09-01

    Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  13. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  14. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  15. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  16. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  17. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  18. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  19. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence

    International Nuclear Information System (INIS)

    Barbillon, G; Faure, A C; Kork, N El; Moretti, P; Roux, S; Tillement, O; Ou, M G; Descamps, A; Perriat, P; Vial, A; Bijeon, J-L; Marquette, C A; Jacquier, B

    2008-01-01

    The paper shows how polysiloxane particles encapsulating fluorophores can be successfully used to detect biotin-streptavidin binding by two types of technique. After functionalization of the particles by streptavidin, the fixation of the biomolecule can indeed be detected by a shift of the localized surface plasmon resonance of the biotinylated gold dots used as substrate and by the luminescence of the fluorophores evidenced by scanning near-field optical microscopy. The development of particles allowing such a double detection opens a route for increasing the reliability of biological detection and for multi-labelling strategies crossing both detection principles

  1. How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Barbillon, G; Faure, A C; Kork, N El; Moretti, P [Universite de Lyon, Universite Lyon 1, CNRS UMR 5620, Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), Domaine Scientifique de La Doua, Bat Kastler, 10 rue Andre Marie Ampere 69622 Villeurbanne Cedex (France); Roux, S; Tillement, O [Universite de Lyon, Universite Lyon 1, CNRS UMR 5620, Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), Domaine Scientifique de La Doua, Bat Kastler, 10 rue Andre Marie Ampere 69622 Villeurbanne Cedex (France); Ou, M G; Descamps, A; Perriat, P [Materiaux, Ingenierie et Sciences (MATEIS), CNRS UMR 5510, Universite de Lyon, INSA-Lyon, Domaine Scientifique de La Doua, 7 avenue Jean Capelle 69621 Villeurbanne Cedex (France); Vial, A; Bijeon, J-L [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique (LNIO), Universite de Technologie de Troyes, 12 rue Marie Curie BP 2060 10010 Troyes Cedex (France); Marquette, C A [Laboratoire de Genie Enzymatique et Biomoleculaire, UMR 5246 CNRS-ICBMS, Universite de Lyon, Universite Lyon 1, 69622 Villeurbanne Cedex (France); Jacquier, B [Universite de Lyon, Universite Lyon 1, CNRS UMR 5620, Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), Domaine Scientifique de La Doua, Bat Kastler, 10 rue Andre Marie Ampere 69622 Villeurbanne Cedex (France)

    2008-01-23

    The paper shows how polysiloxane particles encapsulating fluorophores can be successfully used to detect biotin-streptavidin binding by two types of technique. After functionalization of the particles by streptavidin, the fixation of the biomolecule can indeed be detected by a shift of the localized surface plasmon resonance of the biotinylated gold dots used as substrate and by the luminescence of the fluorophores evidenced by scanning near-field optical microscopy. The development of particles allowing such a double detection opens a route for increasing the reliability of biological detection and for multi-labelling strategies crossing both detection principles.

  2. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  3. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation

    International Nuclear Information System (INIS)

    Bezbaruah, Achintya N.; Shanbhogue, Sai Sharanya; Simsek, Senay; Khan, Eakalak

    2011-01-01

    Nanoscale zero-valent iron (NZVI) particles (10–90 nm) were encapsulated in biodegradable calcium-alginate capsules for the first time for application in environmental remediation. Encapsulation is expected to offers distinct advances over entrapment. Trichloroethylene (TCE) degradation was 89–91% in 2 h, and the reaction followed pseudo first order kinetics for encapsulated NZVI systems with an observed reaction rate constant (k obs ) of 1.92–3.23 × 10 −2 min −1 and a surface normalized reaction rate constant (k sa ) of 1.02–1.72 × 10 −3 L m −2 min −1 . TCE degradation reaction rates for encapsulated and bare NZVI were similar indicating no adverse affects of encapsulation on degradation kinetics. The shelf-life of encapsulated NZVI was found to be four months with little decrease in TCE removal efficiency.

  4. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  5. Flat-plate solar array project. Volume 7: Module encapsulation

    Science.gov (United States)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  6. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs): How Slow Molecular Tumbling Can Quench CEST Contrast.

