WorldWideScience

Sample records for silica coated silver

  1. Patchy silica-coated silver nanowires as SERS substrates

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-01-01

    We report a class of core–shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4-mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV–visible spectroscopy, and phase-analysis light-scattering for measuring effective surface charge. Surprisingly, the patchy silica-coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  2. Patchy silica-coated silver nanowires as SERS substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-05-08

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  3. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Perero, S. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Miola, M.; Vernè, E. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Skoglund, S. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden)

    2017-02-28

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H{sub 2}SO{sub 4} and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel

  4. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    International Nuclear Information System (INIS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-01-01

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H_2SO_4 and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface

  5. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  6. Formation of Silver Nanoplates Layer on Amino Group Grafted Silica Coatings

    Directory of Open Access Journals (Sweden)

    Jurgis PILIPAVICIUS

    2016-05-01

    Full Text Available In this study the self-arrangement of Ag nanoplates on (3-Aminopropyltriethoxysilane (APTES silanized silica coatings was investigated. Silica coatings were made by sol-gel method and silanized in two different ways. The first one includes silanization in acidic 2-propanol solution, the other one – in dry toluene. Coatings were silanized by using different amounts of APTES in case of silanization in 2-propanol. Silver nanoplates layer of functionalized silica coatings was obtained via self-assembly. Coatings were investigated by atomic force microscopy (AFM, water contact angle measurements (CA, FT-IR analysis, and scanning electron microscopy (SEM. Research showed that dense Ag nanoplates arrangement occurs when there is a high amount of amino groups on the surface.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8405

  7. Effect of thermal treatments on sputtered silver nanocluster/silica composite coatings on soda-lime glasses: ionic exchange and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Ferraris, S., E-mail: sara.ferraris@polito.it; Miola, M.; Perero, S.; Balagna, C.; Verne, E. [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering (Italy); Gautier, G. [IMAMOTER Institute for Agricultural and Earthmoving Machines (Italy); Manfredotti, Ch.; Battiato, A.; Vittone, E. [University of Torino, Physics Department, NIS Excellence Centre and CNISM (Italy); Speranza, G. [Fondazione Bruno Kessler FBK (Italy); Bogdanovic, I. [Ruder Boskovic Institute, Experimental Physics Department (Croatia)

    2012-12-15

    Silver nanocluster/silica composite coatings were deposited on both soda-lime and silica glasses by radio frequency (RF) co-sputtering. The effect of thermal treatments on the microstructure in the range of 150-450 Degree-Sign C were examined by UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Time of Flight-Elastic Recoil Detection Analysis. Sodium/silver ionic exchange was evidenced for coatings sputtered on soda-lime substrates after heating at 450 Degree-Sign C; presence of silver ions and/or silver nanoclusters, nanocluster size and their position inside the sputtered layers will be discussed for as-deposited and heated coatings on both substrates. The antibacterial activity of all coatings was determined against Staphylococcus aureus and Candida albicans by disk diffusion method and colonies forming units count; in agreement with microstructural results, the antibacterial activity present on all coatings was slightly reduced after heating at 450 Degree-Sign C. All coatings have been submitted to humidity plus UV ageing and sterilization by autoclave, gamma ray and ethylene oxide gas. Tape resistance (ASTM D3359-97) tests have been done on each coating before and after ageing and sterilizations, revealing a good adhesion on soda-lime substrates, except for those aged in humidity plus UV and sterilized by autoclave. Scratch tests and nanoindentation tests have been done on each coating, as-deposited and after heating at 450 Degree-Sign C. The coating hardness was improved by heating only when coatings were deposited on silica. The heating of coatings deposited on soda-lime substrates gave opposite effect on their hardness.

  8. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  9. Sensing behavior study of silica-coated Ag nanoparticles deposited on glassy carbon toward nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Pooja; Reddy, Pramod [CSIR, Sector-30C, Central Scientific Instruments Organization (India); Arora, Swati [Shri Mata Vaishno Devi University (India); Singh, Suman; Ghanshyam, C.; Singla, M. L., E-mail: singla_min@yahoo.co.in [CSIR, Sector-30C, Central Scientific Instruments Organization (India)

    2012-10-15

    In this study, we report the synthesis and characterization of silica-coated silver core/shell nanostructures (NSs) and their sensing behavior when deposited on glassy carbon (GC) electrode for nitrobenzene (NB) detection. Synthesized silica-coated silver core/shell NSs were characterized for their chemical, structural and morphological properties. TEM analysis confirmed that the silica-coated silver nanoparticles (size {approx}200 nm) are spherical in shape and the core diameter is {approx}38 nm. FT-IR spectra also confirmed the coating of silica on the surface of silver nanoparticles. Cyclic voltammetry studies of NB with silica-coated silver core-shell nanoparticles-modified GC electrodes revealed two cathodic peaks at -0.74 V (C{sub 1}) and -0.34 V (C{sub 2}) along with two anodic peaks at -0.64 V (A{sub 1}) and -0.2 V (A{sub 2}). Enhanced cathodic peak current (C{sub 1}, I{sub P}) of the core-shell NSs-modified electrode is observed relative to bare and silica-modified electrodes. Amperometric studies revealed a very high current sensitivity (114 nA/nM) and linearly dependent reduction current with NB amount in the low concentration range and a detection limit of 25 nM. Moreover, the core-shell NSs-modified electrode showed good reproducibility and selectivity toward NB in the presence of many cationic, anionic, and organic interferents.

  10. Sensing behavior study of silica-coated Ag nanoparticles deposited on glassy carbon toward nitrobenzene

    International Nuclear Information System (INIS)

    Devi, Pooja; Reddy, Pramod; Arora, Swati; Singh, Suman; Ghanshyam, C.; Singla, M. L.

    2012-01-01

    In this study, we report the synthesis and characterization of silica-coated silver core/shell nanostructures (NSs) and their sensing behavior when deposited on glassy carbon (GC) electrode for nitrobenzene (NB) detection. Synthesized silica-coated silver core/shell NSs were characterized for their chemical, structural and morphological properties. TEM analysis confirmed that the silica-coated silver nanoparticles (size ∼200 nm) are spherical in shape and the core diameter is ∼38 nm. FT-IR spectra also confirmed the coating of silica on the surface of silver nanoparticles. Cyclic voltammetry studies of NB with silica-coated silver core–shell nanoparticles-modified GC electrodes revealed two cathodic peaks at −0.74 V (C 1 ) and −0.34 V (C 2 ) along with two anodic peaks at −0.64 V (A 1 ) and −0.2 V (A 2 ). Enhanced cathodic peak current (C 1 , I P ) of the core–shell NSs-modified electrode is observed relative to bare and silica-modified electrodes. Amperometric studies revealed a very high current sensitivity (114 nA/nM) and linearly dependent reduction current with NB amount in the low concentration range and a detection limit of 25 nM. Moreover, the core–shell NSs-modified electrode showed good reproducibility and selectivity toward NB in the presence of many cationic, anionic, and organic interferents.

  11. Optical spectroscopy of arsenic- and silver-containing sol-gel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.A.; Paje, S.E.; Llopis, J. [Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid (Spain); Villegas, M.A.; Fernandez Navarro, J.M. [Departamento de Vidrios, Instituto de Ceramica y Vidrio, Madrid (Spain)

    1999-05-07

    Sol-gel silica coatings doped with 1 mol% silver and/or 1 mol% arsenic oxide have been investigated by photoluminescence (PL) and optical absorption (OA) spectroscopy. The presence of Ag{sup +} ions in the silica host has been monitored by recording a luminescence peak located between 320 and 330 nm upon excitation with 228 nm light, whereas the formation of small particles of metallic silver has been assessed by recording the absorption band centred at about 405 nm. The luminescence peak has been related to the d{sup 10} 10 {r_reversible} d{sup 9} s parity-forbidden transitions in Ag{sup +}, which are partially allowed by odd-phonon assistance. On the other hand, the absorption peak at about 405 nm arises from the well known surface-plasmon resonance of silver particles. Coating densification under various atmospheres gives rise to significant effects on the PL and OA spectra. Results indicate that, after coating densification in air, most of the silver appears as Ag{sup +} ions, in contrast to coating densification under a 90% N{sub 2}-10% H{sub 2} atmosphere, which favours the formation of small particles of metallic silver. The presence of arsenic oxide in the silver coatings densified in air has been found to improve the stabilization of Ag{sup +} ions, so that partially prevents the formation of colloidal silver under reducing atmospheres. (author)

  12. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  13. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  14. Controlled generation of silver nanocolloid in amorphous silica materials

    International Nuclear Information System (INIS)

    Gil, C.; Garcia-Heras, M.; Carmona, N.; Villages, M. A.

    2004-01-01

    Amorphous silica-based materials bulk and superficially doped with silver nano colloids were prepared. Bulk doped glasses were obtained by conventional melting and doped monolithic slabs by sol-gel. Superficially doped glasses were obtained by ion-exchange and doped coatings by sol-gel. The samples were characterised by TEM and UV-VIS spectrometry. Depending on the composition, the silver incorporation process, and the thermal treatments, several colourings were obtained. By controlling these parameters, metallic silver nano colloids can be generated in the matrices studied. Colloids aggregation and growing up depends on the matrix nature and on the experimental process carried out. (Author) 10 refs

  15. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  16. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keum Hwan; Park, O Ok [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Im, Sang Hyuk, E-mail: imromy@krict.re.kr, E-mail: ookpark@kaist.ac.kr [Korea Research Institute of Chemical Technology (KRICT), 19 Singsungno, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)

    2011-01-28

    The size of silver nanocrystals in polyol synthesis can be simply controlled by tuning the viscosity of the reaction medium such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,5-pentanediol. We found that a higher viscose medium (1,5-pentanediol) led to monodispersed smaller particles thanks to the slow addition of silver atoms into the nuclei. Size-controlled silver nanocrystals of 30 nm were obtained in a viscosity controlled medium of 1,5-pentanediol to synthesize a low refractive index filler by coating with silica and subsequent etching of the silver core. The coated low-reflection layer from the hollow silica nanoparticles on polyethylene terephthalate (PET) film can greatly reduce the reflection of the PET film from 10% to 2% over the entire visible region.

  17. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  18. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  19. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    Science.gov (United States)

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The toxicity of silver and silica nanoparticles in comparable human and mouse cell lines

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Beer, Christiane; Sutherland, Duncan S

    The toxicity of silica (SiO2) and PVP-coated silver (Ag) nanoparticles (NPs) was investigated in two pairs of human or mouse cell lines originating from lung epithelium (A549 and ASB-XIV) and macrophages (THP-1 and J744A.1). Both NPs were characterized in H2O and cell media and demonstrated to be...

  1. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  2. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  3. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  4. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  5. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    Science.gov (United States)

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.

  6. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  7. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  8. Characterization of a silica-PVA hybrid for high density and stable silver dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Bryce, E-mail: bryce.dorin@postgrad.manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Zhu, Guangyu, E-mail: g.zhu@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Parkinson, Patrick, E-mail: patrick.parkinson@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Perrie, Walter, E-mail: wpfemto1@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Benyezzar, Med, E-mail: med.benyezzar@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Scully, Patricia, E-mail: patricia.scully@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-07-01

    A silica and polyvinyl alcohol (PVA) hybrid material mixed with a high density of silver ions is synthesised and characterized in this work. The hybrid material can be cast into thick films, which we determined to be homogeneous using Raman spectroscopy. We observed that the silver ions remain stable in the material over time and at temperatures of 100 °C, which represents a marked improvement over previous solid solutions of silver. Differential scanning calorimetry and thermogravimetric analysis indicate the rapid activation of silver at 173 °C, resulting in a dense formation of silver nanoparticles within the hybrid. The activation of silver was also demonstrated in 3-dimensional geometries using femtosecond duration laser pulses. These results illustrate the silica-PVA hybrid is an attractive material for developing silver-insulator composites. - Highlights: • A novel PVA-silica hybrid is developed for silver ion dissolution. • The hybrid exhibits a high silver saturation point and good silver stability. • Heating and laser irradiation are capable of converting the silver ions to metal. • The hybrid material enables the fabrication of 3D metal-insulator composites.

  9. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  10. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  11. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    Energy Technology Data Exchange (ETDEWEB)

    Mnasri, Najib [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Charnay, Clarence; Ménorval, Louis-Charles de [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Elaloui, Elimame [Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Zajac, Jerzy, E-mail: jerzy.zajac@umontpellier.fr [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France)

    2016-11-15

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.

  12. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    International Nuclear Information System (INIS)

    Motes, B.G.; Fernandez, S.J.; Tkachyk, J.W.

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10 -2 % and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  13. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  14. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    Energy Technology Data Exchange (ETDEWEB)

    Motes, B G; Fernandez, S J; Tkachyk, J W

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10{sup -2}% and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  15. Photochemical oxygen reduction by zinc phthalocyanine and silver/gold nanoparticle incorporated silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Manas; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Azad, Uday Pratap

    2012-12-15

    Silver or gold nanoparticles are synthesized using a borohydride reduction method and are anchored simultaneously into/onto the mercaptopropyl functionalized silica. Later, zinc phthalocyanine is adsorbed onto the above materials. Thin films of these materials are prepared by coating an aqueous colloidal suspension of the respective material onto glass plates. Visible light irradiation of these films in oxygen saturated, stirred aqueous solutions effectively reduces oxygen to hydrogen peroxide. The photocatalytic reduction of oxygen is explained on the basis of the semiconducting properties of the silica films. The back electron transfer reaction is largely prevented by means of a sacrificial electron donor, triethanolamine. - Highlights: Black-Right-Pointing-Pointer Zinc phthalocyanine adsorbed silica materials were prepared. Black-Right-Pointing-Pointer Thin films of these materials photocatalytically reduce oxygen. Black-Right-Pointing-Pointer The photocatalysis is explained based on semiconductor properties of the materials. Black-Right-Pointing-Pointer Metal nanoparticles increase the photocatalytic efficiency of the materials.

  16. Modified silica sol coatings for surface enhancement of leather.

    Science.gov (United States)

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  17. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Siddiquey, Iqbal Ahmed; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru

    2008-01-01

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO 2 . The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency

  18. Silica coating of nanoparticles by the sonogel process.

    Science.gov (United States)

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  19. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tang Juan [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Tang Dianping, E-mail: dianping.tang@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Su Biling; Li Qunfang; Qiu Bin [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen Guonan, E-mail: gnchen@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

    2011-04-15

    Research highlights: {yields} We fabricate a polyion graphene complex membrane-based immunosensing platform for sensitive electrochemical immunoassay of alpha-fetoprotein. {yields} Nanosilver-coated silica nanocomposites as bionanolabels. {yields} Graphene nanosheets, single-stranded DNA and silver nanoparticles as matrices. {yields} Direct electron transfer without electron mediator. {yields} Analysis of real samples and method comparison. - Abstract: A facile and sensitive mediator-free electrochemical immunosensor for detection of alpha-fetoprotein (AFP) was designed by using nanosilver-coated silica nanoparticles (Ag-SiO{sub 2}) as bionanolabels. To construct such an electrochemical immunosensor, silver ions/single-stranded DNA/graphene nanosheets were initially immobilized on a gold electrode in turn, then silver ions were in situ reduced to silver nanoparticles with the aid of NaBH{sub 4}, and anti-AFP antibodies conjugated to silver nanoparticles were used. In the presence of AFP analyte, the sandwiched immunocomplex was formed on the electrode surface by using horseradish peroxidase-anti-AFP conjugate-labeled Ag-SiO{sub 2} (HRP-anti-AFP-Ag-SiO{sub 2}) as secondary antibodies. Compared with pure silver nanoparticles, Ag-SiO{sub 2} nanocomposites could provide a large room for the immobilization of HRP-anti-AFP, and improve the electrochemical responses of the immunosensor. Meanwhile, the presence of highly conductive graphene nanosheets and silver nanoparticles provided a good pathway for electron transfer. Under optimal conditions, the immunosensor exhibited good electrochemical responses toward AFP ranging from 0.3 to 200 ng/mL with a detection limit (LOD) of 0.05 ng/mL (at 3{sigma}) in pH 6.0 PBS-H{sub 2}O{sub 2} system. Intra- and inter-assay displayed good precisions with coefficient of variation below 9.5%. In addition, the method was evaluated with 23 clinical serum samples, receiving good correlation with results from commercially available

  20. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles

    International Nuclear Information System (INIS)

    Tang Juan; Tang Dianping; Su Biling; Li Qunfang; Qiu Bin; Chen Guonan

    2011-01-01

    Research highlights: → We fabricate a polyion graphene complex membrane-based immunosensing platform for sensitive electrochemical immunoassay of alpha-fetoprotein. → Nanosilver-coated silica nanocomposites as bionanolabels. → Graphene nanosheets, single-stranded DNA and silver nanoparticles as matrices. → Direct electron transfer without electron mediator. → Analysis of real samples and method comparison. - Abstract: A facile and sensitive mediator-free electrochemical immunosensor for detection of alpha-fetoprotein (AFP) was designed by using nanosilver-coated silica nanoparticles (Ag-SiO 2 ) as bionanolabels. To construct such an electrochemical immunosensor, silver ions/single-stranded DNA/graphene nanosheets were initially immobilized on a gold electrode in turn, then silver ions were in situ reduced to silver nanoparticles with the aid of NaBH 4 , and anti-AFP antibodies conjugated to silver nanoparticles were used. In the presence of AFP analyte, the sandwiched immunocomplex was formed on the electrode surface by using horseradish peroxidase-anti-AFP conjugate-labeled Ag-SiO 2 (HRP-anti-AFP-Ag-SiO 2 ) as secondary antibodies. Compared with pure silver nanoparticles, Ag-SiO 2 nanocomposites could provide a large room for the immobilization of HRP-anti-AFP, and improve the electrochemical responses of the immunosensor. Meanwhile, the presence of highly conductive graphene nanosheets and silver nanoparticles provided a good pathway for electron transfer. Under optimal conditions, the immunosensor exhibited good electrochemical responses toward AFP ranging from 0.3 to 200 ng/mL with a detection limit (LOD) of 0.05 ng/mL (at 3σ) in pH 6.0 PBS-H 2 O 2 system. Intra- and inter-assay displayed good precisions with coefficient of variation below 9.5%. In addition, the method was evaluated with 23 clinical serum samples, receiving good correlation with results from commercially available electrochemiluminescent analyzer.

  1. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Science.gov (United States)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  2. Preparation and microwave shielding property of silver-coated carbonyl iron powder

    International Nuclear Information System (INIS)

    Cao, Xiao Guo; Ren, Hao; Zhang, Hai Yan

    2015-01-01

    Highlights: • The silver-coated carbonyl iron powder is prepared by the electroless plating process. • The silver-coated carbonyl iron powder is a new kind of conductive filler. • The reflection and absorption dominate the shielding mechanism of the prepared powder. • Increasing the thickness of electroconductive adhesive will increase the SE. - Abstract: Electroless silver coating of carbonyl iron powder is demonstrated in the present investigation. The carbonyl iron powders are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) before and after the coating process. The relatively uniform and continuous silver coating is obtained under the given coating conditions. In this paper, the electromagnetic interference (EMI) shielding mechanism of the silver-coated carbonyl iron powder is suggested. The reflection of silver coating and absorption of carbonyl iron powder dominate the shielding mechanism of the silver-coated carbonyl iron powder. The silver-coated carbonyl iron powders are used as conductive filler in electroconductive adhesive for electromagnetic interference shielding applications. The effect of the thickness of electroconductive adhesive on the shielding effectiveness (SE) is investigated. The results indicate that the SE increases obviously with the increase of the thickness of electroconductive adhesive. The SE of the electroconductive adhesive with 0.35 mm thickness is above 38 dB across the tested frequency range

  3. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    Energy Technology Data Exchange (ETDEWEB)

    Kaewvilai, Attaphon [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Wattanathana, Worawat [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Jongrungruangchok, Suchada [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani, 12000 (Thailand); Veranitisagul, Chatchai [Department of Material and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani, 12110 (Thailand); Koonsaeng, Nattamon [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Laobuthee, Apirat, E-mail: fengapl@ku.ac.th [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand)

    2015-11-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO{sub 2}), titanium dioxide (TiO{sub 2}), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  4. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    International Nuclear Information System (INIS)

    Kaewvilai, Attaphon; Wattanathana, Worawat; Jongrungruangchok, Suchada; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laobuthee, Apirat

    2015-01-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO_2), titanium dioxide (TiO_2), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  5. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres

    International Nuclear Information System (INIS)

    Cao Ruijian; Zhang Xiongfei; Wu Hong; Wang Jingtao; Liu Xiaofei; Jiang Zhongyi

    2011-01-01

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag + via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag + /SiO 2 -PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the π-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m 2 h) and an enrichment factor of 4.3 at the doping content of 5%.

  6. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  7. Development of silver coating process and facilities for ITER thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D.K. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, R.G. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Nam, K., E-mail: kwnam@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Noh, C.H.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Yoon, D.C. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Lim, K.; Baek, J.P. [SFA Engineering Corp., Asan 336-873 (Korea, Republic of)

    2016-11-01

    This paper describes both the test results of the bath type silver coating and the design of the bath to construct the silver coating plant for ITER thermal shield. The tests of small specimens made of SS304L and SS304LN were carried out to investigate the effect of the nitrogen content in SS304LN on the silver coating quality. The effect of different degreasing agents was also investigated to improve silver coating process. Small mock-up was tested to find a proper dipping direction during the electroplating process. Finally, noble bath design was conceived and structurally validated. Overall layout of silver coating plant is also shown in this paper.

  8. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  9. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    International Nuclear Information System (INIS)

    Hu Longfei; Li Meishuan; Xu Caihong; Luo Yongming

    2011-01-01

    By using surface sol–gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO 2 without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  10. Antibacterial effect of PEO coating with silver on AA7075

    Energy Technology Data Exchange (ETDEWEB)

    Cerchier, P., E-mail: pietrogiovanni.cerchier@studenti.unipd.it [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy); Pezzato, L.; Brunelli, K. [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy); Dolcet, P. [Department of Chemical Science, University of Padua, INSTM, UdR Padova and ICMATE-CNR, Padova (Italy); Bartolozzi, A.; Bertani, R.; Dabalà, M. [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy)

    2017-06-01

    In this work, plasma electrolytic oxidation (PEO) coatings were produced on AA7075 using alkaline solution containing silicates compounds and silver micrometric particles in order to give to the coating an antimicrobial effect. In the optic of circular economy, silver chloride derived from the acid pre-treatment of electronic scraps was used as raw material and successively silver powders were synthesized from silver chloride solution using glucose syrup as reducing agent. The coatings were characterized by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and antimicrobial tests. The results evidenced that the obtained coatings were homogenous and give to the samples higher corrosion resistance than untreated alloy. The silver particles, found both inside and outside of the pores that characterize the PEO layer, produced an efficacious antimicrobial effect both against E. coli and S. aureus. - Highlights: • Silver particles were incorporated into PEO coatings produced on aluminum alloys. • The incorporation was performed with direct addition of the particles in the electrolyte. • The particles resulted equally distributed on the samples surfaces. • The obtained coatings show antimicrobial activity with both E. coli and S. aureus. • The obtained coatings were characterized by acceptable corrosion resistance.

  11. Antibacterial effect of PEO coating with silver on AA7075

    International Nuclear Information System (INIS)

    Cerchier, P.; Pezzato, L.; Brunelli, K.; Dolcet, P.; Bartolozzi, A.; Bertani, R.; Dabalà, M.

    2017-01-01

    In this work, plasma electrolytic oxidation (PEO) coatings were produced on AA7075 using alkaline solution containing silicates compounds and silver micrometric particles in order to give to the coating an antimicrobial effect. In the optic of circular economy, silver chloride derived from the acid pre-treatment of electronic scraps was used as raw material and successively silver powders were synthesized from silver chloride solution using glucose syrup as reducing agent. The coatings were characterized by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and antimicrobial tests. The results evidenced that the obtained coatings were homogenous and give to the samples higher corrosion resistance than untreated alloy. The silver particles, found both inside and outside of the pores that characterize the PEO layer, produced an efficacious antimicrobial effect both against E. coli and S. aureus. - Highlights: • Silver particles were incorporated into PEO coatings produced on aluminum alloys. • The incorporation was performed with direct addition of the particles in the electrolyte. • The particles resulted equally distributed on the samples surfaces. • The obtained coatings show antimicrobial activity with both E. coli and S. aureus. • The obtained coatings were characterized by acceptable corrosion resistance.

  12. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    Science.gov (United States)

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (Pnano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (Pnano-silver coating can

  13. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-01-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH 4 reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  14. Reduction and aggregation of silver in aqueous gelatin and silica suspensions

    International Nuclear Information System (INIS)

    Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D.; Serpone, N.

    1994-01-01

    The investigation of silver reduction and aggregation processes are of specific interest to the photographic industry, which relies heavily on photochemical equivalents of these reactions. Mechanistic insights into the formation of small silver clusters in aqueous solution have been obtained from both pulse and γ-radiolytic studies. This paper examines the reduction of silver ions and the subsequent formation of silver clusters in aqueous gelatin solutions and on colloidal silica particles using the pulse radiolysis technique. The aggregation processes are compared with the parallel reactions in aqueous solutions

  15. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    Science.gov (United States)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  16. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  17. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Kennedy, Ian M

    2009-01-01

    A facile one-pot microemulsion method has been developed for the synthesis of spherical silver core-silica shell (Ag-SiO 2 ) nanoparticles with europium chelates doped in the shell through a silane agent. The method is significantly more straightforward than other extant methods. Measurements of the luminescent emissions from the Ag-SiO 2 nanoparticles, in comparison with control silica nanoparticles without silver cores, showed that the presence of the silver cores can increase the fluorescence intensity approximately 24-fold and decrease the luminescence lifetime. This enhancement offers a potential increase in overall particle detectability with increased fluorophore photostability.

  18. Reducing ZnO nanoparticles toxicity through silica coating

    Directory of Open Access Journals (Sweden)

    Sing Ling Chia

    2016-10-01

    Full Text Available ZnO NPs have good antimicrobial activity that can be utilized as agents to prevent harmful microorganism growth in food. However, the use of ZnO NPs as food additive is limited by the perceived high toxicity of ZnO NPs in many earlier toxicity studies. In this study, surface modification by silica coating was used to reduce the toxicity of ZnO NPs by significantly reducing the dissolution of the core ZnO NPs. To more accurately recapitulate the scenario of ingested ZnO NPs, we tested our as synthesized ZnO NPs in ingestion fluids (synthetic saliva and synthetic gastric juice to determine the possible forms of ZnO NPs in digestive system before exposing the products to colorectal cell lines. The results showed that silica coating is highly effective in reducing toxicity of ZnO NPs through prevention of the dissociation of ZnO NPs to zinc ions in both neutral and acidic condition. The silica coating however did not alter the desired antimicrobial activity of ZnO NPs to E. coli and S. aureus. Thus, silica coating offered a potential solution to improve the biocompatibility of ZnO NPs for applications such as antimicrobial agent in foods or food related products like food packaging. Nevertheless, caution remains that high concentration of silica coated ZnO NPs can still induce undesirable cytotoxicity to mammalian gut cells. This study indicated that upstream safer-by-design philosophy in nanotechnology can be very helpful in a product development.

  19. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  20. Silver electrocrystallization at polyaniline-coated electrodes

    International Nuclear Information System (INIS)

    Ivanov, S.; Tsakova, V.

    2004-01-01

    The initial stage of silver electrocrystallization is studied at polyaniline (PANI)-coated platinum electrodes by means of potentiostatic current transients and electron microscopic observations. Data for the nucleation frequency and the number of active sites for nucleation are obtained by interpreting of current transients according to the theory for nucleation and 3D growth under diffusion limitations. It is found that depending on the PANI layers thickness, d, two different regimes for silver nucleation and growth exist. For thin PANI coatings (d 0.3 μm), silver nucleation occurs with a two orders of magnitude lower nucleation frequency at active sites located most probably at the polymer surface, their number remaining constant for thicknesses up to 1.4 μm. It is established that reduction of the PANI layer occurring in parallel with the silver electrodeposition does not influence the number of active sites for nucleation. The results obtained by interpretation of current transients are in good agreement with results for the number of crystals obtained by microscopic observation

  1. Antimicrobial particulate silver coatings on stainless steel implants for fracture management

    Energy Technology Data Exchange (ETDEWEB)

    DeVasConCellos, Paul; Bose, Susmita [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Beyenal, Haluk [School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA (United States); Bandyopadhyay, Amit, E-mail: amitband@wsu.edu [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Zirkle, Lewis G. [Surgical Implant Generation Network (SIGN), Richland, WA (United States)

    2012-07-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 and 500 Degree-Sign C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with Pseudomonas aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 h and proved to be statistically significant. - Highlights: Black-Right-Pointing-Pointer Processing of particulate silver coating that are strongly adherent on SS surface. Black-Right-Pointing-Pointer Optimized the amount of silver that is sufficient to reduce bacterial colonization but non-toxic to human bone tissue. Black-Right-Pointing-Pointer The adhesion strength of silver was sufficient to survive industrial sterilization steps used for fracture management devices.

  2. Antimicrobial particulate silver coatings on stainless steel implants for fracture management

    International Nuclear Information System (INIS)

    DeVasConCellos, Paul; Bose, Susmita; Beyenal, Haluk; Bandyopadhyay, Amit; Zirkle, Lewis G.

    2012-01-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 and 500 °C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with Pseudomonas aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 h and proved to be statistically significant. - Highlights: ► Processing of particulate silver coating that are strongly adherent on SS surface. ► Optimized the amount of silver that is sufficient to reduce bacterial colonization but non-toxic to human bone tissue. ► The adhesion strength of silver was sufficient to survive industrial sterilization steps used for fracture management devices.

  3. Structure and spectral properties of the silver-containing high-silica glasses

    International Nuclear Information System (INIS)

    Girsova, M A; Golovina, G F; Anfimova, I N; Antropova, T V; Arsent'ev, M Yu

    2016-01-01

    Silver-containing high-silica glasses were synthesized by an impregnation of the silica porous glasses (PGs) first with AgNO 3 aqueous solution (with or without the presence of the sensitizers, such as Cu(NO 3 ) 2 or Ce(NO 3 ) 3 ), next in the mixed halide salt (NH 4 Cl, KBr, KI) solution. Then some part of the samples was sintered at the temperatures from 850 to 900°C up to closing of the pores. The structure of glasses was studied by UV-VIS-NIR and IR spectroscopy and X-ray diffraction (XRD) techniques. According to XRD data the silver-containing high-silica glasses contain the AgBr, AgI, Ag 3 PO 4 , (CuBr) 0.75 (CuI) 0.25 phases. IR spectra confirmed B-O-B, Si- O-Si, P-O-P, O-P-O, O-B-O bonds, (PO 4 ) 3- and P-O - groups in glasses. (paper)

  4. Drag reduction in silica nanochannels induced by graphitic wall coatings

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    . In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively...

  5. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    Science.gov (United States)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  6. Investigation of metal coatings for the free electron laser

    International Nuclear Information System (INIS)

    Scott, M.L.; Arendt, P.N.; Springer, R.W.; Cordi, R.C.; McCreary, W.J.

    1985-01-01

    We are investigating the deposition and characteristics of metal coatings for use in environments such as the Free Electron Laser where the radiation resistance of metal coatings could prove to be of great benefit. We have concentrated our initial efforts on silver laminate coatings due to the high reflectance of silver at 1 micron wavelength. Our initial laminate coatings have utilized thin layers of titanium oxide to break up the columnar structure of the silver during electron-beam deposition on fused silica substrates. Our initial results on equal coating thickness samples indicate an improvement in damage threshold that ranges from 1.07 to 1.71 at 351 nm

  7. Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model

    Directory of Open Access Journals (Sweden)

    Gregor Hauschild

    2015-01-01

    Full Text Available Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (megaprostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition- silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses.

  8. Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model.

    Science.gov (United States)

    Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Stoeppeler, Sandra; Ahrens, Helmut; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen

    2015-01-01

    Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses.

  9. Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion

    International Nuclear Information System (INIS)

    Inose, Tomoya; Oikawa, Takahiro; Shibuya, Kyosuke; Tokunaga, Masayuki; Hatoyama, Keiichiro; Nakashima, Kouichi; Kamei, Takashi; Gonda, Kohsuke; Kobayashi, Yoshio

    2017-01-01

    This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) in a colloidal solution, assessed their property of photothermal conversion, and investigated their ability to kill cancer cells using photothermal conversion. Au-seed nanoparticles were produced by reducing hydrogen tetrachloroaurate (HAuCl 4 ) with sodium borohydride (NaBH 4 ) in aqueous n-hexadecyltrimethylammonium bromide (CTAB) solution. AuNRs were then fabricated by reducing HAuCl 4 and silver nitrate (AgNO 3 ) with L-ascorbic acid in the aqueous CTAB solution in the presence of Au-seed nanoparticles. The as-prepared AuNRs were washed by a process composed mainly of centrifugation to remove the CTAB. The washed AuNRs were coated with silica by mixing the AuNR colloidal solution, an aqueous solution of (3-aminopropyl)trimethoxysilane, and tetraethylorthosilicate/ethanol solution with a water/ethanol solution. We found that the addition of AuNR/SiO 2 in water, in mice, and in a culture medium with cancer cells, followed by irradiation with a laser, cause an increase in temperature, demonstrating that AuNR/SiO 2 have the ability of photothermal conversion. In addition, the cancer cells in the culture medium were found to be killed due to the increase in temperature caused by the photothermal conversion. - Highlights: • This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) colloidal solution. • The AuNR/SiO 2 had the ability of photothermal conversion. • The AuNR/SiO 2 also had the ability to kill cancer cells using the photothermal conversion.

  10. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    OpenAIRE

    Lushi Kong; Guanchun Rui; Guangyu Wang; Rundong Huang; Ran Li; Jiajie Yu; Shengli Qi; Dezhen Wu

    2017-01-01

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for u...

  11. The mechanical integrity and protective performance of silica coatings

    International Nuclear Information System (INIS)

    Crouch, A.G.; Dooley, R.B.

    1976-01-01

    Silica coatings have been developed to reduce the oxidation rates of 9Cr and other steels in high temperature environments. An important aspect of their performance is their ability to withstand the mechanical and thermal strains likely to be encountered in practical applications. This has been examined. Silica-coated 9 Cr steel specimens were deformed in tension and coating failure was detected by scanning electron microscope observations of the oxide stringers which delineated the strain-induced cracks on subsequent exidation. Coating fracture was shown to occur in the strain range 0.27 to 0.45%. The crack separation at constant coating thickness decresed with strain and at constant strain was approximately proportional to the square root of the coating thickness. The implications of these results for the protection of the underlying alloy by a cracked coating are considered. (author)

  12. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  13. Study of Physical Properties of Nano-Silica Coated Cotton Textiles

    OpenAIRE

    Sidra Saleemi; Farooq Ahmed; Samandar Malik

    2015-01-01

    This research was aimed to investigate the effect of silica sol-gel coating on air permeability, stiffness and tensile properties of dyed cotton fabric. Various concentrations of silica nanoparticles were applied on dyed cotton substrate using two different cross-linkers through sol-gel method. The homogenous sol-gel coating dispersions were prepared by using an ultrasonicator. Coated samples were tested for mechanical and comfort properties such as tensile strength, stiffness, crease recover...