    Science.gov (United States)

    Farashishiko, Annah; Slack, Jacqueline R; Botta, Mauro; Woods, Mark

    2018-01-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM 3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA) after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH) followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  7. ParaCEST agents encapsulated in Reverse nano-Assembled Capsules (RACs): How slow molecular tumbling can quench CEST

    Science.gov (United States)

    Farashishiko, Annah; Slack, Jacqueline R.; Botta, Mauro; Woods, Mark

    2018-04-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the series the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. A significant proportion of the quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  8. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs: How Slow Molecular Tumbling Can Quench CEST Contrast

    Directory of Open Access Journals (Sweden)

    Annah Farashishiko

    2018-04-01

    Full Text Available Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  9. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  10. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the a......Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...... that the active Au is accessible only through the zeolite micropores....

  11. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  12. Thermoresponsive latexes for fragrance encapsulation and release.

    Science.gov (United States)

    Popadyuk, N; Popadyuk, A; Kohut, A; Voronov, A

    2016-04-01

    To synthesize cross-linked latex particles protecting the encapsulated fragrance at ambient temperatures and facilitating the release of cargo at the temperature of the surface of the skin that varies in different regions of the body between 33.5 and 36.9°C. Poly(stearyl acrylate) (PSA), a polymer with long crystallizable alkyl side chains (undergoes order-disorder transitions at 45°C), was chosen as the main component of the polymer particles. As a result, new thermoresponsive polymer particles for fragrance encapsulation were synthesized and characterized, including assessing the performance of particles in triggered release by elevated temperature. To obtain network domains of various crystallinity, stearyl acrylate was copolymerized with dipropylene glycol acrylate caprylate (DGAC) (comonomer) in the presence of a dipropylene glycol diacrylate sebacate (cross-linker) using the miniemulsion process. Comonomers and a cross-linker were mixed directly in a fragrance during polymerization. Fragrance release was evaluated at 25, 31, 35 and 39°C to demonstrate a new material potential in personal/health care skin-related applications. Particles protect the fragrance from evaporation at 25°C. The fragrance release rate gradually increases at 31, 35 and 39°C. Two slopes were found on release plots. The first slope corresponds to a rapid fragrance release. The second slope indicates a subsequent reduction in the release rate. Crystalline-to-amorphous transition of PSA triggers the release of fragrances from cross-linked latex particles at elevated temperatures. The presence of the encapsulated fragrance, as well as the inclusion of amorphous fragments in the polymer network, reduces the particle crystallinity and enhances the release. Release profiles can be tuned by temperature and controlled by the amount of loaded fragrance and the ratio of comonomers in the feed mixture. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Analysis of Double-encapsulated Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  14. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  15. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  16. Investigations into encapsulation of intermediate level wastes containing organic components

    International Nuclear Information System (INIS)

    Palmer, J.

    1988-01-01

    A product evaluation programme was set up to investigate the properties of a variety of matrix-waste formulations prior to their encapsulation. The waste/matrix forms were defined and characterised and waste pretreatments studied. Potential encapsulation matrices were investigated for their suitability for individual waste streams. The physical, chemical and thermal properties, radiation stability and leaching behaviour of the formulations were studied. Operational and design limits for the encapsulation plant were defined. (U.K.)

  17. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  18. Encapsulation Processing and Manufacturing Yield Analysis

    Science.gov (United States)

    Willis, P.

    1985-01-01

    Evaluation of the ethyl vinyl acetate (EVA) encapsulation system is presented. This work is part of the materials baseline needed to demonstrate a 30 year module lifetime capability. Process and compound variables are both being studied along with various module materials. Results have shown that EVA should be stored rolled up, and enclosed in a plastic bag to retard loss of peroxide curing agents. The TBEC curing agent has superior shelf life and processing than the earlier Lupersol-101 curing agent. Analytical methods were developed to test for peroxide content, and experimental methodologies were formalized.

  19. Method of encapsulating waste radioactive material

    International Nuclear Information System (INIS)

    Forrester, J.A.; Rootham, M.W.

    1982-01-01

    When encapsulating radioactive waste including radioactive liquid having a retardant therein which retards the setting of cements by preventing hydration at cement particles in the mix, the liquid is mixed with ordinary Portland cement and subjected, in a high shear mixer, to long term shear far in excess of that needed to form ordinary grout. The controlled utilization of the retardants plus shear produces a thixotropic paste with extreme moldability which will not bleed, and finally sets more rapidly than can be expected with normal cement mixtures forming a very strong product. (author)

  20. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  1. Computed tomography appearances of sclerosing encapsulating peritonitis

    International Nuclear Information System (INIS)

    George, C.; Al-Zwae, K.; Nair, S.; Cast, J.E.I.

    2007-01-01

    Sclerosing encapsulating peritonitis (SEP) is a serious complication of peritoneal dialysis (PD) characterized by thickened peritoneal membranes, which lead to decreased ultra-filtration and intestinal obstruction. Its early clinical features are nonspecific, and it is often diagnosed late following laparotomy and peritoneal biopsy, when the patient develops small bowel obstruction, which can be a life-threatening complication. However, this is changing with increasing awareness of computed tomography (CT) findings in SEP. CT can yield an early, non-invasive diagnosis that may improve patient outcome. We present a review of the CT appearances of SEP

  2. Process for the encapsulation of radioactive wastes

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.; Hill, M.L.

    1980-01-01

    Radioactive waste material, particularly radioactive ion exchange resin in the wet condition, is encapsulated in a polyurethane by dispersing the waste in an aqueous emulsion of an organic polyol, a polyisocyanate and an hydraulic cement and allowing the emulsion to set to form a monolithic block. If desired the emulsion may also contain additional filler e.g. sand or aggregate to increase the density of the final product. Preferred polyurethanes are those made from a polyester polyol and an organic diisocyanate, particularly hexamethylene diisocyanate. (author)

  3. Computed tomography appearances of sclerosing encapsulating peritonitis

    Energy Technology Data Exchange (ETDEWEB)

    George, C. [Department of Radiology, Hull Royal Infirmary, Hull (United Kingdom)]. E-mail: cheriangeorge@hotmail.com; Al-Zwae, K. [Department of Radiology, Hull Royal Infirmary, Hull (United Kingdom); Nair, S. [Department of Radiology, Hull Royal Infirmary, Hull (United Kingdom); Cast, J.E.I. [Department of Radiology, Hull Royal Infirmary, Hull (United Kingdom)

    2007-08-15

    Sclerosing encapsulating peritonitis (SEP) is a serious complication of peritoneal dialysis (PD) characterized by thickened peritoneal membranes, which lead to decreased ultra-filtration and intestinal obstruction. Its early clinical features are nonspecific, and it is often diagnosed late following laparotomy and peritoneal biopsy, when the patient develops small bowel obstruction, which can be a life-threatening complication. However, this is changing with increasing awareness of computed tomography (CT) findings in SEP. CT can yield an early, non-invasive diagnosis that may improve patient outcome. We present a review of the CT appearances of SEP.

  4. Encapsulation of testosterone by chitosan nanoparticles.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.

    Science.gov (United States)

    Shi, Lei; Young, Trevor L; Kim, Jincheol; Sheng, Yun; Wang, Lei; Chen, Yifeng; Feng, Zhiqiang; Keevers, Mark J; Hao, Xiaojing; Verlinden, Pierre J; Green, Martin A; Ho-Baillie, Anita W Y

    2017-08-02

    Metal halide perovskite solar cells (PSCs) have undergone rapid progress. However, unstable performance caused by sensitivity to environmental moisture and high temperature is a major impediment to commercialization of PSCs. In the present work, a low-temperature, glass-glass encapsulation technique using high performance polyisobutylene (PIB) as the moisture barrier is investigated on planar glass/FTO/TiO 2 /FAPbI 3 /PTAA/gold perovskite solar cells. PIB was applied as either an edge seal or blanket layer. Electrical connections to the encapsulated PSCs were provided by either the FTO or Au layers. Results of a "calcium test" demonstrated that a PIB edge-seal effectively prevents moisture ingress. A shelf life test was performed and the PIB-sealed PSC was stable for at least 200 days. Damp heat and thermal cycling tests, in compliance with IEC61215:2016, were used to evaluate different encapsulation methods. Current-voltage measurements were performed regularly under simulated AM1.5G sunlight to monitor changes in PCE. The best results we have achieved to date maintained the initial efficiency after 540 h of damp heat testing and 200 thermal cycles. To the best of the authors' knowledge, these are among the best damp heat and thermal cycle test results for perovskite solar cells published to date. Given the modest performance of the cells (8% averaged from forward and reverse scans) especially with the more challenging FAPbI 3 perovskite material tested in this work, it is envisaged that better stability results can be further achieved when higher performance perovskite solar cells are encapsulated using the PIB packaging techniques developed in this work. We propose that heat rather than moisture was the main cause of our PSC degradation. Furthermore, we propose that preventing the escape of volatile decomposition products from the perovskite solar cell materials is the key for stability. PIB encapsulation is a very promising packaging solution for perovskite