  14. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers.

    Science.gov (United States)

    Kong, Lushi; Rui, Guanchun; Wang, Guangyu; Huang, Rundong; Li, Ran; Yu, Jiajie; Qi, Shengli; Wu, Dezhen

    2017-11-02

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  15. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    Directory of Open Access Journals (Sweden)

    Lushi Kong

    2017-11-01

    Full Text Available A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  16. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  17. Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field.

    Science.gov (United States)

    Swain, S; Rautray, T R

    2017-09-13

    Uniform distribution of silver (Ag) in the hydroxyapatite (HA) coated Ti surface has been a concern for which an attempt has been made to dope Ag in HA coating with and without magnetic field. Cathodic deposition technique was employed to coat Ag incorporated hydroxyapatite coating using a sacrificial silver anode method by using NdFeB bar magnets producing 12 Tesla magnetic field. While uniform deposition of Ag was observed in the coatings under magnetic field, dense coating was evident in the coating without magnetic field conditions. Uniformly distributed Ag incorporated HA in the present study has potential to fight microorganism while providing osseoconduction properties of the composite coating.

  18. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Vo Ke Thanh; Phan Hue Phuong

    2009-01-01

    In this paper, we fabricated silver-coated polyurethane foams and used it as a bacterial filter for contaminated drinking water. Flexible PU foams were soaked in silver colloidal solutions for 10 h, then washed and air-dried at room temperature. The prepared silver colloidal solutions and silver-coated PU materials were characterized by several techniques including TEM, FESEM/EDS, UV-VIS, ICP-AAS, and Raman spectroscopy. The TEM images showed that the size of silver nanoparticles in colloidal solutions varies from 6 to 12nm. The Raman, FE-SEM/EDS and ICP-AAS data illustrated that silver nanoparticles were stable on the PU foam and were not washed away by water. Furthermore, the microbiological tests (tube tests and flow test) were carried out on silver-coated PU materials with the Coliforms, E. coli, and B. subtilis. The obtained results showed that the bacteria was killed completely with antibacterial efficiency of 100% being observed. Our research suggests that silver-coated polyurethane foams can be used as excellent antibacterial water filters and would have several applications in other sectors.

  19. Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes.

    Directory of Open Access Journals (Sweden)

    Myeong Geun Cha

    Full Text Available Surface-enhanced Raman scattering (SERS provides a unique non-destructive spectroscopic fingerprint for chemical detection. However, intrinsic differences in affinity of analyte molecules to metal surface hinder SERS as a universal quantitative detection tool for various analyte molecules simultaneously. This must be overcome while keeping close proximity of analyte molecules to the metal surface. Moreover, assembled metal nanoparticles (NPs structures might be beneficial for sensitive and reliable detection of chemicals than single NP structures. For this purpose, here we introduce thin silica-coated and assembled Ag NPs (SiO2@Ag@SiO2 NPs for simultaneous and quantitative detection of chemicals that have different intrinsic affinities to silver metal. These SiO2@Ag@SiO2 NPs could detect each SERS peak of aniline or 4-aminothiophenol (4-ATP from the mixture with limits of detection (LOD of 93 ppm and 54 ppb, respectively. E-field distribution based on interparticle distance was simulated using discrete dipole approximation (DDA calculation to gain insight into enhanced scattering of these thin silica coated Ag NP assemblies. These NPs were successfully applied to detect aniline in river water and tap water. Results suggest that SiO2@Ag@SiO2 NP-based SERS detection systems can be used as a simple and universal detection tool for environment pollutants and food safety.

  20. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  1. Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation.

    Science.gov (United States)

    Tank, Chiti; Raman, Sujatha; Karan, Sujoy; Gosavi, Suresh; Lalla, Niranjan P; Sathe, Vasant; Berndt, Richard; Gade, W N; Bhoraskar, S V; Mathe, Vikas L

    2013-06-01

    Silica-coated, silicon nanotubes (SCSNTs) and silica-coated, silicon nanoparticles (SCSNPs) have been synthesized by catalyst-free single-step gas phase condensation using the arc plasma process. Transmission electron microscopy and scanning tunneling microscopy showed that SCSNTs exhibited a wall thickness of less than 1 nm, with an average diameter of 14 nm and a length of several 100 nm. Both nano-structures had a high specific surface area. The present study has demonstrated cheaper, resistance-free and effective antibacterial activity in silica-coated silicon nano-structures, each for two Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) was estimated, using the optical densitometric technique, and by determining colony-forming units. The MIC was found to range in the order of micrograms, which is comparable to the reported MIC of metal oxides for these bacteria. SCSNTs were found to be more effective in limiting the growth of multidrug-resistant Staphylococcus aureus over SCSNPs at 10 μg/ml (IC 50 = 100 μg/ml).

  2. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    Science.gov (United States)

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  3. Adsorption and Desorption of Chemical Warfare Agent Simulants on Silica Surfaces with Hydrophobic Coating

    International Nuclear Information System (INIS)

    Park, Eun Ji; Kim, Young Dok

    2013-01-01

    Aim of our study is finding adsorbents suitable for pre-concentration of chemical warfare agents (CWAs). We considered Tenax, bare silica and polydimethylsiloxane (PDMS)-coated silica as adsorbents for dimethyl methylphosphonate (DMMP) and dipropylene glycol methyl ether (DPGME). Tenax showed lower thermal stability, and therefore, desorption of CWA simulants and decomposition of Tenax took place simultaneously. Silica-based adsorbents showed higher thermal stabilities than Tenax. A drawback of silica was that adsorption of CWA simulant (DMMP) was significantly reduced by pre-treatment of the adsorbents with humid air. In the case of PDMS-coated silica, influence of humidity for CWA simulant adsorption was less pronounced due to the hydrophobic nature of PDMS-coating. We propose that PDMS-coated silica can be of potential importance as adsorbent of CWAs for their pre-concentration, which can facilitate detection of these CWAs

  4. Adsorption and Desorption of Chemical Warfare Agent Simulants on Silica Surfaces with Hydrophobic Coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Ji; Kim, Young Dok [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2013-07-15

    Aim of our study is finding adsorbents suitable for pre-concentration of chemical warfare agents (CWAs). We considered Tenax, bare silica and polydimethylsiloxane (PDMS)-coated silica as adsorbents for dimethyl methylphosphonate (DMMP) and dipropylene glycol methyl ether (DPGME). Tenax showed lower thermal stability, and therefore, desorption of CWA simulants and decomposition of Tenax took place simultaneously. Silica-based adsorbents showed higher thermal stabilities than Tenax. A drawback of silica was that adsorption of CWA simulant (DMMP) was significantly reduced by pre-treatment of the adsorbents with humid air. In the case of PDMS-coated silica, influence of humidity for CWA simulant adsorption was less pronounced due to the hydrophobic nature of PDMS-coating. We propose that PDMS-coated silica can be of potential importance as adsorbent of CWAs for their pre-concentration, which can facilitate detection of these CWAs.

  5. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    International Nuclear Information System (INIS)

    Cervantes-Vásquez, D.; Contreras, O.E.; Hirata, G.A.

    2013-01-01

    The photoluminescent properties of rare earth-activated white-emitting Y 2 SiO 5 :Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y 2 SiO 5 and X2-Y 2 SiO 5 phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce 3+ ions and a well-defined green emission of Tb 3+ ions located at 545 nm corresponding to 5 D 4 → 7 F 5 electronic transitions. Thereafter, Y 2 SiO 5 :Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y 2 SiO 5 :Ce,Tb phosphor. -- Highlights: • Y 2 SiO 5 :Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y 2 SiO 5 :Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%

  6. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  7. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of

  8. Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp

    Directory of Open Access Journals (Sweden)

    Mahmood Nafisi Bahabadi

    2016-04-01

    Full Text Available Background: Nanotechnology is a field of applied science and technology covering a broad range of topics. Use of nanotechnology and especially silver nanoparticles in control of bacterial diseases and infections has been studied in the recent years. The aim of the present study was to investigate the in vitro antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. Materials and methods: In this research, first, the antibacterial effects of silver nanoparticles against mentioned bacteria were evaluated by microdilution method in Broth medium. After confidence of inhibitory effect of colloidal silver nanoparticles, antibacterial effect of filter media coated with silver nanoparticles was evaluated via in vitro microbiology tests (zone of inhibition test and test tube test. Results: Present study showed that colloidal silver nanoparticles have good antimicrobial effects against tested bacteria, so that MIC and MBC of silver nanoparticles for Bacillus spp. were calculated 3.9 and 31.25 mg/L, respectively. Also significant decrease was observed in bacterial growth after exposure to filter media coated with silver nanoparticles in test tube test and  zone of inhibition test (P≤ 5%. Conclusion: The results of this research indicate that filter media coated with silver nanoparticles have considerable antimicrobial effects; therefore they could possibly be used as excellent antibacterial water filters and would have several applications in other sectors.

  9. Cultivation of human dermal fibroblasts and epidermal keratinocytes on keratin-coated silica bead substrates.

    Science.gov (United States)

    Tan, Bee Yi; Nguyen, Luong T H; Kim, Hyo-Sop; Kim, Jae-Ho; Ng, Kee Woei

    2017-10-01

    Human hair keratin is promising as a bioactive material platform for various biomedical applications. To explore its versatility further, human hair keratin was coated onto monolayers of silica beads to produce film-like substrates. This combination was hypothesized to provide a synergistic effect in improving the biochemical properties of the resultant composite. Atomic force microscopy analysis showed uniform coatings of keratin on the silica beads with a slight increase in the resulting surface roughness. Keratin-coated silica beads had higher surface energy and relatively lower negative charge than those of bare silica beads. To investigate cell response, human dermal fibroblasts (HDFs), and human epidermal keratinocytes (HEKs) were cultured on the substrates over 4 days. Results showed that keratin coatings significantly enhanced the metabolic activity of HDFs and encouraged cell spreading but did not exert any significant effects on HEKs. HDF expression of collagen I was significantly more intense on the keratin-coated compared to the bare silica substrates. Furthermore, HDF secretion of various cytokines suggested that keratin coatings triggered active cell responses related to wound healing. Collectively, our study demonstrated that human hair keratin-coated silica bead monolayers have the potential to modulate HDF behavior in culture and may be exploited further. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2789-2798, 2017. © 2017 Wiley Periodicals, Inc.

  10. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  11. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  12. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Leo H. Koole

    2011-01-01

    Full Text Available Bacterial infection from medical devices is a major problem and accounts for an increasing number of deaths as well as high medical costs. Many different strategies have been developed to decrease the incidence of medical device related infection. One way to prevent infection is by modifying the surface of the devices in such a way that no bacterial adhesion can occur. This requires modification of the complete surface with, mostly, hydrophilic polymeric surface coatings. These materials are designed to be non-fouling, meaning that protein adsorption and subsequent microbial adhesion are minimized. Incorporation of antimicrobial agents in the bulk material or as a surface coating has been considered a viable alternative for systemic application of antibiotics. However, the manifestation of more and more multi-drug resistant bacterial strains restrains the use of antibiotics in a preventive strategy. The application of silver nanoparticles on the surface of medical devices has been used to prevent bacterial adhesion and subsequent biofilm formation. The nanoparticles are either deposited directly on the device surface, or applied in a polymeric surface coating. The silver is slowly released from the surface, thereby killing the bacteria present near the surface. In the last decade there has been a surplus of studies applying the concept of silver nanoparticles as an antimicrobial agent on a range of different medical devices. The main problem however is that the exact antimicrobial mechanism of silver remains unclear. Additionally, the antimicrobial efficacy of silver on medical devices varies to a great extent. Here we will review existing antimicrobial coating strategies and discuss the use of silver or silver nanoparticles on surfaces that are designed to prevent medical device related infections.

  13. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Vásquez, D., E-mail: dcervant@cnyn.unam.mx [Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, B.C., México (Mexico); Contreras, O.E.; Hirata, G.A. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, C.P. 22800 Ensenada, B.C., México (Mexico)

    2013-11-15

    The photoluminescent properties of rare earth-activated white-emitting Y{sub 2}SiO{sub 5}:Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y{sub 2}SiO{sub 5} and X2-Y{sub 2}SiO{sub 5} phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce{sup 3+} ions and a well-defined green emission of Tb{sup 3+} ions located at 545 nm corresponding to {sup 5}D{sub 4}→{sup 7}F{sub 5} electronic transitions. Thereafter, Y{sub 2}SiO{sub 5}:Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y{sub 2}SiO{sub 5}:Ce,Tb phosphor. -- Highlights: • Y{sub 2}SiO{sub 5}:Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y{sub 2}SiO{sub 5}:Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%.

  14. Mechanical loss in tantala/silica dielectric mirror coatings

    International Nuclear Information System (INIS)

    Penn, Steven D; Sneddon, Peter H; Armandula, Helena; Betzwieser, Joseph C; Cagnoli, Gianpietro; Camp, Jordan; Crooks, D R M; Fejer, Martin M; Gretarsson, Andri M; Harry, Gregory M; Hough, Jim; Kittelberger, Scott E; Mortonson, Michael J; Route, Roger; Rowan, Sheila; Vassiliou, Christophoros C

    2003-01-01

    Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO 2 (silica) and Ta 2 O 5 (tantala). However, mechanical loss in the Ta 2 O 5 /SiO 2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta 2 O 5 /SiO 2 coatings, including loss associated with the coating-substrate interface, with the coating-layer interfaces and with the coating materials. Our results indicate that the loss is associated with the coating materials and that the loss of Ta 2 O 5 is substantially larger than that of SiO 2

  15. Thermal dynamics of silver clusters grown on rippled silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Ranjan, Mukesh [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Jolley, Kenny; Lloyd, Adam; Smith, Roger [Dept. of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Mukherjee, Subroto [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India)

    2017-02-15

    Highlights: • Low energy oblique angle ion bombardment forms ripple pattern on silicon surface. • The ripple patterns have wavelengths between 20 and 45 nm and correspondingly low height. • Silver nanoparticles have been deposited at an angle of 70° on patterned silicon templates. • The as-deposited np are annealed in vacuo at temperature of 573 K for a time duration of 1 h. • MD simulation is used to model the process and compare the results to the experiment. • Results show that silver clusters grow preferentially along parallel to the rippled surface. • Mobility of silver atoms depends on the site to which they are bonded on this amorphous surface. • MD simulations show contour ordered coalescence which is dependent on ripple periodicity. - Abstract: Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica

  16. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    Directory of Open Access Journals (Sweden)

    Benjamin Baumgärtner

    2017-05-01

    Full Text Available A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine, silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  17. Electron beam synthesis of silica/nano silver composite and its application in controlling microorganisms in drinking water

    International Nuclear Information System (INIS)

    Ramnani, S.P.; Biswal, Jayashree; Sabharwal, S.; Rama Rao, K.C.; Sai Prasad, P.

    2008-01-01

    Silica/nano silver composites were prepared by electron beam (EB) irradiation technique. The solution containing silica nanoparticles and AgNO 3 in various proportion were subjected to EB irradiation. The EB dose delivered was such that all the Ag + is converted into metallic silver. The samples were characterized by XRD, SEM and TEM analysis. The composites were tested for their anti microbial activity in water samples. The results indicated that there is an optimum size of Ag nanoparticles that shows better antimicrobial activity. (author)

  18. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Can a novel silver nano coating reduce infections and maintain cell viability in vitro?

    Science.gov (United States)

    Qureshi, Ammar T; Landry, Jace P; Dasa, Vinod; Janes, Marlene; Hayes, Daniel J

    2014-03-01

    Herein we report a facile layer-by-layer method for creating an antimicrobial coating composed of silver nanoparticles on medical grade titanium test discs. Nanoscale silver nanoparticle layers are attached to the titanium orthopedic implant material via aminopropyltriethoxy silane crosslinker that reacts with neighboring silane moieties to create an interconnected network. A monolayer of silane, followed by a monolayer of silver nanoparticles would form one self-assembled layer and this process can be repeated serially, resulting in increased silver nanoparticles deposition. The release rate of silver ion increases predictably with increasing numbers of layers and at appropriate thicknesses these coatings demonstrate 3-4 log reduction of viable Escherichia coli and Staphylococcus aureus bacteria. Increasing the thickness of the coatings resulted in reduced bacterial colonization as determined by fluorescent staining and image analysis. Interestingly, the cytotoxicity of murine 3T3 cells as quantified by fluorescent staining and flow cytometry, was minimal and did not vary significantly with the coating thickness. Additionally, these coatings are mechanically stable and resist delamination by orthogonal stress test. This simple layer-by-layer coating technique may provide a cost-effective and biocompatible method for reducing microbial colonization of implantable orthopedic devices.

  20. Hydrophilic nano-silica coating agents with platinum and diamond nanoparticles for denture base materials.

    Science.gov (United States)

    Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke

    2017-05-31

    Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.

  1. Photocatalytic degradation of methyl red dye by silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Y. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt); Abd El-Wahed, M.G. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mahmoud, M.A. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: mahmoudchem@yahoo.com

    2008-06-15

    Silica nanoparticles (SiO{sub 2} NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO{sub 2} NPs and SiO{sub 2} NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO{sub 2} NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO{sub 2} NPs, SiO{sub 2} NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO{sub 2} NPs coated with Ag NPs, SiO{sub 2} NPs coated with Au NPs, Ag{sup +}-doped SiO{sub 2} NPs, and Au{sup 3+}-doped SiO{sub 2} NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.

  2. Silver release from coated particle fuel

    International Nuclear Information System (INIS)

    Brown, P.E.; Nabielek, H.

    1977-03-01

    The fission product Ag-110 m released from coated particles can be the dominant source of radioactivity from the core of a high temperature reactor in the early stages of the reactor life and possibly limits the accessability of primary circuit components. It can be shown that silver is retained in oxide fuel by a diffusion process (but not in carbide or carbon-diluted fuel) and that silver is released through all types of pyrocarbon layers. The retention in TRISO particles is variable and seems to be mainly connected with operating temperature and silicon carbide quality. (orig.) [de

  3. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  4. Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation.

    Science.gov (United States)

    Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing

    2015-06-19

    A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Optical properties of silica-coated Y2O3:Er,Yb nanoparticles in the presence of polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Fujii, Kunio; Kitamoto, Yoshitaka; Hara, Masahiko; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    The optical properties of polyvinylpyrrolidone (PVP)-adsorbed and silica-coated Y 2 O 3 :Er,Yb nanoparticles produced by using PVP were studied for potential bio-applications of upconversion nanoparticles. We utilized PVP to better disperse Y 2 O 3 :Er,Yb nanoparticles in solution and to prepare silica-coated Y 2 O 3 :Er,Yb nanoparticles. The fluorescent intensity of PVP-adsorbed Y 2 O 3 :Er,Yb nanoparticles was 1.25 times higher than non-adsorbed Y 2 O 3 :Er,Yb nanoparticles, which was probably due to surface defects in Y 2 O 3 :Er,Yb nanoparticles being covered by the PVP. However, the fluorescent intensity of silica-coated Y 2 O 3 :Er,Yb nanoparticles decreased as silica layer thickness increased. This could be ascribed to the higher vibrational energy of PVP than that of the silica structure. Therefore, the optimum silica layer thickness is important in bio-applications to avoid deterioration of the optical properties of Y 2 O 3 :Er,Yb nanoparticles. - Highlights: • We prepared the silica-coated upconversion nanoparticles by using PVP. • We showed that PVP played an important role in coating nanoparticles. • PL intensity of silica-coated nanoparticles decreased as silica layer thickness increased

  6. Influence of Silane modified nano silica on the corrosion protection of zinc rich coating

    International Nuclear Information System (INIS)

    Nguyen Thuy Duong; To Thi Xuan Hang; Trinh Anh Truc; Pham Gia Vu; Bui Van Truoc; Thai Hoang

    2015-01-01

    Zinc rich coatings are the best effective primers for corrosion protection of carbon steel in aggressive conditions. For traditional zinc rich primer the zinc content is very high, more than 90 wt.%. The coating adhesion is decreased with the increase of zinc content, so that it is necessary to decrease the zinc content by using additives. In this study the nano silica modified by N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane was prepared and incorporated in zinc rich epoxy coatings containing 85 wt.% zinc powder. The corrosion protection performance of coatings was evaluated by electrochemical impedance spectroscopy. The results obtained show that the presence of nano silica improved corrosion protection of zinc rich epoxy coating and the best protection was obtained with 3 wt.% nano silica. (author)

  7. Ionizing radiation effect on central venous catheters (CVC) of polyurethane coatings with silver nanoparticles

    International Nuclear Information System (INIS)

    Heilman, Sonia; Silva, Leonardo G.A.; Hewer, Thiago L.R.; Souza, Michele L.

    2015-01-01

    The present work aimed to study the use of ionizing radiation for coating of silver nanoparticles on central polyurethane catheters, providing reduction of infections associated with contamination of catheters introduced into the bloodstream. Silver nanoparticles have physical, chemical and biological properties only when compared to metal on a macroscopic scale, and have been used in the medical field because of its remarkable antimicrobial activity. Titanium dioxide nanoparticles obtained by the sol gel method were used as the coating catheters for subsequent impregnation of silver nanoparticles with ionizing radiation at doses of 25 and 50 kGy. A Raman spectrometry was used to identify the polymorph of titanium oxide, rutile. In trials with (ICP OES) were evaluated amounts of titanium and silver coated catheters in titanium oxide and silver.(author)

  8. Properties of CdSe quantum dots coated with silica fabricated in a facile way

    International Nuclear Information System (INIS)

    Liao Yufeng; Li Wenjiang; He Sailing

    2007-01-01

    High quality quantum dots (QDs) CdSe were prepared using a novel and non-TOP method. Quantum dots of different sizes ranging from 2 to 4 nm could be obtained by removing aliquots of the reaction solution at different time intervals or by adjusting some reaction conditions. The CdSe quantum dots (core) were directly coated with silica (shell) using a microemulsion method. The design and preparation of a model QD/silica was described and characterized using transmission electron microscopy (TEM), UV-vis absorption, photoluminescence and laser confocal scanning microscopy. TEM images confirmed the well-monodispersed QDs and the silica shell around the CdSe core, respectively; laser confocal microscope images, UV-vis absorption and photoluminescence spectra clearly indicated that both the original QDs and the silica-coated QDs had good fluorescence properties. The quantum dots coated with silica shells were stable, water-soluble and less toxic (due to the silica shells), and are anticipated to be used as fluorescent probes for biosensing and imaging applications

  9. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  10. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    Science.gov (United States)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  11. Effect of sol aging time on the anti-reflective properties of silica coatings templated with phosphoric acid

    Directory of Open Access Journals (Sweden)

    Wen Wen

    Full Text Available Silica anti-reflective coatings have been prepared by a sol–gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate. Keywords: Thin films, Anti-reflective coatings, Aging, Dip-coating, Sol–gel preparation

  12. Synthesis Of Silver Nanoparticles Supported On Silica Using As Antifungal Agent By Gamma Irradiation

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Nguyen Tue Anh; Dang Van Phu; Vo Kim Lang; Nguyen Thuy Khanh; Nguyen Quoc Hien

    2011-01-01

    Silver nanoparticles supported on silica (Ag nano/SiO 2 ) were prepared by gamma Co-60 irradiation method. The formation of Ag nano doped on silica particles was confirmed by the UV-Vis spectroscopy. The size of silver nanoparticles was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) which showed the particle size of Ag nano to be in range of 15-30 nm for Ag + concentration 10 mM. In addition, antifungal activity of Ag nano/SiO 2 was tested against Aspergillus niger var Tieghn by plate count method. The results indicated that the antifungal efficiency of Ag nano/SiO 2 was about 64, 71, 81, 82 and 96% at the concentrations of Ag nanoparticles of 30, 50, 70, 100 and 150 ppm respectively. (author)

  13. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  14. Silica-coated quantum dots fluorescent spheres synthesized using a quaternary 'water-in-oil' microemulsion system

    International Nuclear Information System (INIS)

    Chu Maoquan; Sun Ye; Xu Shi

    2008-01-01

    Nanoscale and microscale silica spheres embedded with multiple CdSe quantum dots (QDs, having average diameters of about 2.4 and 5.0 nm, respectively.) were synthesized by using a quaternary 'water-in-oil' microemulsion. Comparing the uncoated QDs, the quantum yields (QYs) of the silica-coated QD spheres were enhanced when the QD cores were synthesized using mercaptoacetic acid (MA) as a stabilizer, while the QYs were dramatically decreased when the cores were synthesized using citric acid (CA) as a stabilizer. The enhanced QYs could be further improved by heating the silica-coated QDs in aqueous solution. Although the QYs of the silica-coated QDs were not high, these spheres emitted bright fluorescence. The silica shells contained numerous micropores (∼0.58-0.91 nm), and small amounts of toxic ions (such as Cd 2+ ) could be released from the silica spheres. However, the release rate of toxic ions from the silica spheres was significantly reduced compared with that of the uncoated QDs

  15. Fabrication and electromagnetic interference shielding effectiveness of polymeric composites filled with silver-coated microorganism cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mingming, E-mail: lan_mingming@163.com [College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002 (China); Zhang, Deyuan; Cai, Jun; Hu, Yanyan; Yuan, Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2014-07-01

    In this paper, helical silver-coated Spirulina cells were used as conductive fillers for the fabrication of polymeric composites. The morphology and composition of the coated Spirulina cells were analyzed with scanning electron microscope and energy dispersive X-ray spectrometer. The densities of silver-coated Spirulina cells were measured using the standard Archimedes method with distilled water. The electrical resistivity was measured by four-probe technique using ammeter and voltmeter whereas electromagnetic interference shielding effectiveness was measured by four-port method using vector network analyzer and coaxial-airline sample holder. The results showed that the silver-coated Spirulina cells with different coating thickness were lightweight fillers compared to the other typical conductive particles. The polymeric composites could achieve good conductivity at the lower content of silver-coated Spirulina cells owing to their helical shape. The shielding effectiveness of polymeric composites had a strong dependence on their conductivity. At the coating thickness of 0.96 μm and the content of 40 vol%, the shielding effectiveness could reach above 74.3 dB in entire test wave band.

  16. Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method

    Directory of Open Access Journals (Sweden)

    Gunell M

    2017-11-01

    Full Text Available Marianne Gunell,1,2 Janne Haapanen,3 Kofi J Brobbey,4 Jarkko J Saarinen,4 Martti Toivakka,4 Jyrki M Mäkelä,3 Pentti Huovinen,1 Erkki Eerola1,2 1Department of Medical Microbiology and Immunology, University of Turku, 2Department of Clinical Microbiology and Immunology, Microbiology and Genetics Service Area, Turku University Hospital, Turku, 3Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Tampere, 4Laboratory of Paper Coating and Converting, Center for Functional Materials, Åbo Akademi University, Turku, Finland Abstract: Bacterial infections, especially by antimicrobial resistant (AMR bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the “touch test” method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show

  17. Electrodeposition of zinc–silica composite coatings: challenges in incorporating functionalized silica particles into a zinc matrix

    Directory of Open Access Journals (Sweden)

    Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder

    2011-01-01

    Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.

  18. A general method for synthesis continuous silver nanoshells on dielectric colloids

    International Nuclear Information System (INIS)

    Chen Dong; Liu Huiyu; Liu Jianshu; Ren Xianglin; Meng Xianwei; Wu Wei; Tang Fangqiong

    2008-01-01

    A method for the controlled synthesis of silver nanoshells on various dielectric colloids, such as silica and polystyrene is presented in this study. The complexation of triethanolamine and silver ions is applied here to moderate the availability of the silver ions in the reaction solution, which directly affect the coating process. The morphologies of the particles were studied with transmission electron microscopy and their crystallinity and chemical composition were confirmed by X-ray and electron diffraction. The synthesis conditions were investigated and experimental results show that compact silver shells with easily controlled thickness can be deposited on dielectric cores by this method

  19. Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yunfei; Li, Yan, E-mail: yli@ecust.edu.cn; Zhong, Xinhua, E-mail: zhongxh@ecust.edu.cn

    2014-12-15

    Graphical abstract: A facile route based on modified Stöber method was used for the synthesis of silica coated QDs (QD@SiO{sub 2}) starting from aqueously prepared CdTe/CdS QDs. The resultant QD@SiO{sub 2} exhibited a significant increase in emission efficiency compared with that of the initial QDs, along with a small size (∼5 nm in diameter), great stability and low cytotoxicity, which makes it a good candidate as robust biomarker. - Highlights: • We present a facile modified Stöber method to prepare highly luminescent QD@SiO{sub 2}. • The PL efficiency of QDs increases significantly after silica coating. • QD@SiO{sub 2} exhibits small size (∼5 nm) and great dispersibility in aqueous solution. • QD@SiO{sub 2} presents extraordinary photo and colloidal stability. • The silica shell eliminates QD cytotoxicity, providing the access of bioconjugation. - Abstract: Silica coating is an effective approach for rendering luminescent quantum dots (QDs) with water dispersibility and biocompatibility. However, it is still challenging to prepare silica-coated QDs (QD@SiO{sub 2}) with high emission efficiency, small size and great stability in favor for bioapplication. Herein, we reported a modified Stöber method for silica coating of aqueously-prepared CdTe/CdS QDs. With the coexistence of Cd{sup 2+} and thioglycolic acid (TGA), a thin silica shell was formed around QDs by the hydrolysis of tetraethyl orthosilicate (TEOS). The resultant QD@SiO{sub 2} with a small size (∼5 nm in diameter) exhibits significantly higher emission efficiencies than that of the initial QDs. Also, QD@SiO{sub 2} has extraordinary photo and colloidal stability (pH range of 5–13, 4.0 M NaCl solution). Protected by the silica shell, the cytotoxicity of QDs could be reduced. Moreover, the QD@SiO{sub 2} conjugated with folic acid (FA) presents high specific binding toward receptor-positive HeLa cells over receptor-negative A549 cells.

  20. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    Science.gov (United States)

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  1. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    International Nuclear Information System (INIS)

    Nguyen, Thi Kim Lan; Dang, Van Phu; Nguyen, Ngoc Duy; Le, Anh Quoc; Nguyen, Quoc Hien; Nguyen, Thuy Ai Trinh

    2013-01-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag + dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag + is occurred by hydrated electron (e − aq ) and hydrogen atom (H • ) generated during radiolysis of ethanol/water. The conversion doses (Ag + → Ag 0 ) were determined by UV–Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5–40 nm for Ag + concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg −1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc. (paper)

  2. Synthesis and characterization of uniform silica nanoparticles on nickel substrate by spin coating and sol-gel method

    Science.gov (United States)

    Ngoc Thi Le, Hien; Jeong, Hae Kyung

    2014-01-01

    Spin coating and sol-gel methods are proposed for the preparation of silica nanoparticles on a nickel substrate using silicon tetrachloride, 2-methoxyethanol, and four different types of alkaline solutions. The effects of the type of alkaline solution, concentration of silica solution, and speed of spin coating on the properties of silica nanoparticles are investigated systematically. Uniform spherical shape of silica nanoparticles on Ni with the smallest size are obtained with sodium carbonate among the alkaline solutions after stirring at 70 °C for 6 h and spin-coating at 7000 rpm. Physical and electrochemical properties of the silica particles are investigated.

  3. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings

    International Nuclear Information System (INIS)

    Zhang, Xiangyu; Wu, Haibo; Geng, Zhenhua; Huang, Xiaobo; Hang, Ruiqiang; Ma, Yong; Yao, Xiaohong; Tang, Bin

    2014-01-01

    Implant-related infection is one of the most common and serious complications associated with biomedical implantation. To prevent bacterial adhesion, a series of porous TiO 2 coatings with different concentrations of silver (designated as M0, M1, M2 and M3) were prepared on pure titanium substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation. All coatings are porous with pore size less than 5 μm and the concentrations of silver in the M0, M1, M2 and M3 are 0, 0.95, 1.36 and 1.93 wt.%, respectively. Silver is found to be distributed throughout the thickness of the coatings by scanning electron microscopy. The release of silver from the TiO 2 coatings was confirmed by an inductively-coupled plasma mass spectroscopy. The antibacterial effects of these coatings were tested against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli), and the cytotoxicity was evaluated using the mouse pre-osteoblast cells. The results indicate that the antibacterial activities of TiO 2 coatings are greatly improved due to the incorporation of silver. No cytotoxic effect is found for the M1 surfaces from the observation of pre-osteoblast cell by MTT assay and fluorescence microscopy. Although the M2 and M3 coatings appeared to be toxic for pre-osteoblast cells after 1 day in culture, the cell viability on M2 and M3 surfaces was greatly raised after culturing for 2 days. Our results suggested that the TiO 2 coatings incorporated with an optimum amount of silver can possess excellent antibacterial activities without cytotoxic effect, which has promising applications in biomedical devices. - Highlights: • Porous TiO 2 coatings with various concentration of Ag on titanium were prepared. • Ag element was distributed throughout the thickness of the coatings. • The antibacterial activities were greatly improved due to the incorporation of Ag. • The release amounts of Ag were initially high and gradually

  4. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  5. Cavitation erosion of silver plated coating at different temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Shuji; Motoi, Yoshihiro [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fuku-shi, Fukui 910-8507 (Japan); Kikuta, Kengo; Tomaru, Hiroshi [IHI Corperation, TOYOSU IHI BUILDING, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 1358710 (Japan)

    2014-04-11

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρc (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.

  6. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  7. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  8. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P., E-mail: bhanuprs@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076 (India)

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  9. Elaboration of colloidal silica sols in aqueous medium: functionalities, optical properties and chemical detection of coating

    International Nuclear Information System (INIS)

    Le Guevel, X.

    2006-03-01

    The aim of this work was to study surface reactivity of silica nanoparticles through physical and chemical properties of sols and coatings. Applications are numerous and they are illustrated in this work by optical coating preparation for laser components and chemical gas sensor development for nitroaromatics detection. On one hand, protocol synthesis of colloidal silica sols has been developed in water medium using sol-gel process (0 to 100 w%). These sols, so-called BLUESIL, are time-stable during at least one year. Homogeneous coatings having thickness fixed to 200 nm, have been prepared on silica substrate and show high porosity and high transparence. Original films have been developed using catalytic curing in gas atmosphere (ammonia curing) conferring good abrasive resistance to the coating without significant properties modification. In order to reduce film sensitivity to molecular adsorption (water, polluting agents... ), specific BLUESIL coatings have been prepared showing hydrophobic property due to apolar species grafting onto silica nanoparticles. Using this route, coatings having several functional properties such as transparence, hydrophobicity, high porosity and good abrasive resistance have been elaborated. On the other hand, we show that colloidal silica is a material specifically adapted to the detection of nitro aromatic vapors (NAC). Indeed, the use of colloidal silica as chemical gas sensor reveals very high sensitivity, selectivity to NAC compared to Volatile Organic Compound (V.O.C) and good detection performances during one year. Moreover, chemical sensors using functionalized colloidal silica have exhibited good results of detection, even in high humidity medium (≥70 %RH). (author)

  10. Healing characteristics of a new silver-coated, gelatine impregnated vascular prosthesis in the porcine model.

    Science.gov (United States)

    Ueberrueck, T; Meyer, L; Zippel, R; Nestler, G; Wahlers, T; Gastinger, I

    2005-02-01

    To investigate the intraluminal and extraluminal healing behaviour of a new metallic silver coated, gelatine impregnated vascular graft. Comparative animal experimental investigation with randomisation of the animals to control and experimental groups. 24 pigs were assigned to two control and two experimental groups. The prostheses were interposed in the pigs' infrarenal aorta. For the evaluation, macroscopic, histological and immunohistochemical criteria were applied. The macroscopic evaluation after explantation of the prosthesis revealed similar healing characteristics in the control and experimental groups. The microscopic determination of neo-intimal thickness showed no significant differences between the groups; nor did the immunohistochemical investigations show any significant difference between the control group and the silver-coated prosthesis group. No disadvantage of the silver coating in terms of healing and graft patency was found. A possible advantage in terms of the antibacterial effect of the silver coating must be investigated in the clinical setting.