  6. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  8. COOH-functionalisation of silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Albrecht, Trent [Ian Wark Research Institute, University of South Australia, Adelaide (Australia); Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany)

    2011-09-01

    In this study COOH-functionalised silica is synthesised using phosphonateN-(phosphonomethyl)iminodiacetic acid (PMIDA) in an aqueous solution. The presence of PMIDA on the silica particles was verified using Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and titration. Experimentally, surface concentrations of COOH functional groups of up to about 3 mmol/g{sub silica} were achieved, whereas theoretical calculation of the maximum COOH functional group concentration gave about 1 mmol/g{sub silica}. The discrepancy may be caused by PMIDA multilayer formation on the particle.

  9. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  10. Practical Hydrogen Loading of Air Silica Fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Jensen, Jesper Bevensee; Jensen, Jesper Bo Damm

    2005-01-01

    A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown.......A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown....

  11. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  12. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  13. Synthesis of gold nanostructures with optical properties within the near-infrared window for biomedical applications

    Science.gov (United States)

    Garcia-Soto, Mariano de Jesus

    The work reported in this dissertation describes the design and synthesis of different gold nanoshells with strong absorption coefficients at the near-infrared region (NIR) of the spectrum, and includes preliminary studies of their use for the photo-induced heating of pancreatic cancer cells and ex vivo tissues. As the emphasis was on gold nanoshells with maximum extinctions located at 800 nm, the methods explored for their synthesis led us to the preparation of silica-core and hollow gold nanoshells of improved stability, with maximum extinctions at or beyond the targeted within the near-infrared window. The synthesis of silica-core gold nanoshells was investigated first given its relevance as one of the pioneering methods to produce gold nanostructures with strong absorption and scattering coefficients in the visible and the near-infrared regions of the spectrum. By using a classical method of synthesis, we explored the aging of the precursor materials and the effect of using higher concentrations than the customary for the reduction of gold during the shell growth. We found that the aging for one week of the as-prepared or purified precursors, namely, the gold cluster suspensions, and the seeded silica particles, along with higher concentrations of gold in the plating solution, produced fully coated nanoshells of 120 nm in size with smooth surfaces and maximum extinctions around 800 nm. Additional work carried out to reduce the time and steps in the synthesis of silica-core gold nanoshells, led us to improve the seeding step by increasing the ionic strength of the cluster suspension, and also to explore the growth of gold on tin-seeded silica nanoparticles. The synthesis of hollow gold nanoshells (HGS) of with maximum extinctions at the NIR via the galvanic replacement of silver nanoparticles for gold in solution was explored next. A first method explored led us to obtain HGS with maximum extinctions between 650 and 800 nm and sizes between 30 and 80 nm from

  14. SU-F-T-54: Determination of the AAPM TG-43 Brachytherapy Dosimetry Parameters for A New Titanium-Encapsulated Yb-169 Source by Monte Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States); Munro, J [Source Production & Equipment Co., Inc., St. Rose, LA (United States); Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To determine the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source designed to maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Methods: An existing Monte Carlo (MC) model of the titanium-encapsulated Yb-169 source, which was described in the current investigators’ published MC optimization study, was modified based on the source manufacturer’s detailed specifications, resulting in an accurate model of the titanium-encapsulated Yb-169 source that was actually manufactured. MC calculations were then performed using the MCNP5 code system and the modified source model, in order to obtain a complete set of the AAPM TG-43 parameters for the new Yb-169 source. Results: The MC-calculated dose rate constant for the new titanium-encapsulated Yb-169 source was 1.05 ± 0.03 cGy per hr U, indicating about 10% decrease from the values reported for the conventional stainless steel-encapsulated Yb-169 sources. The source anisotropy and radial dose function for the new source were found similar to those reported for the conventional Yb-169 sources. Conclusion: In this study, the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source were determined by MC calculations. The current results suggested that the use of titanium, instead of stainless steel, to encapsulate the Yb-169 core would not lead to any major change in the dosimetric characteristics of the Yb-169 source, while it would allow more low energy photons being transmitted through the source filter thereby leading to an increased dose enhancement during GNRT. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1- 0198.