  11. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  12. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    International Nuclear Information System (INIS)

    Vibin, Muthunayagam; Vinayakan, Ramachandran; John, Annie; Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie

    2011-01-01

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  13. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Vibin, Muthunayagam [University of Kerala, Department of Biochemistry (India); Vinayakan, Ramachandran [National Institute for Interdisciplinary Science and Technology (CSIR), Photosciences and Photonics (India); John, Annie [Sree Chitra Tirunal Institute of Medical Sciences and Technology, Biomedical Technology Wing (India); Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie, E-mail: annieab2@yahoo.co.in [University of Kerala, Department of Biochemistry (India)

    2011-06-15

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0-72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  14. Progress in UCO's search for silver-based telescope mirror coatings

    Science.gov (United States)

    Phillips, Andrew C.; Miller, Joseph S.; Bolte, Michael; DuPraw, Brian; Radovan, Matthew; Cowley, David

    2012-09-01

    We report on the on-going effort at University of California Observatories Astronomical Coatings Lab to develop robust protected-silver coatings suitable for telescope mirrors. We have identified a very promising recipe based on YF3 that produces excellent reflectivity at wavelengths of 340 nm and greater, has ~1.5% emissivity in the thermal IR, and does not contain problematic materials for the Mid-IR, such as SiO2 and Al2O3. The recipe holds up extremely well to aggressive environmental testing (80C and 80% RH; high-H2S atmosphere), and currently is being evaluated under real observatory conditions. This coating may satisfy the need for telescope mirror coatings that are long-lasting (~5 years or more) and have good reflectivity into the UV. We also evaluate and compare some other silver-based coatings developed elsewhere that should be useful in the same role. In addition, we describe recent upgrades to our coating facilities allowing us to deposit ion-assisted e-beam coatings on optics up to ~1m. This novel arrangement places the e-gun and ion source on a pivoting "swing-arm", allowing the position to move radially without changing the e-gun/ion source/ substrate geometry. Large substrates can be coated with good uniformity using single-axis rotation only. This technique is scalable to arbitrarily large substrate sizes.

  15. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    Science.gov (United States)

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.

  16. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions.

    Science.gov (United States)

    Weaver, James L; Tobin, Grainne A; Ingle, Taylor; Bancos, Simona; Stevens, David; Rouse, Rodney; Howard, Kristina E; Goodwin, David; Knapton, Alan; Li, Xiaohong; Shea, Katherine; Stewart, Sharron; Xu, Lin; Goering, Peter L; Zhang, Qin; Howard, Paul C; Collins, Jessie; Khan, Saeed; Sung, Kidon; Tyner, Katherine M

    2017-07-17

    As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.

  17. Analysis of silver particles incorporated on TiO2 coatings for the photodecomposition of o-cresol

    International Nuclear Information System (INIS)

    Kuo, Y.-L.; Chen, H.-W.; Ku, Y.

    2007-01-01

    Silver-modified TiO 2 (Ag-TiO 2 ) and pure TiO 2 coatings were prepared on sapphire substrates by dip-coating process for the photodecomposition of o-cresol. In order to investigate the behaviors of silver incorporated on TiO 2 surface coatings, Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectra (DRS), and photoluminescence (PL) emission spectra were performed. Experimental results indicate that the silver on TiO 2 surface coatings were easily oxidized into silver oxide (Ag 2 O), because of the existence of Ag 2 O crystal phase in XRD spectrum and Ag 2+ -O and O 1s -Ag chemical bonding states in Ag 3d and O 1s narrow scans of XPS, respectively. PL spectra showed that as increasing the amount of silver incorporated, the PL intensity of Ag-TiO 2 coatings evidently decrease, which means that the Ag-TiO 2 coatings have higher efficiencies of charge carrier trapping, immigration and transferring, and subsequently promote the photodecomposition rate constants after the UV/TiO 2 process. An optimal composition of 0.50 wt.% Ag-TiO 2 coating for the photodecomposition of o-cresol correspond to a maximum photodecomposition rate constant (k value) of 0.01 min -1 as compared to that of the pure TiO 2 coatings (k = 0.0062 min -1 )

  18. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Science.gov (United States)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  19. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu; Wu, Haibo; Geng, Zhenhua; Huang, Xiaobo; Hang, Ruiqiang; Ma, Yong; Yao, Xiaohong; Tang, Bin, E-mail: tangbin6405@sina.com

    2014-12-01

    Implant-related infection is one of the most common and serious complications associated with biomedical implantation. To prevent bacterial adhesion, a series of porous TiO{sub 2} coatings with different concentrations of silver (designated as M0, M1, M2 and M3) were prepared on pure titanium substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation. All coatings are porous with pore size less than 5 μm and the concentrations of silver in the M0, M1, M2 and M3 are 0, 0.95, 1.36 and 1.93 wt.%, respectively. Silver is found to be distributed throughout the thickness of the coatings by scanning electron microscopy. The release of silver from the TiO{sub 2} coatings was confirmed by an inductively-coupled plasma mass spectroscopy. The antibacterial effects of these coatings were tested against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli), and the cytotoxicity was evaluated using the mouse pre-osteoblast cells. The results indicate that the antibacterial activities of TiO{sub 2} coatings are greatly improved due to the incorporation of silver. No cytotoxic effect is found for the M1 surfaces from the observation of pre-osteoblast cell by MTT assay and fluorescence microscopy. Although the M2 and M3 coatings appeared to be toxic for pre-osteoblast cells after 1 day in culture, the cell viability on M2 and M3 surfaces was greatly raised after culturing for 2 days. Our results suggested that the TiO{sub 2} coatings incorporated with an optimum amount of silver can possess excellent antibacterial activities without cytotoxic effect, which has promising applications in biomedical devices. - Highlights: • Porous TiO{sub 2} coatings with various concentration of Ag on titanium were prepared. • Ag element was distributed throughout the thickness of the coatings. • The antibacterial activities were greatly improved due to the incorporation of Ag. • The release amounts of Ag were

  20. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    Science.gov (United States)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  1. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    International Nuclear Information System (INIS)

    Zhang Ting; Chai Yaqin; Yuan Ruo; Guo Junxiang

    2012-01-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag + ion ranging from 1.0 × 10 −6 to 1.0 × 10 −1 M with a detection limit of 9.5 × 10 −7 M and a slope of 60.4 ± 0.2 mV dec −1 over a wide pH range (4.0–9.0) with a fast response time (50 s) at 25 °C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl − and Br − ions. - Highlights: ► Functionalized silica gels have become promising materials. ► This work is the first attempt to apply triazene functionalized silica gel. ► The Functionalized silica gels were used to detect silver. ► The response of the previously reported papers are compared with this work. ► The result indicates the proposed electrode is better than reported Ag + electrodes.

  2. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cancan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Lei, E-mail: chenlei@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Zhou, Jiansong, E-mail: jszhou@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Zhou, Huidi; Chen, Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China)

    2014-05-01

    Highlights: • A new kind of adaptive coatings was fabricated using relatively simple spraying techniques. • The tribological properties of Ag/MoS{sub 2} phosphate composite coatings were investigated at the temperature from 20 °C to 700 °C. • The composition and wear mechanisms of Ag/MoS{sub 2} phosphate composite coatings were also discussed. • The Ag/MoS{sub 2} phosphate composite coatings have self-repairing capability in the rubbing process at 700 °C. - Abstract: Adaptive phosphate composite coatings with addition of solid lubricants of molybdenum disulfide (MoS{sub 2}) and silver (Ag) using aluminum chromium phosphate as the binder were fabricated on high-temperature steel. The tribological properties of phosphate composite coatings were evaluated from room temperature (RT) to 700 °C. The phase composition and microstructure were investigated according to the characterization by power X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The results show that the composite coating with the Ag/MoS{sub 2} mass ratio of 2:1 exhibits the stable and low friction coefficients from RT to 700 °C and relative low wear rates at all testing temperatures. The tribo-chemical reaction between Ag and MoS{sub 2} occurred in the rubbing process to form silver molybdates compounds lubricating film. The temperature-adaptive tribological properties were attributed to the formation of lubricating films composed of lubricants silver, MoS{sub 2} and silver molybdates phases on the worn surfaces of the composites coatings in a wide-temperature range.

  3. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  4. Reconstruction mechanisms of tantalum oxide coatings with low concentrations of silver for high temperature tribological applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, D. S.; Bischof, M.; Aouadi, S. M., E-mail: samir.aouadi@unt.edu [Department of Material Science and Engineering, University of North Texas, Denton, Texas 76207 (United States); Gao, H.; Martini, A. [School of Engineering, University of California Merced, Merced, California 95343 (United States); Chantharangsi, C.; Paksunchai, C. [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand)

    2014-11-10

    Silver tantalate (AgTaO{sub 3}) coatings have been found to exhibit outstanding tribological properties at elevated temperatures. To understand the mechanisms involved in the tribological behavior of the Ag-Ta-O system, tantalum oxide coatings with a small content of silver were produced to investigate the metastable nature of this self-lubricating material. The coatings were produced by unbalanced magnetron sputtering, ball-on-disk wear tested at 750 °C, and subsequently characterized by X-ray diffraction, Scanning Auger Nanoprobe, cross-sectional Scanning Electron Microscopy, and Transmission Electron Microscopy. Complementary molecular dynamic simulations were carried out to investigate changes in the chemical and structural properties at the interface due to sliding for films with varying silver content. Both the experimental characterization and the theoretical modeling showed that silver content affects friction and wear, through the role of silver in film reconstruction during sliding. The results suggest that the relative amount of silver may be used to tune film performance for a given application.

  5. Reconstruction mechanisms of tantalum oxide coatings with low concentrations of silver for high temperature tribological applications

    International Nuclear Information System (INIS)

    Stone, D. S.; Bischof, M.; Aouadi, S. M.; Gao, H.; Martini, A.; Chantharangsi, C.; Paksunchai, C.

    2014-01-01

    Silver tantalate (AgTaO 3 ) coatings have been found to exhibit outstanding tribological properties at elevated temperatures. To understand the mechanisms involved in the tribological behavior of the Ag-Ta-O system, tantalum oxide coatings with a small content of silver were produced to investigate the metastable nature of this self-lubricating material. The coatings were produced by unbalanced magnetron sputtering, ball-on-disk wear tested at 750 °C, and subsequently characterized by X-ray diffraction, Scanning Auger Nanoprobe, cross-sectional Scanning Electron Microscopy, and Transmission Electron Microscopy. Complementary molecular dynamic simulations were carried out to investigate changes in the chemical and structural properties at the interface due to sliding for films with varying silver content. Both the experimental characterization and the theoretical modeling showed that silver content affects friction and wear, through the role of silver in film reconstruction during sliding. The results suggest that the relative amount of silver may be used to tune film performance for a given application

  6. Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent

    International Nuclear Information System (INIS)

    Kavale, Mahendra S.; Mahadik, D.B.; Parale, V.G.; Wagh, P.B.; Gupta, Satish C.; Rao, A.Venkateswara; Barshilia, Harish C.

    2011-01-01

    The superhydrophobic surfaces have drawn lot of interest, in both academic and industries because of optically transparent, adherent and self-cleaning behavior. Surface chemical composition and morphology plays an important role in determining the superhydrophobic nature of coating surface. Such concert of non-wettability can be achieved, using surface modifying reagents or co-precursor method in sol-gel process. Attempts have been made to increase the hydrophobicity and optical transparency of methyltrimethoxysilane (MTMS) based silica coatings using polymethylmethacrylate (PMMA) instead of formal routes like surface modification using silylating reagents. The optically transparent, superhydrophobic uniform coatings were obtained by simple dip coating method. The molar ratio of MTMS:MeOH:H 2 O was kept constant at 1:5.63:1.58, respectively with 0.5 M NH 4 F as a catalyst and the weight percent of PMMA varied from 1 to 8. The hydrophobicity of silica coatings was analyzed by FTIR and contact angle measurements. These substrates exhibited 91% optical transmittance as compared to glass and water drop contact angle as high as 171 ± 1 deg. The effect of humidity on hydrophobic nature of coating has been studied by exposing these films at relative humidity of 90% at constant temperature of 30 deg. C for a period of 45 days. The micro-structural studies carried out by transmission electron microscopy (TEM).

  7. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    International Nuclear Information System (INIS)

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-01-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  8. Effect of nano silica based modifying agent for hydrophobic coating application

    International Nuclear Information System (INIS)

    Nurul Huda Mudri; Nik Ghazali Nik Salleh; Mek Zah Salleh

    2016-01-01

    Hydrophobic coatings find wide application in industry due to their unique features such as water repellent and self-cleaning properties. In this study, modifying agent was synthesized by way of nano silica particles dispersion in polydimethyl siloxane with addition of surfactant, catalyst and stabilizer using high speed distemper. The modifying agent was added into coating formulation and cured under UV exposure. Scanning Electron Microscopy image of the film found that the nano silica particles were distributed well on substrate. Contact angle measurement gave the highest reading of 116 degree for 20 % wt of the modifying agent. The optical properties of the film were evaluated via transmission and haze test. (author)

  9. Graphene coatings for chemotherapy: avoiding silver-mediated degradation

    International Nuclear Information System (INIS)

    Mazzola, Federico; Cooil, Simon; Skjønsfjell, Eirik Torbjørn Bakken; Breiby, Dag W; Wells, Justin W; Trinh, Thuat; Kjelstrup, Signe; Østli, Elise Ramleth; Høydalsvik, Kristin; Preobrajenski, Alexei; Cafolla, Attilio A; Evans, D Andrew

    2015-01-01

    Chemotherapy treatment usually involves the delivery of fluorouracil (5-Fu) together with other drugs through central venous catheters. Catheters and their connectors are increasingly treated with silver or argentic alloys/compounds. Complications arising from broken catheters are common, leading to additional suffering for patients and increased medical costs. Here, we uncover a likely cause of such failure through a study of the surface chemistry relevant to chemotherapy drug delivery, i.e. between 5-Fu and silver. We show that silver catalytically decomposes 5-Fu, compromising the efficacy of the chemotherapy treatment. Furthermore, HF is released as a product, which will be damaging to both patient and catheter. We demonstrate that graphene surfaces inhibit this undesirable reaction and would offer superior performance as nanoscale coatings in cancer treatment applications. (paper)

  10. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages

    Science.gov (United States)

    Bruckman, Michael A.; Randolph, Lauren N.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2015-01-01

    The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM−1 s−1 to 29.7 mM−1s−1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation

  11. Prevention of primary vascular graft infection with silver-coated polyester graft in a porcine model

    DEFF Research Database (Denmark)

    Gao, H; Sandermann, J; Prag, J

    2010-01-01

    To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model.......To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model....

  12. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  13. Improving colloidal properties of quantum dots with combined silica and polymer coatings for in vitro immuofluorenscence assay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bingbo [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Xing Da [South China Normal University, MOE Key Laboratory of Laser Life Science (China); Lin Chao; Guo Fangfang; Zhao Peng [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Wen Xuejun [Clemson University, Clemson-MUSC Bioengineering Program, Department of Bioengineering (United States); Bao Zhihao, E-mail: zbao@tongji.edu.cn; Shi Donglu [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China)

    2011-06-15

    Semiconductor quantum dots (QDs) are promising fluorescence probes for immuofluorescence assay in the biological applications. However, water solubilization and non-specific binding are two critical issues to be addressed for the practical uses. Here, we reported a new type of QDs with combined silica and polymer coating. QDs with excellent colloidal properties were prepared via carboxylation of the amino groups on the surface of silica-coated QDs by reacting with multi-carboxyl poly (acrylic acid) (PAA). Hydrodynamic size of PAA-functionalized silica-coated QDs was around 40 nm. They were highly fluorescent (about 47.8% quantum yield). No precipitate of QDs was observed after 3 month storage at 4 Degree-Sign C. When cancer cells (HeLa) were used, the functionalized QDs exhibited little or no non-specific cellular binding. The results from in vitro experiments indicated that PAA-functionalized silica-coated QDs-antibody bioconjugates had excellent antigen-capture ability and exhibited little or no non-specific binding to polystyrene spheres which were used to immobilize the antigen for immuoflurescence assay. The PAA-functionalized silica-coated QDs with improved colloidal properties could serve as excellent alternative fluorescent probes for biodetection.

  14. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  15. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    Science.gov (United States)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  16. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    Science.gov (United States)

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  17. Substrates coated with silver nanoparticles as a neuronal regenerative material

    Directory of Open Access Journals (Sweden)

    Alon N

    2014-05-01

    Full Text Available Noa Alon,1,3,* Yana Miroshnikov,2,3,* Nina Perkas,2,3 Ifat Nissan,2,3 Aharon Gedanken,2,3 Orit Shefi1,31Faculty of Engineering, 2Department of Chemistry, 3Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel*These authors contributed equally to this workAbstract: Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs and zinc oxide nanoparticles (ZnONPs demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies.Keywords: nerve regeneration, nanotopography, antibacterial material, neuroblastoma, gold nanoparticles, zinc oxide nanoparticles

  18. The adhesion of SiNx thin layers on silica-acrylate coated polymer substrates

    NARCIS (Netherlands)

    Abdallah, Amir; Lu, K.; Ovchinnikov, C.D.; Bulle-Lieuwma, C.W.T.; Bouten, P.C.P.; With, de G.

    2009-01-01

    Plasma Enhanced Chemical Vapor Deposition (PECVD) was used to grow 200, 300 and 400 nm thick silicon nitride layers (SiN x ) on a high temperature aromatic polyester substrate spin coated with a silica-acrylate hybrid coating (hard coat). Layers deposited without oxygen plasma treatment remained

  19. Silver-coated dacron prosthesis in the treatment of infection in arterial surgery: Case reports

    Directory of Open Access Journals (Sweden)

    Nenezić Dragoslav

    2008-01-01

    Full Text Available INTRODUCTION Although the incidence is low, infection of prosthetic vascular graft bears a high incidence of serious complications including 25-75% mortality rate and 40-75% limb loss. The standard treatment of vascular graft infection consists of excision of the prosthesis, wound debridement and extraanatomic revascularization. Conservative treatment might be an option in a limited number of patients. We present three cases of surgical and conservative treatment of vascular graft infection. CASE OUTLINE Case 1: A patient developed silver-coated graft infection after femorodistal arterial reconstruction performed because of critical limb ischemia. In the early postoperative period, massive skin and subcutaneous tissue necrosis developed, with the graft being exposed. After two months of persistent debridement and wound toilette, the defect was covered with a Thiersch skin graft. Case 2: PTFE graft infection in the right groin followed reconstruction of the isolated common femoral artery aneurysm. This graft was replaced with a silver-coated graft in situ. Reinfection of the proximal end of the implanted silver-coated graft occurred and the graft was exposed. After repeated debridement and wound toilette, the exposed prosthesis was covered with granulomatous tissue, and the wound healed. Case 3: A year after anastomotic pseudoaneurysm resection in the left groin, prosthesis was exposed following wound infection. This graft was substituted with a silver-coated graft in situ. The wound healed primarily. CONCLUSION These three cases demonstrate that under some circumstances vascular prosthesis infection can be successfully treated conservatively without graft removal, and also by in situ replacement using silver-coated graft.

  20. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  2. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  3. Heating ability and biocompatibility study of silica-coated magnetic ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 6. Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems. Meysam Soleymani Mohammad Edrissi. Volume 38 Issue 6 October 2015 ...

  4. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ting; Chai Yaqin, E-mail: yqchai@swu.edu.cn; Yuan Ruo; Guo Junxiang

    2012-07-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag{sup +} ion ranging from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -1} M with a detection limit of 9.5 Multiplication-Sign 10{sup -7} M and a slope of 60.4 {+-} 0.2 mV dec{sup -1} over a wide pH range (4.0-9.0) with a fast response time (50 s) at 25 Degree-Sign C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl{sup -} and Br{sup -} ions. - Highlights: Black-Right-Pointing-Pointer Functionalized silica gels have become promising materials. Black-Right-Pointing-Pointer This work is the first attempt to apply triazene functionalized silica gel. Black-Right-Pointing-Pointer The Functionalized silica gels were used to detect silver. Black-Right-Pointing-Pointer The response of the previously reported papers are compared with this work. Black-Right-Pointing-Pointer The result indicates the proposed electrode is better than reported Ag{sup +} electrodes.

  5. Acute and Subacute Toxicity In Vivo of Thermal-Sprayed Silver Containing Hydroxyapatite Coating in Rat Tibia

    Science.gov (United States)

    Tsukamoto, Masatsugu; Miyamoto, Hiroshi; Ando, Yoshiki; Eto, Shuichi; Akiyama, Takayuki; Yonekura, Yutaka; Mawatari, Masaaki

    2014-01-01

    To reduce the incidence of implant-associated infection, we previously developed a novel coating technology using hydroxyapatite (HA) containing silver (Ag). This study examined in vivo acute and subacute toxicity associated with the Ag-HA coating in rat tibiae. Ten-week-old rats received implantation of HA-, 2% Ag-HA-, or 50% Ag-HA-coated titanium rods. Concentrations of silver in serum, brain, liver, kidneys, and spleen were measured in the acute phase (2–4 days after treatment) and subacute phase (4–12 weeks after treatment). Biochemical and histological examinations of those organs were also performed. Mean serum silver concentration peaked in the acute phase and then gradually decreased. Mean silver concentrations in all examined organs from the 2% Ag-HA coating groups showed no significant differences compared with the HA coating group. No significant differences in mean levels of glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, lactate dehydrogenase, creatinine, or blood urea nitrogen were seen between the three groups and controls. Histological examinations of all organs revealed no abnormal pathologic findings. No acute or subacute toxicity was seen in vivo for 2% Ag-HA coating or HA coating. Ag-HA coatings on implants may represent biologically safe antibacterial biomaterials and may be of value for reducing surgical-site infections related to implantation. PMID:24779019

  6. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    OpenAIRE

    M.I. Abdou; Hesham Abuseda

    2016-01-01

    Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume) was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement...

  7. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  8. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    International Nuclear Information System (INIS)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g silica . Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10 2 and 10 4 cfu/mL.

  9. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    International Nuclear Information System (INIS)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-01-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  10. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Ian Richard [School of Pharmacy & Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Silvertech Ltd, Via Monteroni, 73100 Lecce (Italy); Paladini, Federica [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy)

    2016-12-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  11. Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing

    International Nuclear Information System (INIS)

    Gallo, Anna Lucia; Paladini, Federica; Romano, Alessandro; Verri, Tiziano; Quattrini, Angelo; Sannino, Alessandro; Pollini, Mauro

    2016-01-01

    The resistance demonstrated by many microorganisms towards conventional antibiotics has stimulated the interest in alternative antimicrobial agents and in novel approaches for prevention of infections. Silver, a natural braod-spectrum antimicrobial agent known since antiquity, has been widely employed in biomedical field due to its recognized antibacterial, antifungal and antiviral properties. In this work, antibacterial silver coatings were deposited on absorbable surgical sutures through the in situ photo-chemical deposition of silver clusters. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) were performed in order to investigate the presence and distribution of the silver clusters on the substrate. The amounts of silver deposited and released by the silver treated sutures were calculated through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), and the results were related to the biodegradation of the material. The microbiological properties and the potential cytotoxicity of the silver-treated sutures were investigated in relation with hydrolysis experiments, in order to determine the effect of the degradation on antibacterial properties and biocompatibility. - Highlights: • The in situ photo-deposition of silver nano-coatings was used to develop silver treated PGLA sutures. • The silver particles deposited had good distribution and strong adhesion to the substrate. • The silver treated sutures demonstrated good biocompatibility and antibacterial capability. • The presence of silver promoted cell migration and proliferation in the wound area.

  12. Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Anna Lucia [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Paladini, Federica, E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Romano, Alessandro [Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan (Italy); Verri, Tiziano [Di.S.Te.B.A., University of Salento, Via per Monteroni, 73100 Lecce (Italy); Quattrini, Angelo [Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan (Italy); Sannino, Alessandro; Pollini, Mauro [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy)

    2016-12-01

    The resistance demonstrated by many microorganisms towards conventional antibiotics has stimulated the interest in alternative antimicrobial agents and in novel approaches for prevention of infections. Silver, a natural braod-spectrum antimicrobial agent known since antiquity, has been widely employed in biomedical field due to its recognized antibacterial, antifungal and antiviral properties. In this work, antibacterial silver coatings were deposited on absorbable surgical sutures through the in situ photo-chemical deposition of silver clusters. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) were performed in order to investigate the presence and distribution of the silver clusters on the substrate. The amounts of silver deposited and released by the silver treated sutures were calculated through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), and the results were related to the biodegradation of the material. The microbiological properties and the potential cytotoxicity of the silver-treated sutures were investigated in relation with hydrolysis experiments, in order to determine the effect of the degradation on antibacterial properties and biocompatibility. - Highlights: • The in situ photo-deposition of silver nano-coatings was used to develop silver treated PGLA sutures. • The silver particles deposited had good distribution and strong adhesion to the substrate. • The silver treated sutures demonstrated good biocompatibility and antibacterial capability. • The presence of silver promoted cell migration and proliferation in the wound area.

  13. Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries

    International Nuclear Information System (INIS)

    Choi, Won Chang; Byun, Dongjin; Lee, Joong Kee; Cho, Byung won

    2004-01-01

    Four kinds of synthetic graphite coated with silver and nickel for the anodes of lithium secondary batteries were prepared by a gas suspension spray coating method. The electrode coated with silver showed higher charge-discharge capacities due to a Ag-Li alloy, but rate capability decreased at higher charge-discharge rate. This result can be explained by the formation of an artificial Ag oxidation film with higher impedance, this lowered the rate capability at high charge-discharge rate due to its low electrical conductivity. Rate capability is improved, however, by coating nickel and silver together on the surface of synthetic graphite. The nickel which is inactive with oxidation reaction plays an important role as a conducting agent which enhanced the conductivity of the electrode

  14. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    International Nuclear Information System (INIS)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  15. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  16. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases.

    Science.gov (United States)

    Cao, Tiantian; Li, Zhen; Xiong, Yong; Yang, Yue; Xu, Shengming; Bisson, Teresa; Gupta, Rajender; Xu, Zhenghe

    2017-10-17

    Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg 0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg 0 by the Ag-Hg 0 amalgamation mechanism. An Hg 0 capture capacity as high as 13.2 mg·g -1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg 0 removal efficiency as high as 91.6% with a Hg 0 capture capacity of 457.3 μg·g -1 . More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg 0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg 0 capture from coal-fired flue gases.

  17. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George, E-mail: gchumak@clemson.edu

    2015-12-01

    Graphical abstract: - Highlights: • Spin-coating of polymers onto 2D assemblies of Ag NPs was used to stabilize the assemblies against aggregation. • The polymer filled the space between the particles leaving the metal surface uncoated and accessible to various chemical reactions. • Etching nanoparticles produced crater-like structures. - Abstract: Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  18. A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Xin He

    2016-01-01

    Full Text Available We demonstrated a general strategy to fabricate silver-coated copper nanowires by a galvanic replacement, which is guided by the chemical principle that metal ions (silver ions with a relatively high reduction potential can galvanically etch nanostructure made from a less metal (copper. Well-dispersed and high-yielded copper nanowires were initially synthesized and then introduced into silver-ammonia solution for the growth of silver nanocrystals on the nanowire surfaces under vigorous oscillation. The results of X-ray diffraction, scanning electron microscope, and transmission electron microscope revealed that the silver nanocrystals were uniformly distributed on the copper nanowire surfaces to form Cu-Ag heterostructures. The concentration of silver-ammonia solution and the time of replacement reaction determine the size and density of the silver nanocrystals. Our investigation might pave the way to the synthesis of other bimetallic nanostructures via a facile, fast, and economical route.

  19. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  20. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  1. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  2. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  3. Development of the rectal dosage form with silver-coated glass beads for local-action applications in lower sections of the gastrointestinal tract.

    Science.gov (United States)

    Siczek, Krzysztof; Fichna, Jakub; Zatorski, Hubert; Karolewicz, Bożena; Klimek, Leszek; Owczarek, Artur

    2018-03-01

    Recent findings indicating the anti-inflammatory action of silver preparations through modulation of the gut microbiota and apoptosis of inflammatory cells predestine silver use in inflammatory bowel disease (IBD). The aim of our study was to validate the possibility of effective silver release from silver-coated glass beads for anti-inflammatory local application in the lower sections of the gastrointestinal (GI) tract. Silver-coated glass beads were prepared using magnetron method. Release of silver from the silver-coated glass bead surface was carried out in BIO-DIS reciprocating cylinder apparatus. Erosion of silver coating and indirect estimation of the silver release dynamics was assessed using scanning electron microscope. Rectal suppositories containing silver-coated glass beads were prepared using five different methods (M1-M5) and X-ray scanned for their composition. The XR microanalysis and the chemical composition analysis evidenced for a rapid (within 30 min) release of nearly 50% of silver from the coating of the glass beads, which remained stable up to 24 h of incubation. The most homogeneous distribution of beads in the entire volume of the suppository was obtained for formulation M5, where the molten base was poured into mold placed in an ice bath, and the beads were added after 10 s. Our study is the first to present the concept of enclosing silver-coated glass beads in the lipophilic suppository base to attenuate inflammation in the lower GI tract and promises efficient treatment with reduced side effects.

  4. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  5. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Bennett, M.J.; Houlton, M.R.; Moore, D.A.; Foster, A.I.; Swidzinski, M.A.M.

    1983-04-01

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  6. Nano-porosity in silica reinforced methyltrimethoxysilane coatings studied by positron beam analysis

    NARCIS (Netherlands)

    Escobar Galindo, R.; Veen, A. van; Schut, H.; Falub, C.V.; Balkenende, A.R.; With, G. de; Hosson, J.Th.M. De

    The porosity in particle reinforced sol-gel coatings has been studied. Silica particles (Ludox-TM40) are introduced into methyl silicate coatings to increase the hardness, the elastic modulus and the fracture toughness. The methyl silicate has a relatively low density (about 1.2 g/cm(2)), while the

  7. Separation, preconcentration and determination of silver ion from water samples using silica gel modified with 2,4,6-trimorpholino-1,3,5-triazin

    International Nuclear Information System (INIS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Zolfigol, Mohammad Ali; Solgi, Mohammad

    2006-01-01

    A new modified silica gel using 2,4,6-trimorpholino-1,3,5-triazin was used for separation, preconcentration and determination of silver ion in natural water by atomic absorption spectrometry (AAS). This new bonded silica gel was used as an effective sorbent for the solid-phase extraction (SPE) of silver ion from aqueous solutions. Experimental conditions for effective adsorption of trace levels of silver ion were optimized with respect to different experimental parameters in column process. Common coexisting ions did not interfere with the separation and determination of silver at pH 3.5 so that silver ion completely adsorbed on the column. The preconcentration factor is 130 (1 mL elution volume for a 130 mL sample volume). The relative standard deviation (R.S.D.) under optimum conditions is 3.03% (n = 5). The accuracy of the method was estimated by using spring and tap water samples that were spiked with different amounts of silver ion. The adsorption isotherm of silver ion was obtained. The capacity of the sorbent at optimum conditions has been found to be 384 μg of silver per gram of sorbent

  8. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms.

    Science.gov (United States)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-06-01

    In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO 2 ) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000ppm. Ceriodaphnia dubia was used for chronic test in TiO 2 suspensions from 0.001 to 100ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24hr of exposure. A different result was found in the acute experiments containing TiO 2 suspensions, with mortality rates only after 48hr of incubation. Even on acute and chronic tests, TiO 2 did not reach a linear concentration-response versus mortality, with 1ppm being more toxic than 10,000ppm on acute test and 0.001 more toxic than 0.01ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO 2 demonstrated to have a low acute toxicity against D. magna. Copyright © 2016. Published by Elsevier B.V.

  9. Study of silica coatings degradation under laser irradiation and in controlled environment

    International Nuclear Information System (INIS)

    Becker, S.

    2006-11-01

    Performances of optical components submitted to high laser intensities are usually determined by their laser-induced damage threshold. This value represents the highest density of energy (fluence) sustainable by the component before its damage. When submitted to laser fluences far below this threshold, optical performances may also decrease with time. The degradation processes depend on laser characteristics, optical materials, and environment around the component. Silica being the most used material in optics, the aim of this study was to describe and analyse the physical-chemical mechanisms responsible for laser-induced degradation of silica coatings in controlled environment. Experimental results show that degradation is due to the growth of a carbon deposit in the irradiated zone. From these results, a phenomenological model has been proposed and validated with numerical simulations. Then, several technological solutions have been tested in order to reduce the laser-induced contamination of silica coatings. (author)

  10. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  11. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V., E-mail: lakshmi_rv@nal.res.in; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-30

    Highlights: • Superhydrophobic coatings from Cab-O-Sil EH5 and M5 particles in MTEOS sol. • Particle size of Cab-O-Sil influenced its optimum concentration in coating. • FAS-13 modification improved the oleophobicity of the coating. • Coating surface exhibited porous structure with nanovoids and microscale bumps. • Coatings with Cab-O-Sil EH5 retained water repelling property for a long time. - Abstract: Superhydrophobic sol–gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160° and water sliding angle (WSA) of <2°. FAS addition also improved the oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126° and ethylene glycol contact angle of 153.3°. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  12. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    Science.gov (United States)

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  13. Synthesis of polystyrene, poly(styrene/4-vinylpyridine), poly(p-nitrostyrene) and poly(p-aminostyrene)-coated silica and their extraction capabilities for amphetamine

    International Nuclear Information System (INIS)

    Sun Changmei; Zhang Shuanhong; Qu Rongjun; Sun Tao; Zhang Ying; Zhang Xiang; Song Jingyang

    2010-01-01

    Several novel organic-inorganic hybrid materials, including polystyrene-coated silica (SG-PS), poly(styrene/4-vinylpyridine)-coated silica (SG-PVP), poly(p-nitrostyrene)-coated silica (SG-PS-NO 2 ) and poly(p-aminostyrene)-coated silica (SG-PS-NH 2 ), were synthesized in order to improve the extraction methods of harmful stimulants via solid phase extraction. The materials were characterized using infrared spectra (IR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area measurement and thermogravimetric analysis (TG). The application of the new materials in solid phase extraction columns to extract methamphetamine revealed that the extraction capability of poly(styrene/4-vinylpyridine)-coated silica is the best among the four materials, which provides novel supporter materials for extracting amphetamine-derived drugs.

  14. Synthesis of polystyrene, poly(styrene/4-vinylpyridine), poly(p-nitrostyrene) and poly(p-aminostyrene)-coated silica and their extraction capabilities for amphetamine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Changmei; Zhang Shuanhong [School of Chemistry and Materials Science, Ludong University, Yantai, Shandong 264025 (China); Qu Rongjun, E-mail: qurongjun@eyou.com [School of Chemistry and Materials Science, Ludong University, Yantai, Shandong 264025 (China); Sun Tao; Zhang Ying; Zhang Xiang; Song Jingyang [School of Chemistry and Materials Science, Ludong University, Yantai, Shandong 264025 (China)

    2010-11-01

    Several novel organic-inorganic hybrid materials, including polystyrene-coated silica (SG-PS), poly(styrene/4-vinylpyridine)-coated silica (SG-PVP), poly(p-nitrostyrene)-coated silica (SG-PS-NO{sub 2}) and poly(p-aminostyrene)-coated silica (SG-PS-NH{sub 2}), were synthesized in order to improve the extraction methods of harmful stimulants via solid phase extraction. The materials were characterized using infrared spectra (IR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area measurement and thermogravimetric analysis (TG). The application of the new materials in solid phase extraction columns to extract methamphetamine revealed that the extraction capability of poly(styrene/4-vinylpyridine)-coated silica is the best among the four materials, which provides novel supporter materials for extracting amphetamine-derived drugs.

  15. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  16. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  17. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  18. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass

    International Nuclear Information System (INIS)

    Rejikumar, P.R.; Jyothy, P.V.; Mathew, Siby; Thomas, Vinoy; Unnikrishnan, N.V.

    2010-01-01

    The effect of silver nanoparticle co-doping on the dielectric properties of holmium doped silica glasses was studied. Silver nanoparticles of size between 20 and 22 nm were produced by the sol-gel technique. One of the samples showed an icosahedral morphology of the nanocrystal formed, along with spherical morphology. It was found that the tuning of the dielectric constant values could be accomplished by co-doping. The sample, with 1 wt% of Ho, had low dielectric constant values within the range 100 Hz-3 MHz due to the formation of quasi-molecular structures of holmium. This effect was evaded to some extent with silver co-doping as a result of the interdispersion of holmium complexes. Also it was found that the co-doping produced a higher dielectric loss which was calculated from the tan δ-log f graph. The Cole-Cole parameters and the Jonscher power law parameters were also calculated and are presented.

  19. Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: analytical characterization and biological activity.

    Science.gov (United States)

    Cometa, Stefania; Bonifacio, Maria A; Baruzzi, Federico; de Candia, Silvia; Giangregorio, Maria M; Giannossa, Lorena C; Dicarlo, Manuela; Mattioli-Belmonte, Monica; Sabbatini, Luigia; De Giglio, Elvira

    2017-12-01

    The present work focuses on the idea to prevent and/or inhibit the colonization of implant surfaces by microbial pathogens responsible for post-operative infections, adjusting antimicrobial properties of the implant surface prior to its insertion. An antibacterial coating based on chitosan and silver was developed by electrodeposition techniques on poly(acrylic acid)-coated titanium substrates. When a silver salt was added during the chitosan deposition step, a stable and scalable silver incorporation was achieved. The physico-chemical composition of the coating was studied by X-ray photoelectron spectroscopy (XPS), while atomic force microscopy in intermittent contact mode (ICAFM) was used to explore the coating morphology. The amount of silver released from the coating up to 21 days was evaluated by inductively coupled plasma mass spectrometry (ICP-MS). The capability of the proposed coating to interact in vitro with the biological environment in terms of compatibility and antibacterial properties was assessed using MG-63 osteoblast-like cell line and S. aureus and P. aeruginosa strains, respectively. These studies revealed that a coating showing a silver surface atomic percentage equal to 0.3% can be effectively used as antibacterial system, while providing good viability of osteoblast-like cells after 7 days. The antibacterial effectiveness of the prepared coating is mainly driven by a contact killing mechanism, although the low concentration of silver released (below 0.1 ppm up to 21 days) is enough to inhibit bacterial growth, advantaging MG-63 cells in the race for the surface.

  20. Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods

    International Nuclear Information System (INIS)

    Wang, Xiaokun; Chen, Lingxin; Chen, Ling

    2014-01-01

    We have developed a method for the colorimetric determination of copper ions (Cu 2+ ) that is based on the use of silver-coated gold nanorods (Au–Ag NRs). Its outstanding selectivity and sensitivity result from the catalytic leaching process that occurs between Cu 2+ , thiosulfate (S 2 O 3 2− ), and the surface of the Au–Ag NRs. The intrinsic color of the Au–Ag NRs changes from bright red to bluish green with decreasing thickness of the silver coating. The addition of Cu 2+ accelerates the leaching of silver from the shell caused in the presence of S 2 O 3 2− . This result in a decrease in the thickness of the silver shell which is accompanied a change in color and absorption spectra of the colloidal solution. The shifts in the absorption maxima are linearly related to the concentrations of Cu 2+ over the 3–1,000 nM concentration range (R = 0.996). The method is cost effective and was applied to the determination of Cu 2+ in real water samples. (author)

  1. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin

    Directory of Open Access Journals (Sweden)

    Li C

    2012-12-01

    Full Text Available Chong Li, Yan Zhang, Tingting Su, Lianlian Feng, Yingying Long, Zhangbao ChenKey Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, ChinaAbstract: We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.Keywords: silica, flexible liposome, oral bioavailability, curcumin

  2. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    Energy Technology Data Exchange (ETDEWEB)

    Rădulescu, Dragoş [Bucharest University Hospital, Department of Orthopedics and Traumatology, 169 Splaiul Independentei, 050098 Bucharest (Romania); Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, PO Box MG-36, Măgurele, Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Bucharest (Romania); Research Institute of the University of Bucharest, Bd. Mihail Kogălniceanu 36-46, 050107 Bucharest (Romania); Vasile, Bogdan Stefan; Surdu, Adrian Vasile [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); and others

    2016-06-30

    Graphical abstract: - Highlights: • Silica/Zinforo thin coatings by matrix assisted pulsed laser evaporation. • Anti-adherent coating on medical surfaces against E. coli. • Thin coatings show a great biocompatibility in vitro and in vivo. - Abstract: In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer–Emmett–Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  3. Preparation of Silver Nano-Particles and Use as a Material for Water Sterilization

    Directory of Open Access Journals (Sweden)

    Tran Hong Con

    2011-01-01

    Full Text Available High dispersed nanodimensional silver metal (nanosilver solution of concentration ranging from 40 to 400 mg/L was prepared from silver nitrate in water media with and without dispersing reagent. The reduction process was initiated by ammonium hydroxide and glucose was used as a reductive reagent. The nanosilver solution was characterized by color changing from light-yellow to yellow, brown, red-brown, brown-green, dark-green, blue, dark-blue and those were depending on silver concentration and dimension of silver metal particles. The nanosilver solution was possibly used as a direct sterilizing reagent or coating on calcinated laterite grains to create sterilizing material in bacterial removing filter. Direct sterilization ability of nanosilver solution and nanosilver coated material was investigated. The results showed that with 10 ppb nanosilver in supplied water, all bacteria will be removed within 25–30 min. 10 mm thick layer of silica gel or 20 mm of calcinated laterite coated nanosilver could remove all bacteria in water flowed though with maximum flow rate of 100 L.m2/min. Moreover, sterilizing material was nontoxic and applicable for drinking water production.

  4. Ageing of plasma-mediated coatings with embedded silver nanoparticles on stainless steel: An XPS and ToF-SIMS investigation

    Science.gov (United States)

    Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P.

    2010-09-01

    Nanocomposite thin films (˜170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.

  5. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles.

    Science.gov (United States)

    Martin, Matthew N; Allen, Andrew J; MacCuspie, Robert I; Hackley, Vincent A

    2014-09-30

    Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.

  6. Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach.

    Science.gov (United States)

    Cloutier, M; Turgeon, S; Busby, Y; Tatoulian, M; Pireaux, J-J; Mantovani, D

    2016-08-17

    Incorporation of selected metallic elements into diamond-like carbon (DLC) has emerged as an innovative approach to add unique functional properties to DLC coatings, thus opening up a range of new potential applications in fields as diverse as sensors, tribology, and biomaterials. However, deposition by plasma techniques of metal-containing DLC coatings with well-defined structural properties and metal distribution is currently hindered by the limited understanding of their growth mechanisms. We report here a silver-incorporated diamond-like carbon coating (Ag-DLC) prepared in a hybrid plasma reactor which allowed independent control of the metal content and the carbon film structure and morphology. Morphological and chemical analyses of Ag-DLC films were performed by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The vertical distribution of silver from the surface toward the coating bulk was found to be highly inhomogeneous due to top surface segregation and clustering of silver nanoparticles. Two plasma parameters, the sputtered Ag flux and ion energy, were shown to influence the spatial distribution of silver particles. On the basis of these findings, a mechanism for Ag-DLC growth by plasma was proposed.

  7. A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings.

    Science.gov (United States)

    Harb, Samarah V; Pulcinelli, Sandra H; Santilli, Celso V; Knowles, Kevin M; Hammer, Peter

    2016-06-29

    Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce PMMA-siloxane-silica nanocomposites considered to be promising candidates for environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared by benzoyl peroxide (BPO)-induced polymerization of methyl methacrylate (MMA) covalently bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains formed by hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to silicon (TEOS and MPTS) molar ratio of 0.05% in two different matrices, both prepared at BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy and scanning electron microscopy showed very smooth, homogeneous, and defect-free surfaces of approximately 3-7 μm thick coatings deposited onto A1020 carbon steel by dip coating. Mechanical testing and thermogravimetric analysis confirmed that both additives CNT and GO improved the scratch resistance, adhesion, wear resistance, and thermal stability of PMMA-siloxane-silica coatings. Results of electrochemical impedance spectroscopy in 3.5% NaCl solution, discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very efficient anticorrosive barrier with an impedance modulus up to 1 GΩ cm(2), approximately 5 orders of magnitude higher than that of bare carbon steel. In the case of GO addition, the high corrosion resistance was maintained for more than 6 months in saline medium. These results suggest that both carbon nanostructures can be used as structural reinforcement agents, improving the thermal and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings and thus extending their application range to abrasive environments.

  8. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur.

    Science.gov (United States)

    Eto, Shuichi; Miyamoto, Hiroshi; Shobuike, Takeo; Noda, Iwao; Akiyama, Takayuki; Tsukamoto, Masatsugu; Ueno, Masaya; Someya, Shinsuke; Kawano, Shunsuke; Sonohata, Motoki; Mawatari, Masaaki

    2015-09-01

    Antibacterial silver with hydroxyapatite (Ag-HA) is a promising coating material for imparting antibacterial properties to implants. We previously reported that 3% (w/w) silver with HA (3% Ag-HA) has both antibacterial activity and osteoconductivity. In this study, we investigated the effects of Ag-HA on the in vitro osteoblast function and the in vivo anchorage strength and osteoconductivity of implants. Production of the osteoblast marker alkaline phosphatase, but not cytotoxicity, was observed in cells of the osteoblast cell line MC3T3-E1 cultured on the 3% Ag-HA-coated surface. These results were similar to those observed with silver-free HA coating. In contrast, a significant high level of cytotoxicity was observed when the cells were cultured on a 50% Ag-HA-coated surface. The anchorage strength of implants inserted into the femur of Sprague-Dawley (SD) rats was enhanced by coating the implants with 3% Ag-HA. On the 3% Ag-HA-coated surface, both metaphyseal and diaphyseal areas were largely covered with new bone and had adequate osteoconductivity. These results suggest that 3% Ag-HA, like conventional HA, promotes osteogenesis by supporting osteoblast viability and function and thereby contributes to sufficient anchorage strength of implants. Application of 3% Ag-HA, which combines the osteoconductivity of HA and the antibacterial activity of silver, to prosthetic joints will help prevent postoperative infections. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Giant dielectric permittivity in interrupted silver nanowires grown within mesoporous silica

    Science.gov (United States)

    Maity, Anupam; Samanta, Subha; Chatterjee, Soumi; Maiti, Ramaprasad; Biswas, Debasish; Saha, Shyamal K.; Chakravorty, Dipankar

    2018-06-01

    Nanoglasses in the system Ag2O–SiO2 were formed within the pores of mesoporous silica SBA-15 (Santa Barbara Amorphous). Silver nanowires of diameter 5 nm were grown within SBA-15 by the process of electrodeposition. The nanowires were disrupted by applying a suitable voltage pulse. Detailed transmission and scanning electron microscopy studies were carried out. The disrupted silver strands were found to have an average length of 90 nm. The density of interrupted strands was estimated from the electron micrographs and found to have values in the range (10–20)  ×  1010 cm‑2. Dielectric constant and dielectric loss factors of the nanocomposites of disrupted silver strand—containing Ag2O–SiO2 glass and SBA-15 were found to have values in the range 200–300 and 0.014–0.008 respectively at frequencies in the range 10 kHz–2 MHz. These values were found to be in satisfactory agreement with the theoretical model of Rice and Bernasconi emanating from the theory of Gorkhov and Eliashberg. These nanocomposites are expected to be useful in the fabrication of supercapacitors, after developing suitable electrode system for the material.

  10. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  11. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  12. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    OpenAIRE

    Peng Xi; Yan Li; Xiaojin Ge; Dandan Liu; Mingsan Miao

    2018-01-01

    Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from th...

  13. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles.

    Science.gov (United States)

    Pivec, Tanja; Hribernik, Silvo; Kolar, Mitja; Kleinschek, Karin Stana

    2017-05-01

    This study introduces a novel green in-situ procedure for introduction of silver nanoparticles (Ag NPs) on and into cellulose fibres in a three-stage process. First-stage of the process includes the activation of cellulose fibres in alkaline solution, followed by reduction of silver nitrate to Ag NPs in the second stage, while the last stage of process involves washing and neutralization of fibres. Efficiency of the method towards incorporation of silver particles into the fibres' internal structure was characterized; the coatings' morphology and determination of spatial presence of Ag particles were imagining by the scanning electron microscopy and accompanying energy dispersive x-ray spectroscopy analysis; prepared fibres have superior durability of particles' coating against washing and excellent antimicrobial activity even after 20 washing cycles. Additionally, the water retention of silver treated fibres was improved, while the mechanical properties were not significantly impaired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi [Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret Surakarta (Indonesia); Maryani [Medical Doctor Program, Faculty of Medicine, Universitas Sebelas Maret Surakarta, Indonesia Jl. Ir Sutami 36 A Surakarta Indonesia 53126 (Indonesia)

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  15. Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Eraković, Sanja; Janković, Ana [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Vukašinović-Sekulić, Maja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Stevanović, Tatjana [Département des sciences du bois et de la forêt, Université Laval, 2425 rue de la Terrasse, Québec (Canada); Mišković-Stanković, Vesna, E-mail: vesna@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia)

    2013-11-01

    Silver doped hydroxyapatite (HAP) [Ca{sub 9.95}Ag{sub 0.05}(PO{sub 4}){sub 6}(OH){sub 2}] composite coatings with natural polymer organosolv lignin (Lig) were produced by electrophoretic deposition (EPD) on titanium. Coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 °C using electrochemical impedance spectroscopy (EIS). Antimicrobial properties are directly proportional to the rate of silver ions release from the coatings, determined from inductively coupled plasma spectrometry (ICP-AES). The obtained results are in good agreement with viability of pathogenic bacteria strain Staphylococcus aureus TL in suspension, which had completely disappeared after 24 h. Composite Ag/HAP/Lig coatings were confirmed as non-toxic for healthy immunocompetent peripheral blood mononuclear cells (PBMC). - Highlights: • Biocompatibility and antimicrobial properties of Ag/HAP/Lig were investigated. • Ag ions embedded into HAP lattice are released from material upon immersion in SBF. • Strong antibactericidal effect against Staphylococcus aureus. • Non-toxic properties of nanocomposite confirmed against PBMC cells. • Promising result for the future developments of bioactive implant materials.

  16. Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging

    Science.gov (United States)

    Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu

    2018-05-01

    Highly stable silica-coated manganese ferrite nanoparticles were fabricated for application as magnetic resonance imagining (MRI) contrast agents. The manganese ferrite nanoparticles were synthesized using a hydrothermal technique and coated with silica. The particle size was investigated using transmission electron microscopy and was found to be 40-60 nm. The presence of the silica coating on the particle surface was confirmed by Fourier transform infrared spectroscopy. The crystalline structure was investigated by X-ray diffraction, and the particles were revealed to have an inverse spinel structure. Superparamagnetism was confirmed by the magnetic hysteresis curves obtained using a vibrating sample magnetometer. The efficiency of the MRI contrast agents was investigated by using aqueous solutions of the particles in a 4.7 T MRI scanner. The T1 and T2 relaxivities of the particles were 1.42 and 60.65 s-1 mM-1, respectively, in water. The ratio r2/r1 was 48.91, confirming that the silica-coated manganese ferrite nanoparticles were suitable high-efficacy T2 contrast agents.

  17. PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes

    Science.gov (United States)

    Silva, Edgar; Saraiva, Sofia M.; Miguel, Sónia P.; Correia, Ilídio J.

    2014-11-01

    Fungal infections affecting human beings have increased during the last years and the currently available treatments, when administered for long periods, trigger microbial resistance. Such demands the development of new viable therapeutic alternatives. Silver is known since the antiquity by its antimicrobial properties and, herein, it was used to produce two types of nanoparticles (NPs), uncoated and coated with polyvinylpyrrolidone (PVP), which were aimed to be used in fungal infection treatment. NPs properties were characterized by Transmission electron microscopy, X-ray diffraction, UV-Vis, Dynamic light scattering, Fourier transform infrared, and Energy-dispersive X-ray spectroscopy. Furthermore, in vitro studies were also performed to evaluate NPs cytotoxic profile and antifungal activity. The results obtained revealed that the produced nanoparticles are biocompatible and have a good potential for being used in the treatment of common skin infections caused by Trichophyton rubrum and Trichophyton mentagrophytes, being PVP-coated silver NPs the most suitable ones.

  18. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    Science.gov (United States)

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  film group significantly decreased skin irritation, infection integral value ( P  film significantly reduced film rabbits' scalded skin crusting time ( P  film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  19. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    Science.gov (United States)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  20. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D C; Scaffardi, L B

    2008-01-01

    Silver metal nanoparticles (Nps) are extensively used in different areas of research and technology due to their interesting optical, thermal and electric properties, especially for bare core and core-shell nanostructures with sizes smaller than 10 nm. Since these properties are core-shell size-dependent, size measurement is important in manipulating their potential functionalization and applications. Bare and coated small silver Nps fabricated by physical and chemical methods present specific characteristics in their extinction spectra that are potentially useful for sizing purposes. This work presents a novel procedure to size mean core radius smaller than 10 nm and mean shell thickness of silver core-shell Nps based on a comparative study of the characteristics in their optical extinction spectra in different media as a function of core radii, shell thickness and coating refractive index. From the regularities derived from these relationships, it can be concluded that plasmon full width at half-maximum (FWHM) is sensitive to core size but not to coating thickness, while plasmon resonance wavelength (PRW) is related to shell thickness and mostly independent of core radius. These facts, which allow sizing simultaneously both mean core radius and shell thickness, can also be used to size bare silver Nps as a special case of core-shell Nps with zero shell thickness. The proposed method was applied to size experimental samples and the results show good agreement with conventional TEM microscopy.

  1. Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide-silica coreshell surfaces

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Jiang, H.; Heczko, Oleg; Söderberg, O.; Hannula, S.-P.

    2012-01-01

    Roč. 14, č. 8 (2012), s. 1-15 ISSN 1388-0764 Institutional research plan: CEZ:AV0Z10100520 Keywords : stroble method * silver nanoparticles * iron oxide * amourphous silica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.175, year: 2012

  2. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  3. Optimization of the Silver Nanoparticles PEALD Process on the Surface of 1-D Titania Coatings.

    Science.gov (United States)

    Radtke, Aleksandra; Jędrzejewski, Tomasz; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Talik, Ewa; Mäkelä, Maarit; Leskelä, Markku; Piszczek, Piotr

    2017-07-24

    Plasma enhanced atomic layer deposition (PEALD) of silver nanoparticles on the surface of 1-D titania coatings, such as nanotubes (TNT) and nanoneedles (TNN), has been carried out. The formation of TNT and TNN layers enriched with dispersed silver particles of strictly defined sizes and the estimation of their bioactivity was the aim of our investigations. The structure and the morphology of produced materials were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron miscroscopy (SEM). Their bioactivity and potential usefulness in the modification of implants surface have been estimated on the basis of the fibroblasts adhesion and proliferation assays, and on the basis of the determination of their antibacterial activity. The cumulative silver release profiles have been checked with the use of inductively coupled plasma-mass spectrometry (ICPMS), in order to exclude potential cytotoxicity of silver decorated systems. Among the studied nanocomposite samples, TNT coatings, prepared at 3, 10, 12 V and enriched with silver nanoparticles produced during 25 cycles of PEALD, revealed suitable biointegration properties and may actively counteract the formation of bacterial biofilm.

  4. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides

    Science.gov (United States)

    Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.

    2018-01-01

    Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.

  5. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Piotr Piszczek

    2017-09-01

    Full Text Available Bioactivity investigations of titania nanotube (TNT coatings enriched with silver nanograins (TNT/Ag have been carried out. TNT/Ag nanocomposite materials were produced by combining the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS. The metabolic activity assay (MTT was applied to determine the L929 murine fibroblasts adhesion and proliferation on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood mononuclear cells—PBMCs isolated from rats allowed the estimation of the immunological activity of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and H9. The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference strain was mainly noticed for these TiO2 nanotube coatings, which contain dispersed Ag nanograins deposited on their surface.

  6. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  7. Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane

    Science.gov (United States)

    Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.

    2018-06-01

    A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.

  8. Coating of Zircaloy sheaths with silica glass using the Sol-Gel technique for protection against oxidation

    International Nuclear Information System (INIS)

    De Sanctis, O.; Pellegri, N.; Gomez, L.

    1990-01-01

    With the aim of improving corrosion resistance of Zircaloy, a few Zircaloy sheaths were covered with vitreous silica. Deposition was made by dip coating in tetraetilortosilicate (TEOS) solutions and later densification treatment at 500 degrees C. Oxidation tests were performed and compared with sheaths not covered with silica. As a result, an effective increase in the resistance to dry oxidation was found in sheaths which had been protected. The coating-Zircaloy interface was studied using XPS (scanner). (Author). 6 refs., 3 figs

  9. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  10. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  11. A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Sun; Kim, Shin Seon; Park, Jong Man [Konkuk University, Seoul (Korea, Republic of)

    2012-04-15

    An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length

  12. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  13. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  14. Magnetic heating by silica-coated Co–Zn ferrite particles

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Závěta, K.; Kaman, Ondřej; Veverka, Pavel; Knížek, Karel; Pollert, Emil; Burian, M.; Kašpar, P.

    2014-01-01

    Roč. 47, č. 6 (2014), "065503-1"-"065503-11" ISSN 0022-3727 R&D Projects: GA ČR GAP204/10/0035; GA ČR(CZ) GAP108/11/0807 Institutional support: RVO:68378271 Keywords : cobalt–zinc ferrite * magnetic nanoparticles * coprecipitation * silica coating * hysteresis loops * calorimetric measurements * hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.721, year: 2014 http://stacks.iop.org/0022-3727/47/065503

  15. Effect of Silver or Copper Nanoparticles-Dispersed Silane Coatings on Biofilm Formation in Cooling Water Systems

    Science.gov (United States)

    Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B.; Suzuki, Osamu; Tanaka, Toshihiro

    2016-01-01

    Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes. PMID:28773758

  16. Silver coated aluminium microrods as highly colloidal stable SERS platforms.

    Science.gov (United States)

    Pazos-Perez, Nicolas; Borke, Tina; Andreeva, Daria V; Alvarez-Puebla, Ramon A

    2011-08-01

    We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles. This journal is © The Royal Society of Chemistry 2011

  17. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  18. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  19. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  20. Large third-order optical nonlinearity of silver colloids in silica glasses synthesized by ion implantation

    International Nuclear Information System (INIS)

    Ghosh, Binita; Chakraborty, Purushottam

    2011-01-01

    Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.

  1. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haselberg, Rob, E-mail: r.haselberg@vu.nl [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Flesch, Frits M. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Boerke, Arjan [Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht (Netherlands); Somsen, Govert W. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2013-05-24

    Graphical abstract: -- Highlights: •Atomic force microscopy is used to characterize polyelectrolyte coatings. •Coating procedure leads to nm-thick layers on a silica surface. •Polyelectrolyte coatings effectively prevent protein adsorption. •AFM provides the high resolution to investigate these thin films. •AFM results support earlier findings obtained with capillary electrophoresis. -- Abstract: Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings

  2. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  3. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2016-06-01

    Full Text Available Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement in concrete. Properties of hardened concrete such as compressive strength, flexural strength, and permeability have been assessed and analyzed. Cubic specimens and beams were produced and cured in a curing tank for 7 and 28 days. Testing results have shown that additions of silica fume to cement between 5% and 7%, which acts as a filler and cementations material, developed high flexural and compressive strength with reduction of permeability.

  4. Laser-ablative fabrication of nanoparticle inks for 3D inkjetprinting of multifunctional coatings

    Science.gov (United States)

    Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.

    2017-12-01

    We report the fabrication of multifunctional coatings via inkjet printing using water-based nanoinks in the form of selenium (Se) and gold (Au) nanoparticle (NP) colloids, prepared by laser ablation of solid targets in deionized water or 50%-isopropyl alcohol solution. Nanoparticles and NP-based coatings were deposited onto silver films, magnetronsputtered to silica-glass substrates, and characterized by means of scanning and transmission electron microscopy (SEM, TEM), UV-vis-IR, Raman and energy-dispersive X-ray spectroscopies.

  5. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  6. Preparation of Plasmonic Platforms of Silver Wires on Gold Mirrors and Their Application to Surface Enhanced Fluorescence

    Science.gov (United States)

    2015-01-01

    In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA·Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA·Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA·Cl dye was significantly reduced (∼4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization. PMID:25296293

  7. In situ synthesis of silver benzene-dithiolate hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Brenier, Roger, E-mail: roger.brenier@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Piednoir, Agnès, E-mail: agnes.piednoir@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Bertorelle, Franck, E-mail: franck.bertorelle@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Penuelas, José, E-mail: jose.penuelas@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, CNRS, UMR 5270, 36 rue Guy de Collongues, F69134 Ecully (France); Grenet, Geneviève, E-mail: genevieve.grenet@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, CNRS, UMR 5270, 36 rue Guy de Collongues, F69134 Ecully (France)

    2016-02-01

    In this article, a method for in situ synthesis of silver benzene-dithiolate hybrid films is presented. Silver nanoparticles, generated on ZrO{sub 2} films, are transformed into silver benzene 1,4-dithiolate or, partially, into silver benzene 1,2-dithiolate after sample immersion in the corresponding thiol solutions. These transformations occur at room temperature owing to the catalytic action of ZrO{sub 2}. It is also shown that TiO{sub 2} in place of ZrO{sub 2} is very efficient, both for the catalytic generation of silver nanoparticles and for their further transformation in benzene 1,4-dithiolate compound. This latter semiconductor has an optical bandgap of about 3 eV and the film is made of touching nanoparticles in an amorphous state. Our work has potential applications in the electronic and photovoltaic fields. - Highlights: • A method for in situ synthesis of silver benzene-dithiolate hybrid semiconductor films is presented. • Silver nanoparticles are, first, generated on ZrO{sub 2} or on TiO{sub 2} coated silica substrates. • The samples are immersed in benzene dithiol solution for two days at room temperature. • During the immersion, the silver nanoparticles are transformed into silver benzene dithiolate. • The silver benzene dithiolate film is made of amorphous nanoparticles with a banbgap of 3 eV.

  8. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    International Nuclear Information System (INIS)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T.; Worsley, D.A.; Deganello, D.

    2012-01-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz–Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: ► Color change of a nanoparticle silver coating was measured during sintering ► Color change was correlated to the electrical performance of the coating. ► Potential in-line non-contact measurement method for roll-to-roll printed electronics

  9. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2018-05-01

    Full Text Available Osteoarthritis (OA is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrum, X-ray photoelectron spectrum, thermogravimetric analysis and dynamic light scattering techniques to confirm that the phospholipid layer was coated onto the surface of MSNs successfully. A series of tribological tests were performed under different experimental conditions, and the results showed that MSNs@lip with multi-layers of phospholipids greatly reduced the friction coefficient in comparison with MSNs. Additionally, MSNs@lip demonstrated sustained drug release behavior and were biocompatible based on CCK-8 assay using MC3T3-E1 cells. The MSNs@lip developed in the present study, acting as effective lubricating drug nanocarriers, may represent a promising strategy to treat early stage OA by lubrication enhancement and drug delivery therapy.

  10. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  11. Estimation of silver nanoparticles size in SiO2 sol-gel layers by use of UV-VIS spectroscopy

    Directory of Open Access Journals (Sweden)

    Marek Novotný

    2011-12-01

    Full Text Available Silica glass layers containing silver nanoparticles were prepared by the sol-gel method. The layers were deposited on a glass substrate by the dip-coating method, dried and heat treated at various temperatures. The average silver particle size was determined from absorption spectra according to Mie’s theory. A good correlation was found between the calculated values and analysis of HRTEM images. A very narrow size distribution was obtained by this procedure. The average particle size of silver particles fell between 1 and 2 nm for dried samples; in case of glasses treated at 500 and 550°C the size ranged between 2 and 4 nm.

  12. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Levard, Clément; Marinakos, Stella M.; Cheng, Yingwen; Liu, Jie; Michel, F. Marc; Brown, Jr., Gordon E.; Lowry, Gregory V. (Duke)

    2012-04-02

    The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure as a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.

  13. Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent

    International Nuclear Information System (INIS)

    Darbandi, Masih; Laurent, Sophie; Busch, Martin; Li Zian; Yuan Ying; Krüger, Michael; Farle, Michael; Winterer, Markus; Vander Elst, Luce; Muller, Robert N.; Wende, Heiko

    2013-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. In this article, a systematic study of the design and development of surface-modification schemes for silica-coated iron oxide nanoparticles (IONP) via a one-pot, in situ method at room temperature is presented. Silica-coated IONP were prepared in a water-in-oil microemulsion, and subsequently the surface was modified via addition of organosilane reagents to the microemulsion system. The structure and the morphology of the as synthesized nanoparticles have been investigated by means of transmission electron microscopy (TEM) and measurement of N 2 adsorption–desorption. Electron diffraction and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the IONP structures. Nitrogen adsorption indicates microporous and blocked-microporous structures for the silica-coated and amine functionalized silica-coated IONP, respectively which could prove less cytotoxicity of the functionalized final product. Besides, the colloidal stability of the final product and the presence of the modified functional groups on top of surface layer have been proven by zeta-potential measurements. Owing to the benefit from the inner IONP core and the hydrophilic silica shell, the as-synthesized nanocomposites were exploited as an MRI contrast enhancement agent. Relaxometric results prove that the surface functionalized IONP have also signal enhancement properties. These surface functionalized nanocomposites are not only potential candidates for highly efficient contrast agents for MRI, but could also be used as ultrasensitive biological-magnetic labels, because they are in nanoscale size, having magnetic properties, blocked-microporous and are well dispersible in biological environment.

  14. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Despax, B; Saulou, C; Raynaud, P [Universite de Toulouse, UPS, INPT, LAPLACE, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Datas, L [Universite de Toulouse, UPS, INPT, CIRIMAT, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Mercier-Bonin, M [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France)

    2011-04-29

    After exposure to ionic silver or nanosilver-containing plasma coating, the same visual aspect of scanning transmission electron microscopy (STEM) images was observed for the model yeast Saccharomyces cerevisiae. The main common feature was the presence of electron-dense nodules all over the cell. However, high resolution TEM (HRTEM), STEM, energy dispersive x-ray microanalysis spectroscopy (EDS) and electron microdiffraction revealed some striking differences. Regarding ionic silver exposure, the formation of electron-dense nodules was related to the Ag{sup +} reactivity towards sulfur-containing compounds to form clusters with Ag{sub 2}S-like structures, together with the production of a few silver nanocrystals, mainly at the cell wall periphery. For nanosilver-based treatment, some sulfur-containing silver clusters preferentially located at the cell wall periphery were detected, together with nodules composed of silver, sulfur and phosphorus all over the cell. In both silver-based treatments, nitrogen and silver signals overlapped, confirming the affinity of silver entities for proteinaceous compounds. Moreover, in the case of nanosilver, interactions of silver with phosphorus-containing subcellular structures were indicated.

  15. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  16. Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column

    International Nuclear Information System (INIS)

    Mthombeni, Nomcebo H.; Mpenyana-Monyatsi, Lizzy; Onyango, Maurice S.; Momba, Maggie N.B.

    2012-01-01

    Highlights: ► Performance of silver nanoparticles coated resin in water disinfection is presented. ► Sigmoidal models are used to describe breakthrough curves. ► The performance of the media in water disinfection is affected by process variables. ► Test with environmental water shows the media is effective in water disinfection. - Abstract: This study demonstrates the use of silver nanoparticles coated resin beads in deactivating microbes in drinking water in a column filtration system. The coated resin beads are characterized using X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) to confirm the functional groups, morphology and the presence of silver nanoparticles on the surface of the resin. The performance of the coated resin is evaluated as a function of bed mass, initial bacterial concentration and flow rate using Escherichia coli as model microbial contaminant in water. The survival curves of E. coli are expressed as breakthrough curves (BTCs), which are modeled using sigmoidal regression equations to obtain relevant rate parameters. The number of bed volumes processed at breakthrough point and capacity of the bed are used as performance indicators. Results show that performance increases with a decrease in initial bacterial concentration, an increase in flow rate and an increase in bed mass.

  17. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  18. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles

  19. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    Science.gov (United States)

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  20. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  1. Study of the effect of the silver content on the structural and mechanical behavior of Ag–ZrCN coatings for orthopedic prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ferreri, I., E-mail: isabelferreri@gmail.com [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB, Centre for Biological Engineering, University of Minho, Campus of Gualtar, 4700-057 (Portugal); Lopes, V. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon V, S. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Tavares, C.J. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal)

    2014-09-01

    With the increase of elderly population and health problems that are arising nowadays, hip joint prostheses are being widely used. However, it is estimated that 20% of hip replacement surgeries simply fails after few years, mainly due to wear fatigue. Bearing this in mind, this work reports on the development of new coatings that are able to sustain long and innocuous life inside the patient, which will confer to the usual biomaterials improved physical, mechanical and tribological properties. In particular, the development of multifunctional coatings based on Ag-ZrCN, prepared by DC reactive magnetron sputtering using two targets, Zr and a modified Zr target, in an Ar + C{sub 2}H{sub 2} + N{sub 2} atmosphere. Silver pellets were placed in the erosion area of the alloyed Zr target in order to obtain a silver content up to 8 at.%. The structural results obtained by x-ray diffraction show that the coatings crystallize in a NaCl crystal structure typical of ZrC{sub 1-x}N{sub x}. The increase of Ag content promoted the formation of an additional a-CN{sub x} amorphous phase, besides a silver crystalline phase. Hardness is decreasing, as increasing silver content. Despite the low thicknesses, adhesion values (L{sub C3}) can be considered as good. Dynamic fatigue results suggest that these coatings system can be a real asset in terms of mechanical properties, by improving the performance of usual Stainless Steel 316 L biomaterials. - Highlights: • ZrCN, silver and carbon based amorphous phases, form the structure of the coatings. • Ag–ZrCN coatings have a high capacity to withstand an impact load without fracturing. • Silver incorporation reduces the fatigue failures of the coatings. • The films possess mechanical resistance and biocompatibility, required in prostheses.

  2. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures.

    Science.gov (United States)

    Zhao, Yi-Ying; Chu, Qiang; Shi, Xu-Er; Zheng, Xiao-Dong; Shen, Xiao-Ting; Zhang, Yan-Zhen

    To address the controversial issue of the toxicity of dental alloys and silver nanoparticles in medical applications, an in vivo-like LO2 3-D model was constructed within polyvinylidene fluoride hollow fiber materials to mimic the microenvironment of liver tissue. The use of microscopy methods and the measurement of liver-specific functions optimized the model for best cell performances and also proved the superiority of the 3-D LO2 model when compared with the traditional monolayer model. Toxicity tests were conducted using the newly constructed model, finding that four dental castings coated with silver nanoparticles were toxic to human hepatocytes after cell viability assays. In general, the toxicity of both the castings and the coated silver nanoparticles aggravated as time increased, yet the nanoparticles attenuated the general toxicity by preventing metal ion release, especially at high concentrations.

  3. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate

    Science.gov (United States)

    Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke

    2018-04-01

    We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.

  4. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Karynne Cristina de; Andrade, Gracielle Ferreira [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil); Vasconcelos, Ingrid; Oliveira Viana, Iara Maíra de; Fernandes, Christian [Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Martins Barros de Sousa, Edésia, E-mail: sousaem@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil)

    2014-07-01

    In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation–precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N{sub 2} adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices. - Highlights: • SBA-15/Fe{sub 3}O{sub 4} was synthesized and functionalized with octadecyltrimethoxysilane. • Magnetite nanoparticles were completely coated by well-ordered mesoporous silica. • The samples were used as sorbent for magnetic solid-phase extraction (MSPE). • The sorbent material was capable of extracting drugs from human plasma. • The extraction ability makes the material a candidate to be employed as MSPE.

  5. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters.

    Science.gov (United States)

    Wang, Rong; Neoh, Koon Gee; Kang, En-Tang; Tambyah, Paul Anantharajah; Chiong, Edmund

    2015-04-01

    Urinary tract infections constitute a large proportion of nosocomial infections, and the urinary catheter is the most important predisposing factor. Encrustation induced by urease-producing uropathogens like Proteus mirabilis causes further complications. In the present work, a strategy for controllable and sustained release of silver over several weeks has been developed for combating bacterial infection and encrustation in urinary devices. Silver nanoparticles (AgNPs) were first immobilized on polydopamine (PDA) pre-treated silicone catheter surface and this was followed by another PDA coating. The number of AgNP-PDA bilayers could be manipulated to control the amount of silver loaded and its subsequent release. Poly(sulfobetaine methacrylate-co-acrylamide) was then grafted to provide an antifouling outer layer, and to ensure free diffusion of Ag from the surface. The micron-scale combination of an antifouling coating with AgNP-PDA bilayers reduced colonization of the urinary catheter by uropathogens by approximately two orders of magnitude. With one and two AgNP-PDA bilayers, the coated catheter could resist encrustation for 12 and 45 days, respectively, compared with approximately 6 days with the Dover™ silver-coated catheter. Such anti-infective and anti-encrustation catheters can potentially have a large impact on reducing patient morbidity and healthcare expenditure. © 2014 Wiley Periodicals, Inc.

  6. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T. [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Worsley, D.A. [SPECIFIC, College of Engineering, Swansea University, Baglan Bay Innovation Centre, Central Avenue, Baglan Energy Park, Port Talbot, SA12 7AX (United Kingdom); Deganello, D., E-mail: d.deganello@swansea.ac.uk [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2012-11-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz-Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: Black-Right-Pointing-Pointer Color change of a nanoparticle silver coating was measured during sintering Black-Right-Pointing-Pointer Color change was correlated to the electrical performance of the coating. Black-Right-Pointing-Pointer Potential in-line non-contact measurement method for roll-to-roll printed electronics.

  7. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  8. Characterization and antimicrobial performance of nano silver coatings on leather materials

    Directory of Open Access Journals (Sweden)

    N. Lkhagvajav

    2015-03-01

    Full Text Available In this study, the characterization and the antimicrobial properties of nano silver (nAg coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM. The antimicrobial performance of nAg coatings on leather materials to the test microorganisms as Escherichia coli, Staphylococcus aureus, Candida albicans and Aspergillius niger was evaluated by the application of qualitative (Agar overlay method and quantitative (percentage of microbial reduction tests. According to qualitative test results it was found that 20 μg/cm2 and higher concentrations of nAg on the leather samples were effective against all microorganisms tested. Moreover, quantitative test results showed that leather samples treated with 20 μg/cm2 of nAg demonstrated the highest antibacterial activity against E. coli with 99.25% bacterium removal, whereas a 10 μg/cm2 concentration of nAg on leather was enough to exhibit the excellent percentage reduction against S. aureus of 99.91%. The results are promising for the use of colloidal nano silver solution on lining leather as antimicrobial coating.

  9. Characterization of PEO coatings on aluminium in the presence of silver

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Andressa; Gaspar, Marco Antonio Albuquerque; Santos, Janaina S.; Mambrini, Giovanni Pimenta; Trivinho-Strixino, Francisco, E-mail: dre.rodrigues27@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil)

    2016-07-01

    Full text: Plasma electrolytic oxidation (PEO) is an electrochemical technique used to produce oxide coatings on metals that improves the mechanical resistance and corrosion protection. The metal is oxidized (anodized) under high electric field producing an oxide film layer on metal surface [1]. The electrical discharges on the electrode surface promotes the crystallization of the oxide film. In this study, Al{sub 2}O{sub 3} films were produced via Al anodization in conditions of PEO in the presence of silver in the electrolyte. The silver presents bactericidal properties and low toxicity for humans [2]. The Al anodization were performed at in silicate electrolytes in the presence Ag{sup +} ions and Ag nanoparticles using a 20mA/cm² current density. A low cost aluminium was used as substrate. The effect of PEO on Ag nanoparticles was also investigated. The oxide films were characterized by scanning electron microscopy (SEM), energy dispersive X-ray of radiation (EDX) and X-ray diffraction (XRD). The SEM micrographs revealed an irregular porous structure. EDX microanalysis showed a silver incorporation of 0,15-0,31% over oxide surface. The silicate concentration influenced the morphology and composition of the oxide films. References: [1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Surface & Coatings Technology, 122 (1999) 73-93. [2] K.R. Shin, Y.S. Kim, G.W. Kim, H.W. Yang, Y.G. Ko, D.H. Shin. Applied Surface Science, 347 (2015) 574-582. (author)

  10. Fabrication of poly(o-anisidine) coated silica core-shell microspheres and their electrorheological response

    Science.gov (United States)

    Lee, Chul Joo; Choi, Hyoung Jin

    2017-11-01

    In this work, silica/poly(o-anisidine) (POA) core-shell structured microspheres were synthesized by coating the silica core surface with POA with a help of a chemical grafting agent, N-[(3-trimethoxylsilyl)-propyl] aniline. The synthesized silica microspheres were then applied as a polymer/inorganic composite particle-based electrorheological (ER) fluid. The morphology of the silica/POA microspheres was examined by using both transmission electron microscopy and scanning electron microscopy, while their thermal properties and chemical structure were checked by thermogravimetric analysis and Fourier-transform infrared spectroscopy, respectively. The ER properties of the silica/POA particle-based ER fluid were examined by using a Couette-type rotational rheometer equipped with a high-voltage power supplier and analyzed by the Bingham model and modified Mason number. In order to obtain additional information about the electrical polarization properties, the dielectric spectra were measured by an LCR meter and fitted by using the Cole-Cole equation. Furthermore, suspension stability of the ER fluid was tested using Turbiscan.

  11. In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds

    OpenAIRE

    Lim, Mim Mim; Sultana, Naznin

    2016-01-01

    The development of nano-sized scaffolds with antibacterial properties that mimic the architecture of tissue is one of the challenges in tissue engineering. In this study, polycaprolactone (PCL) and PCL/gelatine (Ge) (70:30) nanofibrous scaffolds were fabricated using a less toxic and common solvent, formic acid and an electrospinning technique. Nanofibrous scaffolds were coated with silver (Ag) in different concentrations of silver nitrate (AgNO3) aqueous solution (1.25, 2.5, 5, and 10?%) by ...

  12. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  13. Mesoporous Silica Nanoparticle-Coated Microneedle Arrays for Intradermal Antigen Delivery.

    Science.gov (United States)

    Tu, Jing; Du, Guangsheng; Reza Nejadnik, M; Mönkäre, Juha; van der Maaden, Koen; Bomans, Paul H H; Sommerdijk, Nico A J M; Slütter, Bram; Jiskoot, Wim; Bouwstra, Joke A; Kros, Alexander

    2017-08-01

    To develop a new intradermal antigen delivery system by coating microneedle arrays with lipid bilayer-coated, antigen-loaded mesoporous silica nanoparticles (LB-MSN-OVA). Synthesis of MSNs with 10-nm pores was performed and the nanoparticles were loaded with the model antigen ovalbumin (OVA), and coated with a lipid bilayer (LB-MSN-OVA). The uptake of LB-MSN-OVA by bone marrow-derived dendritic cells (BDMCs) was studied by flow cytometry. The designed LB-MSN-OVA were coated onto pH-sensitive pyridine-modified microneedle arrays and the delivery of LB-MSN-OVA into ex vivo human skin was studied. The synthesized MSNs demonstrated efficient loading of OVA with a maximum loading capacity of about 34% and the lipid bilayer enhanced the colloidal stability of the MSNs. Uptake of OVA loaded in LB-MSN-OVA by BMDCs was higher than that of free OVA, suggesting effective targeting of LB-MSN-OVA to antigen-presenting cells. Microneedles were readily coated with LB-MSN-OVA at pH 5.8, yielding 1.5 μg of encapsulated OVA per microneedle array. Finally, as a result of the pyridine modification, LB-MSN-OVA were effectively released from the microneedles upon piercing the skin. Microneedle arrays coated with LB-MSN-OVA were successfully developed and shown to be suitable for intradermal delivery of the encapsulated protein antigen.

  14. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Laranjeira, Marta S; Carvalho, Ângela; Ferraz, Maria Pia; Monteiro, Fernando Jorge; Pelaez-Vargas, Alejandro; Hansford, Derek; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  15. Enhanced lifetime characteristics in flexible polymer light-emitting devices by encapsulation of epoxy/silica-coated gold nanoparticles resin (ESGR)

    International Nuclear Information System (INIS)

    Chiu, Pin-Hsiang; Huang, Chien-Jung; Yang, Cheng-Fu; Meen, Teen-Hang; Wang, Yeong-Her

    2010-01-01

    This paper reports the effects of a new multilayer encapsulation for the lifetime of flexible PLEDs on plastic substrate. The multilayer encapsulation consisted of a novel epoxy/silica-coated gold nanoparticles resin (ESGR) as the pre-encapsulation layer and a SiO 2 layer as the encapsulation cap. The ESGR was prepared by mixing UV-curable epoxy resin and powders of silica-coated gold nanoparticles. The silica-coated gold nanoparticles is a necessity because the epoxy resin is not a good moisture barrier. The flexible PLEDs with multilayer encapsulation exhibited no dark spots after being stored for over 300 h at 25 deg. C and 60% relative humidity. Also, the operational half-luminance decay time of device was 1360 h, seven times longer than that of a device without encapsulation. These results confirmed that the multilayer encapsulation, which restricted the moisture that penetrated into the devices, could be applied to the encapsulation of flexible PLEDs.

  16. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. o-Vanillin functionalized mesoporous silica - coated magnetite nanoparticles for efficient removal of Pb(II) from water

    Science.gov (United States)

    Culita, Daniela C.; Simonescu, Claudia Maria; Patescu, Rodica-Elena; Dragne, Mioara; Stanica, Nicolae; Oprea, Ovidiu

    2016-06-01

    o-Vanillin functionalized mesoporous silica - coated magnetite (Fe3O4@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption-desorption technique and magnetic measurements. The capacity of Fe3O4@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica - coated magnetite (Fe3O4@MCM-41) and amino - modified mesoporous silica coated magnetite (Fe3O4@MCM-41-NH2). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80-90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe3O4@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water.

  18. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  19. Mechanical and microstructural characterization of aluminum reinforced with carbon-coated silver nanoparticles

    International Nuclear Information System (INIS)

    Martinez-Sanchez, R.; Reyes-Gasga, J.; Caudillo, R.; Garcia-Gutierrez, D.I.; Marquez-Lucero, A.; Estrada-Guel, I.; Mendoza-Ruiz, D.C.; Jose Yacaman, M.

    2007-01-01

    Composites of pure aluminum with carbon-coated silver nanoparticles (Ag-C NP) of 10 nm in size were prepared by the mechanical milling process. Transmission electron microscopy showed that the Ag-C NP are homogeneously dispersed into the Al matrix, silver nanoparticles do not coalesce, grow or dissolve in the aluminum matrix due the carbon shell. The values of yield strength (σ y ), maximum strength (σ max ) and micro-hardness Vickers (HVN) of the composites were evaluated and reported as a function of Ag-C NP content. It has been found that the introduction of this type of particles in aluminum strengthen it, increasing all the previous parameters

  20. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    Science.gov (United States)

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  1. Citrate coated silver nanoparticles with modulatory effects on aflatoxin biosynthesis in Aspergillus parasiticus

    Science.gov (United States)

    Mitra, Chandrani

    The manufacture and usage of silver nanoparticles has drastically increased in recent years (Fabrega et al. 2011a). Hence, the levels of nanoparticles released into the environment through various routes have measurably increased and therefore are concern to the environment and to public health (Panyala, Pena-Mendez and Havel 2008). Previous studies have shown that silver nanoparticles are toxic to various organisms such as bacteria (Kim et al. 2007), fungi (Kim et al. 2008), aquatic plants (He, Dorantes-Aranda and Waite 2012a), arthropods (Khan et al. 2015), and mammalian cells (Asharani, Hande and Valiyaveettil 2009) etc. Most of the toxicity studies are carried out using higher concentrations or lethal doses of silver nanoparticles. However, there is no information available on how the fungal community reacts to the silver nanoparticles at nontoxic concentrations. In this study, we have investigated the effect of citrate coated silver nanoparticles (AgNp-cit) at a size of 20nm on Aspergillus parasiticus, a popular plant pathogen and well-studied model for secondary metabolism (natural product synthesis). A. parasiticus produces 4 major types of aflatoxins. Among other aflatoxins, aflatoxin B1 is considered to be one of most potent naturally occurring liver carcinogen, and is associated with an estimated 155,000 liver cancer cases globally (Liu and Wu 2010); therefore, contaminated food and feed are a significant risk factor for liver cancer in humans and animals (CAST 2003; Liu and Wu 2010). In this study, we have demonstrated the uptake of AgNp-cit (20nm) by A. parasiticus cells from the growth medium using a time course ICP-OES experiment. It was observed that the uptake of AgNp-cit had no effect on fungal growth and significantly decreased intracellular oxidative stress. It also down-regulated aflatoxin biosynthesis at the level of gene expression of aflatoxin pathway genes and the global regulatory genes of secondary metabolism. We also observed that the

  2. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  3. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  4. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications - Physiochemical and biological evaluation

    Science.gov (United States)

    Bociaga, Dorota; Komorowski, Piotr; Batory, Damian; Szymanski, Witold; Olejnik, Anna; Jastrzebski, Krzysztof; Jakubowski, Witold

    2015-11-01

    The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal properties. What is more, considering very good mechanical parameters of these Ag including gradient a-C:H/Ti coatings, they constitute an excellent material for biomedical application in e.g. orthopedics or dentistry.

  5. Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings

    International Nuclear Information System (INIS)

    Ploux, L.; Mateescu, M.; Anselme, K.; Vasilev, K.

    2012-01-01

    In a previous paper, we proposed new silver nanoparticles (SNPs) based antibacterial coatings able to protect eukaryotic cells from SNPs related toxic effects, while preserving antibacterial efficiency. A SNPs containing n-heptylamine (HA) polymer matrix was deposited by plasma polymerization and coated by a second HA layer. In this paper, we elucidate the antibacterial action of these new coatings. We demonstrated that SNPs-loaded material can be covered by thin HA polymer layer without losing the antibacterial activity to planktonic bacteria living in the near surroundings of the material. SNPs-containing materials also revealed antibacterial effect on adhered bacteria. Adhered bacteria number was significantly reduced compared to pure HA plasma polymer and the physiology of the bacteria was affected. The number of adhered bacteria directly decreased with thickness of the second HA layer. Surprisingly, the quantity of cultivable bacteria harvested by transfer to nutritive agar decreased not only with the presence of SNPs, but also in relation to the covering HA layer thickness, that is, oppositely to the increase in adhered bacteria number. Two hypotheses are proposed for this surprising result (stronger attachment or weaker vitality), which raises the question of the diverse potential ways of action of SNPs entrapped in a polymer matrix.

  6. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  7. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

    Science.gov (United States)

    Zook, Justin M.; Halter, Melissa D.; Cleveland, Danielle; Long, Stephen E.

    2012-10-01

    Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings' effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated 23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs' hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag+ ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

  8. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zook, Justin M., E-mail: jzook@nist.gov; Halter, Melissa D.; Cleveland, Danielle; Long, Stephen E. [National Institute of Standards and Technology, Material Measurement Laboratory (United States)

    2012-10-15

    Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings' effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated {approx}23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs' hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag{sup +} ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

  9. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    Science.gov (United States)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  10. o-Vanillin functionalized mesoporous silicacoated magnetite nanoparticles for efficient removal of Pb(II) from water

    Energy Technology Data Exchange (ETDEWEB)

    Culita, Daniela C., E-mail: danaculita@yahoo.co.uk [“Ilie Murgulescu” Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest (Romania); Simonescu, Claudia Maria; Patescu, Rodica-Elena [Politehnica University, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania); Dragne, Mioara [S.C. KEMCRISTAL S.R.L., Muncii Str., No. 51, Fundulea, Călăraşi (Romania); Stanica, Nicolae [“Ilie Murgulescu” Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest (Romania); Oprea, Ovidiu [Politehnica University, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania)

    2016-06-15

    o-Vanillin functionalized mesoporous silicacoated magnetite (Fe{sub 3}O{sub 4}@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N{sub 2} adsorption–desorption technique and magnetic measurements. The capacity of Fe{sub 3}O{sub 4}@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silicacoated magnetite (Fe{sub 3}O{sub 4}@MCM-41) and amino – modified mesoporous silica coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-NH{sub 2}). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80–90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe{sub 3}O{sub 4}@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water. - Graphical abstract: A novel magnetic adsorbent based on o-vanillin functionalized mesoporous silicacoated magnetite was synthesized and fully characterized and its adsorption capacity for Pb(II) ions in aqueous solutions was evaluated. The maximum adsorption capacity for Pb(II) ions was determined to be 155.71 mg g{sup −1}. The adsorption rate was very high at the beginning of the adsorption process, 90% of the total amount of Pb(II) being removed within the first 60 min. Display Omitted.

  11. o-Vanillin functionalized mesoporous silicacoated magnetite nanoparticles for efficient removal of Pb(II) from water

    International Nuclear Information System (INIS)

    Culita, Daniela C.; Simonescu, Claudia Maria; Patescu, Rodica-Elena; Dragne, Mioara; Stanica, Nicolae; Oprea, Ovidiu

    2016-01-01

    o-Vanillin functionalized mesoporous silicacoated magnetite (Fe 3 O 4 @MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N 2 adsorption–desorption technique and magnetic measurements. The capacity of Fe 3 O 4 @MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silicacoated magnetite (Fe 3 O 4 @MCM-41) and amino – modified mesoporous silica coated magnetite (Fe 3 O 4 @MCM-41-NH 2 ). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80–90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe 3 O 4 @MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water. - Graphical abstract: A novel magnetic adsorbent based on o-vanillin functionalized mesoporous silicacoated magnetite was synthesized and fully characterized and its adsorption capacity for Pb(II) ions in aqueous solutions was evaluated. The maximum adsorption capacity for Pb(II) ions was determined to be 155.71 mg g −1 . The adsorption rate was very high at the beginning of the adsorption process, 90% of the total amount of Pb(II) being removed within the first 60 min. Display Omitted

  12. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  13. Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics

    Science.gov (United States)

    Marchal, W.; Vandevenne, G.; D'Haen, J.; Almeida, A. Calmont de Andrade; Durand Sola, M. A., Jr.; van den Ham, E. J.; Drijkoningen, J.; Elen, K.; Deferme, W.; Van Bael, M. K.; Hardy, A.

    2017-05-01

    Integration of electronic circuit components onto flexible materials such as plastic foils, paper and textiles is a key challenge for the development of future smart applications. Therefore, conductive metal features need to be deposited on temperature sensitive substrates in a fast and straightforward way. The feasibility of these emerging (nano-) electronic technologies depends on the availability of well-designed deposition techniques and on novel functional metal inks. As ultrasonic spray coating (USSC) is one of the most promising techniques to meet the above requirements, innovative metal organic decomposition (MOD) inks are designed to deposit silver features on plastic foils. Various amine ligands were screened and their influence on the ink stability and the characteristics of the resulting metal depositions were evaluated to determine the optimal formulation. Eventually, silver layers with excellent performance in terms of conductivity (15% bulk silver conductivity), stability, morphology and adhesion could be obtained, while operating in a very low temperature window of 70 °C-120 °C. Moreover, the optimal deposition conditions were determined via an in-depth analysis of the ultrasonically sprayed silver layers. Applying these tailored MOD inks, the USSC technique enabled smooth, semi-transparent silver layers with a tunable thickness on large areas without time-consuming additional sintering steps after deposition. Therefore, this novel combination of nanoparticle-free Ag-inks and the USSC process holds promise for high throughput deposition of highly conductive silver features on heat sensitive substrates and even 3D objects.

  14. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS.

    Science.gov (United States)

    Escobar Galindo, R; Manninen, N K; Palacio, C; Carvalho, S

    2013-07-01

    Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS-GDOES-ARXPS study of the surface characterization of Ag-TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1-10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20-30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with

  15. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  16. Sol–gel-based silver nanoparticles-doped silica – Polydiphenylamine nanocomposite for micro-solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Banihashemi, Solmaz

    2015-07-30

    A nanocomposite of silica-polydiphenylamine doped with silver nanoparticles (Ag–SiO{sub 2}-PDPA) was successfully synthesized by the sol–gel process. For its preparation, PDPA was mixed with butanethiol capped Ag nanoparticles (NPs) and added to the silica sol solution. The Ag NPs were stabilized as a result of their adsorption on the SiO{sub 2} spheres. The surface characteristic of nanocomposite was investigated using scanning electron microscopy (SEM). In this work the Ag–SiO{sub 2}-PDPA nanocomposite was employed as an efficient sorbent for micro-solid-phase extraction (μ-SPE) of some selected pesticides. An amount of 15 mg of the prepared sorbent was used to extract and determine the representatives from organophosphorous, organochlorine and aryloxyphenoxy propionic acids from aqueous samples. After the implementation of extraction process, the analytes were desorbed by methanol and determined using gas chromatography–mass spectrometry (GC–MS). Important parameters influencing the extraction and desorption processes such as pH of sample solution, salting out effect, type and volume of the desorption solvent, the sample loading and eluting flow rates along with the sample volume were experimentally optimized. Limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.02–0.05 μg L{sup −1} and 0.1–0.2 μg L{sup −1}, respectively, using time scheduled selected ion monitoring (SIM) mode. The relative standard deviation percent (RSD %) with four replicates was in the range of 6–10%. The applicability of the developed method was examined by analyzing different environmental water samples and the relative recovery (RR %) values for the spiked water samples were found to be in the range of 86–103%. - Highlights: • A sol–gel-based silver nanoparticles doped silica-polydiphenylamine nanocomposite was synthesized. • The sorbent was applied to micro-solid-phase extraction of some selected pesticides in water

  17. Manufacturing and coating of optical components for the EnMAP hyperspectral imager

    Science.gov (United States)

    Schürmann, M.; Gäbler, D.; Schlegel, R.; Schwinde, S.; Peschel, T.; Damm, C.; Jende, R.; Kinast, J.; Müller, S.; Beier, M.; Risse, S.; Sang, B.; Glier, M.; Bittner, H.; Erhard, M.

    2016-07-01

    The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.

  18. Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles

    International Nuclear Information System (INIS)

    Treuel, Lennart; Malissek, Marcelina; Grass, Stefan; Diendorf, Jörg; Mahl, Dirk; Meyer-Zaika, Wolfgang; Epple, Matthias

    2012-01-01

    When nanoparticles (NPs) come into contact with biological fluids, proteins, and other biomolecules interact with their surface. Upon exposure to biological fluids a layer of proteins adsorbs onto their surface, the so-called protein corona, and interactions of biological systems with NPs are therefore mediated by this corona. Here, interactions of serum albumin with silver and gold NPs were quantitatively investigated using circular dichroism spectroscopy. Moreover, surface enhanced Raman spectroscopy was used for further elucidation of protein binding to silver surfaces. The decisive role of poly(vinylpyrrolidone), coatings on the protein adsorption was quantitatively described for the first time and the influential role of the polymer coatings is discussed. Research in nanotoxicology may benefit from such molecular scale data as well as scientific approaches seeking to improve nanomedical applications by using a wide range of polymer surface coatings to optimize biological transport and medical action of NPs.

  19. Effect of silver nanoparticle coatings on mycobacterial biofilm attachment and growth: Implications for ceramic water filters

    Science.gov (United States)

    Larimer, Curtis James

    Silver is a natural, broad-spectrum antibacterial metal and its toxicity can be enhanced when surface area is maximized. As a result, silver nanoparticles (AgNP) have been investigated for use in novel water treatment technologies. The hypothesis of this work is that deposited AgNPs can enhance water treatment technologies by inhibiting growth of planktonic bacteria and biofilms. This was investigated by evaluating the antibacterial efficacy of AgNPs both in solution and as deposited on surfaces. AgNPs were found to be toxic to three species of environmental mycobacteria, M. smegmatis, M. avium, and M. marinum and the level of susceptibility varied widely, probably owing to the varying levels of silver that each species is exposed to in its natural environment. When cultured in a AgNP enriched environment M. smegmatis developed resistance to the toxic effects of both the nanoparticles and silver ions. The resistant mutant was as viable as the unmodified strain and was also resistant to antibiotic isoniazid. However, the strain was more susceptible to other toxic metal ions from ZnSO4 and CuSO4. AgNPs were deposited on silicon wafer substrates by vertical colloidal deposition (VCD). Manipulating deposition speed and also concentration of AgNPs in the depositing liquid led to a range of AgNP coatings with distinctive deposition lines perpendicular to the motion of the meniscus. Experimental results for areal coverage, which was measured from SEM images of AgNP coatings, were compared to Diao's theory of VCD but did not show agreement due to a stick-slip mechanism that is not accounted for by the theory. Durability of AgNP coatings is critical for antibacterial efficacy and to mitigate the risks of exposing the environment to nanomaterials and it was measured by exposing AgNP coatings to liquid flow in a flow cell. Durability was improved by modifying processing to include a heat treatment after deposition. Finally, the antibiofilm efficacy of deposited AgNPs was

  20. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

    International Nuclear Information System (INIS)

    Zook, Justin M.; Halter, Melissa D.; Cleveland, Danielle; Long, Stephen E.

    2012-01-01

    Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings’ effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated ∼23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs’ hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag + ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

  1. Effect of thermal history on the structure of chemically and vapor deposited silver films on glass

    International Nuclear Information System (INIS)

    Shelby, J.E.; Nichols, M.C.; Smith, D.K. Jr.; Vitko, J. Jr.

    1981-01-01

    The observation of silver agglomeration in second surface mirrors used for solar applications has emphasized consideration of the effect of thermal history on the optical properties of mirrors. Thermal history effects may arise from the processing of mirrors, the application of protective coatings, or from outdoor exposure. Mirrors may be subject to elevated temperatures (T less than or equal to 400 0 C) for short periods of time, or to low temperatures (T less than or equal to 60 0 C) for long (less than or equal to 30 years) periods of time. Although a significant amount of work has been done on thermally driven agglomeration of silver films, most of these studies have been restricted to vapor deposited films on vitreous silica. Large area reflectors, such as those used in heliostats, will almost certainly be deposited by commercial chemical methods on substrates of soda-lime-silicate or other glasses which differ considerably from vitreous silica in composition and properties. The present study addresses the effect of this change in deposition technique and substrate on silver agglomeration. These problems were studied by optical and scanning electron microscopy, reflectometry, and x-ray diffraction. The results indicate that both the method used to deposit the silver and the type of glass affect the agglomeration process and the character of the reflective film

  2. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  3. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    Science.gov (United States)

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  4. Anti-reflective coating for visible light using a silver nanodisc metasurface with a refractive index of less than 1.0

    Science.gov (United States)

    Yasuda, Hideki; Matsuno, Ryo; Koito, Naoki; Hosoda, Hidemasa; Tani, Takeharu; Naya, Masayuki

    2017-12-01

    Suppression of visible-light reflection from material surfaces is an important technology for many applications such as flat-panel displays, camera lenses, and solar panels. In this study, we developed an anti-reflective coating design based on a silver nanodisc metasurface. The effective refractive index of a 10-nm-thick monolayer of silver nanodiscs was less than 1.0, which enabled strong suppression of reflection from the underlying substrate. The nanodisc structure was easy to fabricate using a conventional roll-to-roll wet-coating method. The anti-reflective structure was fabricated over a large area.

  5. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  6. Influences of the coating on silver nanoparticle toxicity in a chronic test with Daphnia magna

    DEFF Research Database (Denmark)

    Sakka, Y.; Mackevica, Aiga; Skjolding, Lars Michael

    2015-01-01

    coated AgNP in a chronic Daphnia test. One type of AgNP was coated with citrate (cAgNP), the other AgNP were generally uncoated (pAgNP; p= pure), but sterically stabilized by an organic dispersant. Particles with a similar shape and diameter were chosen. The focus of the study was to relate observed......Sources for differences in silver nanoparticle toxicity at standardized conditions can be numerous. They range from particle properties and their actual concentrations to differences in uptake or depuration by the test organisms. In the present study we compared the toxicity of two differently...... differences in toxicity to characteristics of the AgNP, like size or surface potential, or to their corresponding behaviour during the test, like dissolution or uptake. The characteristics and the behaviour of the AgNP were investigated for changes in stability and especially the release of silver ions...

  7. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    International Nuclear Information System (INIS)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO 3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text

  8. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Energy Technology Data Exchange (ETDEWEB)

    Mustatea, Gabriel [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Vidal, Loïc [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France); Calinescu, Ioan [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Dobre, Alina; Ionescu, Mariana [National Research and Development Institute for Food Bioresources – IBA Bucharest (Romania); Balan, Lavinia, E-mail: lavinia.balan@uha.fr [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France)

    2015-01-15

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO{sub 3} solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  9. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Science.gov (United States)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3-11 nm) were generated from hydroalcoholic AgNO3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria ( Escherichia coli) and gram-positive bacteria ( Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  10. Evaluation of Antibacterial Effects of Silver-Coated Stainless Steel Orthodontic Brackets.

    Science.gov (United States)

    Arash, Valiollah; Keikhaee, Fatemeh; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Khafri, Soraya; Tavanafar, Saeid

    2016-01-01

    White spots and enamel demineralization around orthodontic brackets are among the most important complications resulting from orthodontic treatments. Since the antibacterial properties of metals and metallic particles have been well documented, the aim of this study was to assess the antibacterial effect of stainless steel orthodontic brackets coated with silver (Ag) particles. In this study, 40 standard metal brackets were divided into two groups of 20 cases and 20 controls. The brackets in the case group were coated with Ag particles using an electroplating method. Atomic force microscopy and scanning electron microscopy were used to assess the adequacy of the coating process. In addition, antibacterial tests, i.e., disk diffusion and direct contact tests were performed at three, six, 24, and 48 hours, and 15 and 30 days using a Streptococcus mutans strain. The results were analyzed using Student's t-test and repeated measures ANOVA. Analyses via SEM and AFM confirmed that excellent coatings were obtained by using an electroplating method. The groups exhibited similar behavior when subjected to the disk diffusion test in the agar medium. However, the bacterial counts of the Ag-coated brackets were, in general, significantly lower (PBrackets coated with Ag, via an electroplating method, exhibited antibacterial properties when placed in direct contact with Streptococcus mutans. This antibacterial effect persisted for 30 days after contact with the bacteria.

  11. The electrochemical impedance spectroscopy of silver doped hydroxyapatite coating in simulated body fluid used as corrosive agent

    Directory of Open Access Journals (Sweden)

    Mišković-Stanković Vesna

    2012-01-01

    Full Text Available Titanium is a key biomedical material due its good biocompatibility, mechanical properties and corrosion stability, but infections of the implantation site still pose serious threat. One approach to prevent infection is to improve antimicrobial ability of the coating material. Silver doped hydroxyapatite (Ag/HAP nanoparticles were synthesized by new modified precipitation method. The synthesized powder was used for preparation of Ag/HAP coating on titanium by electrophoretic deposition. The coating was characterized in terms of phase composition and structure by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD; surface morphology and chemical composition was assessed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Research focused on evaluation of the corrosion behaviour of Ag/HAP coating in simulated body fluid (SBF at 37 ºC during prolonged immersion time by electrochemical impedance spectroscopy (EIS. Silver doped HAP coating provided good corrosion protection in SBF solution. [Acknowledgements. This research was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contracts No. III 45019 and by National Sciences and Engineering Research Council of Canada (NSERC. Dr Ana Jankovic was financed by the FP7 Nanotech FTM Grant Agreement 245916

  12. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Science.gov (United States)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  13. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Natalia E.; Markin, Alexey V., E-mail: av-markin@mail.ru; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu. [Saratov State University (Russian Federation)

    2016-12-15

    Multifunctional silica gel with embedded silver nanoparticles (SiO{sub 2}–AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO{sub 2}–AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO{sub 2} bulk. Synthesis of AgNP directly to the SiO{sub 2} matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO{sub 3} concentration used during the SiO{sub 2}–AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO{sub 2}–AgNP with optimal composition was around 10{sup 5}. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  14. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    International Nuclear Information System (INIS)

    Dong Jie; Xu Zhenghe; Wang Feng

    2008-01-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2 /g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective

  15. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    Science.gov (United States)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  16. A prospective interventional study to examine the effect of a silver alloy and hydrogel-coated catheter on the incidence of catheter-associated urinary tract infection.

    Science.gov (United States)

    Chung, P Hy; Wong, C Wy; Lai, C Kc; Siu, H K; Tsang, D Nc; Yeung, K Y; Ip, D Km; Tam, P Kh

    2017-06-01

    Catheter-associated urinary tract infection is a major hospital-acquired infection. This study aimed to analyse the effect of a silver alloy and hydrogel-coated catheter on the occurrence of catheter-associated urinary tract infection. This was a 1-year prospective study conducted at a single centre in Hong Kong. Adult patients with an indwelling urinary catheter for longer than 24 hours were recruited. The incidence of catheter-associated urinary tract infection in patients with a conventional latex Foley catheter without hydrogel was compared with that in patients with a silver alloy and hydrogel-coated catheter. The most recent definition of urinary tract infection was based on the latest surveillance definition of the National Healthcare Safety Network managed by Centers for Disease Control and Prevention. A total of 306 patients were recruited with a similar ratio between males and females. The mean (standard deviation) age was 81.1 (10.5) years. The total numbers of catheter-days were 4352 and 7474 in the silver-coated and conventional groups, respectively. The incidences of catheter-associated urinary tract infection per 1000 catheter-days were 6.4 and 9.4, respectively (P=0.095). There was a 31% reduction in the incidence of catheter-associated urinary tract infection per 1000 catheter-days in the silver-coated group. Escherichia coli was the most commonly involved pathogen (36.7%) of all cases. Subgroup analysis revealed that the protective effect of silver-coated catheter was more pronounced in long-term users as well as female patients with a respective 48% (P=0.027) and 42% (P=0.108) reduction in incidence of catheter-associated urinary tract infection. The mean catheterisation time per person was the longest in patients using a silver-coated catheter (17.0 days) compared with those using a conventional (10.8 days) or both types of catheter (13.6 days) [P=0.01]. Silver alloy and hydrogel-coated catheters appear to be effective in preventing catheter

  17. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  18. Synthesis Of Silver Nanoparticles Supported On Silica Using As Antimicrobial Agent By γ-Irradiation

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Nguyen Quoc Hien; Dang Van Phu; Vo Thi Kim Lang; Nguyen Tue Anh

    2012-01-01

    Silver nanoparticles deposited on silica (Ag nano/SiO 2 ) have been prepared by Co-60 gamma irradiation of the mixture Ag + /SiO 2 /H 2 O/ethanol. The reduction of Ag + in the suspension of SiO 2 is brought by e - aq and H* generated during the radiolysis of water/ethanol solution. The presence of SiO 2 prevents agglomeration of Ag clusters. The conversion dose (Ag + → Ag 0 ) was determined by UV-Vis spectroscopy. The size of Ag nanoparticles was characterized by transmission electron microscopy (TEM). As a result, the particle sizes were determined to be in the range of 15-30 nm for Ag + concentration about 10 mM. The crystal structure of silver nanoparticles was also investigated by X-ray diffraction (XRD). In addition, antifungal activity of Ag nano/SiO 2 was tested against Aspergillus niger var Tieghn by plate count method. The results indicated that the antifungal efficiency of Ag nano/SiO 2 was about 64, 71, 81, 82 and 96% at the concentrations of Ag nanoparticles of 30, 50, 70, 100 and 150 ppm, respectively. (author)

  19. Nonadhesive, silica nanoparticles-based brush-coated contact lens casesCompromising between ease of cleaning and microbial transmission to contact lenses

    NARCIS (Netherlands)

    Qu, Wenwen; Hooymans, Johanna M. M.; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C.; Busscher, Henk J.

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based

  20. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Łańcucka, Joanna, E-mail: lewandow@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Romek, Marek [Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow (Poland); Tokarz, Waldemar [Department of Solid State Physics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2014-02-15

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO{sub 2} was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe{sup 2+} and Fe{sup 3+} with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO{sub 2} was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas.

  1. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    International Nuclear Information System (INIS)

    Lewandowska-Łańcucka, Joanna; Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz; Romek, Marek; Tokarz, Waldemar; Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria

    2014-01-01

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO 2 was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe 2+ and Fe 3+ with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO 2 was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas

  2. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles

    International Nuclear Information System (INIS)

    Xue Chaohua; Chen Jia; Yin Wei; Jia Shuntian; Ma Jianzhong

    2012-01-01

    Silver nanoparticles (Ag NPs) were produced on cotton fibers by reduction of [Ag(NH 3 ) 2 ] + complex with glucose. Further modification of the fibers coated by Ag NPs with hexadecyltrimethoxysilane led to superhydrophobic cotton textiles. Scanning electron microscopy images of the textiles showed that the treated fibers were covered with uniform Ag NPs, which generate a dual-size roughness on the textiles favouring the formation of superhydrophobic surfaces, and the Ag NPs formed dense coating around the fibers rendering the intrinsic insulating cotton textiles conductive. Antibacterial test showed that the as-fabricated textiles had high antibacterial activity against the gram-negative bacteria, Escherichia coli. These multifunctional textiles might find applications in biomedical electronic devices.

  3. Deep reactive ion etching of fused silica using a single-coated soft mask layer for bio-analytical applications

    International Nuclear Information System (INIS)

    Ray, Tathagata; Zhu, Haixin; Meldrum, Deirdre R

    2010-01-01

    In this note, we present our results from process development and characterization of reactive ion etching (RIE) of fused silica using a single-coated soft masking layer (KMPR® 1025, Microchem Corporation, Newton, MA). The effects of a number of fluorine-radical-based gaseous chemistries, the gas flow rate, RF power and chamber pressure on the etch rate and etching selectivity of fused silica were studied using factorial experimental designs. RF power and pressure were found to be the most important factors in determining the etch rate. The highest fused silica etch rate obtained was about 933 Å min −1 by using SF 6 -based gas chemistry, and the highest etching selectivity between the fused silica and KMPR® 1025 was up to 1.2 using a combination of CF 4 , CHF 3 and Ar. Up to 30 µm deep microstructures have been successfully fabricated using the developed processes. The average area roughness (R a ) of the etched surface was measured and results showed it is comparable to the roughness obtained using a wet etching technique. Additionally, near-vertical sidewalls (with a taper angle up to 85°) have been obtained for the etched microstructures. The processes developed here can be applied to any application requiring fabrication of deep microstructures in fused silica with near-vertical sidewalls. To our knowledge, this is the first note on deep RIE of fused silica using a single-coated KMPR® 1025 masking layer and a non-ICP-based reactive ion etcher. (technical note)

  4. Surface characterization and biological evaluation of silver-incorporated DLC coatings fabricated by hybrid RF PACVD/MS method.

    Science.gov (United States)

    Bociąga, Dorota; Jakubowski, Witold; Komorowski, Piotr; Sobczyk-Guzenda, Anna; Jędrzejczak, Anna; Batory, Damian; Olejnik, Anna

    2016-06-01

    Since the biological response of the body towards an implanted material is mainly governed by its surface properties, biomaterials are improved by various kinds of coatings. Their role is to provide good mechanical and biological characteristics, and exclude some disadvantages like post-implantation infections. This phenomenon may be reduced by introduction of silver as an antibacterial agent. This study evaluates the Ag-DLC films synthesized by the hybrid RF PACVD/MS method according to the patent number PL401955-A1 worked out inter alia by the authors. Such tests as XPS, SEM, EDS, AFM, FTIR, Raman and ICP-TOF-MS were used to determine surface properties of the coatings. The obtained results were correlated with the biological response estimated on the basis of cells viability assay (osteoblast cells line Saos-2) and bacterial colonization test (Escherichia coli strain DH5α). Results showed that the hybrid RF PACVD/MS method allows one to get tight coating preventing the diffusion of harmful elements from the metallic substrate. Ag concentration increases with the growing power density, it occurs in metallic state, does not create chemical bonds and is evenly dispersed within the DLC matrix in the form of nanoscale silver clusters. Increasing silver content above 2at.% improves bactericidal properties, but decreases cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sequential interactions of silver-silica nanocomposite (Ag-SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium Bacterial sensitivity...

  6. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications – Physiochemical and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bociaga, Dorota, E-mail: dorota.bociaga1@gmail.com [Division of Biomedical Engineering and Functional Materials, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Komorowski, Piotr [Division of Biophysics, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Lodz (Poland); Batory, Damian [Division of Biomedical Engineering and Functional Materials, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Szymanski, Witold [Division of Biophysics, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Olejnik, Anna; Jastrzebski, Krzysztof [Division of Biomedical Engineering and Functional Materials, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland); Jakubowski, Witold [Division of Biophysics, Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz (Poland)

    2015-11-15

    Graphical abstract: - Highlights: • The DLC coatings with interlayer improving adhesion were manufactured using the author's method in dual RF/MS PCVD system. • The Ag ions were incorporated into DLC matrix using ion beam implantation method. • The morphology, chemical structure and composition of coatings were examined. • Viability, cytotoxicity of human cells and the formation of bacterial biofilm on the samples surface were evaluated. • <5% of Ag in DLC coating is efficient to make it bactericidal and biocompatible. - Abstract: The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal

  7. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications – Physiochemical and biological evaluation

    International Nuclear Information System (INIS)

    Bociaga, Dorota; Komorowski, Piotr; Batory, Damian; Szymanski, Witold; Olejnik, Anna; Jastrzebski, Krzysztof; Jakubowski, Witold

    2015-01-01

    Graphical abstract: - Highlights: • The DLC coatings with interlayer improving adhesion were manufactured using the author's method in dual RF/MS PCVD system. • The Ag ions were incorporated into DLC matrix using ion beam implantation method. • The morphology, chemical structure and composition of coatings were examined. • Viability, cytotoxicity of human cells and the formation of bacterial biofilm on the samples surface were evaluated. • <5% of Ag in DLC coating is efficient to make it bactericidal and biocompatible. - Abstract: The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal

  8. Multifunctional EuYVO4 nanoparticles coated with mesoporous silica

    International Nuclear Information System (INIS)

    Justino, Larissa G.; Nigoghossian, Karina; Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M.; Ribeiro, Sidney J.L.; Caiut, José Maurício A.

    2016-01-01

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO 4 nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO 4 :Eu 3+ nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  9. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    Science.gov (United States)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted

  10. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study.

    Science.gov (United States)

    Ghasemi, Tania; Arash, Valiollah; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Pourzare, Amirhosein; Rakhshan, Vahid

    2017-06-01

    Nano-silver and nano-titanium oxide films can be coated over brackets in order to reduce bacterial aggregation and friction. However, their antimicrobial efficacy, surface roughness, and frictional resistance are not assessed before. Fifty-five stainless-steel brackets were divided into 5 groups of 11 brackets each: uncoated brackets, brackets coated with 60 µm silver, 100 µm silver, 60 µm titanium, and 100 µm titanium. Coating was performed using physical vapor deposition method. For friction test, three brackets from each group were randomly selected and tested. For scanning electron microscopy and atomic-force microscopy assessments, one and one brackets were selected from each group. For antibacterial assessment, six brackets were selected from each group. Of them, three were immediately subjected to direct contact with S. mutans. Colonies were counted 3, 6, 24, and 48 h of contact. The other three were stored in water for 3 months. Then were subjected to a similar direct contact test. Results pertaining to both subgroups were combined. Groups were compared statistically. Mean (SD) friction values of the groups 'control, silver-60, silver-100, titanium-60, and titanium-100' were 0.55 ± 0.14, 0.77 ± 0.08, 0.82 ± 0.11, 1.52 ± 0.24, and 1.57 ± 0.41 N, respectively (p = .0004, Kruskal-Wallis). Titanium frictions were significantly greater than control (p  .05, Dunn). In the uncoated group, colony count increased exponentially within 48 h. The coated groups showed significant reductions in colony count (p < .05, two-way-repeated-measures ANOVA). In conclusions, all four explained coatings reduce surface roughness and bacterial growth. Nano-titanium films are not suitable for friction reduction. Nano-silver results were not conclusive and need future larger studies. © 2016 Wiley Periodicals, Inc.

  11. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD

    International Nuclear Information System (INIS)

    Castro, Y.; Duran, A.; Damborenea, J.J.; Conde, A.

    2008-01-01

    The aim of this work is the characterisation of the corrosion behaviour of stainless steel (AISI 304) substrates coated by dipping and electrophoretic deposition (EPD) from a sol-gel basic sol. Particulate silica sols (labelled NaSi) were prepared by basic catalysis from ethyltriethoxysilane (TEOS), methyltriethoxysilane (MTES) and sodium hydroxide. Coatings between 2 and 10 μm were prepared by using concentrated and diluted sols by dipping and EPD process and the corrosion behaviour of the coated substrates were studied through potentiodynamic and impedance spectroscopy measurements (EIS). Potentiodynamic studies of coatings produced by dipping reveal a strong dependence of the protective properties with the concentration of the sol. This behaviour was confirmed by EIS showing that only the coatings obtained from concentrated sol present enough protective properties. On the contrary, EPD coatings prepared from diluted NaSi sol showed an excellent corrosion resistance, maintaining a pure capacitive behaviour for long periods of immersion. EPD deposition is thus proposed as a good alternative method for obtaining thicker and denser coatings with good protective properties from dilute and stable sols

  12. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  13. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  14. Biocompatible antimicrobial cotton fibres for healthcare industries: a biogenic approach for synthesis of bio-organic-coated silver nanoparticles.

    Science.gov (United States)

    Kashid, Sahebrao B; Lakkakula, Jaya R; Chauhan, Deepak S; Srivastava, Rohit; Raut, Rajesh W

    2017-12-01

    Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought material because of their enhanced activity and biocompatibility. After successful synthesis of SNPs on cotton fibres using leaf extract of Vitex negundo Linn, the fibres were studied using diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X-ray, and inductively coupled plasma atomic emission spectrometry. The characterisation revealed uniformly distributed spherical agglomerates of SNPs having individual particle size around 50 nm with the deposition load of 423 μg of silver per gram of cotton. Antimicrobial assay of cotton-SNPs fibres showed effective performance against pathogenic bacteria and fungi. The method is biogenic, environmentally benign, rapid, and cost-effective, producing highly biocompatible antimicrobial coating required for the healthcare industry.

  15. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    Energy Technology Data Exchange (ETDEWEB)

    Manoudis, P [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Papadopoulou, S [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Karapanagiotis, I [' Ormylia' Art Diagnosis Centre, Ormylia, Chalkidiki, 63071 (Greece); Tsakalof, A [Medical Department, University of Thessaly, Larissa, 41222 (Greece); Zuburtikudis, I [Department of Industrial Design Engineering, TEI of Western Macedonia, Kozani, 50100 (Greece); Panayiotou, C [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2007-04-15

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  16. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    International Nuclear Information System (INIS)

    Manoudis, P; Papadopoulou, S; Karapanagiotis, I; Tsakalof, A; Zuburtikudis, I; Panayiotou, C

    2007-01-01

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale

  17. Nonadhesive, silica nanoparticles-based brush-coated contact lens cases--compromising between ease of cleaning and microbial transmission to contact lenses.

    Science.gov (United States)

    Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J

    2013-05-01

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.

  18. Synthesis and silica coating of calcia-doped ceria/plate-like titanate (K0.8Li0.27Ti1.73O4) nanocomposite by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Sato, Tsugio

    2007-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The plate-like particles are required to enhance the coverage ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/plate-like potassium lithium titanate (K 0.8 Li 0.27 Ti 1.73 O 4 ) nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was prepared by soft chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR

  19. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  20. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    Science.gov (United States)

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  2. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  3. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    International Nuclear Information System (INIS)

    Aflori, Magdalena; Simionescu, Bogdana; Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina; Olaru, Mihaela

    2013-01-01

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed

  4. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium

    International Nuclear Information System (INIS)

    Huang, Heng-Li; Chang, Yin-Yu; Chen, Ya-Chi; Lai, Chih-Ho; Chen, Michael Y.C.

    2013-01-01

    This study used a twin-gun magnetron sputtering system to deposit ZrO 2 -silver (Ag) coatings on biograde pure-titanium implant materials, and the Ag content in the deposited coatings was controlled by the magnetron power. The films were then annealed using rapid thermal annealing at 350 °C for 2 min to induce the nucleation and growth of nanoparticles on the film surface. Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) were used for in vitro antibacterial analyses. The cytocompatibility, mRNA expression, and adhesive morphology of human gingival fibroblast (HGF) cells on the coatings were also determined. The obtained results suggest that ZrO 2 -Ag composite coatings containing less than 10.6 at.% Ag show hydrophobicity, good viability and proliferation of HGF cells, and antibacterial effects on S. aureus and A. actinomycetemcomitans. Moreover, the antibacterial performance of ZrO 2 -Ag coatings is superior to that pure-titanium whilst maintaining biological compatibility. - Highlights: • The annealed ZrO 2 -Ag coatings showed a tetragonal-and-monoclinic structure. • Nanoparticles were well distributed in the annealed ZrO 2 -Ag composite coatings. • The ZrO 2 -Ag coated Ti showed hydrophobic feature. • The ZrO 2 -Ag showed good antibacterial performance. • The ZrO 2 -Ag showed good human gingival fibroblast cell viability

  5. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  6. Investigation of vacuum deposited hybrid coatings of protic organic UV absorbers embedded in a silica matrix used for the UV protection of Polycarbonate glazing

    OpenAIRE

    Weber, C.; Schulz, U.; Mühlig, C.; Kaiser, N.; Tünnermann, A.

    2016-01-01

    A study of vacuum-deposited organic-inorganic hybrid coatings for UV protection of polycarbonate is presented. UV-absorbing compounds, which are commonly used for polycarbonate, were embedded in a silica matrix by thermal co-evaporation under high vacuum. In addition to the optical properties of the coatings, the influence of the silica network on the organic UV absorber and the stability of the intramolecular hydrogen bond (IMHB) are discussed. A model is presented to show the interaction be...

  7. Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles.

    Science.gov (United States)

    Amato, Elvio; Diaz-Fernandez, Yuri A; Taglietti, Angelo; Pallavicini, Piersandro; Pasotti, Luca; Cucca, Lucia; Milanese, Chiara; Grisoli, Pietro; Dacarro, Cesare; Fernandez-Hechavarria, Jose M; Necchi, Vittorio

    2011-08-02

    In the present work, we describe a simple procedure to produce biomimetically coated silver nanoparticles (Ag NPs), based on the postfunctionalization and purification of colloidal silver stabilized by citrate. Two biological capping agents have been used (cysteine Cys and glutathione GSH). The composition of the capped colloids has been ascertained by different techniques and antibacterial tests on GSH-capped Ag NPs have been conducted under physiological conditions, obtaining values of Minimum Inhibitory Concentration (MIC) of 180 and 15 μg/mL for Staphylococcus aureus and Escherichia coli, respectively. The antibacterial activity of these GSH capped NPs can be ascribed to the direct action of metallic silver NPs, rather than to the bulk release of Ag(+).

  8. Ionizing radiation effect on central venous catheters (CVC) of polyurethane coatings with silver nanoparticles; Efeito da radiacao ionizante nos revestimentos de cateteres venosos centrais (CVC) de poliuretano com nanoparticulas de prata

    Energy Technology Data Exchange (ETDEWEB)

    Heilman, Sonia; Silva, Leonardo G.A., E-mail: sheilman@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Hewer, Thiago L.R.; Souza, Michele L. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Quimica

    2015-07-01

    The present work aimed to study the use of ionizing radiation for coating of silver nanoparticles on central polyurethane catheters, providing reduction of infections associated with contamination of catheters introduced into the bloodstream. Silver nanoparticles have physical, chemical and biological properties only when compared to metal on a macroscopic scale, and have been used in the medical field because of its remarkable antimicrobial activity. Titanium dioxide nanoparticles obtained by the sol gel method were used as the coating catheters for subsequent impregnation of silver nanoparticles with ionizing radiation at doses of 25 and 50 kGy. A Raman spectrometry was used to identify the polymorph of titanium oxide, rutile. In trials with (ICP OES) were evaluated amounts of titanium and silver coated catheters in titanium oxide and silver.(author)

  9. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  10. Antimicrobial beeswax coated polylactide films with silver control release capacity.

    Science.gov (United States)

    Martínez-Abad, Antonio; Lagarón, Jose Maria; Ocio, María Jose

    2014-03-17

    Although the application of silver based antimicrobial systems is a widespread technology, its implementation in areas such as food packaging is still challenging. The present paper describes the fabrication of poly(lactic acid) (PLA) coated with beeswax with controlled release properties for sustained antimicrobial performance. Release of silver ions from the polymers was monitored voltammetrically under various conditions (surface contact, immersion in various liquid media and at different pH values) throughout at least 7days. A higher release was noted with decreasing pH while surface release was much slower than the release when immersed in liquid medium. While uncoated films demonstrated a high burst release which in some instances implied surpassing some current migration restrictions (food), the addition of a beeswax layer allowed a sustained release of the antimicrobial compound. Increasing the thickness of the beeswax layer resulted in an increase in the water barrier properties of the films while reducing the relatively constant values of sustained release. Antimicrobial performance was correlated with the release of silver ions, indicating threshold concentrations for biocide action of films displayed a strong bactericidal effect against Salmonella enterica. The application of this functional barrier thus offers the possibility of tuning the release profiles of the films to suit a specific application and puts forth the possible suitability of these materials for food packaging or other migration sensitive applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  12. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO_3)_2 and NH_4H_2PO_4 components. During the electrochemical deposition Ag"+ and Zn"2"+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn"2"+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  13. Effects of cadmium chloride as inhibitor on stability and kinetics of immobilized Lactoperoxidase(LPO on silica-coated magnetite nanoparticles versus free LPO

    Directory of Open Access Journals (Sweden)

    Narges Babadaie Samani

    2016-10-01

    Full Text Available Objective(s: Enzyme immobilization via nanoparticles is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto silica-coated magnetite nanoparticles to improve enzyme properties in the presence of cadmium chloride as an inhibitor. Materials and Methods:  The process consists of the following steps: (1 preparing magnetic iron oxide nanoparticles using the co-precipitation method, (2 coating NP with silica (SiO2 by sol–gel reaction, (3 characterizations of NPs were examined by FT-IR, XRD, AGFM and TEM. (4 Immobilization of LPO on the magnetite NPs, (5 Study kinetic and stability of both free and immobilized LPO in the presence of various concentrations of cadmium chloride. Results:  The size of the Fe3O4 and silica-coated magnetite nanoparticles were about 9 nm and 12 nm, respectively. The results showed that the highest immobilization yield, nearly 90 %, was attained at 240 to 300 µg of LPO at 15h. It was found that the concentration of cadmium chloride directly affects the LPO activity and changes the kinetic parameters of it. Also, the results showed that immobilized LPO has better tolerance than the free LPO, so that after immobilization, Vmax of immobilized LPO was increased and Km of immobilized LPO was decreased. Conclusion: The results demonstrating that the effect of immobilized lactoperoxidase on silica-coated magnetite nanoparticles increases the stability of the LPO in the presence of cadmium chloride as inhibitor. Michaelis–Menten parameters (Km and Vmax also revealed the considerable improvement of immobilized.

  14. Modified sol-gel coatings for biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  15. Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots

    Science.gov (United States)

    Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng

    2011-01-01

    Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627

  16. Catalytic activity of supported silver and potassium salts of tungstophosphoric acid in dehydration of ethanol

    International Nuclear Information System (INIS)

    Haber, J.; Matachowski, L.; Pamin, K.; Napruszewska, B.

    2002-01-01

    Potassium and silver salts of tungstophosphoric acid (HPW) have been supported on silica. Two series of potassium and silver salts of tungstophosphoric acid K x H 3-x PW 12 O 40 and Ag x H 3-x PW 12 O 40 where x = 1;2;3 supported on silica were prepared using incipient wetness method. In a typical synthesis, the heteropolyacid which after deposition on silica was washed with water to remove the part of heteropolyacid not bound to the support was reacted with silver or potassium salt. The vapor-phase dehydration of ethanol was employed as a test reaction. All the catalytic tests were carried out in a conventional flow type reactor, under atmospheric pressure, in the temperature range 125-500 o C. The results of these studies were used to explain the differences between the catalytic activities of heteropolysalts of potassium and silver supported on silica. (author)

  17. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz, E-mail: irek@uni.lodz.pl [University of Lodz, Department of Technology and Chemistry of Materials, Pomorska 163, 90-236 Lodz (Poland); Kadziola, Kinga; Kisielewska, Aneta; Soliwoda, Katarzyna [University of Lodz, Department of Technology and Chemistry of Materials, Pomorska 163, 90-236 Lodz (Poland); Wolszczak, Marian [Technical University of Lodz, Institute of Applied Radiation Chemistry, Wroblewskiego 15, 93-590 Lodz (Poland); Lisowska, Katarzyna; Wronska, Natalia; Felczak, Aleksandra [University of Lodz, Department of Industrial Microbiology and Biotechnology, Pilarskiego 14/16, 90-231 Lodz (Poland)

    2011-06-01

    Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 {+-} 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO{sub 2} nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO{sub 2} covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.

  18. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz; Kadziola, Kinga; Kisielewska, Aneta; Soliwoda, Katarzyna; Wolszczak, Marian; Lisowska, Katarzyna; Wronska, Natalia; Felczak, Aleksandra

    2011-01-01

    Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO 2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO 2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.

  19. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid

    International Nuclear Information System (INIS)

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-01-01

    Silver-doped hydroxyapatite (Ca 10−x Ag x (PO 4 ) 6 (OH) 2−x ) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X = 0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600 °C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag 2+ and Ag + , respectively. However, only about 2% of silver was in the Ag 0 state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO 2 . HAp and silver doped HAp (X = 0.05) are regarded to be hydrophilic due to a large number of –OH groups on the surface. The sample with content of silver (x = 0.05) also showed excellent antimicrobial efficacy (> 99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. - Highlights: • Microstructure and antibacterial properties of silver doped HAp are studied. • The nanocomposite is processed by combinations of sol gel and electrophoretic. • The optimum silver content is obtained under property evaluation.

  20. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linghui [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Guo, Ronghui, E-mail: ronghuiguo214@126.com [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Lan, Jianwu [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Jiang, Shouxiang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Lin, Shaojian [Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg (Germany)

    2016-11-15

    Highlights: • Silver nanoparticles were synthesized on bamboo pulp fabric using dopamine as an adhesive and reducing agent under microwave radiation. • Silver coated bamboo pulp fabric modified with dopamine has good UV protection and hydrophobic property. • Silver nanoparticles can be strongly fixed on dopamine modified bamboo pulp fabric. - Abstract: Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  1. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    Science.gov (United States)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  2. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  3. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    Science.gov (United States)

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1.

    Science.gov (United States)

    Lin, Youxiu; Zhou, Qian; Zeng, Yongyi; Tang, Dianping

    2018-06-02

    The authors describe a photoelectrochemical (PEC) immunoassay for determination of aflatoxin B 1 (AFB 1 ) in foodstuff. The competitive immunoreaction is carried out on a microplate coated with a capture antibody against AFB 1 using AFB 1 -bovine serum albumin (BSA)-liposome-coated mesoporous silica nanoparticles (MSN) loaded with L-cysteine as a support. The photocurrent is produced by a photoactive material consisting of cerium-doped Bi 2 MoO 6 . Initially, L-cysteine acting as the electron donor is gated in the pores by interaction between mesoporous silica and liposome. Thereafter, AFB 1 -BSA conjugates are covalently bound to the liposomes. Upon introduction of the analyte (AFB 1 ), the labeled AFB 1 -BSA complex competes with the analyte for the antibody deposited on the microplate. Accompanying with the immunocomplex, the liposomes on the MSNs are lysed upon addition of Triton X-100. This results in the opening of the pores and in a release of L-cysteine. Free cysteine then induces the electron-hole scavenger of the photoactive nanosheets to increase the photocurrent. The photocurrent (relative to background signal) increases with increasing AFB 1 concentration. Under optimum conditions, the photoactive nanosheets display good photoelectrochemical responses, and allow the detection of AFB 1 at a concentration as low as 0.1 pg·mL -1 within a linear response in the 0.3 pg·mL -1 to 10 ng·mL -1 concentration range. Accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples by using a commercial AFB 1 ELISA kit as the reference, and well-matching results were obtained. Graphical abstract Schematic presentation of a photoelectrochemical immunoassay for AFB 1 . It is based on the use of Ce-doped Bi 2 MoO 6 nanosheets and of liposome-coated mesoporous silica nanoparticles loaded with L-cysteine.

  5. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  6. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  7. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods

    Science.gov (United States)

    Jokerst, Jesse V.; Thangaraj, Mridhula; Gambhir, Sanjiv S.

    2014-03-01

    Imaging is crucial for stem cell therapy to monitor the location(s), numbers, and state of the implanted cells. Real-time imaging in particular can ensure proper cell delivery for best engraftment. However, established imaging tools such as MRI are limited by their temporal resolution for guidance during delivery. In contrast, photoacoustic imaging is ideally suited for real time, image-guided therapy. Here, we use silica-coated gold nanorods as photoacoustic contrast agents and deploy them to image and quantitate mesenchymal stem cells during implant into the muscle tissue of live mice. Silica-coated gold nanorods (SiGNRs) were created with standard methods and loaded into mesenchymal stem cells (MSCs) without transfection agents. There was no significant (pmuscle tissue to simulate a muscular dystrophy patient. Mice (N=5) treated with these SiGNRlabeled MSCs exhibited no adverse events and implants up to 5 mm deep were easily visualized. The in vivo detection limit was 90,000 cells in a 100 uL bolus in mouse thigh muscle. Here, the B-mode signal is useful for orienting the treatment area and visualizing the delivery catheter while the photoacoustic mode offers cell-specific content. The photoacoustic signal was validated with histology a long-term fluorescent tracking dye after MSC transplant.

  8. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    Science.gov (United States)

    Chiu, Chi-Kai

    Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3

  9. Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application

    Directory of Open Access Journals (Sweden)

    Karuppasamy Prem Ananth

    2015-09-01

    Full Text Available We have developed a novel approach to introduce silica-doped β-tricalcium phosphate (Si-β-TCP on 316L SS substrates for enhanced biological properties. Doping of β-TCP with silica loadings ranging from 0 to 8 mol% was carried out using chemical precipitation method. Si-β-TCP powder was sintered at 800 °C followed by coating it on 316L SS substrate using electrophoretic deposition. The coated and uncoated samples were investigated by various characterization techniques such as X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and X-ray fluorescence spectroscopy (XRF. Biomineralization ability of the coatings was evaluated by immersing in simulated body fluid (SBF solution for different number of days such as 7, 14, 21 and 28 days. The results obtained in our study have shown that the apatite formation ability was high for the 8 mol% of Si-β-TCP. This will promote better biomineralization ability compared to the other coatings.

  10. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  11. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique.

    Science.gov (United States)

    Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji

    2018-09-01

    Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples

    International Nuclear Information System (INIS)

    Zhu Rong; Zhao Wenhui; Zhai Meijuan; Wei Fangdi; Cai Zheng; Sheng Na; Hu Qin

    2010-01-01

    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K a , and the apparent maximum number of binding sites, Q max , were estimated to be 1.25 x 10 5 mL μmol -1 and 16.4 μmol g -1 , respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  13. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    Science.gov (United States)

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  14. Bone loss at implant with titanium abutments coated by soda lime glass containing silver nanoparticles: a histological study in the dog.

    Directory of Open Access Journals (Sweden)

    Arturo Martinez

    Full Text Available The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression.

  15. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  16. Biodistribution and stability of CdSe core quantum dots in mouse digestive tract following per os administration: Advantages of double polymer/silica coated nanocrystals

    International Nuclear Information System (INIS)

    Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.; Kazachkina, N.I.; Wakstein, M.S.; Savitsky, A.P.

    2012-01-01

    Highlights: ► New QDs coated with combination of polythiol ligands and silica shell were synthesized. ► We examine the QDs stability in digestive tract of mice after per os administration. ► The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT–APS) to stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT–APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials – mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) – are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT–APS) are suitable for biological and biomedical applications in the gastrointestinal tract.

  17. Study the effect of calcination temperature on physical and magnetic properties of bare Cobalt nanoparticles and that coated with silica shell

    International Nuclear Information System (INIS)

    Arabi, H.; Pourarian, F.; Chahkandinejad, R.

    2012-01-01

    In this paper, in order to investigate the effect of calcination temperature on the structural and magnetic properties of cobalt nanoparticles, samples have been prepared by Co-precipitation method at different calcination temperature. Cobalt nanoparticles have been prepared by Co-precipitation method at room temperature using hydrazine as reducing in ethanol hydrazine alkaline environment. This agent reduces cobalt salts to Cobalt nanoparticles in FCC and HCP phases. Phase analysis and investigation of Structural properties of the samples using X-ray diffraction patterns (XRD) confirm the formation of hexagonal phases of Co nanoparticles. Transmission electron microscopy was used for determining the size and shape morphology of nanoparticles. Magnetic properties of these nanoparticles have been investigated using a Vibrating sample magnetometer. The results indicate that these nanoparticles are ferromagnetic at room temperature. In addition, in this paper Co nanoparticles coated with silica shell have been prepared by the wet chemical method. Transmission electron microscopy images showed the cobalt core with average diameter of 17-20 nm coated by a silica shell with thickness of 5-7 nm. Hysteresis Loop of these Co nanoparticles coated by silica shell illustrates 16.9 emu/gr for saturation magnetization at 10000 (Oe), which is much less than that of Cobalt nanoparticles

  18. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  19. Multipactor suppression by micro-structured gold/silver coatings for space applications

    Science.gov (United States)

    Nistor, Valentin; González, Luis A.; Aguilera, Lydya; Montero, Isabel; Galán, Luis; Wochner, Ulrich; Raboso, David

    2014-10-01

    The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of Ku-band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4-6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were diminished by 25% with respect to the values attained in the tests of the standard anti-multipactor coating, Alodine.

  20. Mechanical Characterization of Polydopamine-Assisted Silver Deposition on Polymer Substrates

    Science.gov (United States)

    Cordes, Amanda Laurence

    Inspired by the adhesive proteins in marine mussels, polydopamine has become a popular adhesive ad-layer for surface functionalization of a variety of substrates. Based on the chemistry of the dopamine monomer, amine and thiol functional groups are hypothesized to increase adhesion between polymer substrates and polydopamine thin films. This hypothesis was the central motivation for development of a tailorable thiol-ene system in order to study the effects of substrate chemistry on polydopamine adhesion. While polydopamine-adhered silver has been studied on a variety of substrates, no in depth mechanical characterization has been performed and to date, no research has been published on thiol-enes coated in polydopamine-adhered silver. The purpose of this study was to characterize the mechanical durability and adhesion properties of a polydopamine-adhered silver film on commercial substrates and a tailorable thiol-ene system. Polydopamine and silver coatings were deposited on a variety of polymer substrates through a simple dip-coat process. The polydopamine forms a thin uniform adhesive layer and the silver deposits in a discontinuous manner with a nanoparticle sized base layer covering the full surface and micron-sized clusters adhered sporadically on top. Mechanical tensile testing was performed to characterize the durability of the silver coating on commercial polymers. Coated nylon and HDPE showed no signs of degradation or delamination of the polydopamine-adhered silver coating up to 30% strain although both substrates showed large plastic deformation. Peel tests were performed on both commercial polymers as well as a tailorable thiol-ene system. Results support the hypothesis that polydopamine adhesion is increased with the presence of functional groups. Parts of the HDPE sample were cleanly peeled, but silver patches were left sporadically across the surface pointing to weaker adhesion between polyethylene and polydopamine. A high adhesive strength tape was

  1. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  2. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  3. Multifunctional EuYVO{sub 4} nanoparticles coated with mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Larissa G. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil); Nigoghossian, Karina [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M. [Department of Morphology, Dental School at Araraquara, Univ. Estadual Paulista – UNESP, Araraquara, SP (Brazil); Ribeiro, Sidney J.L. [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Caiut, José Maurício A., E-mail: caiut@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil)

    2016-11-15

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO{sub 4} nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO{sub 4}:Eu{sup 3+} nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  4. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds

    Directory of Open Access Journals (Sweden)

    Peng Y

    2017-01-01

    Full Text Available Yinbo Peng,1 Chenlu Song,1 Chuanfeng Yang,1 Qige Guo,1 Min Yao1,2 1Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA Abstract: Silver nanoparticles (AgNPs are being widely applied as topical wound materials; however, accumulated deposition of silver in the liver, spleen, and other main organs may lead to organ damage and dysfunction. We report here that low molecular weight chitosan-coated silver nanoparticles (LMWC-AgNPs are effective against methicillin-resistant Staphylococcus aureus (MRSA, have better biocompatibility, and have lower body absorption characteristics when compared with polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs and silver nanoparticles without surface stabilizer (uncoated-AgNPs in a dorsal MRSA wound infection mouse model. LMWC-AgNPs were synthesized by reducing silver nitrate with low molecular weight chitosan as a stabilizer and reducing agent, while PVP-AgNPs were synthesized using polyvinylpyrrolidone as a stabilizer and ethanol as a reducing agent. AgNPs with different surface stabilizers were identified by UV-visible absorption spectrometry, and particle size was determined by transmission electron microscopy. UV-visible absorption spectra of LMWC-AgNPs, PVP-AgNPs and uncoated-AgNPs were similar and their sizes were in the range of 10–30 nm. In vitro experiments showed that the three types of AgNPs had similar MRSA-killing effects, with obvious effect at 4 µg/mL and 100% effect at 8 µg/mL. Bacteriostatic annulus experiments also showed that all the three types of AgNPs had similar antibacterial inhibitory effect at 10 µg/mL. Cell counting kit-8 assay and Hoechst/propidium iodide (PI staining showed that LMWC-AgNPs were

  5. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process

    Directory of Open Access Journals (Sweden)

    Yu DG

    2012-11-01

    Full Text Available Deng-Guang Yu,1 Jie Zhou,2 Nicholas P Chatterton,3 Ying Li,1 Jing Huang,2 Xia Wang11School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China; 2School of Life Sciences, East China Normal University, Shanghai, People's Republic of China; 3Faculty of Life Sciences, London Metropolitan University, London, United KingdomBackground: The objective of this investigation was to develop a new class of antibacterial material in the form of nanofibers coated with silver nanoparticles (AgNPs using a modified coaxial electrospinning approach. Through manipulation of the distribution on the surface of nanofibers, the antibacterial effect of Ag can be improved substantially.Methods: Using polyacrylonitrile (PAN as the filament-forming polymer matrix, an electrospinnable PAN solution was prepared as the core fluid. A silver nitrate (AgNO3 solution was exploited as sheath fluid to carry out the modified coaxial electrospinning process under varied sheath-to-core flow rate ratios.Results: Scanning electron microscopy and transmission electron microscopy demonstrated that the sheath AgNO3 solution can take a role in reducing the nanofibers' diameters significantly, a sheath-to-core flow rate ratio of 0.1 and 0.2 resulting in PAN nanofibers with diameters of 380 ± 110 nm and 230 ± 70 nm respectively. AgNPs are well distributed on the surface of PAN nanofibers. The antibacterial experiments demonstrated that these nanofibers show strong antimicrobial activities against Bacillus subtilis Wb800, and Escherichia coli dh5α.Conclusion: Coaxial electrospinning with AgNO3 solution as sheath fluid not only facilitates the electrospinning process, providing nanofibers with reduced diameters, but also allows functionalization of the nanofibers through coating with functional ingredients, effectively ensuring that the active antibacterial component is on the surface of the material, which leads to

  6. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaee, Majid, E-mail: majidmirzaee7@gmail.com [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Vaezi, Mohammadreza; Palizdar, Yahya [Research Department of Nano-Technology and Advanced Materials, Materials & Energy Research Center (Iran, Islamic Republic of)

    2016-12-01

    Silver-doped hydroxyapatite (Ca{sub 10−x}Ag{sub x}(PO{sub 4}){sub 6}(OH){sub 2−x}) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X = 0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600 °C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag{sup 2+} and Ag{sup +}, respectively. However, only about 2% of silver was in the Ag{sup 0} state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO{sub 2}. HAp and silver doped HAp (X = 0.05) are regarded to be hydrophilic due to a large number of –OH groups on the surface. The sample with content of silver (x = 0.05) also showed excellent antimicrobial efficacy (> 99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. - Highlights: • Microstructure and antibacterial properties of silver doped HAp are studied. • The nanocomposite is processed by combinations of sol gel and electrophoretic. • The optimum silver content is obtained under property evaluation.

  7. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering.

    Science.gov (United States)

    Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir

    2015-01-01

    Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  9. Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy

    Directory of Open Access Journals (Sweden)

    Wu K

    2015-12-01

    Full Text Available Ke Wu,1 Yun Yang,2,3 Yanmei Zhang,2,3 Jiexi Deng,1 Changjian Lin2,31Department of Cardiology, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, 2Department of Medical Materials, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group, Beijing, 3State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People’s Republic of ChinaAbstract: Catheter-related bloodstream infections are a significant problem in the clinic and may result in a serious infection. Here, we developed a facile and green procedure for buildup of silver nanoparticles (AgNPs on the central venous catheters (CVCs surface. Inspired by mussel adhesive proteins, dopamine was used to form a thin polydopamine layer and induce AgNPs formation without additional reductants or stabilizers. The chemical and physicochemical properties of AgNPs coated CVCs were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and water contact angle. The Staphylococcus aureus culture experiment was used to study the antibacterial properties. The cytocompatibility was assessed by water soluble tetrazolium salts (WST-1 assay, fluorescence staining, and scanning electron microscopy analysis. The results indicated that the CVCs surface was successfully coated with compact AgNPs. AgNPs were significantly well separated and spherical with a size of 30–50 nm. The density of AgNPs could be modulated by the concentration of silver nitrate solution. The antibacterial activity was dependent on the AgNPs dose. The high dose of AgNPs showed excellent antibacterial activity while associated with increased cytotoxicity. The appropriate density of AgNPs coated CVCs could exhibit improved biocompatibility and maintained evident sterilization effect. It is promising to design mussel-inspired silver releasing CVCs with both

  10. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Science.gov (United States)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  11. Efficacy of collagen silver-coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model.

    Science.gov (United States)

    Schneider, Fabrice; O'Connor, Stephen; Becquemin, Jean Pierre

    2008-11-01

    The primary objective of this study was to compare the efficacy of a collagen silver-coated polyester graft, InterGard, with a gelatin-sealed graft, Gelsoft, both soaked in rifampin, for resistance to direct bacterial contamination in an animal model. The second objective was to confirm the lack of inflammation from silver acetate. Vascular grafts, 6 mm in diameter, were implanted in the infrarenal aorta of 28 dogs. Intravenous cefamandole (20 mg/kg) was injected intraoperatively in all dogs. The dogs were divided into three groups. Group I included 12 dogs. Six dogs received silver grafts and six dogs received gelatin-sealed grafts, all soaked with rifampin. Grafts implanted in group I were directly infected with methicillin-resistant Staphylococcus aureus (MRSA). Group II included also six silver grafts and six gelatin-sealed grafts, all soaked with rifampin. Dogs of group II were directly infected with Escherichia coli. Group III comprised four dogs, which received gelatin unsealed grafts, directly infected with MRSA, the control group. All dogs were followed by regular clinical examination, including blood cultures. Grafts in groups I and III and in group II were harvested at 30 days and 10 days, respectively. Bacterial analyses were performed on the explanted grafts. Histology was performed on both the tissue samples and the anastomotic sites of the harvested grafts. In group I, no grafts were infected with MRSA, irrespective of graft type. In group II, no silver grafts were infected with E. coli, whereas one (16.6%) of six gelatin-sealed grafts was infected (p = 0.317). In group III, three (75%) of the four grafts were infected with MRSA. The infection rate in the silver grafts and the gelatin-sealed grafts soaked in rifampin in group I compared with the unsealed gelatin grafts in group III was statistically significantly different (p anastomoses in three (25%) gelsoft grafts of 12 in groups I and II. There were no clinical or biological signs of inflammation

  12. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions

    NARCIS (Netherlands)

    Chen, C.; Kleverlaan, C.J.; Feilzer, A.J.

    2012-01-01

    Objectives This study aimed to evaluate the adhesive properties of a MDP-containing resin cement to a colored zirconia ceramic, using an experimental zirconia-silica coating technique with different priming conditions. Methods 18 zirconia ceramic discs (Cercon base colored) were divided into two

  13. The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP.

    Science.gov (United States)

    Lim, Myung-Jin; Yu, Mi-Kyung; Lee, Kwang-Won

    2018-05-01

    This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups ( p Y-TZP was the best choice among the alternatives tested in this study.

  14. Surface characteristics and antibacterial activity of a silver-doped carbon monolith

    Directory of Open Access Journals (Sweden)

    Marija Vukčević et al

    2008-01-01

    Full Text Available A carbon monolith with a silver coating was prepared and its antimicrobial behaviour in a flow system was examined. The functional groups on the surface of the carbon monolith were determined by temperature-programmed desorption and Boehm's method, and the point of zero charge was determined by mass titration. The specific surface area was examined by N2 adsorption using the Brunauer, Emmett and Teller (BET method. As a test for the surface activity, the deposition of silver from an aqueous solution of a silver salt was used. The morphology and structure of the silver coatings were characterized by scanning electron microscopy and x-ray diffraction. The resistance to the attrition of the silver deposited on the carbon monolith was tested. The antimicrobial activity of the carbon monolith with a silver coating was determined using standard microbiological methods. Carbon monolith samples with a silver coating showed good antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans, and are therefore suitable for water purification, particularly as personal disposable water filters with a limited capacity.

  15. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Rong; Zhao Wenhui; Zhai Meijuan; Wei Fangdi; Cai Zheng; Sheng Na [School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029 (China); Hu Qin, E-mail: huqin@njmu.edu.cn [School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029 (China)

    2010-01-25

    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K{sub a}, and the apparent maximum number of binding sites, Q{sub max}, were estimated to be 1.25 x 10{sup 5} mL {mu}mol{sup -1} and 16.4 {mu}mol g{sup -1}, respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  16. Gradient titanium and silver based carbon coatings deposited on AISI316L

    Science.gov (United States)

    Batory, Damian; Reczulska, Malgorzata Czerniak-; Kolodziejczyk, Lukasz; Szymanski, Witold

    2013-06-01

    The constantly growing market for medical implants and devices caused mainly due to a lack of proper attention attached to the physical condition as well as extreme sports and increased elderly population creates the need of new biocompatible biomaterials with controlled bioactivity and certain useful properties. According to many literature reports, regarding the modifications of variety of different biomaterials using the surface engineering techniques and their biological and physicochemical examination results, the most promising material for great spectra of medical applications seem to be carbon layers. Another issue is the interaction between the implant material and surrounding tissue. In particular cases this interface area is directly exposed to air. Abovementioned concern occurs mainly in case of the external fixations, thus they are more vulnerable to infection. Therefore a crucial role has the inhibition of bacterial adhesion that may prevent implant-associated infections, occurrence of other numerous complications and in particular cases rejection of the implant. For this reason additional features of carbon coatings like antibacterial properties seem to be desired and justified. Silver doped diamond-like carbon coatings with different Ag concentrations were prepared by hybrid RF PACVD/MS (Radio Frequency Plasma Assisted Chemical Vapor Deposition/Magnetron Sputtering) deposition technique. Physicochemical parameters like chemical composition, morphology and surface topography, hardness and adhesion were determined. Examined layers showed a uniform distribution of silver in the amorphous DLC matrix, high value of H/E ratio, good adhesion and beneficial topography which make them a perfect material for medical applications e.g. modification of implants for the external fixations.

  17. Multipactor suppression by micro-structured gold/silver coatings for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, Valentin, E-mail: valentin.nistor@uam.es [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); González, Luis A. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Aguilera, Lydya; Montero, Isabel [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Galán, Luis [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Wochner, Ulrich [Tesat Spacecom GmbH and Co. KG,Gerberstr. 49, D-71522 Backnang (Germany); Raboso, David [European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), 2200 AG Noordwijk (Netherlands)

    2014-10-01

    Highlights: • Total suppression of the multipactor effect was achieved for a specific configuration of a high RF power K{sub u}-band waveguide. • Secondary emission of electrons was decreased by surfaces of high aspect ratio. • Simple techniques were used in the manufacturing of metallic microscopical rough coatings. • Surface analysis of the treatment was performed. • The RF insertion losses were improved with respect to Alodine, the standard coating for space applications. - Abstract: The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of K{sub u}-band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4–6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were

  18. Multipactor suppression by micro-structured gold/silver coatings for space applications

    International Nuclear Information System (INIS)

    Nistor, Valentin; González, Luis A.; Aguilera, Lydya; Montero, Isabel; Galán, Luis; Wochner, Ulrich; Raboso, David

    2014-01-01

    Highlights: • Total suppression of the multipactor effect was achieved for a specific configuration of a high RF power K u -band waveguide. • Secondary emission of electrons was decreased by surfaces of high aspect ratio. • Simple techniques were used in the manufacturing of metallic microscopical rough coatings. • Surface analysis of the treatment was performed. • The RF insertion losses were improved with respect to Alodine, the standard coating for space applications. - Abstract: The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of K u -band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4–6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were

  19. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  20. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  1. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  2. One stone, two birds: silica nanospheres significantly increase photocatalytic activity and colloidal stability of photocatalysts

    Science.gov (United States)

    Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang

    2018-03-01

    Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.

  3. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit

    Science.gov (United States)

    Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue

    2011-03-01

    A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  4. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  5. One-step polypyrrole coating of self-assembled silver nanoprisms for enhanced stability and Raman scattering

    Science.gov (United States)

    Jeong, Dong-Won; Jeong, Sugyeong; Jang, Du-Jeon

    2017-07-01

    Self-assemblies of silver nanoprisms (AgPRs) having enhanced structural stability and optical properties have been facilely coated with polypyrrole (PPy) via the in situ polymerization of pyrrole monomers that also act as an assembling agent. The assemblies of AgPRs, whose edge lengths and thicknesses are typically 78 and 4 nm, respectively, have been surrounded by a PPy coating of 6 nm. AgPRs are assembled in a side-to-side orientation, and the degree of assembly has been controlled by varying the concentration of trisodium citrate dihydrate, which attaches selectively to the {111} facets of AgPRs. The morphology deformation time of PPy-coated AgPRs in 0.6 mM H2O2(aq) is seven times longer than that of PPy-free AgPRs, suggesting that PPy coating prevents the sharp tips of AgPRs from being truncated by oxidizing agents. The SERS effect of highly self-assembled and PPy-coated AgPRs becomes as high as 6.3 due to numerous hot spots generated between nanoprisms. Overall, our fabricated AgPRs assemblies with PPy coating have not only improved structural stability but also enhanced optical properties, extending the practical use of noble-metal nanoprisms for various optical applications.

  6. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  7. A comparison of LIDT behavior of metal-dielectric mirrors in ns and ps pulse regime at 1030 nm with regard to the coating technology

    Science.gov (United States)

    Škoda, Václav; Vanda, Jan; Uxa, Štěpán

    2017-11-01

    Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.

  8. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    International Nuclear Information System (INIS)

    Huang, Qijin; Shen, Wenfeng; Xu, Qingsong; Tan, Ruiqin; Song, Weijie

    2014-01-01

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10 7  S m −1 , which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10 7  S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed

  9. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qijin [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Shen, Wenfeng, E-mail: wfshen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Xu, Qingsong [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Tan, Ruiqin [Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China); Song, Weijie, E-mail: weijiesong@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-10-15

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10{sup 7} S m{sup −1}, which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10{sup 7} S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed.

  10. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    Science.gov (United States)

    Lu, Haifei

    excitation. These silver NDs acting as seeds can be re-grown into larger silver NDs with LSPR ranging from 490 nm to 590 nm, upon receiving LED irradiation with emission close to the LSPR of silver ND seeds, which are suspended in a precursor solution containing small silver nanoparticles. With the aid of centrifugation, silver NDs with high purity can be obtained. Furthermore, silver ND with a broad tuning range (LSPR 490 ~ 660 nm) can be synthesized from these seeds using irradiation from a 500 nm LED. Second, the optical properties of silver NDs and their SERS application for sensitive molecular detection are presented. Raman signal obtained from silver NDs show remarkable advantage over noble nanoparticles of other shaped, thus revealing their strong localized field enhancement. Experimental results demonstrate that average enhancement factor from individual silver ND may be as high as 106. In order to explore their application for biosensing and bioimaging, stable silica coated SERS tags based on silver ND producing high Raman intensity have been studied. Our experiment results indicate that 10-8 M 4-MBA in solution can be detected by silver NDs modified silicon chip through SERS. Simulation result on the geometry of silver ND/silica spacer/gold film/substrate shows that the Raman sensitivity of the NDs modified chip can be further improved with the insertion of a dielectric/conductor film between them. Finally, we present a photochemical method for the preparation of silver nanostructures preparation with the use of 633 nm laser. Silver nanostructures composed of silver nanoplates could be grown from small silver nanoparticles deposited on a glass substrate. The periodicity of the silver nanostructures is several micrometers, revealing that this photochemical method has the potential for "writing" silver pattern on a solid substrate. Raman spectroscopy has also been explored for real-time monitoring of silver nanostructure growth and SERS hotspots formation.

  11. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Omar Rodriguez

    2016-12-01

    Full Text Available Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion closer to the substrate’s (Ti6Al4V CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.

  12. Multi-Walled Carbon Nanotube-Assisted Electrodeposition of Silver Dendrite Coating as a Catalytic Film

    Directory of Open Access Journals (Sweden)

    Li Fu

    2017-12-01

    Full Text Available A multi-walled carbon nanotube (MWCNT-coated indium tin oxide (ITO slide was used as a platform for the growth of a silver dendrite (Ag-D film using cyclic voltammetry. The particular dendritic nanostructures were formed by the diffusion-limited-aggregation model due to the potential difference between the MWCNTs and the ITO surface. The Ag-D-coated ITO film was then used for the catalytic degradation of methyl orange (MO and methylene blue (MB under static aqueous conditions. The network structure of the Ag-D allows the efficient diffusion of MO and MB, and consequently enhances the catalytic performance. Since the thin film is much easier to use for the post-treatment of powder catalysts, the proposed method shows great potential in many catalytic applications.

  13. Nanostructured titanium–silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Long [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Gao, Ang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Zhao, Lingzhou, E-mail: zhaolingzhou1983@hotmail.com [State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-11-15

    Graphical abstract: - Highlights: • We fabricate Ti–Ag coatings with different Ag contents and surface morphologies. • The Ti–Ag coatings possess long-term antibacterial ability. • Increased Ag contents in the coatings leads to enhanced osteoblast functions. - Abstract: Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium–silver (Ti–Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti–Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti–Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti–Ag coatings.

  14. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    International Nuclear Information System (INIS)

    Rofouei, Mohammad Kazem; Payehghadr, Mahmood; Shamsipur, Mojtaba; Ahmadalinezhad, Asieh

    2009-01-01

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l -1 detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 μg of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  15. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rofouei, Mohammad Kazem, E-mail: rofouei@tmu.ac.ir [Faculty of Chemistry, Tarbiat Moalem University, Tehran (Iran, Islamic Republic of); Payehghadr, Mahmood [Department of Chemistry, Payame Noor University (PNU) (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Ahmadalinezhad, Asieh [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2009-09-15

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l{sup -1} detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 {mu}g of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  16. Preparation of silica coated and 90Y-radiolabeled β-NaYF4 upconverting nanophosphors for multimodal tracing

    Science.gov (United States)

    Najmr, Stan; Lu, Tianfeng; Keller, Austin W.; Zhang, Mingyue; Lee, Jennifer D.; Makvandi, Mehran; Pryma, Daniel A.; Kagan, Cherie R.; Murray, Christopher B.

    2018-06-01

    Rare-earth (RE) compounds have been actively pursued for therapeutic and diagnostic applications due to their ability to upconvert near infrared light into the UV–vis range. Through nanoengineering and bottom-up synthesis, additional functionality can be added to these upconverting systems. Herein, we report the synthesis of 90Y-doped β-NaYF4:Er, Yb upconverting nanophosphors (UCNPs) to enable β-particle emission and upconversion by the same UCNP. To homogenously incorporate the radionuclides, we employ a hydroxide metathesis method to produce the RE precursor required for the solvothermal synthesis of monodisperse UCNPs. Once incorporated, we find that the β-emitting 90Y dopants do not influence the energy pathways required for upconversion, enabling simultaneous radio- and optical-tracing. The resulting large (>100 nm in height and width), anisotropic, 90Y-radiolabeled β-NaYF4 UCNPs are then coated with silica using a modified, micelle-driven Stöber process to enable their dispersion in polar solvents. Doing so highlights the importance of surfactant (Igepal CO-520) and silica source (tetraethyl orthosilicate) interactions to the continuity of the silica shell and makes the vast library of silica surface chemistry and functionality accessible to upconverting radiotracers.

  17. Silica Based Superhydrophobic Nanocoatings for Natural Rubber Surfaces

    Directory of Open Access Journals (Sweden)

    Veromee Kalpana Wimalasiri

    2017-01-01

    Full Text Available Silica based nonfluorinated superhydrophobic coatings for natural rubber surfaces have been developed. The coating was synthesized using nanosilica dispersion and a polychloroprene type binder as a compatibilizer. This nanocoating of silica was applied on to the surface of finished natural rubber gloves, by spray coating or dipped coating methods. The nanocoating demonstrates a water contact angle of more than 150° and sliding angle of 7°. The morphological features of the coating have been studied using scanning electron microscopy and atomic force microscopy while Fourier transform infrared spectroscopy was used to understand the nature of surface functional groups. Both imaging techniques provided evidence for the presence of nanosized particles in the coating. Coated gloves demonstrated comparable mechanical properties and significantly better alcohol resistivity when compared to those of the uncoated gloves.

  18. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  19. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

    Science.gov (United States)

    Kołodyńska, D.; Gęca, M.; Skwarek, E.; Goncharuk, O.

    2018-04-01

    The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

  20. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Sang; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  1. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Science.gov (United States)

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Zhuo, Xianglong, E-mail: doctorzhuo@139.com [Department of Spinal Surgery, Liuzhou Worker' s Hospital, Liuzhou 545001 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Huang, Yongcan [Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Ma, Lili; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Bao, Huijing; Li, Xue; Huo, Qianyu; Liu, Zhili [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-02-01

    Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification. - Highlights: • Ag- and Sr-substituted HA coating is deposited on titanium by hydrothermal method. • This coating shows a remarkable antibacterial activity and good biocompatibility. • The coating process is simple and suitable for large-scale fabrication. • The possible mechanism of Sr{sup 2+} is proposed.

  3. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bialiayeu, A; Albert, J; Bottomley, A; Prezgot, D; Ianoul, A

    2012-01-01

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ∼100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre. (paper)

  4. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    Energy Technology Data Exchange (ETDEWEB)

    Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Dědourková, Tereza [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Pardubice, Doubravice 41, 532 10 Pardubice (Czech Republic); Knížek, Karel; Jirák, Zdeněk [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Hydrothermal synthesis of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2–0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B{sub 0}=0.5 T, reveal high transverse relaxivity (r{sub 2}(20 °C)=450 s{sup −1} mmol(Me{sub 3}O{sub 4}){sup −1} L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime. - Highlights: • Mn-Zn ferrite particles with size of ≈10 nm are synthesized by hydrothermal method. • Their structure and magnetic properties are analysed in dependence on composition. • Silica-coated clusters with the size ≈26 nm are prepared as contrast agent for MRI. • Their transverse relaxivity shows strong temperature dependence.

  5. Coating independent cytotoxicity of citrate- and PEG-coated silver nanoparticles on a human hepatoma cell line.

    Science.gov (United States)

    Bastos, Verónica; Ferreira-de-Oliveira, José M P; Carrola, Joana; Daniel-da-Silva, Ana L; Duarte, Iola F; Santos, Conceição; Oliveira, Helena

    2017-01-01

    The antibacterial potential of silver nanoparticles (AgNPs) resulted in their increasing incorporation into consumer, industrial and biomedical products. Therefore, human and environmental exposure to AgNPs (either as an engineered product or a contaminant) supports the emergent research on the features conferring them different toxicity profiles. In this study, 30nm AgNPs coated with citrate or poly(ethylene glycol) (PEG) were used to assess the influence of coating on the effects produced on a human hepatoma cell line (HepG2), namely in terms of viability, apoptosis, apoptotic related genes, cell cycle and cyclins gene expression. Both types of coated AgNPs decreased cell proliferation and viability with a similar toxicity profile. At the concentrations used (11 and 5μg/mL corresponding to IC50 and ~IC10 levels, respectively) the amount of cells undergoing apoptosis was not significant and the apoptotic related genes BCL2 (anti-apoptotic gene) and BAX (pro-apoptotic gene) were both downregulated. Moreover, both AgNPs affected HepG2 cell cycle progression at the higher concentration (11μg/mL) by increasing the percentage of cells in S (synthesis phase) and G2 (Gap 2 phase) phases. Considering the cell-cycle related genes, the expression of cyclin B1 and cyclin E1 genes were decreased. Thus, this work has shown that citrate- and PEG-coated AgNPs impact on HepG2 apoptotic gene expression, cell cycle dynamics and cyclin regulation in a similar way. More research is needed to determine the properties that confer AgNPs at lower toxicity, since their use has proved helpful in several industrial and biomedical contexts. Copyright © 2016. Published by Elsevier B.V.

  6. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels

    Directory of Open Access Journals (Sweden)

    Mekkawy AI

    2017-01-01

    Full Text Available Aml I Mekkawy,1 Mohamed A El-Mokhtar,2 Nivien A Nafady,3 Naeima Yousef,3 Mostafa A Hamad,4 Sohair M El-Shanawany,5 Ehsan H Ibrahim,5 Mahmoud Elsabahy5–8 1Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 2Department of Microbiology and Immunology, Faculty of Medicine, 3Department of Botany and Microbiology, Faculty of Science, 4Department of Surgery, Faculty of Medicine, 5Department of Pharmaceutics, Faculty of Pharmacy, 6Assiut International Center of Nanomedicine, Al-Rajhi Liver Hospital, Assiut University, Assiut, Egypt; 7Laboratory for Synthetic-Biologic Interactions, Department of Chemistry, Texas A&M University, College Station, TX, USA; 8Misr University for Science and Technology, 6th of October, Egypt Abstract: In the present study, silver nanoparticles (AgNPs were synthesized via biological reduction of silver nitrate using extract of the fungus Fusarium verticillioides (green chemistry principle. The synthesized nanoparticles were spherical and homogenous in size. AgNPs were coated with polyethylene glycol (PEG 6000, sodium dodecyl sulfate (SDS, and β-cyclodextrin (β-CD. The averaged diameters of AgNPs were 19.2±3.6, 13±4, 14±4.4, and 15.7±4.8 nm, for PEG-, SDS-, and ß-CD-coated and uncoated AgNPs, respectively. PEG-coated AgNPs showed greater stability as indicated by a decreased sedimentation rate of particles in their water dispersions. The antibacterial activities of different AgNPs dispersions were investigated against Gram-positive bacteria (methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Gram-negative bacteria (Escherichia coli by determination of the minimum inhibitory concentrations (MICs and minimum bactericidal concentrations (MBCs. MIC and MBC values were in the range of 0.93–7.5 and 3.75–15 µg/mL, respectively, which were superior to the reported values in literature. AgNPs-loaded hydrogels were prepared from the coated

  7. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  8. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Science.gov (United States)

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  9. Bactericidal properties of silver films on intramedullary implants

    Science.gov (United States)

    Gallagher, C.; Walker, C.; Cortes, E.; Hettinger, Jeffrey; Krchnavek, R.; Caputo, G. A.; Ostrum, R.

    2011-03-01

    We report on investigations of silver films on titanium and stainless steel substrates as anti-bacterial coatings for intramedullary nails used in orthopedic trauma. Silver films are deposited using a magnetron sputtering technique from a single elemental target. The deposition parameter (energy, pressure, and temperature) dependence of the silver film microstructure and adhesion will be presented. Preliminary measurements of the effectiveness of the silver films as a bactericide on S. aureus bacteria demonstrate that the films are effective destroying the bacteria. The process of this investigation will be presented. Preliminary transmission electron microscopy measurements will also presented which image healthy and damaged bacteria helping to identify the fundamental mechanism leading to the effectiveness of silver as an anti-bacterial coating. We acknowledge the support of Rowan University, College of Liberal Arts and Sciences.

  10. A decomposable silica-based antibacterial coating for percutaneous titanium implant

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-01-01

    antibacterial titanium coating continuously released gentamycin and inhibited S. aureus growth. In vitro investigation showed that the obtained nanodelivery system has good biocompatibility. Therefore, this design can be further investigated as a method to prevent infection around percutaneous implants. Keywords: silica nanoparticles, microarc oxidation, gentamycin, control release, fibroblasts

  11. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    Science.gov (United States)

    He, Rong; You, Xiaogang; Shao, Jun; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2007-08-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g-1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays.

  12. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    International Nuclear Information System (INIS)

    He Rong; You Xiaogang; Shao Jun; Gao Feng; Pan Bifeng; Cui Daxiang

    2007-01-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g -1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays

  13. Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reducing and anticorrosion abilities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-01-15

    A simple two-step solution immersion process was combined with surface-modification by stearic acid to prepare superhydrophobic coatings on copper substrates so as to reduce friction coefficient, increase wear resistance and improve the anticorrosion ability of copper. Briefly, cuprous oxide (Cu{sub 2}O) crystal coating with uniform and compact tetrahedron structure was firstly created by immersing copper substrate in 2 mol L{sup −1} NaOH solution. As-obtained Cu{sub 2}O coating was then immersed in 0.33 mmol L{sup −1} AgNO{sub 3} solution to incorporate silver nanoparticles, followed by modification with stearic acid (denoted as SA) coating to achieve hydrophobicity. The surface morphology and chemical composition of silver-cuprous oxide/stearic acid (denoted as Ag-Cu{sub 2}O/SA) composite coating were investigated using a scanning electron microscope and an X-ray photoelectron spectroscope (XPS); and its phase structure was examined with an X-ray diffractometer (XRD). Moreover, the contact angle of water on as-prepared Ag-Cu{sub 2}O/SA composite coating was measured, and its friction-reducing and anticorrosion abilities were evaluated. It was found that as-prepared Ag-Cu{sub 2}O/SA composite coating has a water contact angle of as high as 152.4{sup o} and can provide effective friction-reducing, wear protection and anticorrosion protection for copper substrate, showing great potential for surface-modification of copper.

  14. Initial study of sediment antagonism and characteristics of silver nanoparticle-coated biliary stents in an experimental animal model

    Directory of Open Access Journals (Sweden)

    Tian Y

    2016-04-01

    Full Text Available Yigeng Tian,1,* Mingfeng Xia,2,* Shuai Zhang,3 Zhen Fu,4 Qingbin Wen,2 Feng Liu,4 Zongzhen Xu,4 Tao Li,4 Hu Tian4 1Department of Physics, School of Physics and Technology, University of Jinan, Jinan, Shandong, People’s Republic of China; 2Department of Surgery, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China; 3Department of General Surgery, Sixth People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China; 4Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Objective: Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice.Methods: AgNP-coated Teflon biliary stents were prepared by chemical oxidation–reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD; animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA, and the composition of sediment was assayed by Fourier-transform infrared (FTIR spectroscopy.Results: Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5–6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR

  15. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinjin [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Chengjian [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Zhou, Jingfang [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095 (Australia); Li, Chunxia [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Shao, Yiran; Shi, Chao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2}/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO{sub 2}/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO{sub 2}/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO{sub 2}) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO{sub 2} coatings. In the study, titania-nanosilver (TiO{sub 2}/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO{sub 2} powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO{sub 2}/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO{sub 2}/Ag coatings and no crystalline changed happened in the TiO{sub 2} structure. The reduction ratios on the TiO{sub 2}/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO{sub 2}/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO{sub 2}/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the

  16. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    International Nuclear Information System (INIS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-01-01

    Graphical abstract: - Highlights: • TiO_2/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO_2/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO_2/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO_2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO_2 coatings. In the study, titania-nanosilver (TiO_2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO_2 powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO_2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO_2/Ag coatings and no crystalline changed happened in the TiO_2 structure. The reduction ratios on the TiO_2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO_2/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO_2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO_2/Ag coatings were discussed with

  17. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties

    International Nuclear Information System (INIS)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2014-01-01

    Highlights: • Superhydrophobic silica film was prepared by sol–gel process. • The surfaces exhibited superhydrophobicity with water contact angle greater than 150°. • AFM images showed the roughness increases with increasing the percentage of silylation agent. • Before and after modification, the particle size of silica was lower than 50 nm. - Graphical abstract: Schematic illustration of the surface modification of the silica nanoparticle by iso-OTMS on the glass substrate. - Abstract: In this paper, we study the two-step dip coating via a sol–gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H 2 O) was kept constant at 1:36:6.6 respectively, with 6 M NH 4 OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO 2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG–DTA analysis

  18. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    Science.gov (United States)

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the

  19. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    Science.gov (United States)

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  20. Evaluation of the influence of sulfur-based functional groups on the embedding of silver nanoparticles into the pores of MCM-41

    International Nuclear Information System (INIS)

    Oliveira, Roselaine da S.; Camilo, Fernanda F.; Bizeto, Marcos A.

    2016-01-01

    The incorporation of noble metals in the pores of mesoporous silicas might produce materials with interesting catalytic and sensing capabilities, but the proper control of pore filling and the avoidance of nanoparticles migration to outside the pores are processes not yet completely understood. In this work, we evaluated the role of –SH and –SO_3H groups post-grafted into MCM-41 on the production of silver nanoparticles by using 1-butanol as reducing agent. Thiol groups were the most efficient on promoting the formation of nanoparticles within the pores. Conversely, sulfonic groups establish electrostatic interactions with silver cations that preclude the formation of nanoparticle in yields comparable to thiol groups. MCM-41 without functional groups did not have good affinity to silver and the nanoparticles are produced outside the pores. This study showed the importance on selecting an adequate surface functional group in order to obtain silver nanoparticles filling the pores of MCM-41. - Graphical abstract: Silver nanoparticles formation inside the pores of sulfur-groups functionalized mesoporous silica. - Highlights: • Silver nanoparticles formation inside the pores of mesoporous silica. • n-butanol as reducing agent of impregnated silver cations. • Tuning the silica surface properties by grafting sulfur-based functional groups. • Influence on the loading and distribution of the nanoparticles through the pores.

  1. Superhydrophobic silica coating by dip coating method

    International Nuclear Information System (INIS)

    Mahadik, Satish A.; Parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S.; Wagh, Pratap B.; Gupta, Satish; Gurav, Jyoti

    2013-01-01

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  2. Round-robin testing of low-scatter optics

    International Nuclear Information System (INIS)

    Bennett, J.M.; Stowell, W.K.

    1985-01-01

    For high quality laser optics it is important to compare measurements of surface quality made in different laboratories, determine how scattering levels of silver coatings produced by different groups compare, and what effects, if any, are introduced by stripping the silver coatings and by handling and transporting samples between laboratories. Fourteen very low-scatter, optically polished synthetic fused silica (Suprasil) and natural fused quartz (Homosil) samples were purchased from Robert M. Silva of VTI, Dayton, Ohio. Angular scattering, i.e., bidirectional reflectance distribution function (BRDF), was measured on all the uncoated samples and three silver-coated samples at AFWAL using a variable angle scatterometer. Eleven additional samples were silver coated at NWC, and total integrated scattering (TIS) was measured on all silver-coated samples. Transmission electron micrographs were made of the surfaces (silvered and also stripped) of two samples, and selected coated and uncoated samples were profiled. TIS was then measured on the instrument at AFWL

  3. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  4. Self-cleaning behavior in polyurethane/silica coatings via formation of a hierarchical packed morphology of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: Gsadeghi@aut.ac.ir [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Seyfi, Javad [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Jafari, Seyed-Hassan [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Graphical abstract: - Highlights: • Self-cleaning behavior was imparted to the hydrophilic polyurethane. • A hierarchical packed morphology is responsible for the superhydrophobicity. • Prolonged pressing process cannot lead to superhydrophobicity due to migration of TPU. • Samples exhibited excellent stability against media with a wide range of pH values. - Abstract: In the current research, a hierarchical morphology comprising of packed assembly of nanoparticles was induced in thermoplastic polyurethane (TPU)/silica nanocomposite coatings in order to achieve self-cleaning behavior. Moderately hydrophilic behavior of TPU hinders its transforming to a superhydrophobic material. In the presented method, a very thin layer of silica nanoparticles is applied to the surface of TPU sheets under elevated temperature and pressure. As temperature and pressure of the process remain unchanged, processing time was considered as a main variable. Based on scanning electron microscopy and confocal microscopy results, it was found that at a certain processing time, nanoparticles can form an utterly packed morphology leading to a self-cleaning behavior. Once the process was prolonged, TPU macromolecules found the chance to migrate onto the coating's top layer due to the enhanced mobility of chains at high temperature. This observation was further proved by X-ray photoelectron spectroscopy analysis and cross-sectional morphology. The presented method has promising potentials in transforming intrinsically hydrophilic polymers into superhydrophobic materials with self-cleaning behavior.

  5. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings

    Science.gov (United States)

    Li, Yingzhan; Wang, Bijia; Sui, Xiaofeng; Xie, Ruyi; Xu, Hong; Zhang, Linping; Zhong, Yi; Mao, Zhiping

    2018-03-01

    Durable flame retardant and antibacterial hybrid coatings were developed for cotton fabrics via simultaneous polymerization of dopamine and hydrolytic condensation of N3P3[NH(CH2)3Si(OC2H5)3]6. Silver nanoparticles were also introduced to the coatings by in situ reaction of AgNO3 with catechol moieties on polydopamine (PDA) in the absence of any external reducing agents. Energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to study the morphology and constitution of the coatings. Thermal stability and combustion behaviors were characterized with thermogravimetric analysis (TGA) and vertical flammability tests. Considerable flame retardancy was obtained for the modified cotton fabrics, which also exhibited decent antibacterial activities (99.99%) against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli. The modification was durable with largely intact flame retardancy and antimicrobial properties after 30 washing cycles.

  6. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    Directory of Open Access Journals (Sweden)

    Dhas SP

    2015-10-01

    Full Text Available Sindhu Priya Dhas, Suruthi Anbarasan, Amitava Mukherjee, Natarajan Chandrasekaran Center for Nanobiotechnology, VIT University, Vellore, India Abstract: Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. Keywords: silk fibers, silver nanoparticles, antibacterial activity, wound infections, cytotoxicity, 3T3 fibroblast cells

  7. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Paladini, F.; Picca, R.A.; Sportelli, M.C.; Cioffi, N.; Sannino, A.; Pollini, M.

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag 2 O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  8. Growth of silver-coated gold nanoshells with enhanced linear and nonlinear optical responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ya-Fang; Wang, Jia-Hong; Ma, Liang; Nan, Fan; Cheng, Zi-Qiang; Zhou, Li, E-mail: zhouli@whu.edu.cn; Wang, Qu-Quan, E-mail: qqwang@whu.edu.cn [Wuhan University, Department of Physics, Key Laboratory of Artificial Miro- and Nano-structures of the Ministry of Education, and School of Physics and Technology (China)

    2015-03-15

    Silver-coated gold nanoshells with 1,4-BDT molecules as the spacer (Ag/BDT/Au) were synthesized on the surface of SiO{sub 2} nanospheres. The surface plasmon resonance of Au/SiO{sub 2} and Ag/BDT/Au/SiO{sub 2} nanoparticles with single and double shells were tuned by adjusting the thickness of Au and Ag nanoshells. The enhanced local field in the gap of Au and Ag shells is demonstrated by measuring Raman scattering and nonlinear refraction. The results show that the Raman intensity is enhanced by 17 times and the nonlinear refractive index is enhanced by 30 % due to the growth of Ag shells.

  9. Stability of anti-reflection coatings via the self-assembly encapsulation of silica nanoparticles by diazo-resins

    Science.gov (United States)

    Metzman, Jonathan S.; Ridley, Jason I.; Khalifa, Moataz B.; Heflin, James R.

    2015-12-01

    A modified silica nanoparticle (MSNP) solution was formed by the encapsulation of negatively charged silica nanoparticles by the UV-crosslinkable polycation oligomer diazo-resin (DAR). Appropriate DAR encapsulation concentrations were determined by use of zeta-potential and dynamic light scattering measurements. The MSNPs were used in conjunction with poly(styrene sulfonate) (PSS) to grow homogenous ionic self-assembled multilayer anti-reflection coatings. Stability was induced within the films by the exposure of UV-irradiation that allowed for crosslinking of the DAR and PSS. The films were characterized by UV/vis/IR spectroscopy and field emission scanning electron microscopy. The transmission and reflection levels were >98.5% and <0.05%, respectively. The refractive indices resided in the 1.25-1.26 range. The solvent stability was tested by sonication of the films in a ternary solvent (H2O/DMF/ZnCl2 3:5:2 w/w/w).

  10. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    Science.gov (United States)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-11-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R2 = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility.

  11. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-01-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core–shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H 2 O 2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R 2  = 0.990). This sensor has been applied to detect the trace H 2 O 2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility. (paper)

  12. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  13. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  14. Morphology Effect of Silver Nanostructures on the Performance of a P3HT:Graphene:AgNs-Based Active Layer Obtained via Dip Coating

    Directory of Open Access Journals (Sweden)

    Alí Gómez-Acosta

    2016-01-01

    Full Text Available We report the effect of the use of different silver nanostructures (AgNs layers deposited via dip coating onto a poly(3-hexylthiophene (P3HT and solution processable functionalized graphene (SPFGraphene composite film intended to be used as active layer in BHJ devices. SPFGraphene was added to P3HT in a ratio of 1.5 wt%. The best results were achieved when a layer of silver nano-pseudospheres (AgNPSs obtained after 10 immersion cycles was used as coating; in this case the highest light trapping and efficiency percent (η=0.23% were achieved. This means an increase of ~11.3% in comparison with the efficiency of the noncoated P3HT:SPFGraphene composite. Results also indicate that graphene was successfully functionalized in order to obtain appropriate dispersion in P3HT and that such conjugated polymer remained unaltered after the addition of SPFGraphene. Finally, it can be concluded that the electrical properties of the as-synthesized films are dependent on the shape and concentration of the AgNs deposited via dip coating.

  15. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect

    Science.gov (United States)

    Liu, Rong; Wang, Xuandong; Ye, Jun; Xue, Ximei; Zhang, Fangrong; Zhang, Huicong; Hou, Xuemei; Liu, Xiaolong; Zhang, Yun

    2018-03-01

    Drug resistance of bacteria has become a global health problem, as it makes conventional antibiotics less efficient. It is urgently needed to explore novel antibacterial materials and develop effective treatment strategies to overcome the drug resistance of antibiotics. Herein, we successfully synthesized silver decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets (rGO/MSN/Ag) as a novel antibacterial material through facile method. The rGO and Ag nanoparticles can be reduced in the reaction system without adding any other reductants. In addition, the rGO/MSN/Ag showed higher photothermal conversion capacity due to the modification of silver nanoparticles and exhibited excellent antibacterial activities against Pseudomonas putida, Escherichia coli and Rhodococcus at relatively low dosages, which was confirmed by the minimum inhibitory concentration (MIC) test. Meanwhile, the E. coli with a high concentration was selected for exposure using an 808 nm laser, and the antibacterial effect was obviously enhanced by the near-infrared irradiation induced photothermal effect. Moreover, the hepatocyte LO2 were used for the cytotoxicity evaluation, and the rGO/MSN/Ag showed low toxicity and were without detectable cytotoxicity at the antimicrobial dose. As the prepared rGO/MSN/Ag nanosheets have the advantages of low-cost and high antibacterial activity, they might be of promising and useful antibacterial agents for different applications.

  16. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-01-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex ® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  17. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  18. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into a final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.

  19. Fe{sub 3}O{sub 4} magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Beguem [Faculty of Science and Arts, Adnan Menderes University, Department of Chemistry (Turkey); Uygun, Murat [Kocarl Latin-Small-Letter-Dotless-I Vocational and Training School, Adnan Menderes University (Turkey); Uygun, Deniz Aktas, E-mail: daktas@adu.edu.tr [Faculty of Science and Arts, Adnan Menderes University, Department of Chemistry (Turkey); Antalik, Marian [Institute of Experimental Physics, Slovak Academy of Science, Department of Biophysics (Slovakia)

    2013-04-15

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe{sub 3}O{sub 4} core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe{sup 3+} was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe{sup 3+} chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 Degree-Sign C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  20. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  1. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  2. Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications

    Directory of Open Access Journals (Sweden)

    Juliana Lasprilla-Botero

    2018-05-01

    Full Text Available A coating rendering superhydrophobic properties to low-density polyethylene (LDPE films used in packaging applications was herein generated by means of the electrohydrodynamic processing (EHDP technique. To this end, electrospun ultrathin poly(ε-caprolactone (PCL fibers, followed by electrosprayed nanostructured silica (SiO2 microparticles, were deposited on top of the LDPE film. Various electrospinning and electrospraying times were tested and optimized followed by a thermal post-treatment to provide physical adhesion between the bilayer coating and the LDPE substrate. The morphology, hydrophobicity, permeance to limonene, and thermal stability of the resultant nanostructured coatings were characterized. It was observed that by controlling both the deposition time of the electrospun ultrathin PCL fibers and the electrosprayed SiO2 microparticles, as well as the conditions of the thermal post-treatment, effective superhydrophobic coatings were developed onto the LDPE films. The resultant multilayer presented a hierarchical micro/nanostructured surface with an apparent contact angle of 157° and a sliding angle of 8°. The addition of silica reduced, to some extent, the limonene (aroma barrier, likely due to the increased surface-to-volume ratio, which allowed permeant sorption to occur but improved the thermal stability of the LDPE/PCL film. As a result, the developed multilayer system of LDPE/PCL/SiO2 has significant potential for use in easy-to-empty packaging applications of high water activity products.

  3. Synthesis of fluorine- doped silica-coating by fluorosilane nanofluid to ultrahydrophobic and ultraoleophobic surface

    Science.gov (United States)

    Saboori, R.; Azin, R.; Osfouri, Sh; Sabbaghi, S.; Bahramian, A.

    2017-10-01

    Liquid repellency treatment has many applications in various sectors including oil and gas reservoirs and self-cleaning surfaces. In this study, effect of silica, fluorine-doped silica and fluorine-doped silica-coating by fluorosilane nanofluid on ultrahydrophobic and ultraoleophobic surface of carbonate and sandstone rock were investigated. The nanoparticles were synthesized by sol-gel method and characterized using XRD, FTIR, FESEM and DLS and nanofluid was prepared. F-SiO2-F nanoparticle was adsorbed on surface of rocks and confirmed by FESEM and EDXA. Effect of nanofluid on wettability was investigated by measuring contact angles of water, crude oil, condensate, n-decane and ethylene glycol in air and stability of ultrahydrophobic and ultraoleophobic was investigated. Results show that nanofluid (0.05 wt% of nanoparticle) changes contact angle from strongly liquid-wet to strongly gas-wet in all systems. The original contact angle of water, crude oil, condensate, n-decane and ethylene glycol were 37.95°, 0°, 0°, 0° and 0° for carbonate rock and 40.30°, 0°, 0°, 0° and 0° for sandstone rock which altered to 146.47°, 145.59°, 138.24°, 139.06° and 146.52° for carbonate rock and 160.01°, 151.40°, 131.85°, 140.27° and 151.70° for sandstone rock after treatment. The ultraoleophobic and ultrahydrophobic stability were  >48 h and 120 min.

  4. Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish.

    Science.gov (United States)

    Lacave, José María; Fanjul, Álvaro; Bilbao, Eider; Gutierrez, Nerea; Barrio, Irantzu; Arostegui, Inmaculada; Cajaraville, Miren P; Orbea, Amaia

    2017-09-01

    The extensive use and release to the aquatic environment of silver nanoparticles (NPs) could lead to their incorporation into the food web. Brine shrimp larvae of 24h showed low sensitivity to the exposure to PVP/PEI-coated Ag NPs (5nm), with EC 50 values at 24h of 19.63mgAgL -1 , but they significantly accumulated silver after 24h of exposure to 100μgL -1 of Ag NPs. Thus, to assess bioaccumulation and effects of silver transferred by the diet in zebrafish, brine shrimp larvae were exposed to 100ngL -1 of Ag NPs as an environmentally relevant concentration or to 100μgL -1 as a potentially effective concentration and used to feed zebrafish for 21days. Autometallography revealed a dose- and time-dependent metal accumulation in the intestine and in the liver of zebrafish. Three-day feeding with brine shrimps exposed to 100ngL -1 of Ag NPs was enough to impair fish health as reflected by the significant reduction of lysosomal membrane stability and the presence of vacuolization and necrosis in the liver. However, dietary exposure to 100μgL -1 of Ag NPs for 3days did not significantly alter gene transcription levels, neither in the liver nor in the intestine. After 21days, biological processes such as lipid transport and localization, cellular response to chemical stimulus and response to xenobiotic stimulus were significantly altered in the liver. Overall, these results indicate an effective dietary transfer of silver and point out to liver as the main target organ for Ag NP toxicity in zebrafish after dietary exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Silver-Containing Hydroxyapatite Coating Reduces Biofilm Formation by Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Masaya Ueno

    2016-01-01

    Full Text Available Biofilm-producing bacteria are the principal causes of infections associated with orthopaedic implants. We previously reported that silver-containing hydroxyapatite (Ag-HA coatings exhibit high antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA. In the present study, we evaluated the effects of Ag-HA coating of implant surfaces on biofilm formation. Titanium disks (14-mm diameter, 1-mm thickness, one surface of which was coated with HA or 0.5%–3.0% Ag-HA with a thermal spraying technique, were used. In vitro, the disks were inoculated with an MRSA suspension containing 4×105 CFU and incubated for 1-2 weeks. In vivo, MRSA-inoculated HA and 3% Ag-HA disks (8.8–10.0 × 108 CFU were implanted subcutaneously on the back of rats for 1–7 days. All disks were subsequently stained with a biofilm dye and observed under a fluorescence microscope, and biofilm coverage rates (BCRs were calculated. The BCRs on the Ag-HA coating were significantly lower than those on the HA coating at all time points in vitro (p<0.05. Similar results were observed in vivo (p<0.001 without argyria. Ag-HA coating reduced biofilm formation by MRSA in vitro and in vivo; therefore, Ag-HA coating might be effective for reducing implant-associated infections.

  6. Synchrotron macro ATR-FTIR microspectroscopic analysis of silica nanoparticle-embedded polyester coated steel surfaces subjected to prolonged UV and humidity exposure.

    Science.gov (United States)

    Vongsvivut, Jitraporn; Truong, Vi Khanh; Al Kobaisi, Mohammad; Maclaughlin, Shane; Tobin, Mark J; Crawford, Russell J; Ivanova, Elena P

    2017-01-01

    Surface modification of polymers and paints is a popular and effective way to enhance the properties of these materials. This can be achieved by introducing a thin coating that preserves the bulk properties of the material, while protecting it from environmental exposure. Suitable materials for such coating technologies are inorganic oxides, such as alumina, titania and silica; however, the fate of these materials during long-term environmental exposure is an open question. In this study, polymer coatings that had been enhanced with the addition of silica nanoparticles (SiO2NPs) and subsequently subjected to environmental exposure, were characterized both before and after the exposure to determine any structural changes resulting from the exposure. High-resolution synchrotron macro ATR-FTIR microspectroscopy and surface topographic techniques, including optical profilometry and atomic force microscopy (AFM), were used to determine the long-term effect of the environment on these dual protection layers after 3 years of exposure to tropical and sub-tropical climates in Singapore and Queensland (Australia). Principal component analysis (PCA) based on the synchrotron macro ATR-FTIR spectral data revealed that, for the 9% (w/w) SiO2NP/polymer coating, a clear discrimination was observed between the control group (no environmental exposure) and those samples subjected to three years of environmental exposure in both Singapore and Queensland. The PCA loading plots indicated that, over the three year exposure period, a major change occurred in the triazine ring vibration in the melamine resins. This can be attributed to the triazine ring being very sensitive to hydrolysis under the high humidity conditions in tropical/sub-tropical environments. This work provides the first direct molecular evidence, acquired using a high-resolution mapping technique, of the climate-induced chemical evolution of a polyester coating. The observed changes in the surface topography of the

  7. Surface Plasmon Resonance of Counterions coated Charged Silver Nanoparticles and Application in Bio-interaction

    Science.gov (United States)

    Ghosh, Goutam; Panicker, Lata; Naveen Kumar, N.; Mallick, Vivek

    2018-05-01

    Silver nanoparticles (SNPs) play very significant roles in biomedical applications, e.g., biosensors in numerous assays for quantitative detection, and the surface chemistry adds an important factor in that. In this investigation, we coated SNPs either by anionic citrates, like tri-lithium citrate (TLC) or tri-potassium citrate (TKC) which are associated with Li+ or K+ counterions, respectively; or by cationic surfactants, like cetylpyridinium chloride (CPC) or cetylpyridinium iodide (CPI) which are associated with Cl‑ or I‑ counterions, respectively, at the surface of nanoparticles. Our aim was to study (i) how the counterions affect the optical property of SNPs and (ii) the interaction of coated SNPs with a protein, hen egg white lysozyme (HEWL). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were used to measure the size, and UV absorption spectroscopy was used to characterize the surface plasmon resonance (SPR) band of SNPs. ζ-potential, fluorescence quenching and circular dichroism (CD) spectroscopy techniques were used for characterizing the protein-nanoparticles interaction.

  8. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups

    International Nuclear Information System (INIS)

    Kralj, Slavko; Drofenik, Miha; Makovec, Darko

    2011-01-01

    General and versatile methods for the functionalization of superparamagnetic, silica-coated, maghemite nanoparticles by surface amino and/or carboxyl groups have been established. The nanoparticles were synthesized using co-precipitation from aqueous solutions and coated with a thin layer of silica using the hydrolysis and condensation of tetraethoxysilane (TEOS). For the amino functionalization, 3-(2-aminoethylamino)propylmethyldimethoxysilane (APMS) was grafted onto the nanoparticle surfaces in their aqueous suspensions. The grafting process was followed by measurements of the ζ-potential and a determination of the concentration of the surface amino groups with conductometric titrations. The surface concentration of the amino groups could be varied by increasing the amount of APMS in the grafting process up to approximately 2.3 –NH 2 groups per nm 2 . The carboxyl functionalization was obtained in two ways: (i) by a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and (ii) by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces. Using the first method, the SA only reacted with the terminal primary amino groups (–NH 2 ) of the surface-grafted APMS molecules. Infra-red spectroscopy (ATR FTIR) and mass spectrometry (HRMS) showed that the second method enables the bonding of up to two SA molecules per one APMS molecule, since the SA reacted with both the primary (–NH 2 ) and secondary amino (–NH–) groups of the APMS molecule. When using both methods, the ratio between the surface amino and carboxyl groups can be controlled.

  9. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  10. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.

    Science.gov (United States)

    Topuz, Emel; van Gestel, Cornelis A M

    2015-12-01

    The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions. © 2015 SETAC.

  11. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  12. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.

    Science.gov (United States)

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A; Hänninen, Pekka E; Vlasov, Denis I; Ralchenko, Victor G; Hosomi, Satoru; Vlasov, Igor I; Sahlgren, Cecilia; Rosenholm, Jessica M

    2013-05-07

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.

  13. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keon Young [University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104 (United States); Ramaraj, B. [Research and Development Department, Central Institute of Plastics Engineering and Technology (CIPET), 630, Phase IV, GIDC, Vatva, Ahmedabad 382445 (India); Choi, Won Suk [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of)

    2013-11-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  14. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Park, Keon Young; Ramaraj, B.; Choi, Won Suk; Yoon, Kuk Ro

    2013-01-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  15. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei

    2015-01-01

    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  16. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    Science.gov (United States)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  17. Plasma Polymerization of Acetylene onto silica: and Approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, Jacobus W.M.; Ooij, W.J.; Dierkes, Wilma K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water

  18. Deposition of silver layer on different substrates

    Science.gov (United States)

    Krzemiński, J.; Kiełbasiński, K.; Szałapak, J.; Jakubowska, M.; MłoŻniak, A.; Zwierkowska, E.

    2015-09-01

    The hole process of producing continuous layer with silver nanoparticles is presented in this paper. First the ink preparation and then the spray process is shown and discussed. The silver layers were obtained on sodium glass substrate. Three different ink carriers were considered and the best one has been chosen. Spray coating process was carried out using special spray can. After obtaining sprayed layers the samples were sintered in several temperatures to investigate the lowest suitable sintering temperature. After that layers resistivity were measured. Then the silver layers were cracked to produce breakthrough fracture that was investigated by a scanning electron microscope. In this paper, the authors investigated the spray coating technique as an alternative to electroplating and other techniques, considering layer resistivity, thickness and production process.

  19. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    Science.gov (United States)

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  20. Study of silica coatings degradation under laser irradiation and in controlled environment; Etude de la degradation de couches minces de silice sous flux laser et en environnement controle

    Energy Technology Data Exchange (ETDEWEB)

    Becker, S

    2006-11-15

    Performances of optical components submitted to high laser intensities are usually determined by their laser-induced damage threshold. This value represents the highest density of energy (fluence) sustainable by the component before its damage. When submitted to laser fluences far below this threshold, optical performances may also decrease with time. The degradation processes depend on laser characteristics, optical materials, and environment around the component. Silica being the most used material in optics, the aim of this study was to describe and analyse the physical-chemical mechanisms responsible for laser-induced degradation of silica coatings in controlled environment. Experimental results show that degradation is due to the growth of a carbon deposit in the irradiated zone. From these results, a phenomenological model has been proposed and validated with numerical simulations. Then, several technological solutions have been tested in order to reduce the laser-induced contamination of silica coatings. (author)

  1. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  2. Ceramic protective coatings applied by sol-gel or electrophoresis

    International Nuclear Information System (INIS)

    Stoch, A.

    1993-01-01

    Sol-gel and electrophoresis are the complementary techniques which may be used for obtaining the ceramic coatings. The composition of such a coatings depends on the composition of electrophoresis bath or sol solution. Thermal treatment is used for densifying the coating and promoting the adherence of coating to the substrate. In presented work silica, silica-alumina or alumina coatings are applied by sol-gel dip coating procedure on steel, aluminium or ceramic substrates. Electrophoresis is employed for obtaining zirconia, alumina or hydroxyapatite coatings on stainless steel. (author). 7 refs

  3. Improvement of slip property of magnetic tape by wet silica surface treatment on cobalt-coating type {gamma}-Fe{sub 2}O{sub 3} magnetic particles; Kobaruto hichakugata {gamma}-Fe{sub 2}O{sub 3} jiseibiryushi no shisshiki shirika hyomenshori niyoru jikitepu no suberi tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kazuyuki; Iwasaki, Keisuke; Tanaka, Yasuyuki; Morii, Hiroko

    1999-02-05

    During the running of a magnetic taper coated with magnetic particles, sometimes troubles of the slip property between the magnetic tape and a magnetic head occur. In this research, silica coating onto the surfaces of magnetic iron oxide particles in water slurry was carried out, and a magnetic tape coated with these surface-modified particles was prepared so as to investigate the effect of the silica coating on the slip property of the magnetic tape. It was found that, for needle cobalt-coating type {gamma}- Fe{sub 2}O{sub 3}, the dynamic friction coefficient of the magnetic tape can be reduced from about 0.4 to abut 0.2 by coating silica at nm order. This was estimated that the adsorption amount of myristic acid as a lubricator component existing in the magnetic tape to the magnetic particles are reduced by the silica coating so that the amount of myristic acid effectively acting on the slip property of the magnetic tape surface is increased. Further, within the investigation scope of the present research, it has been clarified that the magnetic characteristics of the magnetic particles and coating dispersion property are not deteriorated by the surface treatment with silica, and a preferable magnetic recording medium retaining both magnetic characteristic and slip property can be obtained. (translated by NEDO)

  4. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels.

    Science.gov (United States)

    Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik

    2011-01-01

    We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  6. Carboxylate and amino group coated silver nanoparticles as joining materials for copper-to-copper silver joints.

    Science.gov (United States)

    Oestreicher, A; Röhrich, T; Lerch, M

    2012-12-01

    Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.

  7. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma.

    Science.gov (United States)

    Zille, Andrea; Fernandes, Margarida M; Francesko, Antonio; Tzanov, Tzanko; Fernandes, Marta; Oliveira, Fernando R; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria F; Souto, António P

    2015-07-01

    This work studies the surface characteristics, antimicrobial activity, and aging effect of plasma-pretreated polyamide 6,6 (PA66) fabrics coated with silver nanoparticles (AgNPs), aiming to identify the optimum size of nanosilver exhibiting antibacterial properties suitable for the manufacture of hospital textiles. The release of bactericidal Ag(+) ions from a 10, 20, 40, 60, and 100 nm AgNPs-coated PA66 surface was a function of the particles' size, number, and aging. Plasma pretreatment promoted both ionic and covalent interactions between AgNPs and the formed oxygen species on the fibers, favoring the deposition of smaller-diameter AgNPs that consequently showed better immediate and durable antimicrobial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Surprisingly, after 30 days of aging, a comparable bacterial growth inhibition was achieved for all of the fibers treated with AgNPs silver. Overall, the results suggest that instead of reducing the size of the AgNPs, which is associated with higher toxicity, similar long-term effects can be achieved with larger NPs (40-60 nm), even in lower concentrations. Because the antimicrobial efficiency of AgNPs larger than 30 nm is mainly ruled by the release of Ag(+) over time and not by the size and number of the AgNPs, this parameter is crucial for the development of efficient antimicrobial coatings on plasma-treated surfaces and contributes to the safety and durability of clothing used in clinical settings.

  8. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering.

    Directory of Open Access Journals (Sweden)

    Maria Ada Malvindi

    Full Text Available We have studied in vitro toxicity of iron oxide nanoparticles (NPs coated with a thin silica shell (Fe3O4/SiO2 NPs on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP, reactive oxygen species (ROS assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects.

  9. Magnetic, Fluorescence and Transition Metal Ion Response Properties of 2,6-Diaminopyridine Modified Silica-Coated Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunhui Zhai

    2016-08-01

    Full Text Available Multi-functional nanoparticles possessing magnetic, fluorescence and transition metal ion response properties were prepared and characterized. The particles have a core/shell structure that consists of silica-coated magnetic Fe3O4 and 2,6-diaminopyridine anchored on the silica surface via organic linker molecules. The resultant nanoparticles were found by transmission electron microscopy to be well-dispersed spherical particles with an average diameter of 10–12 nm. X-ray diffraction analysis suggested the existence of Fe3O4 and silica in/on the particle. Fourier transform infrared spectra revealed that 2,6-diaminopyridine molecules were successfully covalently bonded to the surface of magnetic composite nanoparticles. The prepared particles possessed an emission peak at 364 nm with an excitation wavelength of 307 nm and have a strong reversible response property for some transition metal ions such as Cu2+ and Zn2+. This new material holds considerable promise in selective magneto separation and optical determination applications.

  10. Monocrystalline solar cells performance coated by silver nanoparticles: Effect of NPs sizes from point of view Mie theory

    Science.gov (United States)

    Elnoby, Rasha M.; Mourad, M. Hussein; Elnaby, Salah L. Hassab; Abou Kana, Maram T. H.

    2018-05-01

    Solar based cells coated by nanoparticles (NPs) acknowledge potential utilizing as a part of photovoltaic innovation. The acquired silicon solar cells (Si-SCs) coated with different sizes of silver nanoparticles (Ag NPs) as well as uncoated were fabricated in our lab. The sizes and optical properties of prepared NPs were characterized by spectroscopic techniques and Mie theory respectively. The reflectivity of Si-SCs showed reduction of this property as the size of NPs increased. Electrical properties as open circuit current, fill factor and output power density were assessed and discussed depending on point of view of Mie theory for the optical properties of NPs. Also, photostabilities of SCs were assessed using diode laser of wavelength 450 nm and power 300 mW. Coated SCs with the largest Ag NPs size showed the highest Photostability due to its highest scattering efficiency according to Mie theory concept.

  11. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    Science.gov (United States)

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong

    2015-07-01

    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    Science.gov (United States)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  13. Mechanical and thermal properties of UV curable polyurethane acrylate composite coatings

    International Nuclear Information System (INIS)

    Mohd Sofian Alias; Nik Ghazali Nik Salleh; Mohd Hamzah Harun; Mohd Yusof Hamzah; Rosley Che Ismail

    2012-01-01

    UV curable coating formulation comprises urethane acrylate resin and nano silica as filter were synthesized to develop UV curable inorganic hybrid composite (PUA). The surface of the nano silica was chemically modified to improve its chemical interaction within the urethane acrylate matrix. The modification had been undertaken by applying vinyltrymetoxysilane (VTMOS) that acted as a coupling agent to produce organophilic silica shell (SIMA). The shell is linked to the silica via reaction with the surface silanol group of the silica. The disappearance of methoxy groups in VTMOS was demonstrated by FTIR spectrum. The percentage of silica particles in UV curable hybrid formulation were varied on 5 %, 10 %, 15 %, 20 % and 25 wt % respectively. In this work, the formulation was applied on medium density fiber board (MDF) substrate and subsequent has been irradiated under UV light. Then, the coated MDF were characterized by several testing equipment (TGA, DSC, scratch tester, instron, SEM). From the result, we found that the addition of silica nanoparticles exhibit significant improvement in coating film properties as compared to film without silica nanoparticle includes significant improvement in its modulus and scratch resistance. This make them as promising coating candidate for MDF product. On the other hand, we also found that an increase of silica particle up to 25 wt %, the viscosity has increased rapidly indicates that it is not suitable for acrylate coating formulation due to disappearance of desired effect known as thixotropy. (Author)

  14. Liquid phase deposition of silica: Thin films, colloids and fullerenes

    Science.gov (United States)

    Whitsitt, Elizabeth A.

    Little research has been done to explore liquid phase deposition (LPD) of silica on non-planar substrates. This thesis proves that the seeded growth of silica colloids from fullerene and surfactant micelles is possible via LPD, as is the coating of individual single walled carbon nanotubes (SWNTs) and carbon fibers. Working on the premise that a molecular growth mechanism (versus colloidal/gel deposition) is valid for LPD, nanostructured substrates and specific chemical functional groups should act as "seeds," or templates, for silica growth. Seeded growth is confirmed by reactions of the growth solution with a range of surfactants and with materials with distinctive surface moieties. LPD promises lower production costs and environmental impact as compared to present methods of coating technology, because it is an inherently simple process, using low temperatures and inexpensive air-stable reactants. Silica is ubiquitous in materials science. Its applications range from thixotropic additives for paint to gate dielectrics in the semiconductor industry. Nano-structured coatings and thin films are integral in today's electronics industry and will become more vital as the size of electronics shrinks. With the incorporation of nanoparticles in future devices, the ability to deposit quality coatings with finely tuned properties becomes paramount. The methods developed herein have applications in fabricating insulators for use in the future molecular scale electronics industry. Additionally, these silica nanoparticles have applications as templates for use in photonics and fuel cell membrane production and lend strength and durability to composites.

  15. Influence of colloidal nano-silica on alkyd autoxidation

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Sanadi, Anand Ramesh; Löf, David

    2017-01-01

    Nanoparticles are often added to coatings in order to improve their mechanical properties. However, nanoparticles can also influence the cross-linking reaction of polymers and overall curing kinetics, and from this follows that properties of interest are further impacted. In research studies...... on alkyd-based coatings, only the physical drying stage during the first 24 h has been studied in this respect until now. In this study, it was shown with the use of Raman spectroscopy that colloidal nano-silica can change the rate of alkyd autoxidation and how this effect is reflected on the tensile...... properties of the coating. One of the consequences of the influence of nano-silica on curing kinetics is that, contrary to implicit assumptions of common testing methods, the real effect of nanoparticles on mechanical properties can emerge much later in the coating lifetime....

  16. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Farid Sayar Irani

    2016-11-01

    Full Text Available In this research, we investigated the influence of the surface coatings of silver nanowires on the sensitivity of surface acoustic wave (SAW humidity sensors. Silver nanowires, with poly(vinylpyrrolidone (PVP, which is a hydrophilic capping agent, were chemically synthesized, with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs using the electrospray coating method. It was demonstrated that increasing thickness of coated AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift (262 kHz in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity sensitivity among the other prepared SAW devices.

  17. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  18. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  19. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  20. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    Directory of Open Access Journals (Sweden)

    Xue S

    2014-05-01

    Full Text Available Sihan Xue,1 Yao Wang,1 Mengxing Wang,2 Lu Zhang,1 Xiaoxia Du,2 Hongchen Gu,1 Chunfu Zhang1,31School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 2Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In this study, a novel magnetic resonance imaging (MRI/computed tomography (CT/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs. Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2 markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/C/fluorescence trimodal imaging.Keywords: multifunctional probe, SPIONs, mesoporous silica