  15. Viscous effects in liquid encapsulated liquid bridges

    International Nuclear Information System (INIS)

    Johnson, Duane T.

    2002-01-01

    An analytical derivation of the surface deflections and the streamfunctions for the flow inside a liquid encapsulated liquid bridge has been derived using an asymptotic expansion about a small capillary number. The model assumes an initially flat and cylindrical interface under the assumption that the densities of both fluids are equal. To simplify the analysis, the top and bottom walls are assumed to be stress-free and the Reynolds number is assumed to be negligible. Flow is generated either by a moving outer wall (shear-driven flow) or by applying a temperature difference across the top and bottom walls (Marangoni-driven flow). The resulting equations show that for the shear-driven flow, as the viscosity ratio increases, the surface deflections increase monotonically. For the Marangoni-driven flow there exist values of the viscosity ratio where the surface deflections reach a minimum and then switch signs. This investigation shows that it may be possible in more realistic systems to use an outer encapsulating liquid of the proper viscosity ratio to stabilize the liquid-liquid interface during float zone crystal growth

  16. Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon

    Directory of Open Access Journals (Sweden)

    Legakis Nikolaos

    2006-02-01

    Full Text Available Abstract Background Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon is a rare cause of small bowel obstruction, especially in adult population. Diagnosis is usually incidental at laparotomy. We discuss one such rare case, outlining the fact that an intra-operative surprise diagnosis could have been facilitated by previous investigations. Case presentation A 56 year-old man presented in A&E department with small bowel ileus. He had a history of 6 similar episodes of small bowel obstruction in the past 4 years, which resolved with conservative treatment. Pre-operative work-up did not reveal any specific etiology. At laparotomy, a fibrous capsule was revealed, in which small bowel loops were encased, with the presence of interloop adhesions. A diagnosis of abdominal cocoon was established and extensive adhesiolysis was performed. The patient had an uneventful recovery and follow-up. Conclusion Idiopathic sclerosing encapsulating peritonitis, although rare, may be the cause of a common surgical emergency such as small bowel ileus, especially in cases with attacks of non-strangulating obstruction in the same individual. A high index of clinical suspicion may be generated by the recurrent character of small bowel ileus combined with relevant imaging findings and lack of other plausible etiologies. Clinicians must rigorously pursue a preoperative diagnosis, as it may prevent a "surprise" upon laparotomy and result in proper management.

  17. Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon).

    Science.gov (United States)

    Serafimidis, Costas; Katsarolis, Ioannis; Vernadakis, Spyros; Rallis, George; Giannopoulos, George; Legakis, Nikolaos; Peros, George

    2006-02-13

    Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon) is a rare cause of small bowel obstruction, especially in adult population. Diagnosis is usually incidental at laparotomy. We discuss one such rare case, outlining the fact that an intra-operative surprise diagnosis could have been facilitated by previous investigations. A 56 year-old man presented in A&E department with small bowel ileus. He had a history of 6 similar episodes of small bowel obstruction in the past 4 years, which resolved with conservative treatment. Pre-operative work-up did not reveal any specific etiology. At laparotomy, a fibrous capsule was revealed, in which small bowel loops were encased, with the presence of interloop adhesions. A diagnosis of abdominal cocoon was established and extensive adhesiolysis was performed. The patient had an uneventful recovery and follow-up. Idiopathic sclerosing encapsulating peritonitis, although rare, may be the cause of a common surgical emergency such as small bowel ileus, especially in cases with attacks of non-strangulating obstruction in the same individual. A high index of clinical suspicion may be generated by the recurrent character of small bowel ileus combined with relevant imaging findings and lack of other plausible etiologies. Clinicians must rigorously pursue a preoperative diagnosis, as it may prevent a "surprise" upon laparotomy and result in proper management.

  18. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  19. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  20. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy