WorldWideScience

Sample records for silhouette shape analysis

  1. An analysis of the VOSP Silhouettes Test with neurological patients

    Directory of Open Access Journals (Sweden)

    THOMAS MERTEN

    2006-12-01

    Full Text Available An item analysis of the Silhouettes, part of the Visual Object and Space Perception Battery, was performed using the test protocols of 266 German-speaking neurological patients with a mean age of 54.8 years, all of them presenting some sort of brain pathology. The sample yielded a mean test score of 17.0 (SD = 4.6. The two subsets of 15 animals and 15 objects were only moderately correlated (0.45, so the inclusion into a single scale is questionable. Other reliability estimates were also rather low (0.62 to 0.77. Moreover, gross deviations in item difficulty were obtained with this sample; scoring rules were found to be insufficiently explicit. Despite moderate rank correlations with other instruments (Hooper VOT: 0.65; WAIS-R Block Design: 0.57; neuropsychological screening battery SKT: -0.45, the psychometric properties obtained with this sample must be considered to be insufficient.

  2. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  3. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  4. Research in Shape Analysis

    CERN Document Server

    Leonard, Kathryn; Tari, Sibel; Hubert, Evelyne; Morin, Geraldine; El-Zehiry, Noha; Chambers, Erin

    2018-01-01

    Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.

  5. Email shape analysis

    OpenAIRE

    Sroufe, Paul; Phithakkitnukoon, Santi; Dantu, Ram; Cangussu, João

    2010-01-01

    Email has become an integral part of everyday life. Without a second thought we receive bills, bank statements, and sales promotions all to our inbox. Each email has hidden features that can be extracted. In this paper, we present a new mechanism to characterize an email without using content or context called Email Shape Analysis. We explore the applications of the email shape by carrying out a case study; botnet detection and two possible applications: spam filtering, and social-context bas...

  6. Stochastic convergence of persistence landscapes and silhouettes

    Directory of Open Access Journals (Sweden)

    Frédéric Chazal

    2015-03-01

    Full Text Available Persistent homology is a widely used tool in Topological Data Analysis that encodes multi-scale topological information as a multiset of points in the plane called a persistence diagram. It is difficult to apply statistical theory directly to a random sample of diagrams. Instead, we summarize persistent homology with a persistence landscape, introduced by Bubenik, which converts a diagram into a well-behaved real-valued function. We investigate the statistical properties of landscapes, such as weak convergence of the average landscapes and convergence of the bootstrap. In addition, we introduce an alternate functional summary of persistent homology, which we call the silhouette, and derive an analogous statistical theory.

  7. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  8. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  9. STEREOLOGICAL ANALYSIS OF SHAPE

    Directory of Open Access Journals (Sweden)

    Asger Hobolth

    2011-05-01

    Full Text Available This paper concerns the problem of making stereological inference about the shape variability in a population of spatial particles. Under rotational invariance the shape variability can be estimated from central planar sections through the particles. A simple, but flexible, parametric model for rotation invariant spatial particles is suggested. It is shown how the parameters of the model can be estimated from observations on central sections. The corresponding model for planar particles is also discussed in some detail.

  10. Perceptual Categorization of Cat and Dog Silhouettes by 3- to 4-Month-Old Infants.

    Science.gov (United States)

    Quinn, Paul C.; Eimas, Peter D.; Tarr, Michael

    2001-01-01

    Four experiments utilizing the familiarization-novelty preference procedure examined whether 3- and 4-month-olds could form categorical representations for cats versus dogs from the perceptual information available in silhouettes. Findings indicated that general shape or external contour information centered about the head was sufficient for…

  11. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...

  12. Análise exploratória das escalas de silhuetas bidimensionais e tridimensionais adaptadas para a pessoa com cegueira Exploratory analysis of two dimensional and three dimensional silhouette scales for persons with blindness

    Directory of Open Access Journals (Sweden)

    Fabiane Frota da Rocha Morgado

    2010-04-01

    Full Text Available Realizar uma análise exploratória da Escala de Silhuetas Bidimensionais (ESB e da Escala de Silhuetas Tridimensionais (EST, verificando qual destas Escalas é a mais apropriada e representativa à pessoa com cegueira congênita. Trata-se de uma pesquisa qualitativa e exploratória. A amostra foi composta por 20 sujeitos adultos com cegueira congênita. Foram entrevistados 10 homens e 10 mulheres, com idades entre 21 e 50 anos, do Instituto Benjamin Constant, no Rio de Janeiro e da Associação dos Cegos de Juiz de Fora, MG. Os Instrumentos para coleta de dados foram: ESB, EST e roteiro de entrevista semiestruturada. A estratégia adotada para tratar os dados foi a Análise de Conteúdo de Bardin. Foram formadas três grandes categorias: 1 Principais vias de informações sobre o corpo, subdividida em: tato; informações sobre peso e altura; informações das pessoas do convívio; informações culturais; tamanho das roupas e atividade física como referência. 2 Escala de Silhuetas Bidimensionais, subdividida em: não reconhecimento da ESB; dificuldades; utilidades. 3 Escala de Silhuetas Tridimensionais, subdividida em: Reconhecimento da Escala; Relação consigo ou com o outro; Facilidades e preferências da EST. Foi constatado que 90% dos participantes não reconheceram a ESB, enquanto que todos os participantes reconheceram a EST. A EST é a Escala mais apropriada e representativa para a pessoa com cegueira congênita. Sugere-se a realização de estudos futuros que visem avaliar as qualidades psicométricas da EST.The aim of the study was to conduct an exploratory analysis of the two dimensional and three dimensional Silhouette Scales (2SS and 3SS so as to determine which one is most suitable and meaningful for persons that are congenitally blind. This is a qualitative and exploratory study. The sample was composed of 20 adult congenitally blind subjects. Ten men and 10 women aged between 21 and 50 years of age from the Benjamin Constant

  13. Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding.

    Science.gov (United States)

    Lok Ming Lui; Wei Zeng; Shing-Tung Yau; Xianfeng Gu

    2014-07-01

    Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S(1) can be obtained, which together with the conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable shape representation scheme.

  14. Photos vs silhouettes for evaluation of African American profile esthetics.

    Science.gov (United States)

    Hockley, Andrew; Weinstein, Martin; Borislow, Alan J; Braitman, Leonard E

    2012-02-01

    Patient photos and silhouettes are commonly used in clinical evaluations and orthodontic research to evaluate profile esthetics. The purpose of this study was to determine whether the use of photos or silhouettes is a more appropriate method of evaluating African American profile esthetics and whether there are different profile esthetic preferences among clinicians when using photos compared with silhouettes. Pretreatment records of 20 adolescent African American patients were selected (10 male, 10 female) from the orthodontic clinic at the Albert Einstein Medical Center in Philadelphia. Each patient's profile photo was digitally changed with imaging software (Dolphin Imaging and Management Solutions, Chatsworth, Calif) to fabricate a series of 7 photos and 7 silhouettes with lip positions at uniform distances relative to Ricketts' E-line standard. Fifteen raters consisting of orthodontic faculty and residents were asked to select the most esthetically pleasing profile from each patient's photo series and silhouette series. More rater preferences for the photographs (86%) were within the acceptable esthetic range (within 2 mm of the E-line in either direction) than were their preferences for silhouettes (66%) (P esthetic norm were more often preferred in the silhouettes than in the photos. Thirty-one percent of the silhouettes preferred by the raters were flatter than the norm compared with 9% of the photos (P = 0.003). Fuller profiles were preferred in only 3% of the silhouettes and 5% of the photos (P = 0.6). Esthetic attractiveness of faces of African American orthodontic patients is rated differently in photos and silhouettes. When evaluating soft-tissue esthetic profile preferences, rater preferences in the photographs were closer to the established esthetic norm than were their preferences in the silhouettes. Using silhouettes to evaluate patient esthetics could influence clinicians or researchers to select profiles that are flatter than the established

  15. FASHION TREND FOR A SILHOUETTE: BALENCIAGA CASE

    OpenAIRE

    ERTÜRK, Nilay; özüdoğru, şakir

    2014-01-01

    Fashion, in broad and accepted definition, is any temporary preference or a temporary new thing in any area of human life, which prevails for a certain period of time. The issue of how fashionable products would look like in a particular season is discussed under the concept of fashion trends. The main purpose of this study is to discuss the concept of fashion trends and the studies on predictions in fashion trends, to conduct a sample trend survey for a silhouette and observe whether or not ...

  16. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  17. An improved silhouette for human pose estimation

    Science.gov (United States)

    Hawes, Anthony H.; Iftekharuddin, Khan M.

    2017-08-01

    We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.

  18. Ellipsoid analysis of calvarial shape.

    Science.gov (United States)

    Jacobsen, Petra A; Becker, Devra; Govier, Daniel P; Krantz, Steven G; Kane, Alex

    2009-09-01

    The purpose of this research was to develop a novel quantitative method of describing calvarial shape by using ellipsoid geometry. The pilot application of Ellipsoid Analysis was to compare calvarial form among individuals with untreated unilateral coronal synostosis, metopic synostosis, and sagittal synostosis and normal subjects. The frontal, parietal, and occipital bones of 10 preoperative patients for each of the four study groups were bilaterally segmented into six regions using three-dimensional skull reconstructions generated by ANALYZE imaging software from high-resolution computed tomography scans. Points along each segment were extracted and manipulated using a MATLAB-based program. The points were fit to the least-squares nearest ellipsoid. Relationships between the six resultant right and left frontal, parietal, and occipital ellipsoidal centroids (FR, FL, PR, PL, OR, and OL, respectively) were tested for association with a synostotic group. Results from the pilot study showed meaningful differences between length ratio, angular, and centroid distance relationships among synostotic groups. The most substantial difference was exhibited in the centroid distance PL-PR between patients with sagittal synostosis and metopic synostosis. The measures most commonly significant were centroid distances FL-PR and FL-PL and the angle OR-FR-PR. Derived centroid relationships were reproducible. Ellipsoid Analysis may offer a more refined approach to quantitative analysis of cranial shape. Symmetric and asymmetric forms can be compared directly. Relevant shape information between traditional landmarks is characterized. These techniques may have wider applicability in quantifying craniofacial morphology with increase in both specificity and general applicability over current methods.

  19. Arensky. Silhouettes (Suite N 2), Op. 23 / Jonathan Swain

    Index Scriptorium Estoniae

    Swain, Jonathan

    1991-01-01

    Uuest heliplaadist "Arensky. Silhouettes (Suite N 2), Op. 23. Scrjabin. Symphony N 3 in C minor, Op. 43 "Le divin poeme". Danish National Radio Symphony Orchestra. Neeme Järvi. Chandos cassette ABTD 1509; CD CHAN 8898 (66 minutes)

  20. Learning Silhouette Features for Control of Human Motion

    National Research Council Canada - National Science Library

    Ren, Liu; Shakhnarovich, Gregory; Hodgins, Jessica K; Pfister, Hanspeter; Viola, Paul A

    2004-01-01

    .... The system combines information about the user's motion contained in silhouettes from several viewpoints with domain knowledge contained in a motion capture database to interactively produce a high quality animation...

  1. Dissociating Simon and affordance compatibility effects: silhouettes and photographs.

    Science.gov (United States)

    Pappas, Zissis

    2014-12-01

    When a graspable object's handle is oriented to the same side as the response hand, responses are quicker and more accurate than when it is oriented to the opposite side. This effect has been attributed to the affordance of the object's handle (Tucker & Ellis, 1998). Recent findings suggest this effect results instead from an abstract spatial response code (i.e., Simon effect; Cho & Proctor, 2010). However, the stimuli used in these previous studies differ in the amount of object and environmental depth information they contain, which may be critical to conveying an affordance. This information could explain these disparate findings as well as dissociate Simon and affordance compatibility effects. Four experiments demonstrate that the Simon effect results from the absence of this information, as in a silhouette, and the affordance effect results from its presence, as in a photograph. A fifth experiment confirmed that modifying information associated with the affordance, rather than the modification itself, produced the effects observed in the previous experiments. These findings support the following: (a) the internal details of an object and environmental depth can dissociate Simon and affordance compatibility effects, (b) this information is necessary to convey the object's graspable affordance, and (c) the outer shape of the object is not sufficient to elicit an affordance effect. These findings are discussed in relation to the theory of embodied cognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Event Shape Analysis in ALICE

    CERN Document Server

    AUTHOR|(CDS)2073367; Paic, Guy

    2009-01-01

    The jets are the final state manifestation of the hard parton scattering. Since at LHC energies the production of hard processes in proton-proton collisions will be copious and varied, it is important to develop methods to identify them through the study of their final states. In the present work we describe a method based on the use of some shape variables to discriminate events according their topologies. A very attractive feature of this analysis is the possibility of using the tracking information of the TPC+ITS in order to identify specific events like jets. Through the correlation between the quantities: thrust and recoil, calculated in minimum bias simulations of proton-proton collisions at 10 TeV, we show the sensitivity of the method to select specific topologies and high multiplicity. The presented results were obtained both at level generator and after reconstruction. It remains that with any kind of jet reconstruction algorithm one will confronted in general with overlapping jets. The present meth...

  3. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi; Tai, Chiewlan; Zhang, Eugene; Xu, Pengfei

    2013-01-01

    efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  4. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander; Wand, Michael D.; Mitra, Niloy J.; Mewes, Daniel; Seidel, Hans Peter

    2011-01-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more

  5. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  6. Perceptually Relevant and Piecewise Linear Matching of Silhouettes

    DEFF Research Database (Denmark)

    Zabulis, Xenophon; Sporring, Jon; Orphanoudakis, Xenophon

    2005-01-01

    In this paper, a novel alignment method for silhouettes is proposed. This method is based on the establishment of correspondences between landmarks on their boundaries and, in turn, on the establishment of correspondences of the boundary pieces in between these landmarks. The method yields more c...

  7. Development and validation of a toddler silhouette scale.

    Science.gov (United States)

    Hager, Erin R; McGill, Adrienne E; Black, Maureen M

    2010-02-01

    The purpose of this study is to develop and validate a toddler silhouette scale. A seven-point scale was developed by an artist based on photographs of 15 toddlers (6 males, 9 females) varying in race/ethnicity and body size, and a list of phenotypic descriptions of toddlers of varying body sizes. Content validity, age-appropriateness, and gender and race/ethnicity neutrality were assessed among 180 pediatric health professionals and 129 parents of toddlers. Inter- and intrarater reliability and concurrent validity were assessed by having 138 pediatric health professionals match the silhouettes with photographs of toddlers. Assessments of content validity revealed that most health professionals (74.6%) and parents of toddlers (63.6%) ordered all seven silhouettes correctly, and interobserver agreement for weight status classification was high (kappa = 0.710, r = 0.827, P gender (68.5%) and race/ethnicity (77.3%) neutral. The inter-rater reliability, based on matching silhouettes with photographs, was 0.787 (Cronbach's alpha) and the intrarater reliability was 0.855 (P parents' perception of and satisfaction with their toddler's body size. Interventions can be targeted toward parents who have inaccurate perceptions of or are dissatisfied with their toddler's body size.

  8. Statistical shape analysis with applications in R

    CERN Document Server

    Dryden, Ian L

    2016-01-01

    A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...

  9. Silhouette and spectral line profiles in the special modification of the Kerr black hole geometry generated by quintessential fields

    Energy Technology Data Exchange (ETDEWEB)

    Schee, Jan; Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre for Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2016-11-15

    We study optical effects in quintessential Kerr black hole spacetimes corresponding to the limiting case of the equation-of-state parameter ω{sub q} = -1/3 of the quintessence. In dependence on the dimensionless quintessential field parameter c, we determine the black hole silhouette and the spectral line profiles of Keplerian disks generated in this special quintessential Kerr geometry, representing an extension of the general modifications of the Kerr geometry introduced recently by Ghasemi-Nodehi and Bambi (Eur. Phys. J. C 56:290, 2016). We demonstrate that due to the influence of the parameter c, the silhouette is almost homogeneously enlarged, and the spectral line profiles are redshifted with almost conserved shape. (orig.)

  10. Shape analysis for Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2000-01-01

    The ambient calculus is a calculus of computation that allows active processes to move between sites. We present an analysis inspired by state-of-the-art pointer analyses that safety and accurately predicts which processes may turn up at what sites during the execution of a composite system. The ...... are flexible and scale up to general tree structures admitting powerful restructuring operations....

  11. The Viewing-from-Above Bias and the Silhouette Illusion

    Directory of Open Access Journals (Sweden)

    Nikolaus F Troje

    2010-12-01

    Full Text Available The silhouette illusion published online a number of years ago by the Japanese Flash designer Nobuyuki Kayahara has received substantial attention from the online community. One feature that seems to make it interesting is an apparent rotational bias: Observers see it spinning more often clockwise than counter-clockwise. Here, we show that this rotational bias is in fact due to the visual system's preference for viewpoints from above rather than from below.

  12. Functional 2D Procrustes Shape Analysis

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2005-01-01

    Using a landmark based approach to Procrustes alignment neglects the functional nature of outlines and surfaces. In order to re-introduce this functional nature into the analysis we will consider alignment of shapes with functional representations. First functional Procrustes analysis of curve...

  13. 2D Affine and Projective Shape Analysis.

    Science.gov (United States)

    Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj

    2014-05-01

    Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.

  14. Validity of silhouette showcards as a measure of body size and obesity in a population in the African region: A practical research tool for general-purpose surveys.

    Science.gov (United States)

    Yepes, Maryam; Viswanathan, Barathi; Bovet, Pascal; Maurer, Jürgen

    2015-01-01

    The purpose of this study is to validate the Pulvers silhouette showcard as a measure of weight status in a population in the African region. This tool is particularly beneficial when scarce resources do not allow for direct anthropometric measurements due to limited survey time or lack of measurement technology in face-to-face general-purpose surveys or in mailed, online, or mobile device-based surveys. A cross-sectional study was conducted in the Republic of Seychelles with a sample of 1240 adults. We compared self-reported body sizes measured by Pulvers' silhouette showcards to four measurements of body size and adiposity: body mass index (BMI), body fat percent measured, waist circumference, and waist to height ratio. The accuracy of silhouettes as an obesity indicator was examined using sex-specific receiver operator curve (ROC) analysis and the reliability of this tool to detect socioeconomic gradients in obesity was compared to BMI-based measurements. Our study supports silhouette body size showcards as a valid and reliable survey tool to measure self-reported body size and adiposity in an African population. The mean correlation coefficients of self-reported silhouettes with measured BMI were 0.80 in men and 0.81 in women (P general-purpose surveys of obesity in social sciences, where limited resources do not allow for direct anthropometric measurements.

  15. Labelling IDS clusters by means of the silhouette index

    OpenAIRE

    Petrovic, Slovodan; Álvarez, Gonzalo; Orfila, Agustín; Carbó, Javier

    2006-01-01

    Proceeding of: IX Reunión Española sobre Criptología y Seguridad de la Información. Barcelona, 2006 One of the most difficult problems in the design of an anomaly based intrusion detection system (IDS) that uses clustering is that of labelling the ob- tained clusters, i.e. determining which of them correspond to ”good” behaviour on the network/host and which to ”bad” behaviour. In this paper, a new clusters’ labelling strategy, which makes use of the Silhouette clustering quality index is ...

  16. Social history of Capoeira through images. The Raul Pederneiras’ "silhouettes"

    Directory of Open Access Journals (Sweden)

    Paulo Coelho Araújo

    2017-12-01

    Full Text Available The study of Capoeira through the interpretation of images is characterized by being practically non-existent, and contains superficial and scarcely informed interpretations of its presence in Brazil. This study is based on the historical method and also is supported by the principles of the Historical Archaeology (Orser Jr., 1992 and those developed by Panofsky (1986 on the interpretation of images. For this study, we selected an iconography- "Silhouette" - by Pederneiras (1926. From this artist’s work and the accompanying text it is highlighted the apology of Brazilian's fight and its supremacy over other self-defense expressions known at the time in Brazil, the recognition of the potential of Capoeira as a physical exercise, and Pederneira’s comments on some contextual facts, highlighting the interference of its practitioners in Brazilian politics and their role as bodyguards recruited by politicians. He also referred its most famous practitioners, the gangs of Capoeira and their typical language and costumes in the Carioca society of the late 19th and early 20th century. This information, and specially the strokes depicted in the image, allows us to reconstruct the history of Capoeira movements, given the scarcity of historical sources in this field. Through this silhouette, Pederneiras sought to raise awareness among government authorities to adopt the Brazilian fight as a national identity element and recognize it as the National Gymnastics.

  17. Sparse Detector Imaging Sensor with Two-Class Silhouette Classification

    Directory of Open Access Journals (Sweden)

    David Russomanno

    2008-12-01

    Full Text Available This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99% with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.

  18. Complete probabilistic analysis of RNA shapes

    Directory of Open Access Journals (Sweden)

    Voß Björn

    2006-02-01

    Full Text Available Abstract Background Soon after the first algorithms for RNA folding became available, it was recognised that the prediction of only one energetically optimal structure is insufficient to achieve reliable results. An in-depth analysis of the folding space as a whole appeared necessary to deduce the structural properties of a given RNA molecule reliably. Folding space analysis comprises various methods such as suboptimal folding, computation of base pair probabilities, sampling procedures and abstract shape analysis. Common to many approaches is the idea of partitioning the folding space into classes of structures, for which certain properties can be derived. Results In this paper we extend the approach of abstract shape analysis. We show how to compute the accumulated probabilities of all structures that share the same shape. While this implies a complete (non-heuristic analysis of the folding space, the computational effort depends only on the size of the shape space, which is much smaller. This approach has been integrated into the tool RNAshapes, and we apply it to various RNAs. Conclusion Analyses of conformational switches show the existence of two shapes with probabilities approximately 23 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabikdaYaqaaiabiodaZaaaaaa@2EA2@ vs. 13 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabigdaXaqaaiabiodaZaaaaaa@2EA0@, whereas the analysis of a microRNA precursor reveals one shape with a probability near to 1.0. Furthermore, it is shown that a shape can outperform an energetically more favourable one by

  19. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  20. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  1. Design and Realization of Silhouette Operation Platform Based on GIS

    Science.gov (United States)

    Fu, Jia; Cui, Xinqiang; Yuan, Zhengteng

    2018-01-01

    Artificial weather effects after several generations of unremitting efforts in many provinces, municipalities and districts have become a regular business to serve the community. In the actual operation of the actual impact of weather operations, onsite job terminal system functional integration is not high, such as the operation process cumbersome operation instructions unreasonable, the weather data lag, the data form of a single factor and other factors seriously affect the weather conditions, Sexual and intuitive improvement. Therefore, this paper adopts the Android system as the carrier for the design and implementation of the silhouette intelligent terminal system. The intelligent terminal system has carried on the preliminary deployment trial in the real-time intelligent command system which realizes the weather operation in a province, and has formed a centralized, unified and digital artificial influence in combination with the self-developed multi-function server system platform and the remote centre command system Weather operation communication network, to achieve intelligent terminal and remote centre commander between the efficient, timely and stable information exchange, improve the shadow of the economic and social benefits, basically reached the initial design purpose.

  2. Stakeholder Analysis To Shape the Enterprise

    Science.gov (United States)

    McCaughin, Keith; Derosa, Joseph

    An enterprise is a complex adaptive social system that should maximize stakeholder, not shareholder, value — value to employees, customers, shareholders and others. We expand upon Russell Ackoff s direction to distribute value among stakeholders, to propose a schema of rules that guide the interactions among autonomous agents in the transactional environment of an enterprise. We define an enterprise as an organization and its transactional environment interacting with and adapting to each other. Enterprise behavior can only be understood in the context of this transactional environment where everything depends on everything else and interactions cannot be controlled, but can be influenced if they are guided by an understanding of the internal rules of the autonomous agents. The schema has four complementary rules (control, autonomy, return and value) derived from the work of Russell Ackoff and Michael Porter. The basic rules are applied in combination to eight stakeholder types derived from Richard Hopeman and Raymond McLeod (Leaders, Competitors, Customers, Public, Workers, Collaborators, Suppliers and Regulators). An enterprise can use this schema and rules in a process of stakeholder analysis to develop and continually refine strategies to encourage behaviors that benefit the enterprise and discourage behaviors that harm the enterprise. These strategies are implemented in a relationship management program in support of enterprise strategic management to consciously and explicitly shape the environment to reduce risks and increase opportunities for success.

  3. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  4. ANALYSIS OF BODY SHAPES AMONG BARBUS TRIMACULATUS ...

    African Journals Online (AJOL)

    nb

    ABSTRACT. This study analyzed variability in body shapes among the small Barbus species of the family ... Tanzania, hence could be considered a separate species yet to be described. .... J. Sci. Vol. 40, 2014. 92. Sampling sites. Specimens were collected from various sites ..... Baylac M Villemany C and Simbolotti G 2003.

  5. Event shape analysis in ultrarelativistic nuclear collisions

    OpenAIRE

    Kopecna, Renata; Tomasik, Boris

    2016-01-01

    We present a novel method for sorting events. So far, single variables like flow vector magnitude were used for sorting events. Our approach takes into account the whole azimuthal angle distribution rather than a single variable. This method allows us to determine the good measure of the event shape, providing a multiplicity-independent insight. We discuss the advantages and disadvantages of this approach, the possible usage in femtoscopy, and other more exclusive experimental studies.

  6. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description...... isogeometric analysis may serve as a natural framework for shape optimization within fluid mechanics. We construct an efficient regularization measure for avoiding inappropriate parametrizations during optimization, and various numerical examples of shape optimization for fluids are considered, serving...

  7. A multilevel shape fit analysis of neutron transmission data

    International Nuclear Information System (INIS)

    Naguib, K.; Sallam, O.H.; Adib, M.

    1989-01-01

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Breit-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151 Eu, 153 Eu and natural Eu in the energy range 0.025-1 eV acquired a good result for the used technique of analysis. (author)

  8. Body dissatisfaction and the wish for different silhouette is associated with higher adiposity and fat intake in female ballet dancers than male.

    Science.gov (United States)

    Da Silva, Camila Lacerda; De Oliveira, Erick Prado; De Sousa, Maysa Vieira; Pimentel, Gustavo D

    2016-01-01

    It is known that behavioral disorders and altered food intake are linked to ballet dancers. Thus, the aim of the present study was to investigate the body composition, dietetic profile, self-perceived body image and social desirability in professional ballet dancers. This study was conducted from April to October 2010 in athletes screened for nutritional evaluation. Anthropometric, dietary, social desirability and self-perceived body image evaluation were performed to attend the aim of study. We found that ballet dancers are highly trained and eutrophic, although female dancers had higher adiposity and fat intake than male dancers. In addition, it was observed low consumption of calcium, dietary fiber, potassium, magnesium and vitamin A. Moreover, 30% of male ballet dancers have a strong desire for social acceptance. When the body image was evaluated by Body Shape Questionnaire (BSQ), was reported that 40% of the ballet female dancers have of moderate to severe alteration in body image and 20% of male dancers had slight alteration. Furthermore, the Drawings and Silhouettes Scale showed that 80% of male dancers wish to have a smaller or larger silhouette than the current self-perceived and 60% of the female dancers would like to have a silhouette lower than the self-perceive as current. Collectively, our results shown that most of the dancers were eutrophic, but female athletes have higher adiposity and present strong desire for a different shape of current. Furthermore, was found increased fat intake in female group; however, deficiencies in consumption of dietary fiber, calcium, potassium, magnesium and vitamin A were found in both gender.

  9. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-02-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage developmentof the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, mass center, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations.

  10. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-06-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage development of the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, centroid position, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations. 

  11. Comparative Analysis of Kernel Methods for Statistical Shape Learning

    National Research Council Canada - National Science Library

    Rathi, Yogesh; Dambreville, Samuel; Tannenbaum, Allen

    2006-01-01

    .... In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding...

  12. The apparent size of three-dimensional objects and their silhouettes: a solid-superiority effect.

    Science.gov (United States)

    Walker, J T; Walker, M J

    1988-01-01

    A solid object looks larger than its outline or silhouette under many viewing conditions. This solid-superiority effect may result from the assimilation or confusion of visual contours within the projection of a three-dimensional object on the picture plane. An aspect of the Müller-Lyer illusion may also play a role.

  13. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking.

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Shafiee

    Full Text Available In this work, we introduce a deep-structured conditional random field (DS-CRF model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.

  14. Active Shape Analysis of Mandibular Growth

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Larsen, Rasmus; Kreiborg, Sven

    2003-01-01

    This work contains a clinical validation using biological landmarks of a Geometry Constrained Diffusion registration of mandibular surfaces. Canonical Correlations Analysis is extended to analyse 3D landmarks and the correlations are used as similarity measures for landmark clustering. A novel Ac...

  15. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    OpenAIRE

    Ovidiu Hâruţa

    2011-01-01

    Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression ...

  16. A Multilevel Shape Fit Analysis of Neutron Transmission Data

    Science.gov (United States)

    Naguib, K.; Sallam, O. H.; Adib, M.; Ashry, A.

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Briet-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151Eu, 153Eu and natural Eu in the energy range 0.025-1 eV accquired a good result for the used technique of analysis.Translated AbstractAnalyse von Neutronentransmissionsdaten mittels einer VielniveauformanpassungNeutronentransmissionsdaten werden in einer Vielniveauformanpassung analysiert. Dazu werden bereinigte Daten aus Flugzeitmessungen mit dem Rechnerprogramm SHAPE bearbeitet. Man erhält die Parameter der beobachteten Resonanzen im gemessenen Energiebereich. Die Formanpassung benutzt eine Briet-Wignerformel und berücksichtigt Linienverbreiterungen infolge sowohl der Meßeinrichtung als auch des Dopplereffekts. Als praktisches Beispiel werden 151Eu, 153Eu und natürliches Eu im Energiebereich 0.025 bis 1 eV mit guter Übereinstimmung theoretischer und experimenteller Werte behandelt.

  17. Shape Analysis of HII Regions - I. Statistical Clustering

    Science.gov (United States)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-04-01

    We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  18. HPGe detectors timing using pulse shape analysis techniques

    International Nuclear Information System (INIS)

    Crespi, F.C.L.; Vandone, V.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.; Wieland, O.

    2010-01-01

    In this work the Pulse Shape Analysis has been used to improve the time resolution of High Purity Germanium (HPGe) detectors. A set of time aligned signals was acquired in a coincidence measurement using a coaxial HPGe and a cerium-doped lanthanum chloride (LaCl 3 :Ce) scintillation detector. The analysis using a Constant Fraction Discriminator (CFD) time output versus the HPGe signal shape shows that time resolution ranges from 2 to 12 ns depending on the slope in the initial part of the signal. An optimization procedure of the CFD parameters gives the same final time resolution (8 ns) as the one achieved after a correction of the CFD output based on the current pulse maximum position. Finally, an algorithm based on Pulse Shape Analysis was applied to the experimental data and a time resolution between 3 and 4 ns was obtained, corresponding to a 50% improvement as compared with that given by standard CFDs.

  19. Pulse shape analysis using CsI(Tl) Crystals

    International Nuclear Information System (INIS)

    Silva, J.; Fiori, E.; Loher, B.; Savran, D.; Wirth, R.; Vencelj, M.

    2013-06-01

    The decay time of CsI(Tl) scintillating material consists of more than a single exponential component. The ratio between the intensity of these components varies as a function of the ionizing power of the absorbed particles, such as γ -rays or protons, and the temperature. This property can therefore be used for particle discrimination and for temperature monitoring, using pulse shape analysis. An unsupervised method that uses fuzzy clustering algorithms for particle identification based on pulse shape analysis is presented. The method is applied to discriminate between photon and proton-induced signals in CsI(Tl) scintillator detectors. The first results of a method that uses pulse shape analysis for correcting the temperature-dependent gain effect of the detector are also presented. The method aims at conserving a good energy resolution in a temperature varying environment without the need to measure the temperature of the detector externally (authors)

  20. Pulse shape analysis for γ-ray tracking. Part I: Pulse shape simulation with JASS

    International Nuclear Information System (INIS)

    Schlarb, M.; Gernhaeuser, R.; Klupp, S.; Kruecken, R.

    2011-01-01

    Next-generation γ -ray spectrometers based on highly segmented HPGe detectors are using the recent technique of γ -ray tracking to significantly improve on efficiency and Doppler correction capabilities. A precise reconstruction of the individual interaction locations within the active material is possible through the use of pulse shape analysis (PSA) which, in turn, demands an accurate knowledge of the detector response. We developed JASS, a Java-based simulation software package to generate pulse shapes for the AGATA detectors from physics constraints and basic material parameters. For verifying the simulation experimental data from a coincidence scan with known interaction locations was used. The achieved position resolution, in the order of a few millimeters, is within the requirements of the γ -ray tracking array. (orig.)

  1. Optical image encryption with silhouette removal based on interference and phase blend processing

    Science.gov (United States)

    Wang, Qu

    2012-10-01

    To completely eliminate the silhouette problem that inherently exists in the earlier interference-based encryption scheme with two phase-only masks (POMs), we propose a simple new encryption method based on optical interference of one random POM and two analytically obtained POMs. Different from the previous methods which require time-consuming iterative computation or postprocessing of the POMs for silhouette removal, our method can resolve the problem during the production of the POMs based on interference principle. Information associated with the original image is smoothed away by modulation of the random POM. Illegal deciphers cannot retrieve the primitive image using only one or two of the POMs. Incorporated with the linear phase blend operation, our method can provide higher robustness against brute force attacks. Simulation results are presented to support the validity and feasibility of our method.

  2. The Silhouette Zoetrope: A New Blend of Motion, Mirroring, Depth, and Size Illusions.

    Science.gov (United States)

    Veras, Christine; Pham, Quang-Cuong; Maus, Gerrit W

    2017-01-01

    Here, we report a novel combination of visual illusions in one stimulus device, a contemporary innovation of the traditional zoetrope, called Silhouette Zoetrope. In this new device, an animation of moving silhouettes is created by sequential cutouts placed outside a rotating empty cylinder, with slits illuminating the cutouts successively from the back. This "inside-out" zoetrope incurs the following visual effects: the resulting animated figures are perceived (a) horizontally flipped, (b) inside the cylinder, and (c) appear to be of different size than the actual cutout object. Here, we explore the unique combination of illusions in this new device. We demonstrate how the geometry of the device leads to a retinal image consistent with a mirrored and distorted image and binocular disparities consistent with the perception of an object inside the cylinder.

  3. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  4. Robustness of Input features from Noisy Silhouettes in Human Pose Estimation

    DEFF Research Database (Denmark)

    Gong, Wenjuan; Fihl, Preben; Gonzàlez, Jordi

    2014-01-01

    . In this paper, we explore this problem. First, We compare performances of several image features widely used for human pose estimation and explore their performances against each other and select one with best performance. Second, iterative closest point algorithm is introduced for a new quantitative...... of silhouette samples of different noise levels and compare with the selected feature on a public dataset: Human Eva dataset....

  5. Body Image Satisfaction, Eating Attitudes and Perceptions of Female Body Silhouettes in Rural South African Adolescents.

    Directory of Open Access Journals (Sweden)

    Titilola M Pedro

    Full Text Available This study aims to examine the associations between BMI, disordered eating attitude, body dissatisfaction in female adolescents, and descriptive attributes assigned to silhouettes of varying sizes in male and female adolescents, aged 11 to 15, in rural South Africa. Height and weight were measured to determine BMI. Age and sex-specific cut-offs for underweight and overweight/obesity were determined using the International Obesity Task Force cut-offs. Body image satisfaction using Feel-Ideal Discrepancy (FID scores, Eating Attitudes Test-26 (EAT-26, and perceptual female silhouettes were collected through self-administered questionnaires in 385 adolescents from the Agincourt Health and Socio-Demographic Surveillance System (HSDSS. Participants self-reported their Tanner pubertal stage and were classified as early pubertal ( 2. Mid to post pubertal boys and girls were significantly heavier, taller, and had higher BMI values than their early pubertal counterparts (all p<0.001. The prevalence of overweight and obesity was higher in the girls than the boys in both pubertal stages. The majority (83.5% of the girls demonstrated body dissatisfaction (a desire to be thinner or fatter. The girls who wanted to be fatter had a significantly higher BMI than the girls who wanted to be thinner (p<0.001. There were no differences in EAT-26 scores between pubertal groups, within the same sex, and between boys and girls within the two pubertal groups. The majority of the boys and the girls in both pubertal groups perceived the underweight silhouettes to be "unhappy" and "weak" and the majority of girls in both pubertal groups perceived the normal silhouettes to be the "best". These findings suggest a need for policy intervention that will address a healthy body size among South African adolescents.

  6. Applications of shape analysis to domestic and international security

    International Nuclear Information System (INIS)

    Prasad, Lakshman; Skourikhine, Alexei N.; Doak, Justin E.

    2002-01-01

    The rapidly growing area of cooperative international security calls for pervasive deployment of smart sensors that render valuable information and reduce operational costs and errors. Among the sensors used, vision sensors are by far the most versatile, tangible, and rich in the information they provide about their environment. On the flip side, they are also the most complex to analyze automatically for the extraction of high-level information. The ability to process imagery in a useful manner requires at least partial functional emulation of human capabilities of visual understanding. Of all visual cues available in image data, shape is perhaps the most important for understanding the content of an image. In this paper we present an overview of ongoing research at LANL on geometric shape analysis. The objective of our research is to develop a computational framework for multiscale characterization, analysis, and recognition of shapes. This framework will enable the development of a comprehensive and connected body of mathematical methods and algorithms, based on the topological, metrical, and morphological properties of shapes. We discuss its potential applications to automated surveillance, monitoring, container tracking and inspection, weapons dismantlement, and treaty verification. The framework will develop a geometric filtering scheme for extracting semantically salient shape features. This effort creates a paradigm for solving shape-related problems in Pattern Recognition, Computer Vision, and Image Understanding in a conceptually cohesive and algorithmically amenable manner. The research aims to develop an advanced image analysis capability at LANL for solving a wide range of problems in automated facility surveillance, nuclear materials monitoring, treaty verification, and container inspection and tracking. The research provides the scientific underpinnings that will enable us to build smart surveillance cameras, with a direct practical impact on LANL

  7. Human gait recognition by pyramid of HOG feature on silhouette images

    Science.gov (United States)

    Yang, Guang; Yin, Yafeng; Park, Jeanrok; Man, Hong

    2013-03-01

    As a uncommon biometric modality, human gait recognition has a great advantage of identify people at a distance without high resolution images. It has attracted much attention in recent years, especially in the fields of computer vision and remote sensing. In this paper, we propose a human gait recognition framework that consists of a reliable background subtraction method followed by the pyramid of Histogram of Gradient (pHOG) feature extraction on the silhouette image, and a Hidden Markov Model (HMM) based classifier. Through background subtraction, the silhouette of human gait in each frame is extracted and normalized from the raw video sequence. After removing the shadow and noise in each region of interest (ROI), pHOG feature is computed on the silhouettes images. Then the pHOG features of each gait class will be used to train a corresponding HMM. In the test stage, pHOG feature will be extracted from each test sequence and used to calculate the posterior probability toward each trained HMM model. Experimental results on the CASIA Gait Dataset B1 demonstrate that with our proposed method can achieve very competitive recognition rate.

  8. Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid

    OpenAIRE

    Cury , Claire; Glaunès , Joan Alexis; Chupin , Marie; Colliot , Olivier

    2014-01-01

    International audience; A common approach for the analysis of anatomical variability relies on the estimation of a representative template of the population, followed by the study of this population based on the parameters of the deformations going from the template to the population. The Large Deformation Diffeomorphic Metric Mapping framework is widely used for shape analysis of anatomical structures, but computing a template with such framework is computationally expensive. In this paper w...

  9. Sensitivity Analysis of Criticality for Different Nuclear Fuel Shapes

    International Nuclear Information System (INIS)

    Kang, Hyun Sik; Jang, Misuk; Kim, Seoung Rae

    2016-01-01

    Rod-type nuclear fuel was mainly developed in the past, but recent study has been extended to plate-type nuclear fuel. Therefore, this paper reviews the sensitivity of criticality according to different shapes of nuclear fuel types. Criticality analysis was performed using MCNP5. MCNP5 is well-known Monte Carlo codes for criticality analysis and a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical systems. We performed the sensitivity analysis of criticality for different fuel shapes. In sensitivity analysis for simple fuel shapes, the criticality is proportional to the surface area. But for fuel Assembly types, it is not proportional to the surface area. In sensitivity analysis for intervals between plates, the criticality is greater as the interval increases, but if the interval is greater than 8mm, it showed an opposite trend that the criticality decrease by a larger interval. As a result, it has failed to obtain the logical content to be described in common for all cases. The sensitivity analysis of Criticality would be always required whenever subject to be analyzed is changed

  10. Sensitivity Analysis of Criticality for Different Nuclear Fuel Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Sik; Jang, Misuk; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    Rod-type nuclear fuel was mainly developed in the past, but recent study has been extended to plate-type nuclear fuel. Therefore, this paper reviews the sensitivity of criticality according to different shapes of nuclear fuel types. Criticality analysis was performed using MCNP5. MCNP5 is well-known Monte Carlo codes for criticality analysis and a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical systems. We performed the sensitivity analysis of criticality for different fuel shapes. In sensitivity analysis for simple fuel shapes, the criticality is proportional to the surface area. But for fuel Assembly types, it is not proportional to the surface area. In sensitivity analysis for intervals between plates, the criticality is greater as the interval increases, but if the interval is greater than 8mm, it showed an opposite trend that the criticality decrease by a larger interval. As a result, it has failed to obtain the logical content to be described in common for all cases. The sensitivity analysis of Criticality would be always required whenever subject to be analyzed is changed.

  11. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Tran Van Lien

    Full Text Available Abstract The present paper addresses free vibration of multiple cracked Timoshenko beams made of Functionally Graded Material (FGM. Cracks are modeled by rotational spring of stiffness calculated from the crack depth and material properties vary according to the power law throughout the beam thickness. Governing equations for free vibration of the beam are formulated with taking into account actual position of the neutral plane. The obtained frequency equation and mode shapes are used for analysis of the beam mode shapes in dependence on the material and crack parameters. Numerical results validate usefulness of the proposed herein theory and show that mode shapes are good indication for detecting multiple cracks in Timoshenko FGM beams.

  12. Stress analysis studies in optimised 'D' shaped TOKAMAK magnet designs

    International Nuclear Information System (INIS)

    Diserens, N.J.

    1975-07-01

    A suite of computer programs TOK was developed which enabled simple data input to be used for computation of magnetic fields and forces in a toroidal system of coils with either D-shaped or circular cross section. An additional requirement was that input data to the Swansea stress analysis program FINESSE could be output from the TOK fields and forces program, and that graphical output from either program should be available. A further program was required to optimise the coil shape. This used the field calculating routines from the TOK program. The starting point for these studies was the proposed 40 coil Princeton design. The stresses resulting from three different shapes of D-coil were compared. (author)

  13. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  14. Birth weight, body silhouette over the life course, and incident diabetes in 91,453 middle-aged women from the French Etude Epidemiologique de Femmes de la Mutuelle Generale de l'Education Nationale (E3N) Cohort.

    Science.gov (United States)

    de Lauzon-Guillain, Blandine; Balkau, Beverley; Charles, Marie-Aline; Romieu, Isabelle; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise

    2010-02-01

    Obesity and increases in body weight in adults are considered to be among the most important risk factors for type 2 diabetes. Low birth weight is also associated with a higher diabetes incidence. We aimed to examine to what extent the evolution of body shape, from childhood to adulthood, is related to incident diabetes in late adulthood. Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale (E3N) is a cohort study of French women born in 1925-1950 and followed by questionnaire every 2 years. At baseline, in 1990, women were asked to report their current weight, height, and body silhouette at various ages. Birth weight was recorded in 2002. Cases of diabetes were self-reported or obtained by drug reimbursement record linkage and further validated. Of the 91,453 women who were nondiabetic at baseline, 2,534 developed diabetes over the 15 years of follow-up. Birth weight and body silhouette at 8 years, at menarche, and in young adulthood (20-25 years) were inversely associated with the risk of diabetes, independently of adult BMI during follow-up (all P(trend) < 0.001). In mid-adulthood (35-40 years), the association was reversed, with an increase in risk related to a larger body silhouette. An increase in body silhouette from childhood to mid-adulthood amplified the risk of diabetes. Low birth weight and thinness until young adulthood may increase the risk of diabetes, independently of adult BMI during follow-up. Young women who were lean children should be especially warned against weight gain.

  15. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)

    2016-09-01

    Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape

  16. Toward a theory of statistical tree-shape analysis

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lo, Pechin Chien Pau; de Bruijne, Marleen

    2013-01-01

    In order to develop statistical methods for shapes with a tree-structure, we construct a shape space framework for tree-shapes and study metrics on the shape space. This shape space has singularities, which correspond to topological transitions in the represented trees. We study two closely relat...

  17. Do silhouettes and photographs produce fundamentally different object-based correspondence effects?

    Science.gov (United States)

    Proctor, Robert W; Lien, Mei-Ching; Thompson, Lane

    2017-12-01

    When participants classify pictures of objects as upright or inverted with a left or right keypress, responses are faster if the response location (left/right) corresponds with the location of a handle (left/right) than if it does not. This result has typically been attributed to a grasping affordance (automatic activation of muscles associated with grasping the object with the ipsilateral hand), but several findings have indicated instead that the effect is a spatial correspondence effect, much like the Simon effect for object location. Pappas (2014) reported evidence he interpreted as showing that spatial coding predominates with silhouettes of objects, whereas photographs of objects yield affordance-based effects. We conducted two experiments similar to those of Pappas, using frying pans as stimuli, with our two experiments differing in whether the entire object was centered on the display screen or the base was centered. When the objects were centered, a positive correspondence effect relative to the handle was evident for the silhouettes but a negative correspondence effect for the photographs. When the base was centered, the handle was clearly located to the left or right side of the display, and both silhouettes and photographs produced correspondence effects of similar size relative to the handle location. Despite the main results being counter to the grasping affordance hypothesis, response-time distribution analyses suggest that, instead of activating automatically at fast responses, an effector-specific component of the hypothesized type may come into play for responses that are selected after the handle location has been identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Silhouettes at different age of life: Retrospective appreciation of corpulence and his impact on prevalence of hypertension at 60years].

    Science.gov (United States)

    Thomas, F; Empana, J P; Charles, M A; Boutouyrie, P; Jouven, X; Pannier, B; Danchin, N

    2017-06-01

    In epidemiological studies, recall of weight and height are not readily available at different ages of life. In order to improve the knowledge of the weight history, Sörensen et al. in 1983, developed a tool from silhouettes allowing an individual to evaluate his corpulence at different ages of life. Validity studies showed that measured weight and size were correlated to 80% in the reported silhouette. Studies have also shown that silhouettes are a good way to trace the weight history in an individual's life. Very few epidemiological studies have used this tool. A French study revealed a decrease of the risk of breast cancer in obese girls between the age of 8 and adolescence. Another study showed that a low birth weight or a thin silhouette before adulthood was associated with an increased risk of diabetes. On the basis of these findings, it was interesting to evaluate the relationship between the silhouette at 20years and the risk of hypertension at the age of 60years. It was shown that the prevalence of hypertension at age 60 was higher among obese subjects at 20years than among thin subjects (45.3% vs 36.7% (P<0.05). The classification between slimness and obesity is relevant using this tool. The history of corpulence is an important element to consider in the determinants of pathology, especially in hypertension. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. An Interactive System For Fourier Analysis Of Artichoke Flower Shape.

    Science.gov (United States)

    Impedovo, Sebastiano; Fanelli, Anna M.; Ligouras, Panagiotis

    1984-06-01

    In this paper we present an interactive system which allows the Fourier analysis of the artichoke flower-head profile. The system consistsof a DEC pdp 11/34 computer with both a a track-following device and a Tektronix 4010/1 graphic and alpha numeric display on-line. Some experiments have been carried out taking into account some different parental types of artichoke flower-head samples. It is shown here that a narrow band of only eight harmonics is sufficient to classify different artichoke flower shapes.

  20. Calcium Pectinate Beads Formation: Shape and Size Analysis

    Directory of Open Access Journals (Sweden)

    Boon-Beng Lee

    2014-04-01

    Full Text Available The aim of this study was to investigate the inter-relationship between process variables and the size and shape of pectin solution droplets upon detachment from a dripping tip as well as Ca-pectinate beads formed after gelation via image analysis. The sphericity factor (SF of the droplets was generally smaller than 0.05. There was no specific trend between the SF of the droplets and the pectin concentration or the dripping tip radius. The SF the beads formed from high-concentration pectin solutions and a small dripping tip was smaller than 0.05. The results show that the Reynolds number and Ohnesorge number of the droplets fall within the operating region for forming spherical beads in the shape diagram, with the exception to the lower boundary. The lower boundary of the operating region has to be revised to Oh = 2.3. This is because the critical viscosity for Ca-pectinate bead formation is higher than that of Ca-alginate beads. On the other hand, the radius of the droplets and beads increased as the dripping tip radius increased. The bead radius can easily be predicted by Tate’s law equation.

  1. Trajectory Shape Analysis and Anomaly Detection Utilizing Information Theory Tools

    Directory of Open Access Journals (Sweden)

    Yuejun Guo

    2017-06-01

    Full Text Available In this paper, we propose to improve trajectory shape analysis by explicitly considering the speed attribute of trajectory data, and to successfully achieve anomaly detection. The shape of object motion trajectory is modeled using Kernel Density Estimation (KDE, making use of both the angle attribute of the trajectory and the speed of the moving object. An unsupervised clustering algorithm, based on the Information Bottleneck (IB method, is employed for trajectory learning to obtain an adaptive number of trajectory clusters through maximizing the Mutual Information (MI between the clustering result and a feature set of the trajectory data. Furthermore, we propose to effectively enhance the performance of IB by taking into account the clustering quality in each iteration of the clustering procedure. The trajectories are determined as either abnormal (infrequently observed or normal by a measure based on Shannon entropy. Extensive tests on real-world and synthetic data show that the proposed technique behaves very well and outperforms the state-of-the-art methods.

  2. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi; Collier, Nathan; Niemi, Antti; Calo, Victor M.

    2012-01-01

    optimised shapes produce efficient flapping flights, the wake pattern and its vorticity strength are examined. This work described in this paper should facilitate better guidance for shape design of engineered flying systems.

  3. Automatic shape model building based on principal geodesic analysis bootstrapping

    DEFF Research Database (Denmark)

    Dam, Erik B; Fletcher, P Thomas; Pizer, Stephen M

    2008-01-01

    iteration are used. Thereby, we gradually capture the shape variation in the training collection better and better. Convergence of the method is explicitly enforced. The method is evaluated on collections of artificial training shapes where the expected shape mean and modes of variation are known by design...

  4. Reconstruction and Analysis of Shapes from 3D Scans

    NARCIS (Netherlands)

    Haar, F.B. ter

    2009-01-01

    In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,

  5. Modal shapes optimization and feasibility analysis of NFAL platform

    Directory of Open Access Journals (Sweden)

    Bin WEI

    2017-08-01

    Full Text Available In order to avoid friction and scratching between the conveyor and the precision components when conveying object, an compact non-contact acoustic levitation prototype is designed, and the feasibility is theoretically and experimentally verified. The symmetry model is established through kinetic analysis with ANSYS. The modal and the coupled field computation at the central point of the transfer platform are simulated. The simulation results show that pure flexural or mixed flexural wave shapes appear with different wave numbers on the platform. Sweep frequency test is conducted on the compact platform prototype. The levitation experimental results confirm the feasibility of the ultrasound transfer process, the levitation frequency range and the mode of vibration. The theoretical and experimental results show that the optimal design of the modal and the carrying capacity of the driving platform is necessary according to different conditions. The research results provide a reference for the design of the mode and bandwidth of the ultrasonic levitation platform.

  6. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems

    Science.gov (United States)

    Gielis, Johan; Caratelli, Diego; Fougerolle, Yohan; Ricci, Paolo Emilio; Tavkelidze, Ilia; Gerats, Tom

    2012-01-01

    Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way. PMID:23028417

  7. Sparse principal component analysis in medical shape modeling

    Science.gov (United States)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  8. What can child silhouette data tell us? Exploring links to parenting, food and activity behaviors, and maternal concerns

    Science.gov (United States)

    Purpose: A study of resiliency to overweight explored how child silhouettes (maternal perception of child’s body size) related to child BMI, maternal concerns, parenting styles and practices. Methods: In a diverse, multi-state sample, 175 low-income mother-child (ages 3-11) dyads were assessed for...

  9. DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T., E-mail: terada@subaru.naoj.org [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu 96822 (United States)

    2012-07-01

    We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

  10. Analysis and optimization of bellows with general shape

    International Nuclear Information System (INIS)

    Koh, B.K.; Park, G.J.

    1998-01-01

    Bellows are commonly used in piping systems to absorb expansion and contraction in order to reduce stress. They have widespread applications which include industrial and chemical plants, fossil and nuclear power systems, heating and cooling systems, and vehicle exhaust systems. A bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axially symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze the bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis program is developed to analyze various bellows. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. A shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function with weighting factors. The stiffness, strength, and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the natural frequencies, the fatigue limit, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is utilized to solve the problem

  11. Shape analysis of corpus callosum in phenylketonuria using a new 3D correspondence algorithm

    Science.gov (United States)

    He, Qing; Christ, Shawn E.; Karsch, Kevin; Peck, Dawn; Duan, Ye

    2010-03-01

    Statistical shape analysis of brain structures has gained increasing interest from neuroimaging community because it can precisely locate shape differences between healthy and pathological structures. The most difficult and crucial problem is establishing shape correspondence among individual 3D shapes. This paper proposes a new algorithm for 3D shape correspondence. A set of landmarks are sampled on a template shape, and initial correspondence is established between the template and the target shape based on the similarity of locations and normal directions. The landmarks on the target are then refined by iterative thin plate spline. The algorithm is simple and fast, and no spherical mapping is needed. We apply our method to the statistical shape analysis of the corpus callosum (CC) in phenylketonuria (PKU), and significant local shape differences between the patients and the controls are found in the most anterior and posterior aspects of the corpus callosum.

  12. Female and Male Perceptions of Ideal Body Shapes: Distorted Views among Caucasian College Students.

    Science.gov (United States)

    Cohn, Lawrence D.; Adler, Nancy E.

    1992-01-01

    Using body silhouettes, 87 college women and 118 college men indicated their own body shapes and shapes they and same-sex and other-sex peers find most attractive. Focus was on whether women overestimate desirability of thin figures among female peers. Males and females misjudged same-sex peers' preferences compared with ideals. (SLD)

  13. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  14. Pulse shape analysis optimization with segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institute for Nuclear Physics, University of Cologne (Germany); Bruyneel, Bart [CEA, Saclay (France); Collaboration: AGATA-Collaboration

    2014-07-01

    Measurements with the position sensitive, highly segmented AGATA HPGe detectors rely on the gamma-ray-tracking GRT technique which allows to determine the interaction point of the individual gamma-rays hitting the detector. GRT is based on a pulse shape analysis PSA of the preamplifier signals from the 36 segments and the central electrode of the detector. The achieved performance and position resolution of the AGATA detector is well within the specifications. However, an unexpected inhomogeneous distribution of interaction points inside the detector volume is observed as a result of the PSA even when the measurement is performed with an isotropically radiating gamma ray source. The clustering of interaction points motivated a study in order to optimize the PSA algorithm or its ingredients. Position resolution results were investigated by including contributions from differential crosstalk of the detector electronics, an improved preamplifier response function and a new time alignment. Moreover the spatial distribution is quantified by employing different χ{sup 2}-minimization procedures.

  15. Pulse shape analysis for germanium detectors used in DM searches

    International Nuclear Information System (INIS)

    Sagdeev, I.R.; Drukier, A.K.; Welsh, D.J.; Klimenko, A.A.; Osetrov, S.B.; Smolnikov, A.A.

    1994-01-01

    Progress in Ge detector technology has resulted in ultralow backgrounds of less than 0.3 countskeV -1 kg -1 d -1 at energies between 6 and 9keV and from 12 to 20keV. Between 4 and 6keV it is less than 2 countskeV -1 kg -1 d -1 . Coupled with good energy resolution, 0.4keV FWHM at 10keV, this allows searches for DM particles with m≥qslant8GeV/c 2 .Electromagnetic interference (EMI) and acoustical pick-up are the main sources of background in the best Ge detectors. A PC-based on-line pulse shape analysis system is presented which permits rejection of large fraction of the EMI/acoustical background. The hardware uses a low cost, commercially available digital storage oscilloscope (DSO). The software consists of about 40000 lines of code in Pascal and assembly language. We tested this system using a low radioactive background Ge-system at the Baksan observatory. For low energy events (<100keV) this system permits improvement in the background by about 20-30%. ((orig.))

  16. Analysis of a complex shape chain plate using Transmission Photoelasticity

    Directory of Open Access Journals (Sweden)

    Dasari N.

    2010-06-01

    Full Text Available Most chains are an assembly [1] of five parts namely, outer plate, inner plate, bush, pin and roller. Two inner plates are press fitted with two bushes to form an inner block assembly. The outer plates are press fitted with pins after keeping the pins through the assembled bushes of the inner block. Roller is a rotating member and placed over the bush during inner block assembly. Inner block assembly is the load transfer member from sprocket tooth. The outer block assembly helps in holding and also to pull the inner block over the sprocket teeth. If a chain length is in odd number of pitches, it requires an offset plate as shown in Figure 1 to connect two ends of the chain together to make chain endless. When the chain is assembled with an offset plate, the chain fatigue life was observed only 20 to 25% of the total life of a chain, assembled without an offset plate. The holes in the offset plate are of the same size as in the outer and inner plates respectively and it is a complex in shape chain plate. A inbuilt thinning zone at the centre of the chain plate as shown in Figure 1 is unavoidable. The stresses and its distribution in this complex shape chain plate geometry play a critical role in the fatigue life performance of a chain assembly. However, it is difficult identify the stress distribution and stress concentration zones precisely using only the conventional industrial friendly tools such as routine quality control test, breaking load test and numerical computations. In this context the transmission photoelastic technique has made it possible to identify the stress distribution, its concentration and also to quantify the stress and strain [2-3] at any point in the chain plate. This paper explains how transmission photoelastic technique is used to estimate the stress distribution and its concentration zones in a complex chain plate when it isloaded. An epoxy chain plate model was made through the casting method using a Perspex mould [2

  17. Developing shape analysis tools to assist complex spatial decision making

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Ehler, G.B.; Cowen, D. [South Carolina Univ., Columbia, SC (United States)

    1996-05-31

    The objective of this research was to develop and implement a shape identification measure within a geographic information system, specifically one that incorporates analytical modeling for site location planning. The application that was developed incorporated a location model within a raster-based GIS, which helped address critical performance issues for the decision support system. Binary matrices, which approximate the object`s geometrical form, are passed over the grided data structure and allow identification of irregular and regularly shaped objects. Lastly, the issue of shape rotation is addressed and is resolved by constructing unique matrices corresponding to the object`s orientation

  18. Developing shape analysis tools to assist complex spatial decision making

    International Nuclear Information System (INIS)

    Mackey, H.E.; Ehler, G.B.; Cowen, D.

    1996-01-01

    The objective of this research was to develop and implement a shape identification measure within a geographic information system, specifically one that incorporates analytical modeling for site location planning. The application that was developed incorporated a location model within a raster-based GIS, which helped address critical performance issues for the decision support system. Binary matrices, which approximate the object's geometrical form, are passed over the grided data structure and allow identification of irregular and regularly shaped objects. Lastly, the issue of shape rotation is addressed and is resolved by constructing unique matrices corresponding to the object's orientation

  19. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    Science.gov (United States)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  20. Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements

    Science.gov (United States)

    Meng, Xiangning; Suzuki, Ryosuke O.

    2015-06-01

    The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.

  1. Shape measurement and vibration analysis of moving speaker cone

    Science.gov (United States)

    Zhang, Qican; Liu, Yuankun; Lehtonen, Petri

    2014-06-01

    Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.

  2. Investigation of bistable perception with the "silhouette spinner": sit still, spin the dancer with your will.

    Science.gov (United States)

    Liu, Chao-Hsuan; Tzeng, Ovid J L; Hung, Daisy L; Tseng, Philip; Juan, Chi-Hung

    2012-05-01

    Many studies have used static and non-biologically related stimuli to investigate bistable perception and found that the percept is usually dominated by their intrinsic nature with some influence of voluntary control from the viewer. Here we used a dynamic stimulus of a rotating human body, the silhouette spinner illusion, to investigate how the viewers' intentions may affect their percepts. In two experiments, we manipulated observer intention (active or passive), fixation position (body or feet), and spinning velocity (fast, medium, or slow). Our results showed that the normalized alternating rate between two bistable percepts was greater when (1) participants actively attempted to switch percepts, (2) when participants fixated at the spinner's feet rather than the body, inducing as many as 25 switches of the bistable percepts within 1 min, and (3) when they watched the spinner at high velocity. These results suggest that a dynamic biologically-bistable percept can be quickly alternated by the viewers' intention. Furthermore, the higher alternating rate in the feet condition compared to the body condition suggests a role for biological meaningfulness in determining bistable percepts, where 'biologically plausible' interpretations are favored by the visual system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Event-shape analysis: Sequential versus simultaneous multifragment emission

    International Nuclear Information System (INIS)

    Cebra, D.A.; Howden, S.; Karn, J.; Nadasen, A.; Ogilvie, C.A.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K.; Winfield, J.S.; Norbeck, E.

    1990-01-01

    The Michigan State University 4π array has been used to select central-impact-parameter events from the reaction 40 Ar+ 51 V at incident energies from 35 to 85 MeV/nucleon. The event shape in momentum space is an observable which is shown to be sensitive to the dynamics of the fragmentation process. A comparison of the experimental event-shape distribution to sequential- and simultaneous-decay predictions suggests that a transition in the breakup process may have occurred. At 35 MeV/nucleon, a sequential-decay simulation reproduces the data. For the higher energies, the experimental distributions fall between the two contrasting predictions

  4. Shape analysis of isoseismals based on empirical and synthetic data

    International Nuclear Information System (INIS)

    Molchan, G.; Panza, G.F.

    2000-11-01

    We present an attempt to compare modeled ground motion acceleration fields with macroseismic observations. Two techniques for the representation of the observed intensities by isoseismals, a smoothing technique and one which visualizes the local uncertainty of an isoseismal, are tested with synthetic and observed data. We show how noise in the data and irregularities in the distribution of observation sites affect the resolution of the isoseismal's shape. In addition to ''standard'' elongated shapes, we identify cross-like patterns in the macroseismic observations for two Italian earthquakes of strike-slip type; similar patterns are displayed by the theoretical peak acceleration fields calculated assuming the point source models given in the literature. (author)

  5. Shape analysis of pulsed second sound in He II

    International Nuclear Information System (INIS)

    Worthington, T.; Yan, J.; Trefny, J.U.

    1976-01-01

    Second sound in He II has been observed using a heat pulse method. At temperatures where well-developed second sound is observed, the entire pulse shape can be understood if heat sources and geometrical effects are properly taken into account. 4 figures

  6. Analysis of acoustic resonator with shape deformation using finite ...

    Indian Academy of Sciences (India)

    G M KALMSEa, AJAY CHAUDHARIb and P B PATILb a Science College, PB No. 62, Nanded 431603, India b Department of Physics, Dr B A M University, Aurangabad 431 004, India e-mail: bamuaur@bom4.vsnl.net.in. MS received 23 September 1999. Abstract. An acoustic resonator with shape deformation has been ...

  7. An analysis of processes that can shape higher education research ...

    African Journals Online (AJOL)

    This article is not only about African postgraduates at University of Natal: it is also an attempt to delineate what shapes research into Higher Education done under differing conditions and for different purposes (part 1). As material to illustrate this research metamorphosis, the material from an investigation into postgraduates ...

  8. Energy density functional analysis of shape coexistence in 44S

    International Nuclear Information System (INIS)

    Li, Z. P.; Yao, J. M.; Vretenar, D.; Nikšić, T.; Meng, J.

    2012-01-01

    The structure of low-energy collective states in the neutron-rich nucleus 44 S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

  9. VISIONS FOR FOOTWEAR TIP SHAPE ACCORDING TO THE CONFIGURATION FINGER

    Directory of Open Access Journals (Sweden)

    MALCOCI Marina

    2015-05-01

    Full Text Available Compatibility between the consumer and the interior leg permanent footwear raises a number of issues. And any new form of footwear is time for a new silhouette last. Fashion is a factor in determining the shape of the last significant role. The most important influence on fashion in footwear that has at one time is found in peak shape. During registered a variety of forms leading to the last, for example, pointed, oval, round, square, asymmetrical, curved, trapezoidal, etc. Each has added a tip top recommended. The paper analyzes the morphofunctional characteristic, namely, finger configuration. The configuration of the fingers is determined from the positions of all the fingers of one another, as are six variants. Analysis of the shape and configuration of the arm fingers allow us to make the following recommendations to consumers: people showing finger configuration as in variant V and VI are advised not to wear pointy shoes because of the limited movement of the foot, which favors the diversion finger I exterior and deformed finger V; persons who fall within I-IV variant can procure pointy shoes; a round-tipped shoes, square, curved or asymmetric may be purchased by any consumer regardless of the configuration of the fingers; shoes with cut edge must be present only in garderopa people in variant I and II; consumers whose configuration is like finger-VI and III variants are awkwardly shaped fingers can buy shoes closed in the previous summer, but of different perforations or overlapping strips.

  10. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    Science.gov (United States)

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The use of optical scanning for analysis of casting shape

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2011-04-01

    Full Text Available In the paper the use of optical scanning for inspection of casting shape and its accuracy was described. Optical system applied todigitization of objects determines all dimensions and shape of inspected object. This technology is used in quality control and reverse engineering. System is based on triangulation: sensor head performs projection of different patterns of fringes onto measured object and scanner tracks their distribution with two cameras. Basing on optical transform equations, a processing unit automatically and with remarkable accuracy calculates 3D coordinates for every pixel of camera. Depending on camera resolution the result of such a scan is acloud of points with up to 5 million points for every image. In the paper examples of applications for castings with different designationwas presented.

  12. A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis

    Directory of Open Access Journals (Sweden)

    Dilip Swaminathan

    2009-01-01

    kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.

  13. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    OpenAIRE

    HE, Huan; Courard, Luc; Pirard, Eric; Michel, Frédéric

    2016-01-01

    Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed d...

  14. Magnetic shape-memory alloys: thermomechanical modelling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Stefanelli, U.

    2014-01-01

    Roč. 26, č. 6 (2014), s. 783-810 ISSN 0935-1175 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetic shape- memory alloys * martensitic phase transformation * ferro/paramagnetic phase transformation Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007/s00161-014-0339-8#

  15. Application of Elliptic Fourier analysis to describe the lamina cribrosa shape with age and intraocular pressure.

    Science.gov (United States)

    Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A

    2014-11-01

    The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    Science.gov (United States)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  17. Nonlinear Radon Transform Using Zernike Moment for Shape Analysis

    Directory of Open Access Journals (Sweden)

    Ziping Ma

    2013-01-01

    Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.

  18. Infrared thermographic analysis of shape memory polymer during cyclic loading

    International Nuclear Information System (INIS)

    Staszczak, Maria; Pieczyska, Elżbieta A; Maj, Michał; Kukla, Dominik; Tobushi, Hisaaki

    2016-01-01

    In this paper we present the effects of thermomechanical couplings occurring in polyurethane shape memory polymer subjected to cyclic tensile loadings conducted at various strain rates. Stress–strain characteristics were elaborated using a quasistatic testing machine, whereas the specimen temperature changes accompanying the deformation process were obtained with an infrared camera. We demonstrate a tight correlation between the mechanical and thermal results within the initial loading stage. The polymer thermomechanical behaviour in four subsequent loading-unloading cycles and the influence of the strain rate on the stress and the related temperature changes were also examined. In the range of elastic deformation the specimen temperature drops below the initial level due to thermoelastic effect whereas at the higher strains the temperature always increased, due to the dissipative deformation mechanisms. The difference in the characteristics of the specimen temperature has been applied to determine a limit of the polymer reversible deformation and analyzed for various strain rates. It was shown that at the higher strain rates higher values of the stress and temperature changes are obtained, which are related to higher values of the polymer yield points. During the cyclic loading a significant difference between the first and the second cycle was observed. The subsequent loading-unloading cycles demonstrated similar sharply shaped stress and temperature profiles and gradually decrease in values. (paper)

  19. Stress analysis and torsional buckling analysis of U-shaped bellows

    International Nuclear Information System (INIS)

    Watanabe, Osamu; Ohtsubo, Hideomi.

    1986-01-01

    This paper presents analysis of elastic stress and torsional buckling of U-shaped bellows using ring elements. The expansion joint is considered to be composed of the two toroidal sections and inner-connecting annular plates. The general thin shell theory is employed to derive strain-displacement relations of shells and plates, valid for any loadings. Numerical examples under internal pressure or axial loading are described and compared with the results of existing appropriate analysis. The fundamental aspects of torsional buckling, which have not been studied previously, will also be investigated. (author)

  20. Analysis of pulse-shape discrimination techniques for BC501A using GHz digital signal processing

    International Nuclear Information System (INIS)

    Rooney, B.D.; Dinwiddie, D.R.; Nelson, M.A.; Rawool-Sullivan, Mohini W.

    2001-01-01

    A comparison study of pulse-shape analysis techniques was conducted for a BC501A scintillator using digital signal processing (DSP). In this study, output signals from a preamplifier were input directly into a 1 GHz analog-to-digital converter. The digitized data obtained with this method was post-processed for both pulse-height and pulse-shape information. Several different analysis techniques were evaluated for neutron and gamma-ray pulse-shape discrimination. It was surprising that one of the simplest and fastest techniques resulted in some of the best pulse-shape discrimination results. This technique, referred to here as the Integral Ratio technique, was able to effectively process several thousand detector pulses per second. This paper presents the results and findings of this study for various pulse-shape analysis techniques with digitized detector signals.

  1. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  2. Statistical 3D shape analysis of gender differences in lateral ventricles

    Science.gov (United States)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  3. Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data

    Science.gov (United States)

    Tunwal, M.; Mulchrone, K. F.; Meere, P. A.

    2017-12-01

    Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)

  4. Fourier analysis of intracranial aneurysms: towards an objective and quantitative evaluation of the shape of aneurysms

    International Nuclear Information System (INIS)

    Rohde, Stefan; Lahmann, Katharina; Nafe, Reinhold; Yan, Bernard; Berkefeld, Joachim; Beck, Juergen; Raabe, Andreas

    2005-01-01

    Shape irregularities of intracranial aneurysms may indicate an increased risk of rupture. To quantify morphological differences, Fourier analysis of the shape of intracranial aneurysms was introduced. We compared the morphology of 45 unruptured (UIA) and 46 ruptured intracranial aneurysms (RIA) in 70 consecutive patients on the basis of 3D-rotational angiography. Fourier analysis, coefficient of roundness and qualitative shape assessment were determined for each aneurysm. Morphometric analysis revealed significantly smaller coefficient of roundness (P<0.02) and higher values for Fourier amplitudes numbers 2, 3 and 7 (P<0.01) in the RIA group, indicating more complex and irregular morphology in RIA. Qualitative assessment from 3D-reconstructions showed surface irregularities in 78% of RIA and 42% of UIA (P<0.05). Our data have shown significant differences in shape between RIA and UIA, and further developments of Fourier analysis may provide an objective factor for the assessment of the risk of rupture. (orig.)

  5. Visual agnosia for line drawings and silhouettes without apparent impairment of real-object recognition: a case report.

    Science.gov (United States)

    Hiraoka, Kotaro; Suzuki, Kyoko; Hirayama, Kazumi; Mori, Etsuro

    2009-01-01

    We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed.

  6. Visual Agnosia for Line Drawings and Silhouettes without Apparent Impairment of Real-Object Recognition: A Case Report

    Directory of Open Access Journals (Sweden)

    Kotaro Hiraoka

    2009-01-01

    Full Text Available We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed.

  7. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...

  8. Analysis of Human Error Types and Performance Shaping Factors in the Next Generation Main Control Room

    International Nuclear Information System (INIS)

    Sin, Y. C.; Jung, Y. S.; Kim, K. H.; Kim, J. H.

    2008-04-01

    Main control room of nuclear power plants has been computerized and digitalized in new and modernized plants, as information and digital technologies make great progresses and become mature. Survey on human factors engineering issues in advanced MCRs: Model-based approach, Literature survey-based approach. Analysis of human error types and performance shaping factors is analysis of three human errors. The results of project can be used for task analysis, evaluation of human error probabilities, and analysis of performance shaping factors in the HRA analysis

  9. The shape of the hominoid proximal femur: a geometric morphometric analysis

    Science.gov (United States)

    Harmon, Elizabeth H

    2007-01-01

    As part of the hip joint, the proximal femur is an integral locomotor component. Although a link between locomotion and the morphology of some aspects of the proximal femur has been identified, inclusive shapes of this element have not been compared among behaviourally heterogeneous hominoids. Previous analyses have partitioned complex proximal femoral morphology into discrete features (e.g. head, neck, greater trochanter) to facilitate conventional linear measurements. In this study, three-dimensional geometric morphometrics are used to examine the shape of the proximal femur in hominoids to determine whether femoral shape co-varies with locomotor category. Fourteen landmarks are recorded on adult femora of Homo, Pan, Gorilla, Pongo and Hylobates. Generalized Procrustes analysis (GPA) is used to adjust for position, orientation and scale among landmark configurations. Principal components analysis is used to collapse and compare variation in residuals from GPA, and thin-plate spline analysis is used to visualize shape change among taxa. The results indicate that knucklewalking African apes are similar to one another in femoral shape, whereas the more suspensory Asian apes diverge from the African ape pattern. The shape of the human and orangutan proximal femur converge, a result that is best explained in terms of the distinct requirements for locomotion in each group. These findings suggest that the shape of the proximal femur is brought about primarily by locomotor behaviour. PMID:17310545

  10. Adaptação de escalas de silhuetas bidimensionais e tridimensionais para o deficiente visual Adaptation of two and three dimensional silhouette scales for the visually impaired

    Directory of Open Access Journals (Sweden)

    Fabiane Frota da Rocha Morgado

    2011-04-01

    Full Text Available O objetivo deste estudo foi descrever o processo de adaptação da Escala de Silhuetas Bidimensionais (ESB e de criação da Escala de Silhuetas Tridimensionais (EST. Para isso uma pesquisa de cunho qualitativo realizado em três etapas: na primeira, foi solicitada a autorização do prof. Stunkard para a utilização de seu instrumento como parâmetro para a confecção das Escalas. Na segunda, foi confeccionada a ESB e na terceira, a EST. Estas Escalas foram elaboradas considerando os critérios técnicos da Divisão de Pesquisa e Produção de Material Especializado do Instituto Benjamin Constant - RJ. Os resultados indicaram que a ESB foi confeccionada em linguagem grafo-tátil em alto relevo e é composta por nove bonecos masculinos e nove femininos, com diferentes formas corporais, texturizados com lixa de parede e linha. Os bonecos possuem 8,5 cm de altura. A EST foi composta por nove bonecos masculinos e nove femininos, com diferentes pesos e formas corporais. Os modelos foram confeccionados através de processo artesanal e constituídos de gesso pedra. Os bonecos do gênero masculino possuem altura de 15,5 cm e os do gênero feminino, 13,5 cm. Conclui-se que as informações contidas na descrição detalhada dos processos de confecção da ESB e EST podem ser um referencial para adaptações futuras e melhoradas de outras Escalas de figuras humanas, desenvolvidas a partir deste primeiro referencial.The objective of this study was to describe the process of adaptation of the Two Dimencional Silhouette Scale (2DSS and the development of a Three Dimensional Silhouette Scale (3DSS. To that end, a qualitative study was conducted in three stages: In the first one, the creator of the tool, Mr. Stunkard was contacted for permission to use his instrument as a parameter for the development of the scales. In the second and third ones, the 2DSS and the 3DSS were developed, respectively. These scales were developed considering the technical criteria

  11. The skeletal maturation status estimated by statistical shape analysis: axial images of Japanese cervical vertebra.

    Science.gov (United States)

    Shin, S M; Kim, Y-I; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B

    2015-01-01

    To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. The sample included 24 female and 19 male patients with hand-wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index.

  12. Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph

    2002-01-01

    We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition....... Furthermore, we study metrics based on repated annotations of a training set. We define a way of assessing the correlation between landmarks contrary to landmark coordinates. Finally, we apply the proposed methods to a 2D data set consisting of outlines of lungs and a 3D/(4D) data set consisting of sets...

  13. Context based Coding of Binary Shapes by Object Boundary Straightness Analysis

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren

    2004-01-01

    A new lossless compression scheme for bilevel images targeted at binary shapes of image and video objects is presented. The scheme is based on a local analysis of the digital straightness of the causal part of the object boundary, which is used in the context definition for arithmetic encoding....... Tested on individual images of binary shapes and binary layers of digital maps the algorithm outperforms PWC, JBIG and MPEG-4 CAE. On the binary shapes the code lengths are reduced by 21%, 25%, and 42%, respectively. On the maps the reductions are 34%, 32%, and 59%, respectively. The algorithm is also...

  14. Modeling and Analysis of Shape with Applications in Computer-aided Diagnosis of Breast Cancer

    CERN Document Server

    Guliato, Denise

    2011-01-01

    Malignant tumors due to breast cancer and masses due to benign disease appear in mammograms with different shape characteristics: the former usually have rough, spiculated, or microlobulated contours, whereas the latter commonly have smooth, round, oval, or macrolobulated contours. Features that characterize shape roughness and complexity can assist in distinguishing between malignant tumors and benign masses. In spite of the established importance of shape factors in the analysis of breast tumors and masses, difficulties exist in obtaining accurate and artifact-free boundaries of the related

  15. Cytometric analysis of shape and DNA content in mammalian sperm

    International Nuclear Information System (INIS)

    Gledhill, B.L.

    1983-01-01

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. Sperm were analyzed by flow cytometry and slit-scan flow analysis for injury following the exposure of testes to mutagens. The utility of flow cytometry in genotoxin screening and monitoring of occupational exposure was evaluated. The technique proved valuable in separation of X- and Y-chromosome bearing sperm and the potential applicability of this technique in artificial insemination and a solution, of accurately assessing the DNA content of sperm were evaluated-with reference to determination of X- and Y-chromosome bearing sperm

  16. Cytometric analysis of shape and DNA content in mammalian sperm

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, B.L.

    1983-10-10

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. Sperm were analyzed by flow cytometry and slit-scan flow analysis for injury following the exposure of testes to mutagens. The utility of flow cytometry in genotoxin screening and monitoring of occupational exposure was evaluated. The technique proved valuable in separation of X- and Y-chromosome bearing sperm and the potential applicability of this technique in artificial insemination and a solution, of accurately assessing the DNA content of sperm were evaluated-with reference to determination of X- and Y-chromosome bearing sperm.

  17. Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper

    OpenAIRE

    Veeman, Michael T.; Smith, William C.

    2013-01-01

    Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord i...

  18. Quantitative Analysis of TDLUs using Adaptive Morphological Shape Techniques.

    Science.gov (United States)

    Rosebrock, Adrian; Caban, Jesus J; Figueroa, Jonine; Gierach, Gretchen; Linville, Laura; Hewitt, Stephen; Sherman, Mark

    2013-03-29

    Within the complex branching system of the breast, terminal duct lobular units (TDLUs) are the anatomical location where most cancer originates. With aging, TDLUs undergo physiological involution, reflected in a loss of structural components (acini) and a reduction in total number. Data suggest that women undergoing benign breast biopsies that do not show age appropriate involution are at increased risk of developing breast cancer. To date, TDLU assessments have generally been made by qualitative visual assessment, rather than by objective quantitative analysis. This paper introduces a technique to automatically estimate a set of quantitative measurements and use those variables to more objectively describe and classify TDLUs. To validate the accuracy of our system, we compared the computer-based morphological properties of 51 TDLUs in breast tissues donated for research by volunteers in the Susan G. Komen Tissue Bank and compared results to those of a pathologist, demonstrating 70% agreement. Secondly, in order to show that our method is applicable to a wider range of datasets, we analyzed 52 TDLUs from biopsies performed for clinical indications in the National Cancer Institute's Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project and obtained 82% correlation with visual assessment. Lastly, we demonstrate the ability to uncover novel measures when researching the structural properties of the acini by applying machine learning and clustering techniques. Through our study we found that while the number of acini per TDLU increases exponentially with the TDLU diameter, the average elongation and roundness remain constant.

  19. Shape Analysis of the Peripapillary RPE Layer in Papilledema and Ischemic Optic Neuropathy

    Science.gov (United States)

    Kupersmith, Mark J.; Rohlf, F. James

    2011-01-01

    Purpose. Geometric morphometrics (GM) was used to analyze the shape of the peripapillary retinal pigment epithelium–Bruch's membrane (RPE/BM) layer imaged on the SD-OCT 5-line raster in normal subjects and in patients with papilledema and ischemic optic neuropathy. Methods. Three groups of subjects were compared: 30 normals, 20 with anterior ischemic optic neuropathy (AION), and 25 with papilledema and intracranial hypertension. Twenty equidistant semilandmarks were digitized on OCT images of the RPE/BM layer spanning 2500 μm on each side of the neural canal opening (NCO). The data were analyzed using standard GM techniques, including a generalized least-squares Procrustes superimposition, principal component analysis, thin-plate spline (to visualize deformations), and permutation statistical analysis to evaluate differences in shape variables. Results. The RPE/BM layer in normals and AION have a characteristic V shape pointing away from the vitreous; the RPE/BM layer in papilledema has an inverted U shape, skewed nasally inward toward the vitreous. The differences were statistically significant. There was no significant difference in shapes between normals and AION. Pre- and posttreatment OCTs, in select cases of papilledema, showed that the inverted U-shaped RPE/BM moved posteriorly into a normal V shape as the papilledema resolved with weight loss or shunting. Conclusions. The shape difference in papilledema, absent in AION, cannot be explained by disc edema alone. The difference is a consequence of both the translaminar pressure gradient and the material properties of the peripapillary sclera. GM offers a novel way of statistically assessing shape differences of the peripapillary optic nerve head. PMID:21896851

  20. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  1. Elliptic Fourier Analysis of body shape variation of Hippocampus spp. (seahorse in Danajon Bank, Philippines

    Directory of Open Access Journals (Sweden)

    S. R. M. Tabugo-Rico

    2017-12-01

    Full Text Available Seahorses inhabit various ecosystems hence, had become a flagship species of the marine environment. The Philippines as a hot spot of biodiversity in Asia holds a number of species of seahorses. This serve as an exploratory study to describe body shape variation of selected common seahorse species: Hippocampus comes, Hippocampus histrix, Hippocampus spinosissimus and Hippocampus kuda from Danajon bank using Elliptic Fourier Analysis. The method was done to test whether significant yet subtle differences in body shape variation can be species-specific, habitat-influenced and provide evidence of sexual dimorphism. It is hypothesized that phenotypic divergence may provide evidence for genetic differentiation or mere adaptations to habitat variation. Results show significant considerable differences in the body shapes of the five populations based on the canonical variate analysis (CVA and multivariate analysis of variance (MANOVA with significant p values. Populations were found to be distinct from each other suggesting that body shape variation is species-specific, habitat-influenced and provided evidence for sexual dimorphism. Results of discriminant analysis show further support for species specific traits and sexual dimorphism. This study shows the application of the method of geometric morphometrics specifically elliptic fourier analysis in describing subtle body shape variation of selected Hippocampus species.

  2. 3-D analysis of Maxwell's equations for cavities of arbitrary shape

    International Nuclear Information System (INIS)

    Whealton, J.H.; Chen, G.L.; McGaffey, R.W.; Raridon, R.J.; Jaeger, E.F.; Bell, M.A.; Hoffman, D.J.

    1986-03-01

    A three-dimensional analysis of cavity antennas is presented. The analysis is based on the finite difference method with a successive overrelaxation convergence scheme. This method permits the calculation of resonance frequencies and corresponding electric and magnetic fields of eigenmodes in a cavity antenna with an arbitrary shape. 12 refs., 8 figs

  3. Shape optimization of the stokes flow problem based on isogeometric analysis

    DEFF Research Database (Denmark)

    Park, Byong-Ug; Seo, Yu-Deok; Sigmund, Ole

    2013-01-01

    Design-dependent loads related to boundary shape, such as pressure and convection loads, have been a challenging issue in optimization. Isogeometric analysis, where the analysis model has smooth boundaries described by spline functions can handle design-dependent loads with ease. In the present s...

  4. Analysis on the geometrical shape of T-honeycomb structure by finite element method (FEM)

    Science.gov (United States)

    Zain, Fitri; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    Geometric in design is much related with our life. Each of the geometrical structure interacts with each other. The overall shape of an object contains other shape inside, and there shapes create a relationship between each other in space. Besides that, how geometry relates to the function of the object have to be considerate. In this project, the main purpose was to design the geometrical shape of modular furniture with the shrinking of Polyethylene Terephthalate (PET) jointing system that has good strength when applied load on it. But, the goal of this paper is focusing on the analysis of Static Cases by FEM of the hexagonal structure to obtain the strength when load apply on it. The review from the existing product has many information and very helpful to finish this paper. This project focuses on hexagonal shape that distributed to become a shelf inspired by honeycomb structure. It is very natural look and simple in shape and its modular structure more easily to separate and combine. The method discusses on chapter methodology are the method used to analysis the strength when the load applied to the structure. The software used to analysis the structure is Finite Element Method from CATIA V5R21 software. Bending test is done on the jointing part between the edges of the hexagonal shape by using Universal Tensile Machine (UTM). The data obtained have been calculate by bending test formulae and sketch the graph between flexural strains versus flexural stress. The material selection of the furniture is focused on wood. There are three different types of wood such as balsa, pine and oak, while the properties of jointing also be mentioned in this thesis. Hence, the design structural for honeycomb shape already have in the market but this design has main objective which has a good strength that can withstand maximum load and offers more potentials in the form of furniture.

  5. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  6. Analysis about correlation between the shape and histopathological locations of mammographic microcalcifications

    International Nuclear Information System (INIS)

    Kim, Wha Young; Cho, Young Ah; Choi, Hye Young; Sung, Soon Hee; Bacek, Seung Yeon

    1998-01-01

    To analyze the location of microcalcifications present on pathologic specimens and the relationship between the shape of clustered microcalcifications seen on mammogram and the location of these microcalcifications on pathologic specimen. In 84 female patients aged 25-68, we analysed the location of microcalcifications seen on pathologic speciments. In 65 cases, the shape of these microcalcifications correlated with their location. These shapes, as seen on mammograms, were classified as granular, linear, or branching;the location of microcalcifications was difined as intraductal, stromal, lobular, or a mixture of the three. To determine the difference, if any, between pathologic diagnosis and pathological location and shape as seen on mammograms, statistical analysis using the Chi-square test was performed. Among 84 cases, 51 were benign and 33cases were malignant. In both types of disease, in 45% and 58% of cases, respectively, microcalcifications were located intraductally. There was no statistically significant difference between pathologic diagnosis and pathologic locations (p=3D0.191);analysis of the relationship between shape of microcalcification and pathological location similarly revealed no statistically significant difference(p>0.05). In four of 33 cases of malignant disease(12%), there was microcalcification not only of the tumor itself but also of the adjacent non-tumorous region. Regardless of whether the disease was benign or melignant, microcalcifieations were most commonly intraductal. The relationship between shape and location of microcalcifications seen on pathologic specimens demonstrated no statistical significance.=20

  7. Encryption of QR code and grayscale image in interference-based scheme with high quality retrieval and silhouette problem removal

    Science.gov (United States)

    Qin, Yi; Wang, Hongjuan; Wang, Zhipeng; Gong, Qiong; Wang, Danchen

    2016-09-01

    In optical interference-based encryption (IBE) scheme, the currently available methods have to employ the iterative algorithms in order to encrypt two images and retrieve cross-talk free decrypted images. In this paper, we shall show that this goal can be achieved via an analytical process if one of the two images is QR code. For decryption, the QR code is decrypted in the conventional architecture and the decryption has a noisy appearance. Nevertheless, the robustness of QR code against noise enables the accurate acquisition of its content from the noisy retrieval, as a result of which the primary QR code can be exactly regenerated. Thereafter, a novel optical architecture is proposed to recover the grayscale image by aid of the QR code. In addition, the proposal has totally eliminated the silhouette problem existing in the previous IBE schemes, and its effectiveness and feasibility have been demonstrated by numerical simulations.

  8. Femoral shape analysis by Bi-plane x-ray photogrammetry

    International Nuclear Information System (INIS)

    Tamaki, Tamotsu; Umezaki, Eisaku; Yamagata, Masatsune; Inoue, Shun-ichi; Yamaguchi, Kiyonao; Takahashi, Kazuhisa.

    1986-01-01

    For the osteotomy on hip joint diseases caused by abnormality of the shape of bones, an accurate 3-dimensional femoral shape must be recognized before operation. It has been reported by the present authors that spinal shape is sufficiently analyzed by a developed system based on bi-plane photogrammetry. This paper describes an application of the system to the femoral shape analysis. The shaft axis, the neck axis, the head center of femur and the radius of the head are reconstructed 3-dimensionally using the vector analysis of plane and line, and the least square approximation method. The obtained axes and head are graphically displayed on the screen of a personal computer through the perspective transformation. The shape parameters usually used in clinic, such as the anteversion angle and the neck-shaft angle, are also calculated by the present method. Result obtained by this system is compared with that by photographical measurement of exposed femurs, then the present method is reduced to have higher accuracy than Kai's method currently used. (author)

  9. Scaling of mode shapes from operational modal analysis using harmonic forces

    Science.gov (United States)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  10. ASSESSMENT OF BACTERIAL BIOSURFACTANT PRODUCTION THROUGH AXISYMMETRICAL DROP SHAPE-ANALYSIS BY PROFILE

    NARCIS (Netherlands)

    VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to

  11. Simultaneous hit finding and timing method for pulse shape analysis of drift chamber signals

    Energy Technology Data Exchange (ETDEWEB)

    Schaile, D; Schaile, O; Schwarz, J

    1986-01-01

    An algorithm for the analysis of the digitized signal waveform of drift chamber pulses is described which yields a good multihit resolution and an accurate drift time determination with little processing time. The method has been tested and evaluated with measured pulse shapes from the full size prototype of the OPAL central detector which were digitized by 100 MHz FADCs. (orig.).

  12. Simultaneous hit finding and timing method for pulse shape analysis of drift chamber signals

    Energy Technology Data Exchange (ETDEWEB)

    Schaile, D; Schaile, O; Schwarz, J

    1986-01-01

    An algorithm for the analysis of the digitized signal waveform of drift chamber pulses is described which yields a good multihit resolution and an accurate drift time determination with little processing time. The method has been tested and evaluated with measured pulse shapes from the full size prototype of the OPAL central detector which were digitized by 100 MHz FADCs.

  13. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  14. SCAP - a Shaped Charge Analysis Program: user's manual for SCAP 1. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A.C.

    1985-04-01

    The basic modeling and format for a shaped charge analysis program, SCAP, is described. The code models the motion of liner elements due to explosive loading, jet formation, jet breakup and target penetration through application of a series of analytical approximations. The structure of the code is intended to provide flexibility in shaped charge device and target configurations and in modeling techniques. The code is designed for interactive use and produces both printed and plotted output. Examples of code output are given and compared with experimental data. 19 refs., 13 figs.

  15. Noncircular plasma shape analysis in long-pulse current drive experiment in TRIAM-1M

    International Nuclear Information System (INIS)

    Minooka, Mayumi; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1991-01-01

    Plasma cross section was noncircularized and the plasma shape was analyzed in order to study the characteristics of the plasma in long-pulse current drive experiments in high-field superconducting tokamak TRIAM-1M. Filament approximation method was adopted, since on-line processing by data processing computer is possible. The experiments of the noncircularization were carried out during 30-to 60-sec discharges. As a result, it became clear that D-shape plasma of elongation ratio 1.4 was maintained stably. By the analysis the internal inductance and poloidal beta were assessed, and so informations about the plasma current profile and internal pressure were obtained. (author)

  16. On-line measurement of ski-jumper trajectory: combining stereo vision and shape description

    Science.gov (United States)

    Nunner, T.; Sidla, O.; Paar, G.; Nauschnegg, B.

    2010-01-01

    Ski jumping has continuously raised major public interest since the early 70s of the last century, mainly in Europe and Japan. The sport undergoes high-level analysis and development, among others, based on biodynamic measurements during the take-off and flight phase of the jumper. We report on a vision-based solution for such measurements that provides a full 3D trajectory of unique points on the jumper's shape. During the jump synchronized stereo images are taken by a calibrated camera system in video rate. Using methods stemming from video surveillance, the jumper is detected and localized in the individual stereo images, and learning-based deformable shape analysis identifies the jumper's silhouette. The 3D reconstruction of the trajectory takes place on standard stereo forward intersection of distinct shape points, such as helmet top or heel. In the reported study, the measurements are being verified by an independent GPS measurement mounted on top of the Jumper's helmet, synchronized to the timing of camera exposures. Preliminary estimations report an accuracy of +/-20 cm in 30 Hz imaging frequency within 40m trajectory. The system is ready for fully-automatic on-line application on ski-jumping sites that allow stereo camera views with an approximate base-distance ratio of 1:3 within the entire area of investigation.

  17. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    Science.gov (United States)

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Influence of Stress Shape Function on Analysis of Contact Problem Using Hybrid Photoelasticity

    International Nuclear Information System (INIS)

    Shin, Dongchul; Hawong, Jaisug

    2013-01-01

    In this research, a study on stress shape functions was conducted to analyze the contact stress problem by using a hybrid photoelasticity. Because the contact stress problem is generally solved as a half-plane problem, the relationship between two analytical stress functions, which are compositions of the Airy stress function, was similar to one of the crack problem. However, this relationship in itself could not be used to solve the contact stress problem (especially one with singular points). Therefore, to analyze the contact stress problem more correctly, stress shape functions based on the condition of two contact end points had to be considered in the form of these two analytical stress functions. The four types of stress shape functions were related to the stress singularities at the two contact end points. Among them, the primary two types used for the analysis of an O-ring were selected, and their validities were verified in this work

  19. Optimum shape design of incompressible hyperelastic structures with analytical sensitivity analysis

    International Nuclear Information System (INIS)

    Jarraya, A.; Wali, M.; Dammark, F.

    2014-01-01

    This paper is focused on the structural shape optimization of incompressible hyperelastic structures. An analytical sensitivity is developed for the rubber like materials. The whole shape optimization process is carried out by coupling a closed geometric shape in R 2 with boundaries, defined by B-splines curves, exact sensitivity analysis and mathematical programming method (S.Q.P: sequential quadratic programming). Design variables are the control points coordinate. The objective function is to minimize Von-Mises stress, constrained to the total material volume of the structure remains constant. In order to validate the exact Jacobian method, the sensitivity calculation is performed: numerically by an efficient finite difference scheme and by the exact Jacobian method. Numerical optimization examples are presented for elastic and hyperelastic materials using the proposed method.

  20. Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R C; Hayes, D W [Du Pont de Nemours (E.I.) and Co., Aiken, S.C. (USA). Savannah River Lab.

    1975-12-01

    A pulse-shape analysis (PSA) unit of commercial design has been incorporated into a proportional counting system to determine the effectiveness of pulse-shape discrimination in increasing the sensitivity of tritium counting. It was found that a quantitative determination of tritium could be obtained directly from the PSA time spectrum eliminating the need for beta-ray energy selection used in the pulse-shape discrimination (PSD) technique. The performance of the proportional counting system was tested using the PSA unit and anticoincidence shielding, both singly and combined, under several types of background. A background reduction factor of 169 was obtained from the combined PSA-anticoincidence system with only a 2% loss in tritium counting efficiency. The PSA method was also found to offer significant reductions in noise background.

  1. Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis

    International Nuclear Information System (INIS)

    Hochel, R.C.; Hayes, D.W.

    1975-01-01

    A pulse-shape analysis (PSA) unit of commercial design has been incorporated into a proportional counting system to determine the effectiveness of pulse-shape discrimination in increasing the sensitivity of tritium counting. It was found that a quantitative determination of tritium could be obtained directly from the PSA time spectrum eliminating the need for beta-ray energy selection used in the pulse-shape discrimination (PSD) technique. The performance of the proportional counting system was tested using the PSA unit and anticoincidence shielding, both singly and combined, under several types of background. A background reduction factor of 169 was obtained from the combined PSA-anticoincidence system with only a 2% loss in tritium counting efficiency. The PSA method was also found to offer significant reductions in noise background. (Auth.)

  2. On the shape optimization of flapping wings and their performance analysis

    KAUST Repository

    Ghommem, Mehdi

    2014-01-01

    The present work is concerned with the shape optimization of flapping wings in forward flight. The analysis is performed by combining a gradient-based optimizer with the unsteady vortex lattice method (UVLM). We describe the UVLM simulation procedure and provide the first methodology to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. Several parameters affecting flight performance are investigated and their impact is described. These include the wingÊ1/4s aspect ratio, camber line, and curvature of the leading and trailing edges. This study provides guidance for shape design of engineered flying systems. © 2013 Elsevier Masson SAS.

  3. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging

    Science.gov (United States)

    Kohan, Zohreh; Azmi, Reza

    2016-03-01

    There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.

  4. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-02-01

    The feasibility of calculating natural frequencies and mode shapes of major equipment in a CANDU reactor from the measurements of their response to background excitation has been studied. A review of vibration data measured at various locations in CANDU plants shows that structures responded to a combination of random and harmonic background excitation. Amplitude of measured vibration is sufficient to allow meaningful data analysis. Frequency content in the 0 to 50-Hz range, which is of interest for earthquake response, is present in some of the vibration measurements studied. Spectral techniques have been developed for determining the response function of structures from measured vibration response to background excitation. The natural frequencies and mode shapes are then evaluated graphically from the frequency function plots. The methodology has been tested on a simple cantilever beam with known natural frequencies and mode shapes. The comparison between the theoretical and the computed natural frequencies and mode shapes is good for the lower modes. However, better curve-fitting techniques will be required in future, especially for higher modes. Readily available equipment necessary for the measurement of background vibration in a CANDU plant (which is commercially available) has been identified. An experimental program has been proposed to verify the methodology developed in this study. Recommendations are also made to study methods to improve the accuracy of the mode shape and natural frequency prediction

  5. Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies.

    Science.gov (United States)

    Medrano-Gracia, Pau; Cowan, Brett R; Bluemke, David A; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Suinesiaputra, Avan; Young, Alistair A

    2013-09-13

    Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies. A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols. Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias. Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.

  6. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric Morphometric Image Analysis.

    Directory of Open Access Journals (Sweden)

    Christine Mayer

    Full Text Available Facial markers of body composition are frequently studied in evolutionary psychology and are important in computational and forensic face recognition. We assessed the association of body mass index (BMI and waist-to-hip ratio (WHR with facial shape and texture (color pattern in a sample of young Middle European women by a combination of geometric morphometrics and image analysis. Faces of women with high BMI had a wider and rounder facial outline relative to the size of the eyes and lips, and relatively lower eyebrows. Furthermore, women with high BMI had a brighter and more reddish skin color than women with lower BMI. The same facial features were associated with WHR, even though BMI and WHR were only moderately correlated. Yet BMI was better predictable than WHR from facial attributes. After leave-one-out cross-validation, we were able to predict 25% of variation in BMI and 10% of variation in WHR by facial shape. Facial texture predicted only about 3-10% of variation in BMI and WHR. This indicates that facial shape primarily reflects total fat proportion, rather than the distribution of fat within the body. The association of reddish facial texture in high-BMI women may be mediated by increased blood pressure and superficial blood flow as well as diet. Our study elucidates how geometric morphometric image analysis serves to quantify the effect of biological factors such as BMI and WHR to facial shape and color, which in turn contributes to social perception.

  7. Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure

    Directory of Open Access Journals (Sweden)

    Hesheng Zhang

    2016-01-01

    Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.

  8. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    Science.gov (United States)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  9. Online Learning for Classification of Alzheimer Disease based on Cortical Thickness and Hippocampal Shape Analysis.

    Science.gov (United States)

    Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung

    2014-01-01

    Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.

  10. Artificial neural network based pulse-shape analysis for cryogenic detectors operated in CRESST-II

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, D-85747 Garching (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    In this talk we report on results of a pulse-shape analysis of cryogenic detectors based on artificial neural networks. To train the neural network a large amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets will be explained. The presented analysis shows an excellent discrimination performance even down to the energy threshold. The method is applied to several detectors, among them is the module with the lowest threshold (307eV) operated in CRESST-II phase 2. The performed blind analysis of this module confirms the substantially enhanced sensitivity for light dark matter published in 2015.

  11. A comparison of a track shape analysis-based automated slide scanner system with traditional methods

    International Nuclear Information System (INIS)

    Bator, G.; Csordas, A.; Horvath, D.; Somlai, J.; Kovacs, T.

    2015-01-01

    During recent years, CR-39 detector measurements have gained attention due to improvements in image processing methods. An assessment method based on the application of a high-resolution slide scanner and its quality checks is introduced, using commercially available software and hardware. Using the conventional (visual) comparing analysis for 563 detectors, the method was found suitable for high-precision and reliable track analysis. The accuracy of the measurements were not disturbed by any other pseudo-tracks (scratches or contamination) due to the signal shape of the analysis. (author)

  12. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    Science.gov (United States)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  13. Colour and shape analysis techniques for weed detection in cereal fields

    DEFF Research Database (Denmark)

    Pérez, A.J; López, F; Benlloch, J.V.

    2000-01-01

    . The proposed methods use colour information to discriminate between vegetation and background, whilst shape analysis techniques are applied to distinguish between crop and weeds. The determination of crop row position helps to reduce the number of objects to which shape analysis techniques are applied....... The performance of algorithms was assessed by comparing the results with a human classification, providing an acceptable success rate. The study has shown that despite the difficulties in accurately determining the number of seedlings (as in visual surveys), it is feasible to use image processing techniques......Information on weed distribution within the field is necessary to implement spatially variable herbicide application. This paper deals with the development of near-ground image capture and processing techniques in order to detect broad-leaved weeds in cereal crops under actual field conditions...

  14. Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors

    Science.gov (United States)

    San, Bingbing; Yang, Qingshan; Yin, Liwei

    2017-03-01

    Inflatable antennas are promising candidates to realize future satellite communications and space observations since they are lightweight, low-cost and small-packaged-volume. However, due to their high flexibility, inflatable reflectors are difficult to manufacture accurately, which may result in undesirable shape errors, and thus affect their performance negatively. In this paper, the stochastic characteristics of shape errors induced during manufacturing process are investigated using Latin hypercube sampling coupled with manufacture simulations. Four main random error sources are involved, including errors in membrane thickness, errors in elastic modulus of membrane, boundary deviations and pressure variations. Using regression and correlation analysis, a global sensitivity study is conducted to rank the importance of these error sources. This global sensitivity analysis is novel in that it can take into account the random variation and the interaction between error sources. Analyses are parametrically carried out with various focal-length-to-diameter ratios (F/D) and aperture sizes (D) of reflectors to investigate their effects on significance ranking of error sources. The research reveals that RMS (Root Mean Square) of shape error is a random quantity with an exponent probability distribution and features great dispersion; with the increase of F/D and D, both mean value and standard deviation of shape errors are increased; in the proposed range, the significance ranking of error sources is independent of F/D and D; boundary deviation imposes the greatest effect with a much higher weight than the others; pressure variation ranks the second; error in thickness and elastic modulus of membrane ranks the last with very close sensitivities to pressure variation. Finally, suggestions are given for the control of the shape accuracy of reflectors and allowable values of error sources are proposed from the perspective of reliability.

  15. Nuclear magnetic resonance line-shape analysis and determination of exchange rates

    International Nuclear Information System (INIS)

    Rao, B.D.

    1989-01-01

    The fact that chemical exchange processes occur at rates that cover a broad range and produce readily detectable effects on the spectrum is one of the attractive features of high-resolution NMR. The description of these line shapes in the presence of spin-spin coupling requires the density matrix theory which is rather complex. Analysis of the line shapes usually needs computer simulations and is capable of providing reliable information on the exchange rates as well as spectral parameters in the absence of exchange. Simplified procedures, ignoring spin-spin coupling, often result in deviations in these exchange and spectral parameters determined. A step-by-step procedure is detailed in this chapter for setting up the matrices required for computing the line shapes of exchanges involving weakly coupled spin systems on the basis of the density matrix theory without the need for a detailed understanding of the theory. A knowledge of the energy level structure and allowed transitions in the NMR spectra of the individual weakly coupled spin systems is all that is required. The procedure is amenable to numerical computation. The group of illustrative examples chosen to demonstrate the development of the computational tools cover some of the commonly encountered cases of exchange from simple systems to rather complex ones. Such exchanges occur frequently in biological molecules, especially those involving enzyme-substrate complexes. In cases where the experimental line shapes are obtained with respectable precision, and the relevant exchange processes are unambiguously identifiable, the computer simulation method of line-shape analysis is capable of providing useful and incisive information. The example of the 31P exchanges in the adenylate kinase is illustrative of this point

  16. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  17. Critical Speed Analysis of Fibre Reinforced Composite Rotor Embedded with Shape Memory Alloy Wires

    OpenAIRE

    Gupta, K.

    2000-01-01

    In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA) wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i) increase in Young's modulus of SMA (NITINOL) wires when activated, (ii) tension in w...

  18. Comparative analysis of the shape of the perch from Techa river and Miass river

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, D.; Pryakhin, E. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority (NRPA) and University of Tromsoe (Norway); Yegoreichenkov, E. [Urals Research Center for Radiation Medicine (Russian Federation)

    2014-07-01

    The adaptation to environmental conditions can be accompanied by morphological changes. Description of morphological differences in animal populations could reveal differences habitat, both abiotic and biotic factors. In our study we examined if fish habituating river with different activity concentration of radionuclides differ in geometric morphometry. Geometric morphometry makes it possible to identify morphological differences between objects on the basis of the form, without influence of the 'size factor'. The approach is based on a multivariate analysis of the coordinates of marks, placed on the surface of the morphological object in accordance with certain rules. We used perch (Perca fluviatilis Linnaeus, 1758) as a study species as it is a common, and widespread species of freshwater fish in moderate and subarctic latitudes of Eurasia and North America. Perch is characterized by high flexibility of morphology in relation to environmental differences. We investigated body shape and its changes with the growth in perch that live in Techa River under chronic radiation exposure and perch in the control river Miass. The alignment of digital image tags that characterize the shape of the fish's body, was implemented in the program TPSdig. Further analysis was performed using the package geomorph for R statistical software. The study showed statistically significant (F{sub 1,95}=12.69, p=0.01) differences in body shape of perch from Techa river and Miass river. Perch living in the Techa River are relatively shorter and higher. Further, perch in Techa is characterized by a smaller size of the eyes. For both populations the contribution of allometric component to shape change was observed: smaller animals have a shape similar to the Miass river perch population. With increase of body size, shape of the perch becomes similar to that of the Techa's perch population. Significant differences were observed only for young animals from the two rivers

  19. Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators

    International Nuclear Information System (INIS)

    Shaik Dawood, M S I; Iannucci, L; Greenhalgh, E S

    2008-01-01

    In this work, based on a linear piezoelectric constitutive model, a three-dimensional finite element code using an eight-node brick element that includes the anisotropic and coupled field effects of piezoelectric actuators has been developed for the static shape control analysis of fibre reinforced composite laminates. The code was used to study voltage sensing and actuation capabilities of piezoelectric actuators on composite laminates. The required input voltages to the actuators in order to achieve a specified structural shape were determined using a weighted shape control method. The code was validated using two test cases obtained from the literature. The results were found to show good correlation for voltage actuation. However, since determining input voltages to achieve the desired structural shape is a type of inverse problem, there are no explicit solutions and hence the results obtained from the present model were not similar to those reported in the literature. The second validation also suggests that the anisotropic and coupled field effects of the piezoelectric actuators cannot be neglected as this has been shown to underestimate the required control voltages. The effects of different lamination angles, boundary conditions, plate length-to-thickness ratios and actuator dimensions on the control voltages have also been reported

  20. Analysis of Shape Nonconformity between Embroidered Element and Its Digital Image

    Directory of Open Access Journals (Sweden)

    Svetlana RADAVIČIENĖ

    2014-04-01

    Full Text Available Embroidery technologies are widely applied for developing decorative elements of original design in garments, for integrating threads intended for protection into garments and other articles. Nonconformity of the shape and dimensions of the embroidered element with the designed digital image is influenced by properties of embroidery threads and fibres, by the filling type, density of stitches and other technological parameters. The objective of the paper is to explore the influence made by properties of fabrics and by the direction of stitches of the actual embroidered element on conformity of the shape with one of the designed digital image. For the research, embroidery threads of different purpose as well as three woven fabrics have been selected. For preparation of test samples, round digital images have been designed filling the embroidery area in different stitch directions. Analysis of the results of the investigations has demonstrated that the shape and dimensions of the embroidered element failed to conform to the shape and dimensions of the designed digital image in most cases. In certain cases, e.g. when the stitch direction goes towards the middle of the embroidered element, a defect, i. e. hole, is observed due to considerable concentration of stitches in the centre of the element.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2911

  1. Evaluation of natural mandibular shape asymmetry: an approach by using elliptical Fourier analysis.

    Science.gov (United States)

    Niño-Sandoval, Tania C; Morantes Ariza, Carlos F; Infante-Contreras, Clementina; Vasconcelos, Belmiro Ce

    2018-04-05

    The purpose of this study was to demonstrate that asymmetry is a natural occurring phenomenon in the mandibular shape by using elliptical Fourier analysis. 164 digital orthopantomographs from Colombian patients of both sexes aged 18 to 25 years were collected. Curves from left and right hemimandible were digitized. An elliptical Fourier analysis was performed with 20 harmonics. In the general sexual dimorphism a principal component analysis (PCA) and a hotelling T 2 from the multivariate warp space were employed. Exploratory analysis of general asymmetry and sexual dimorphism by side was made with a Procrustes Fit. A non-parametric multivariate analysis of variance (MANOVA) was applied to assess differentiation of skeletal classes of each hemimandible, and a Procrustes analysis of variance (ANOVA) was applied to search any relation between skeletal class and side in both sexes. Significant values were found in general asymmetry, general sexual dimorphism, in dimorphism by side (p < 0.0001), asymmetry by sex, and differences between Class I, II, and III (p < 0.005). However, a relation of skeletal classes and side was not found. The mandibular asymmetry by shape is present in all patients and should not be articulated exclusively to pathological processes, therefore, along with sexual dimorphism and differences between skeletal classes must be taken into account for improving mandibular prediction systems.

  2. The Analysis of the Influence of the Polystyrene Patterns Shaping Parameters on the Resistance Properties

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2012-04-01

    Full Text Available This work presents the technology of making foam plastics patterns used in casting as well as the final shaping stand. The analysis of the sintering process was carried out aiming at determining the influence of the pressure and the time of sintering on the flexural strength properties. The analysis of the research results confirmed that when the sintering pressure grows to the value of Pa =1,7 bar the flexural strength also increases, when the pressure value is higher than that, the degradation of the material takes place and the strength properties decrease.

  3. Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences.

    Science.gov (United States)

    Middleton, Dana M; Li, Jonathan Y; Lee, Hui J; Chen, Steven; Dickson, Patricia I; Ellinwood, N Matthew; White, Leonard E; Provenzale, James M

    2017-08-01

    Purpose The purpose of this study was to investigate a novel tensor shape plot analysis technique of diffusion tensor imaging data as a means to assess microstructural differences in brain tissue. We hypothesized that this technique could distinguish white matter regions with different microstructural compositions. Methods Three normal canines were euthanized at seven weeks old. Their brains were imaged using identical diffusion tensor imaging protocols on a 7T small-animal magnetic resonance imaging system. We examined two white matter regions, the internal capsule and the centrum semiovale, each subdivided into an anterior and posterior region. We placed 100 regions of interest in each of the four brain regions. Eigenvalues for each region of interest triangulated onto tensor shape plots as the weighted average of three shape metrics at the plot's vertices: CS, CL, and CP. Results The distribution of data on the plots for the internal capsule differed markedly from the centrum semiovale data, thus confirming our hypothesis. Furthermore, data for the internal capsule were distributed in a relatively tight cluster, possibly reflecting the compact and parallel nature of its fibers, while data for the centrum semiovale were more widely distributed, consistent with the less compact and often crossing pattern of its fibers. This indicates that the tensor shape plot technique can depict data in similar regions as being alike. Conclusion Tensor shape plots successfully depicted differences in tissue microstructure and reflected the microstructure of individual brain regions. This proof of principle study suggests that if our findings are reproduced in larger samples, including abnormal white matter states, the technique may be useful in assessment of white matter diseases.

  4. Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions

    International Nuclear Information System (INIS)

    Carpenter, D.C.

    1997-01-01

    Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions

  5. Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study.

    Science.gov (United States)

    Stanković, Kristina; Booth, Brian G; Danckaers, Femke; Burg, Fien; Vermaelen, Philippe; Duerinck, Saartje; Sijbers, Jan; Huysmans, Toon

    2018-01-01

    Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape. The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression. The complex nature of a foot's 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height. A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be

  6. Identification and Shape Analysis of Arabidopsis Cultivated in Nitrogen-free Environment

    Directory of Open Access Journals (Sweden)

    Junmei ZHANG

    2014-07-01

    Full Text Available This paper presents a method for segmentation and shape description of Arabidopsis plants with non-green leaves. The image was first calibrated by detecting the corners of a checkerboard. After the preprocessing step, the image was transformed to CIELUV color space, removing the lightness from the chromatic coordinates. The U component showed markedly different textures between the plant and the background. Hence its standard derivation was calculated and thresholded. With this method, significant leaves of the plant were separated while some stalks were not. Therefore, Support Vector Machine was then used to train the LUV data to do further segmentation as a complement of texture analysis. With these two steps, the plant was completely identified and the shape features were then extracted, including the total area, the symmetry and the number of leaves. The real area of the plant was derived with the number of foreground pixels and the calibration result. The symmetries were represented with the degrees of bilateral symmetry in the direction of the major and minor axes. And the number of leaves was obtained by identifying the number of local maximum of the contour-based signature. Experiment result shows that this method is effective in segmentation and shape analysis of Arabidopsis plants.

  7. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    Science.gov (United States)

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  8. Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle

    Energy Technology Data Exchange (ETDEWEB)

    Haldkar, Rakesh Kumar; Gupta, Vijay Kumar; Sheorey, Tanuja [PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, 482005 (India)

    2017-06-15

    Micropumps have been investigated as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering primarily, available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric and silicon based micro pumps are more popular as compared to other smart materials being explored. The microneedle is an integral part of these micropumps providing an interface between the drug reservoir and the patient’s body for extracting the blood for investigation. Blood collected in the pump chamber passes through the biosensor and gives the required investigation report. It is aimed to minimize the pain while the microneedle is inserted in the body without having any effect on the flow characteristics. Several factors affect the pain while inserting the needle, out of which shape and size of the microneedle are two important parameters. In this study we have investigated the effect of shape of the microneedle on the flow inside the micropump. A micropump design is based on the required flow at the biosensor point. All computations were carried out with water (Newtonian fluid) as the working fluid after carrying out a comparative analysis with human blood (non-Newtonian fluid). For the pentagonal shaped microneedle, the velocity at the top of the microneedle was minimum, which is beneficial in that fluid should remain in contact with the sensor for longer time.

  9. Crystal size and shape analysis of Pt nanoparticles in two and three dimensions

    International Nuclear Information System (INIS)

    Gontard, L Cervera; Dunin-Borkowski, R E; Ozkaya, D; Hyde, T; Midgley, P A; Ash, P

    2006-01-01

    The majority of industrial catalysts are high-surface-area solids, onto which an active component is dispersed in the form of nanoparticles that have sizes of between 1 and 20 nm. In an industrial environment, the crystal size distributions of such particles are conventionally measured by using either bright-field transmission electron microscope (TEM) images or X-ray diffraction. However, the analysis of particle sizes and shapes from two-dimensional bright-field TEM images is affected by variations in image contrast between adjacent particles, by the difficulty of distinguishing the particles from their matrix, and by overlap between particles when they are imaged in projection. High-angle annular dark-field (HAADF) electron tomography provides a convenient technique for overcoming many of these problems, by allowing the three-dimensional shapes and sizes of high atomic number nanoparticles that are supported on a low atomic number support to be recorded. Here, we discuss the three-dimensional analysis of particle sizes and shapes from such tomographic data, and we assess whether such measurements provide different information from that obtained using two-dimensional TEM images and X-ray diffraction measurements

  10. Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle

    International Nuclear Information System (INIS)

    Haldkar, Rakesh Kumar; Gupta, Vijay Kumar; Sheorey, Tanuja

    2017-01-01

    Micropumps have been investigated as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering primarily, available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric and silicon based micro pumps are more popular as compared to other smart materials being explored. The microneedle is an integral part of these micropumps providing an interface between the drug reservoir and the patient’s body for extracting the blood for investigation. Blood collected in the pump chamber passes through the biosensor and gives the required investigation report. It is aimed to minimize the pain while the microneedle is inserted in the body without having any effect on the flow characteristics. Several factors affect the pain while inserting the needle, out of which shape and size of the microneedle are two important parameters. In this study we have investigated the effect of shape of the microneedle on the flow inside the micropump. A micropump design is based on the required flow at the biosensor point. All computations were carried out with water (Newtonian fluid) as the working fluid after carrying out a comparative analysis with human blood (non-Newtonian fluid). For the pentagonal shaped microneedle, the velocity at the top of the microneedle was minimum, which is beneficial in that fluid should remain in contact with the sensor for longer time

  11. From 2D Silhouettes to 3D Object Retrieval: Contributions and Benchmarking

    Directory of Open Access Journals (Sweden)

    Napoléon Thibault

    2010-01-01

    Full Text Available 3D retrieval has recently emerged as an important boost for 2D search techniques. This is mainly due to its several complementary aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real-world applications such as photography, art, archeology, and geolocalization. In this paper, we introduce a complete "2D photography to 3D object" retrieval framework. Given a (collection of picture(s or sketch(es of the same scene or object, the method allows us to retrieve the underlying similar objects in a database of 3D models. The contribution of our method includes (i a generative approach for alignment able to find canonical views consistently through scenes/objects and (ii the application of an efficient but effective matching method used for ranking. The results are reported through the Princeton Shape Benchmark and the Shrec benchmarking consortium evaluated/compared by a third party. In the two gallery sets, our framework achieves very encouraging performance and outperforms the other runs.

  12. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  13. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  14. Otolith shape analysis as a tool for stock identification of the southern blue whiting, Micromesistius australis

    Directory of Open Access Journals (Sweden)

    Javier Leguá

    2013-07-01

    Full Text Available The southern blue whiting, Micromesistius australis (Norman, 1937, is an important demersal resource associated with the slope and continental shelf of southern Chile, Argentina and the Malvinas/Falkland Islands. Recent studies have reported schools of adult fish from Atlantic waters migrating along the southern Chilean coast in mid-winter, moving northwards to spawn in August (47°-51°S, and then returning to Atlantic waters, presumably to feed. The migratory pattern suggests the presence of one or more stock units associated with the South American coast. In the present study, "otolith morphometry" is used to determine the stock structure of M. australis based on applications of basic size descriptors (SDs (area, perimeter and otolith size, shape indices (SIs (circularity, squareness, shape factor, roundness, ellipticity, and normalised elliptical Fourier descriptors (NEFDs. Samples were collected during the winter and spring of 2010, during the reproductive period, in the economic zone of southern Chile (36°-57°S, in the Pacific Ocean and around the Falkland Islands economic zone (50°-52°S in the Atlantic Ocean. Analyses were conducted to include the effects of size, sex and age. A stepwise canonical discriminant analysis showed that fish were successfully discriminated with SDs, SIs and NEFDs. In this analysis, 86.4% and 70.1% of the fish were correctly classified as belonging to the Atlantic and Pacific stocks, respectively. A multivariate analysis of variance showed that the mean values of the NEFDs, SDs, and SIs did not vary significantly between sexes within areas (P > 0.05, but varied significantly between the Pacific and Atlantic oceans (P < 0.05. These results highlighted that otolith shape analysis can be a useful tool to evaluate the potential level of mixing in feeding areas where both stocks, the Pacific and Atlantic units, are expected to co-occur.

  15. Statistical Shape Analysis of the Human Ear Canal with Application to In-the-Ear Hearing Aid Design

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold

    2004-01-01

    This thesis is about the statistical shape analysis of the human ear canal with application to the mechanical design of in-the-ear hearing aids. Initially, it is described how a statistical shape model of the human ear canal is built based on a training set of laser-scanned ear impressions. A thin...

  16. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  17. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  18. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  19. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    Science.gov (United States)

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  20. Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.

    Science.gov (United States)

    Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes

    2015-06-01

    The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Deltoid muscle shape analysis with magnetic resonance imaging in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Meyer, Dominik C; Rahm, Stefan; Farshad, Mazda; Lajtai, Georg; Wieser, Karl

    2013-08-19

    It seems appropriate to assume, that for a full and strong global shoulder function a normally innervated and active deltoid muscle is indispensable. We set out to analyse the size and shape of the deltoid muscle on MR-arthrographies, and analyse its influence on shoulder function and its adaption (i.e. atrophy) for reduced shoulder function. The fatty infiltration (Goutallier stages), atrophy (tangent sign) and selective myotendinous retraction of the rotator cuff, as well as the thickness and the area of seven anatomically defined segments of the deltoid muscle were measured on MR-arthrographies and correlated with shoulder function (i.e. active abduction). Included were 116 patients, suffering of a rotator cuff tear with shoulder mobility ranging from pseudoparalysis to free mobility. Kolmogorov-Smirnov test was used to determine the distribution of the data before either Spearman or Pearson correlation and a multiple regression was applied to reveal the correlations. Our developed method for measuring deltoid area and thickness showed to be reproducible with excellent interobserver correlations (r = 0.814-0.982).The analysis of influencing factors on active abduction revealed a weak influence of the amount of SSP tendon (r = -0.25; p muscle retraction (r = -0.27; p muscle infiltration (GFDI: r = -0.36; p muscle shape with the degree of active glenohumeral abduction. Furthermore, long-standing rotator cuff tears did not appear to influence the deltoid shape, i.e. did not lead to muscle atrophy. Our data support that in chronic rotator cuff tears, there seems to be no disadvantage to exhausting conservative treatment and to delay implantation of reverse total shoulder arthroplasty, as the shape of deltoid muscle seems only to be influenced by natural aging, but to be independent of reduced shoulder motion.

  2. Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models

    OpenAIRE

    Wang, Quan

    2012-01-01

    Principal component analysis (PCA) is a popular tool for linear dimensionality reduction and feature extraction. Kernel PCA is the nonlinear form of PCA, which better exploits the complicated spatial structure of high-dimensional features. In this paper, we first review the basic ideas of PCA and kernel PCA. Then we focus on the reconstruction of pre-images for kernel PCA. We also give an introduction on how PCA is used in active shape models (ASMs), and discuss how kernel PCA can be applied ...

  3. Visualization of time series statistical data by shape analysis (GDP ratio changes among Asia countries)

    Science.gov (United States)

    Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri

    2018-03-01

    It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.

  4. Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges

    Science.gov (United States)

    Baoxiang, Ren; Gang, Tao; Peng, Wen; Changxing, Du; Chunqiao, Pang; Hongbo, Meng

    2018-06-01

    In the jet formation process of axisymmetric shaped charges, the slug is also formed. There is always a central hole in the symmetry axis of the jet and slug. The phenomenon was rarely mentioned and analyzed by the classical theory of shaped charges. For this problem, this paper attempts to explain the existence of the central hole in the jet and slug. Based on the analysis of recovery slug, we know that the jet and slug are in solid state in the process of formation. Through the analysis of X-flash radiographs of the stretching jet and particulation fracture, it is confirmed that the center holes in the jet are also present. Meanwhile, through the analysis of the microstructure of the recovered slug, it is found that there is a wave disturbance near the surface of the central hole. It can be speculated that the wave disturbance also exist in the jet. This effect may be one of the reasons for jet breakup. Due to the presence of the central hole in the jet, the density deficit of the jet obtained by other tests is very reasonable.

  5. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research.

    Science.gov (United States)

    Woods, Christopher; Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia; Dickinson, Alexander

    2017-01-01

    This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets.

  6. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research.

    Directory of Open Access Journals (Sweden)

    Christopher Woods

    Full Text Available This paper introduces statistical shape modelling (SSM for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA. Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA and reconstruction from partial datasets.

  7. WormSizer: high-throughput analysis of nematode size and shape.

    Directory of Open Access Journals (Sweden)

    Brad T Moore

    Full Text Available The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy mutant is short and fat and that a Long (Lon mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc and Roller (Rol mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.

  8. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

    International Nuclear Information System (INIS)

    Kang, Hyun Su; Oh, Jeongsu; Han, Jeong Sam

    2014-01-01

    This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints

  9. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Su [Sungkyunkwan University, Suwon (Korea, Republic of); Oh, Jeongsu [Daejoo Machinery Co., Daegu (Korea, Republic of); Han, Jeong Sam [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

  10. Impact analysis of the spacer grid assembly and shape optimization of the attached spring

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. J.; Lee, Z. N. [Hanyang University, Seoul (Korea)

    2002-04-01

    Spacer grids support fuel rods and maintain geometry from external impact loads. A simulation is performed for the strength of a spacer grid under the impact load. The critical impact load that leads to plastic deformation is identified by a free-fall test. A finite element model is established for the nonlinear simulation of the impact process. The simulation model is tuned based on the free-fall test. The model considers the aspects of welding and the contacts between components. Nonlinear finite element analysis is carried out using a software system called ABAQUS/EXPLICIT. The results are discussed from a design viewpoint. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. A good design is found. Commercial codes are utilized for structural analysis and optimization. 18 refs., 61 figs., 3 tabs. (Author)

  11. Declining performance of master athletes: silhouettes of the trajectory of healthy human ageing?

    Science.gov (United States)

    Lazarus, Norman R; Harridge, Stephen D R

    2017-05-01

    Analysis of world record performances by master athletes suggests an essentially linear decline with age until around the eighth decade after which performance decline accelerates. Because these records are obtained from highly trained individuals they can be viewed as being reflective of the diminution of integrative physiological prowess that occurs solely as a result of ageing, unaffected by the confounding effects of inactivity. It can also be argued that these performance profiles mirror and provide an insight into the trajectory of the physiology of the human ageing process. Here we propose a set point theory that hypothesises that a given threshold of physical activity is needed to age optimally and to maximise the 'healthspan'. Exercising at levels below the set point will result in ageing being contaminated by the unpredictable and pathological effects of inactivity. Exercise above this threshold stimulates adaptations towards maximising athletic performance, but is unlikely to have further beneficial effects on health. Thus the decades-long, controlled diminution in athletic performance, should not be seen as a disease process. The ageing process is separate from, and independent of, exercise-mediated processes that maintain or adapt physiological function. Whether an understanding of these mechanisms will also help uncover mechanisms underpinning the ageing process itself is open to question. However, any model which does not take into account the effects of activity will not adequately describe the inherent ageing process. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Line shape and thermal Kinetics analysis of the Fe2+ -band in Brazilian Green beryl

    International Nuclear Information System (INIS)

    Isotani, S.; Furtado, W.; Antonini, R.; Dias, O.L.

    1988-03-01

    The optical absorption spectra study through isothermal treatments of the σ- and Π-polarized bands of Fe 2+ -band is reported. It was shown a linear correlation between these bands through thermal treatments. Irradiation with γ-rays from 60 Co, showed the decrease of this band. The line shape analysis and the discussions lend us to assign the Π- and σ-polarized bands to Fe 2+ ions in the structural channels with and without neighbour water molecules, respectively. The kinetics analysis through a ''bimolecular-like'' model gives untrapping parameter with Arrhenius behavior. The retrapping and recombination parameters showed a behavior proportional to T 1/2 - T 1/2 o which were explained from free electron distribution of velocities and minimum untrapped electron energy due to a potential barrier of the trap. The kinetics cut-off temperature, T 0 , agrees with the previous experimental observation. (author) [pt

  13. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-01-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd 3 Al 2 Ga 3 O 12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios—Ce-doped Gd 3 Al 2.6 Ga 2.4 O 12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm 3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI

  14. Nonorthogonality analysis of a thermoacoustic system with a premixed V-shaped flame

    International Nuclear Information System (INIS)

    Ji, Chenzhen; Zhao, Dan; Li, Xinyan; Li, Shihuai; Li, Junwei

    2014-01-01

    Highlights: • Nonorthogonality analysis of a choked thermoacoustic system is conducted. • A thermoacoustic model of a premixed V-shaped flame is developed. • Nonorthogonality is identified to arise from the boundary condition and the flame. • The contribution from the flame is shown to play a dominant role. • Eigenmodes nonorthogonality leads to transient growth of acoustic disturbances. - Abstract: Thermoacoustic instability occurs in many combustion systems, such as aero-engine afterburners, rocket motors, ramjets and gas turbines. It most often arises due to the coupling between unsteady heat release and acoustic waves. In this work, nonorthogonality analysis of a choked combustor with a gutter confined is conducted. Such configuration is used as a simplified model of the afterburner of an aero-engine. A thermoacoustic model is developed first to study the nonnormal interaction between acoustic disturbances and a premixed V-shaped flame anchored to the tip of the gutter. Eigenmode nonorthogonality analysis is then conducted. The thermoacoustic system is shown to be nonnormal and characterized by nonorthogonal eigenmodes. The nonorthogonality is identified to arise from both the complex boundary condition and the monopole-like flame. However, the contribution from the Robin-type boundary is approximately 1.5% of that from the flame. Thus the flame is identified to play a dominant role. One practical conclusions is that acoustic disturbances undergo transient growth in a combustion system with nonorthogonal eigenmodes. Such finite-time growth, which cannot be predicted by using classical linear theory might trigger high-amplitude self-sustained oscillations

  15. Spectrum library concept and pulse shape analysis in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Kaihola, L [Wallac Oy, Turku (Finland)

    1997-03-01

    Wallac introduced in 1990 a new absolute liquid scintillation counting (LSC) method, Digital Overlay Technique (DOT) to correct for quench. This method allows quantization of multilabel samples by referring to library spectra which are generated against chemical and color quench indices at the factory. The libraries can further be expanded to any beta emitter by user with a method called fine tuning, which can be carried out even with a single sample. Spectrum libraries are created over the whole spectrum range of the radionuclide and allow automatic identification of a single label beta emitting radionuclide, called Easy Count method. Another improvement in LSC is commercial introduction of Pulse Shape Analysis (PSA) in 1986 by Wallac. This method recognizes alpha particle decay by pulse shape and leads to excellent sensitivity in alpha counting because most of the background signal in LSC comprises of short or beta like pulses. PSA detects alpha events in the presence of high excess of beta activity over alphas, up to a ratio 100000 to 1. (orig.)

  16. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  17. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  18. Investigation of shape memory alloy honeycombs by means of a micromechanical analysis

    International Nuclear Information System (INIS)

    Freed, Yuval; Aboudi, Jacob; Gilat, Rivka

    2008-01-01

    Shape memory alloy (SMA) honeycombs are promising new smart materials which may be used for light-weight structures, biomedical implants, actuators and active structures. In this study, the behavior of several SMA honeycomb structures is investigated by means of a continuum-based thermomechanically coupled micromechanical analysis. To this end, macroscopic inelastic stress–strain responses of several topologies are investigated, both for pseudoelasticity and for shape memory effect. It was found that the triangular topology exhibits the best performance. In addition, the initial transformation surfaces are presented for all possible combinations of applied in-plane stresses. A special two-phase microstructure that is capable of producing an overall negative coefficient of thermal expansion is suggested and studied. In this configuration, in which one of the phases is a SMA, residual strains are being generated upon recovery. Here, the negative coefficient of thermal expansion appears to be associated with a larger amount of residual strain upon recovery. Furthermore, a two-dimensional SMA re-entrant topology that generates a negative in-plane Poisson's ratio is analyzed, and the effect of the full thermomechanical coupling is examined. Finally, the response of a particular three-dimensional microstructure is studied

  19. A novel method for shape analysis: deformation of bubbles during wire drawing in doped tungsten

    International Nuclear Information System (INIS)

    Harmat, P.; Bartha, L.; Grosz, T.; Rosta, L.

    2001-01-01

    A novel technique has been developed for monitoring shape and size of microscopic pores, bubbles, second phase particles in deformed PM materials. The anisotropic small angle neutron scattering (ASANS) measurement provides direct visualization of the shape of second phase objects after rolling, swaging, wire drawing. Also in case of mixture of different objects e. g. uniformly elongated bubbles and spherical ones they can be separated and their morphological parameters like relative number density, diameter, aspect ratio can be obtained from the quantitative analysis of ASANS data. Rods and wires from K-AI-Si doped tungsten containing residual porosity and K filled bubbles were studied from 6 mm to 0.2 mm in diameter. The increase of the average aspect ratio (∼1/d) was found to be much slower than expected from the usual theory (∼1/d 3 ). Instead of 'constant volume' assumption, the 'constant length' seems to be reliable. The ASANS investigation revealed also the occurrence of a small amount of spherical bubbles after several steps of wire drawing. (author)

  20. Electronic system for recording proportional counter rare pulses with the pulse shape analysis

    International Nuclear Information System (INIS)

    Barabanov, I.R.; Gavrin, V.N.; Zakharov, Yu.I.; Tikhonov, A.A.

    1984-01-01

    The anutomated system for recording proportional counter rare pulses is described. The proportional counters are aimed at identification of 37 Ar and H7 1 Gr decays in chemical radiation detectors of solar neutrino. Pulse shape recording by means of a storage oscilloscope and a TV display is performed in the system considered besides two-parametric selection of events (measurement of pulse amplitude in a slow channel and the amplitude of pulse differentiated with time constant of about 10 ns in a parallel fast channel). Pulse discrimination by a front rise rate provides background decrease in the 55 Fe range (5.9 keV) by 6 times; the visual analysis of pulse shapes recorded allows to decrease the background additionally by 25-30%. The background counting rate in the 55 Fe range being equal to 1 pulse per 1.5 days, is obtained when using the installation described above, as well as the passive Pb shield 5 cm thick, and the active shield based on the anticoincidence NaI(Tl) detector with the cathode 5.6 mm in-diameter made of Fe fabircated by zone melting. The installation described allows to reach the background level of 0.6 pulse/day (the total coefficient of background attenuation is 400). Further background decrease is supposed to be provided by installation allocation in the low-noise underground laboratory of the Baksan Neutrino Observatory

  1. Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.

    Science.gov (United States)

    Veeman, Michael T; Smith, William C

    2013-01-15

    Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    Science.gov (United States)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  3. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  4. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C

    2009-01-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation

  5. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    Science.gov (United States)

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  6. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of {gamma}-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple {gamma}-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This

  7. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Schlarb, Michael Christian

    2009-01-01

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of γ-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple γ-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This is

  8. Absence of prognostic value of nuclear shape factor analysis in colorectal carcinoma: relevance of interobserver and intraobserver variability.

    Science.gov (United States)

    Di Fabio, Francesco; Shrier, Ian; Bégin, Louis R; Gordon, Philip H

    2008-12-01

    Several retrospective studies, including our previous investigation, have shown a prognostic value of nuclear shape factor in colorectal carcinomas. This prospective study was designed to assess the reliability of nuclear shape factor determined by nuclear morphometry and to confirm its prognostic value. Ninety-eight patients who underwent colorectal carcinoma resection were prospectively enrolled. Measurement of nuclear shape factor was performed by using a computer-based image analysis system. Nuclear shape factor was defined as the degree of circularity of the nucleus (1.0 for a perfect circle and values by American Joint Committee on Cancer stage were: 0.73 (0.07) in Stage I, 0.74 (0.06) in Stage II, and 0.75 (0.05) in Stage III carcinomas (P = 0.78, ANOVA). The intraobserver agreement was poor for observer A (r = 0.28) and practically nonexistent for observer B (r = -0.004, Pearson correlation). The intraclass coefficient for interobserver agreement was practically nonexistent. No significant association between nuclear shape factor and ten-year survival was found. Our prospective results, as opposed to our previous retrospective results, suggest that the reliability for nuclear shape factor morphometric analysis is very poor. We failed to confirm a prognostic value for nuclear shape factor in colorectal carcinoma.

  9. Status of the ITER full-tungsten divertor shaping and heat load distribution analysis

    International Nuclear Information System (INIS)

    Carpentier-Chouchana, S; Hirai, T; Escourbiac, F; Durocher, A; Fedosov, A; Ferrand, L; Kocan, M; Kukushkin, A S; Jokinen, T; Komarov, V; Lehnen, M; Merola, M; Mitteau, R; Pitts, R A; Sugihara, M; Firdaouss, M; Stangeby, P C

    2014-01-01

    In September 2011, the ITER Organization (IO) proposed to begin operation with a full-tungsten (W) armoured divertor, with the objective of taking a decision on the final target material (carbon fibre composite or W) by the end of 2013. This period of 2 years would enable the development of a full-W divertor design compatible with nuclear operations, the investigation of further several physics R and D aspects associated with the use of W targets and the completion of technology qualification. Beginning with a brief overview of the reference heat load specifications which have been defined for the full-W engineering activity, this paper will report on the current status of the ITER divertor shaping and will summarize the results of related three-dimensional heat load distribution analysis performed as part of the design validation. (paper)

  10. PARAMETRIC ANALYSIS OF A MINIATURIZED INVERTED II SHAPED ANTENNA FOR WIRELESS SENSOR NETWORK APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Shanmugapriya

    2015-06-01

    Full Text Available A compact and simple design of a CPW-fed planar antenna for wireless sensor network antenna application with a better size reduction is presented. The proposed antenna consists of an inverted ? shaped metal patch on a printed circuit board fed by a 50-O coplanar waveguide (CPW. The parametric analysis of length and width are made. The designed antenna’s physical dimensions are 32 mm (length x 26 mm (width x 1.6 mm (height. The antenna structure has been modeled and fabricated and its performance has been evaluated using a method of moment based electromagnetic simulator, IE3D .The return loss of -22.5 dB and VSWR of 1.34 dB are noted. The radiation pattern of the antenna proves that it radiates in all direction. The antenna is fabricated and tested and the measured results go in good agreement with simulated one.

  11. Investigation of the pulse shape analysis for the position sensitive γ-ray spectrometer AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institut fuer Kernphysik Koeln (Germany); Collaboration: AGATA-Collaboration

    2015-07-01

    The next generation of γ-ray spectrometers like AGATA will provide high quality γ-ray spectra by the new Gamma-Ray Tracking technique (GRT). Position sensitive HPGe detectors will allow for precise Doppler correction and small broadening of lines for spectroscopy at relativistic energies. GRT is based on the interaction position of the γ-rays within the volume of the highly segmented germanium detectors provided by Pulse Shape Analysis (PSA) methods. The proof of principle of GRT was already demonstrated with great success however systematic deviations from expected results occur. The parameterization of the following detector properties and their impact on PSA were thoroughly investigated and optimized: electron and hole mobility, crystal axis orientation, space charge distributions, crystal impurities, response functions of preamplifiers and digitizers, linear and differential crosstalk, time alignment of pulses and the distance metric. Results of an improved PSA performance are presented.

  12. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-10-01

    Background vibration in a CANDU plant can be used to determine the dynamic characteristics of major items of equipment, such as calandria, the fuelling machines and the primary heat transport pumps. These dynamic characteristics can then be used to verify the seismic response of the equipment which, at present, is based on theoretical models only. The feasibility and basic theory of this new approach (which uses accelerations measured at several points on a structure and does not require knowledge of the source of excitation) was established in Phase I of the study. This report is based on Phase II in which the methods of analysis developed in Phase I were improved and verified experimentally. A Fast Fourier Transform (FFT) algorithm was incorporated and an interactive curve fitting technique was developed to obtain the dynamic characteristics in the form of natural frequencies, mode shapes and damping ratios. The method is now available for use at a CANDU plant

  13. Shaping the Conversation: A Secondary Analysis of Reproductive Decision-Making Among Black Mothers with HIV.

    Science.gov (United States)

    Amutah, Ndidiamaka N; Gifuni, Jacqueline; Wesley, Yvonne

    2016-01-01

    The purpose of this qualitative secondary data analysis is to examine the major influencers on mothers with HIV in their childbearing decisions, as well as how those influencers shape conversations with clinicians and health-care providers regarding HIV treatment and prevention. The original study gained insight into the reproductive decision-making of mothers with HIV. By analyzing a subsample of 15 interviews from an original cohort of 25 participants in the earlier study, three major themes were identified as follows: (1) family members, not health-care providers, influence reproductive decisions; (2) negative attitudes toward subsequent pregnancies are mainly due to HIV transmission; and (3) birth control decisions were predominately supported by family members, while health-care providers were not consulted.

  14. Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials

    International Nuclear Information System (INIS)

    Maeda, N.; Uchida, M.; Ohta, Y.; Yoshida, K.

    1996-01-01

    Positron annihilation line-shape analysis is sufficiently sensitive to detect microstructural defects such as vacancies and dislocations. We are developing a portable positron annihilation system and applying this technique to fatigue damage in type 316 stainless steel and SA508 low alloy steel. The positron annihilation technique was found to be sensitive in the early fatigue life, i.e. up to 10% of the fatigue life, but showed little sensitivity in later stages of the fatigue life in type 316 stainless steel and SA508 low alloy steel. Type 316 stainless steel a higher positron annihilation sensitivity than that of SA508. It was considered that the amount of dislocation density change in the stainless steel was greater than that in the low alloy steel, because the initial microstructure contained a low dislocation density because of the solution heat treatment for the type 316 stainless steel. (orig.)

  15. Shaping the Conversation: A Secondary Analysis of Reproductive Decision-Making among Black Mothers with HIV

    Directory of Open Access Journals (Sweden)

    Ndidiamaka N. Amutah

    2016-01-01

    Full Text Available The purpose of this qualitative secondary data analysis is to examine the major influencers on mothers with HIV in their childbearing decisions, as well as how those influencers shape conversations with clinicians and health-care providers regarding HIV treatment and prevention. The original study gained insight into the reproductive decision-making of mothers with HIV. By analyzing a subsample of 15 interviews from an original cohort of 25 participants in the earlier study, three major themes were identified as follows: (1 family members, not health-care providers, influence reproductive decisions; (2 negative attitudes toward subsequent pregnancies are mainly due to HIV transmission; and (3 birth control decisions were predominately supported by family members, while health-care providers were not consulted.

  16. Analysis on expression of gene for flower shape in Dendrobium sonia mutants using differential display technique

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Ahmad Syazni Kamarudin; Nurul Nadia Aminuddin; Mohd Nazir Basiran

    2004-01-01

    In vitro mutagenesis on Dendrobium Sonia in MINT has produced mutants with wide range of flower form and colour variations. Among the mutants are plants with different flower size and shape. These changes could be caused by alterations to the expression level of the genes responsible for the characteristics. In this studies, Differential Display technique was used to identify and analyse altered gene expression at the mRNA level. Total RNA of the control and mutants were reversed transcribed using three anchored oligo-d T primers. Subsequently, these cDNAs were Pcr amplified in combination with 16 arbitrary primers. The amplified products were electrophoresed side by side on agarose gel. Differentially expressed bands are isolated for further analysis. (Author)

  17. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  18. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    Science.gov (United States)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  19. The performance shaping factors influence analysis on the human reliability for NPP operation

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.; Apostol, M.; Florescu, G.

    2008-01-01

    The Human Reliability Analysis (HRA) is an important step in Probabilistic Safety Assessment (PSA) studies and offers an advisability for concrete improvement of the man - machine - organization interfaces, reliability and safety. The goals of this analysis are to obtain sufficient details in order to understand and document all-important factors that affect human performance. The purpose of this paper is to estimate the human errors probabilities in view of the negative or positive effect of the human performance shaping factors (PSFs) for the mitigation of the initiating events which could occur in Nuclear Power Plant (NPP). Using THERP and SPAR-H methods, an analysis model of PSFs influence on the human reliability is performed. This model is applied to more important activities, that are necessary to mitigate 'one steam generator tube failure' event at Cernavoda NPP. The results are joint human error probabilities (JHEP) values estimated for the following situations: without regarding to PSFs influence; with PSFs in specific conditions; with PSFs which could have only positive influence and with PSFs which could have only negative influence. In addition, PSFs with negative influence were identified and using the DOE method, the necessary activities for changing negative influence were assigned. (authors)

  20. On the line-shape analysis of Compton profiles and its application to neutron scattering

    International Nuclear Information System (INIS)

    Romanelli, G.; Krzystyniak, M.

    2016-01-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss–Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures. - Highlights: • A new method to analyse neutron Compton scattering data is presented. • The method allows many corrections on the experimental data to be avoided. • The number of needed fitting parameters is drastically reduced using the new method. • Mass-selective analysis is facilitated with parametric studies benefiting the most. • Observables linked to anisotropic momentum distribution are obtained analytically.

  1. Personal recognition using finger knuckle shape oriented features and texture analysis

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-10-01

    Full Text Available Finger knuckle print is considered as one of the emerging hand biometric traits due to its potentiality toward the identification of individuals. This paper contributes a new method for personal recognition using finger knuckle print based on two approaches namely, geometric and texture analyses. In the first approach, the shape oriented features of the finger knuckle print are extracted by means of angular geometric analysis and then integrated to achieve better precision rate. Whereas, the knuckle texture feature analysis is carried out by means of multi-resolution transform known as Curvelet transform. This Curvelet transform has the ability to approximate curved singularities with minimum number of Curvelet coefficients. Since, finger knuckle patterns mainly consist of lines and curves, Curvelet transform is highly suitable for its representation. Further, the Curvelet transform decomposes the finger knuckle image into Curvelet sub-bands which are termed as ‘Curvelet knuckle’. Finally, principle component analysis is applied on each Curvelet knuckle for extracting its feature vector through the covariance matrix derived from their Curvelet coefficients. Extensive experiments were conducted using PolyU database and IIT finger knuckle database. The experimental results confirm that, our proposed method shows a high recognition rate of 98.72% with lower false acceptance rate of 0.06%.

  2. Shape of the orbital opening: individual characterization and analysis of variability in modern humans, Gorilla gorilla, and Pan troglodytes.

    Science.gov (United States)

    Schmittbuhl, M; Le Minor, J M; Allenbach, B; Schaaf, A

    1999-05-01

    The description of the human orbital shape is principally qualitative in the classical literature, and characterised by adjectives such as circular, rectangular or quadrangular. In order to provide a precise quantification and interpretation of this shape, a study based on automatic image analysis and Fourier analysis was carried out on 45 human skulls (30 males, 15 females), and for comparison on 61 skulls of Gorilla gorilla (40 males, 21 females), and 34 skulls of Pan troglodytes (20 males, 14 females). Sexual dimorphism in the shape of the orbital opening was not demonstrated. Its dominant morphological features could be characterized by Fourier analysis; elliptical elongation and quadrangularity were dominant morphological features of the shape of the orbital opening in the three species. Elliptical elongation was more marked in humans and Pan, whereas quadrangularity was particularly emphasized in Gorilla. An intraspecific variability of the shape of the orbital opening existed in humans, Gorilla and Pan, and seemed close in the three species. Interspecific partition between humans, Gorilla and Pan was demonstrated despite the variability observed in the three species studied. Interspecific differences between Gorilla and the Pan-humans group were principally explained by the differences in quadrangularity, and by differences in orientation of triangularity and pentagonality. Differences in the shape of the orbital opening between humans and Pan were principally explained by differences in hexagonality, and by differences in orientation of quadrangularity. A closeness of shape between some humans and some individuals in Pan and, to a lesser degree, with some individuals in Gorilla was observed, demonstrating the existence of a morphological continuum of the shape of the orbital opening in hominoids.

  3. Pulse shape analysis for the gamma-ray tracking detector Agata

    International Nuclear Information System (INIS)

    Olariu, A.

    2007-10-01

    Agata is the European project for a 4π gamma-ray tracking array of 180 Ge detectors and is expected to have a detection sensitivity higher by 3 orders of magnitude than that of the present generation of gamma spectrometers. The trajectories of the photons inside a Ge crystal are reconstituted, which allows the determination of the initial energy of the incident photons as the total energy deposited along the track. The sequence of a γ-ray scattering process is too fast compared with the time resolution of the detector to be measured electronically, so tracking algorithms are necessary. Gamma-ray tracking detectors are operating in position sensitive mode it means that Ge crystal are segmented in order to facilitate the localization of the gamma interactions. It is possible to improve the position resolution by using the information conveyed by the shape of the detector signal. The task of the PSA (Pulse Shape Analysis) algorithm is to analyze this signal and extract the number of interactions, the position and the energy of each interaction. PSA algorithms rely on a basis of reference signals given by single interactions and that are obtained through an experimental characterization of the detector with scanning systems. The matrix method is a new PSA algorithm that consists in fitting linearly the detector signal with a set of calculated signals. We have tested this method with both simulated and measured signals. In the case of simulated single interactions the position resolution is 1.4 mm which is within Agata's specifications. For measured signals we have obtained mean positional errors of 3.2 mm at the front end of the detector an 4.8 mm at the back end

  4. Support, shape and number of replicate samples for tree foliage analysis.

    Science.gov (United States)

    Luyssaert, Sebastiaan; Mertens, Jan; Raitio, Hannu

    2003-06-01

    Many fundamental features of a sampling program are determined by the heterogeneity of the object under study and the settings for the error (alpha), the power (beta), the effect size (ES), the number of replicate samples, and sample support, which is a feature that is often overlooked. The number of replicates, alpha, beta, ES, and sample support are interconnected. The effect of the sample support and its shape on the required number of replicate samples was investigated by means of a resampling method. The method was applied to a simulated distribution of Cd in the crown of a Salix fragilis L. tree. Increasing the dimensions of the sample support results in a decrease in the variance of the element concentration under study. Analysis of the variance is often the foundation of statistical tests, therefore, valid statistical testing requires the use of a fixed sample support during the experiment. This requirement might be difficult to meet in time-series analyses and long-term monitoring programs. Sample supports have their largest dimension in the direction with the largest heterogeneity, i.e. the direction representing the crown height, and this will give more accurate results than supports with other shapes. Taking the relationships between the sample support and the variance of the element concentrations in tree crowns into account provides guidelines for sampling efficiency in terms of precision and costs. In terms of time, the optimal support to test whether the average Cd concentration of the crown exceeds a threshold value is 0.405 m3 (alpha = 0.05, beta = 0.20, ES = 1.0 mg kg(-1) dry mass). The average weight of this support is 23 g dry mass, and 11 replicate samples need to be taken. It should be noted that in this case the optimal support applies to Cd under conditions similar to those of the simulation, but not necessarily all the examinations for this tree species, element, and hypothesis test.

  5. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    International Nuclear Information System (INIS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately

  6. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    Science.gov (United States)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  7. ADAPTIVE OPTICS OBSERVATIONS OF 3 {mu}m WATER ICE IN SILHOUETTE DISKS IN THE ORION NEBULA CLUSTER AND M43

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Pyo, Tae-Soo; Minowa, Yosuke; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Takami, Hideki [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Saito, Yoshihiko [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ito, Meguru [Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Iye, Masanori, E-mail: terada@subaru.naoj.org [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-12-01

    We present the near-infrared images and spectra of four silhouette disks in the Orion Nebula Cluster (M42) and M43 using the Subaru Adaptive Optics system. While d053-717 and d141-1952 show no water ice feature at 3.1 {mu}m, a moderately deep ({tau}{sub ice} {approx} 0.7) water ice absorption is detected toward d132-1832 and d216-0939. Taking into account the water ice so far detected in the silhouette disks, the critical inclination angle to produce a water ice absorption feature is confirmed to be 65 Degree-Sign -75 Degree-Sign . As for d216-0939, the crystallized water ice profile is exactly the same as in the previous observations taken 3.63 years ago. If the water ice material is located at 30 AU, then the observations suggest it is uniform at a scale of about 3.5 AU.

  8. SHAPE OF FEMININITY IN THE TEXT OF GEGURITAN (PHILOSOPICAL VERSE IN BALI: ANALYSIS OF FEMINISM

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Karmini

    2012-11-01

    Full Text Available The object of this study is Balinese traditional literature which is the form of geguritan(philosophical verse. The reason why such texts are used as the object of the study is that theycontain very complex and interesting narrations about feminism. The objectives of this studyare to find out the formal and narrative structure of the texts and to describe the shape offemininity in the texts and its relevance to the lives of Balinese women who are Hindufollowers in the society. The objectives are all at once the answers to the problems of the study.The theory applied is that of feminism which emphasizes the concept ofRadical-Cultural Feminism. This study is a qualitative one of which the data were collected bydocumentation method, that is, by the techniques of note taking, observation and interview. Thedata were analyzed using the formal method in accordance with literature studies.There were nine geguritan (philosophical verses which were used as the object of thestudy. From the formal structural analysis, the pupuh (strophe used, its function and literarystyle could be identified. From the content, religious and amusement functions could beidentified. From the narrative structural analysis, it could be identified that the plot waschronological and sorot balik (backward directed; the characters and characterization weredescribed to express extraordinary ability, which was based on Hinduism, while the theme wasdescribed to express the application of panca crada (the five principles in Hinduism. Therewere seven findings as far as the analysis of the text is concerned: they are: (1 the educatedwomen could determine their attitudes, make decisions, show prestige and maintain theirdignity; (2 the women in the texts had extraordinary power. This means that the women werenot weak. Therefore, the stereotype that women were weak was neglected; (3 the educatedwomen who used Hinduism as the reference could become the men’s power; (4 the womenwho could

  9. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    Science.gov (United States)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  10. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    International Nuclear Information System (INIS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X Q

    2013-01-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures. (paper)

  11. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  12. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers.

    Science.gov (United States)

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-03-07

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.

  13. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool (United Kingdom)], E-mail: rjc@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington, Cheshire (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  14. Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine

    Science.gov (United States)

    Kim, Soo-Hyun; Bang, Hyung-Joon; Shin, Hyung-Ki; Jang, Moon-Seok

    2014-06-01

    This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck's fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade's radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.

  15. Adaptive pressure-controlled cellular structures for shape morphing I: design and analysis

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This work investigates adaptive bio-inspired pressure cellular structures for shape morphing. Optimum designs for cellular structures with void and pressure cells are proposed and then structural analyses are conducted. In the present design, a unit cell is comprised of straight and curved walls. When compressed air is pumped into a pressure cell, the curved walls deform in bending due to the pressure difference in two adjacent cells that leads to overall structural deformation in extension. One-dimensional actuation strain up to 35% can be theoretically achieved. In part I, we present basic design concepts and cellular mechanics. Unlike conventional structural analysis for cellular structures, a statically indeterminate unit cell is considered and novel analytical formulations are derived for the present pressurized cellular structures in linear and nonlinear analyses. In part II, we will present experimental testing and finite element analysis to demonstrate the feasibility of the present pressurized cellular actuators for morphing wings and to validate the present cellular mechanics formulations. (paper)

  16. SU-E-I-58: Objective Models of Breast Shape Undergoing Mammography and Tomosynthesis Using Principal Component Analysis.

    Science.gov (United States)

    Feng, Ssj; Sechopoulos, I

    2012-06-01

    To develop an objective model of the shape of the compressed breast undergoing mammographic or tomosynthesis acquisition. Automated thresholding and edge detection was performed on 984 anonymized digital mammograms (492 craniocaudal (CC) view mammograms and 492 medial lateral oblique (MLO) view mammograms), to extract the edge of each breast. Principal Component Analysis (PCA) was performed on these edge vectors to identify a limited set of parameters and eigenvectors that. These parameters and eigenvectors comprise a model that can be used to describe the breast shapes present in acquired mammograms and to generate realistic models of breasts undergoing acquisition. Sample breast shapes were then generated from this model and evaluated. The mammograms in the database were previously acquired for a separate study and authorized for use in further research. The PCA successfully identified two principal components and their corresponding eigenvectors, forming the basis for the breast shape model. The simulated breast shapes generated from the model are reasonable approximations of clinically acquired mammograms. Using PCA, we have obtained models of the compressed breast undergoing mammographic or tomosynthesis acquisition based on objective analysis of a large image database. Up to now, the breast in the CC view has been approximated as a semi-circular tube, while there has been no objectively-obtained model for the MLO view breast shape. Such models can be used for various breast imaging research applications, such as x-ray scatter estimation and correction, dosimetry estimates, and computer-aided detection and diagnosis. © 2012 American Association of Physicists in Medicine.

  17. A novel fruit shape classification method based on multi-scale analysis

    Science.gov (United States)

    Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin

    2005-11-01

    Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.

  18. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    International Nuclear Information System (INIS)

    Bulicek, Miroslav; Haslinger, Jaroslav; Malek, Josef; Stebel, Jan

    2009-01-01

    We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and to the shape optimization problem

  19. Flow Quality Analysis of Shape Morphing Structures for Hypersonic Ground Testing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Background: Shape morphing, high temperature, ceramic structural materials are now becoming available and can revolutionize ground testing by providing dynamic flow...

  20. Comparison of two different Radiostereometric analysis (RSA) systems with markerless elementary geometrical shape modeling for the measurement of stem migration.

    Science.gov (United States)

    Li, Ye; Röhrl, Stephan M; Bøe, B; Nordsletten, Lars

    2014-09-01

    Radiostereometric analysis (RSA) is the gold standard of measurement for in vivo 3D implants migration. The aim of this study was to evaluate the in vivo precision of 2 RSA marker-based systems compared with that of marker-free, elementary geometrical shape modeling RSA. Stem migration was measured in 50 patients recruited from an on-going Randomized Controlled Trial. We performed marker-based analysis with the Um RSA and RSAcore systems and compared these results with those of the elementary geometrical shape RSA. The precision for subsidence was 0.118 mm for Um RSA, 0.141 mm for RSAcore, and 0.136 mm for elementary geometrical shape RSA. The precision for retroversion was 1.3° for elementary geometrical shape RSA, approximately 2-fold greater than that for the other methods. The intraclass correlation coefficient between the marker-based systems and elementary geometrical shape RSA was approximately 0.5 for retroversion. All 3 methods yielded ICCs for subsidence and varus-valgus rotation above 0.9. We found an excellent correlation between marker-based RSA and elementary geometrical shape RSA for subsidence and varus-valgus rotation, independent of the system used. The precisions for out-of-plane migration were inferior for elementary geometrical shape RSA. Therefore, as a mechanism of failure, retroversion may be more difficult to detect early. This is to our knowledge the first study to compare different RSA systems with or without markers on the implant. Marker-based RSA has high precision in all planes, independent of the system used. Elementary geometrical shape RSA is inferior in out-of-plane migration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Analysis of Hα(Dα) Line Shape Xu Wei & Li Yan

    Indian Academy of Sciences (India)

    Abstract. The particles energy distribution is derived directly from the Hα(Dα) line shape, which is measured by two sets of OMA. The dissociative excitation of molecular is dominating when the local elec- tron temperature is >10eV. The Dα line shape is also simulated by the Monte–Carlo method, the molecular dissociation ...

  2. Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Sokolowski, J.; Stebel, Jan

    2011-01-01

    Roč. 40, č. 4 (2011), s. 1077-1097 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape optimization * shape gradient * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.300, year: 2010

  3. Instrument for real-time pulse-shape analysis of slit-scan flow cytometry signals

    NARCIS (Netherlands)

    van Oven, C.; Aten, J. A.

    1990-01-01

    An instrument is described which analyses shapes of fluorescence profiles generated by particles passing through the focussed laser beam of a flow cytometer. The output signal of this pulse-shape analyzer is used as input for the signal processing electronics of a commercial flow cytometer system.

  4. Patch-based generative shape model and MDL model selection for statistical analysis of archipelagos

    DEFF Research Database (Denmark)

    Ganz, Melanie; Nielsen, Mads; Brandt, Sami

    2010-01-01

    We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning ...

  5. Towards an Analysis of the Policies That Shape Public Education: Setting the Context for School Leadership

    Science.gov (United States)

    Bell, Les; Stevenson, Howard

    2015-01-01

    The environment in which school leaders and teachers work is shaped by educational policy. Policy is, in turn, derived from the dominant political ideologies at any particular time. The interrelationship between ideology and policy shapes both the overall organization of education and the operational practices and procedures of staff in schools…

  6. Experimental and Numerical Analysis of Egg-Shaped Sewer Pipes Flow Performance

    Directory of Open Access Journals (Sweden)

    Manuel Regueiro-Picallo

    2016-12-01

    Full Text Available A Computational Fluid Dynamics (CFD model was developed to analyze the open-channel flow in a new set of egg-shaped pipes for small combined sewer systems. The egg-shaped cross-section was selected after studying several geometries under different flow conditions. Once the egg-shaped cross-section was defined, a real-scale physical model was built and a series of partial-full flow experiments were performed in order to validate the numerical simulations. Furthermore, the numerical velocity distributions were compared with an experimental formulation for analytic geometries, with comparison results indicating a satisfactory concordance. After the hydraulic performance of the egg-shaped pipe was analyzed, the numerical model was used to compare the average velocity and shear stress against an equivalent area circular pipe under low flow conditions. The proposed egg shape showed a better flow performance up to a filling ratio of h/H = 0.25.

  7. 3-D shape analysis of palatal surface in patients with unilateral complete cleft lip and palate.

    Science.gov (United States)

    Rusková, Hana; Bejdová, Sárka; Peterka, Miroslav; Krajíček, Václav; Velemínská, Jana

    2014-07-01

    Facial development of patients with unilateral complete cleft lip and palate (UCLP) is associated with many problems including deformity of the palate. The aim of this study was to evaluate palatal morphology and variability in patients with UCLP compared with Czech norms using methods of geometric morphometrics. The study was based on virtual dental cast analysis of 29 UCLP patients and 29 control individuals at the age of 15 years. The variability of palatal shape in UCLP patients was greater than that in nonclefted palates. Only 24% of clefted palates fell within the variability of controls. The palatal form of UCLP patients (range from 11.8 to 17.2 years) was not correlated with age. Compared with control palates, palates of UCLP patients were narrower, more anteriorly than posteriorly. Apart from the praemaxilla region, they were also shallower, and the difference increased posteriorly. The UCLP palate was characterised by the asymmetry of its vault. The maximum height of the palatal vault was anterior on the clefted side, whereas it was posterior on the nonclefted side. The slope of the UCLP palate was more inclined compared with the control group. The praemaxilla was therefore situated more inferiorly. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Finite Element Analysis of the Pseudo-elastic Behavior of Shape Memory Alloy Truss and Beam

    Directory of Open Access Journals (Sweden)

    Kamal M. Bajoria

    2010-07-01

    Full Text Available The pseudo-elastic behavior of Shape memory alloy (SMA truss and cantilever beam are investigated. Brinson’s one-dimensional material model, which uses the twinned and detwinned martensite fractions separately as internal variables, is applied in the algorithm to establish the SMA stress-strain characteristics. This material model also incorporates different young’s modulus for austenitic and martensite phase to represent the true SMA characteristics. In this model, a cosine function was used to express the evolution of the stress induced martensite fractions during the forward and reverse martensite phase transformation. A finite element formulation for the SMA truss member considering the geometric nonlinearity is proposed and the results are compared with the corresponding linear analysis. As a step forward, a finite element formulation for an SMA cantilever beam with an applied end moment is proposed. The load displacement characteristic for both the loading and unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the numerical investigation, the stress-strain variation along the beam depth is also examined during the loading and unloading process to investigate the forward and reverse martensite phase transformation phenomena. Newton-Raphson’s iterative method is applied to get convergence to the equilibrium for each loading steps. During a complete loading-unloading process, the temperature is kept constant as the model is essentially an isothermal model. Numerical simulation is performed considering two different temperatures to demonstrate the effect of temperature on the hysteretic loop.

  9. Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes

    International Nuclear Information System (INIS)

    Kim, Jun Hyoung; Kim, Cheol

    2010-01-01

    Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape (10 .deg. for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed

  10. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping

    International Nuclear Information System (INIS)

    Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J

    2003-01-01

    Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies

  11. Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

    Science.gov (United States)

    Sen Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.

  12. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation.

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-02-18

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.

  13. Shape Optimization of Bone-Bonding Subperiosteal Devices with Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Takeshi Ogasawara

    2017-01-01

    Full Text Available Subperiosteal bone-bonding devices have been proposed for less invasive treatments in orthodontics. The device is osseointegrated onto a bone surface without fixation screws and is expected to rapidly attain a bone-bonding strength that successfully meets clinical performance. Hence, the device’s optimum shape for rapid and strong bone bonding was examined in this study by finite element analyses. First, a stress analysis was performed for a circular rod device with an orthodontic force parallel to the bone surface, and the estimate of the bone-bonding strength based on the bone fracture criterion was verified with the results of an animal experiment. In total, four cross-sectional rod geometries were investigated: circular (Cr, elliptical (El, semicircular (Sc, and rectangular (Rc. By changing the height of the newly formed bone to mimic the progression of new bone formation, the estimation of the bone-bonding strength was repeated for each geometry. The rod with the Rc cross section exhibited the best performance, followed by those with the Sc, El, and Cr cross sections, from the aspects of the rapid acquisition of strength and the strength itself. Thus, the rectangular cross section is the best for rod-like subperiosteal devices for rapid bone bonding.

  14. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    International Nuclear Information System (INIS)

    Zafar, Adeel; Andrawes, Bassem

    2012-01-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA–FRP composite, which is sought in this research as reinforcing bars. SMA–FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA–FRP and glass–FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA–FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones. (paper)

  15. Correction for hole trapping in AGATA detectors using pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette Cedex (France); Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Birkenbach, B.; Eberth, J.; Hess, H.; Pascovici, Gh.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Bazzacco, D.; Farnea, E.; Michelagnoli, C.; Recchia, F. [INFN, Sezione di Padova, Padova (Italy); Collaboration: for the AGATA Collaboration

    2013-05-15

    Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects. (orig.)

  16. Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2003-01-01

    A liquid bridge consists of a mass of liquid sustained by the action of capillary forces between two parallel disks. The dynamics of these liquid columns has been extensively analysed both theoretically and experimentally over the last decades. Many of the studies have focused on the dynamical response of cylindrical liquid bridges subjected to the action of an oscillatory microgravity field due to, for instance, an in-phase vibration of the supporting disks. There have been fewer studies dealing with the vibration of axisymmetric liquid bridges of arbitrary shape. In this paper the dynamics of rotating inviscid axisymmetric liquid bridges is analysed considering the combined effect of residual gravity, the inequality of the disks and the liquid bridge volume. The results are calculated numerically by using the one-dimensional Cosserat model and the full three-dimensional description. The excitation is assumed to be of small amplitude and harmonic, so that the theoretical models are linearized and the analysis is performed in the frequency domain. The details of the numerical methods proposed are discussed. Comparison between the values of the first resonance frequency obtained from both models shows an excellent agreement for long liquid bridges, the discrepancies increasing as the value of the slenderness decreases. (orig.)

  17. Optimization of the integration time of pulse shape analysis for dual-layer GSO detector with different amount of Ce

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi

    2008-01-01

    For a multi-layer depth-of-interaction (DOI) detector using different decay times, pulse shape analysis based on two different integration times is often used to distinguish scintillators in DOI direction. This method measures a partial integration and a full integration, and calculates the ratio of these two to obtain the pulse shape distribution. The full integration time is usually set to integrate full width of the scintillation pulse. However, the optimum partial integration time is not obvious for obtaining the best separation of the pulse shape distribution. To make it clear, a theoretical analysis and experiments were conducted for pulse shape analysis by changing the partial integration time using a scintillation detector of GSOs with different amount of Ce. A scintillation detector with 1-in. round photomultiplier tube (PMT) optically coupled GSO of 1.5 mol% (decay time: 35 ns) and that of 0.5 mol% (decay time: 60 ns) was used for the experiments. The signal from PMT was digitally integrated with partial (50-150 ns) and full (160 ns) integration times and ratio of these two was calculated to obtain the pulse shape distribution. In the theoretical analysis, partial integration time of 50 ns showed largest distance between two peaks of the pulse shape distribution. In the experiments, it showed maximum at 70-80 ns of partial integration time. The peak to valley ratio showed the maximum at 120-130 ns. Because the separation of two peaks is determined by the peak to valley ratio, we conclude the optimum partial integration time for these combinations of GSOs is around 120-130 ns, relatively longer than the expected value

  18. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    Science.gov (United States)

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  19. Parametric analysis of a solar still with inverted V-shaped glass condenser

    Directory of Open Access Journals (Sweden)

    Rubio Eduardo

    2015-01-01

    Full Text Available A parametric analysis of a solar still with an inverted V-shaped glass condenser is presented. Results are based on a new mathematical model obtained from a lumped-parameter analysis of the still, with an approach that makes each glass plate of the condensing system sensitive to orientation and depicts its thermal differences. Numerical computations are made to evaluate productivity and temperature differences between the condensing plates as a function of condenser orientation, extinction coefficient and thickness. From this study it was found a significant influence of incident solar radiation on the thermal performance of each condensing plate. Large extinction coefficients and thick glass plates increase absorption losses that result in an appreciable temperature difference. An extinction coefficient of 40 m-1 produces a temperature difference of 2.5°C between both condensers. A glass thickness of 10 mm may increase this temperature difference up to 3.5°C. With respect to the production, due to the still orientation, a difference of 8.7% was found for the condensing plates facing an east-west direction. The proposed model is able to reproduce the temperature and distillate production differences that arise between both condensers in good agreement with experimental data. The overall performance of the still, studied with this new approach, was also in accordance with the widely used traditional models for solar distillation. In addition, the condensing plates parameters of the still can be used to force a differential heating such that for the whole day the temperature of one condensing plate is always higher.

  20. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    Science.gov (United States)

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  1. Describing shell shape variations and sexual dimorphism of Golden Apple Snail, Pomacea caniculata (Lamarck, 1822 using geometric morphometric analysis

    Directory of Open Access Journals (Sweden)

    C.C. Cabuga

    2017-09-01

    Full Text Available Pomacea caniculata or Golden Apple Snail (GAS existed to be a rice pest in the Philippines and in Asia. Likewise, geographic location also contributes its increasing populations thus making it invasive among freshwater habitats and rice field areas. This study was conducted in order to describe shell shape variations and sexual dimorphism among the populations of P. caniculata. A total of 180 were randomly collected in the three lakes of Esperanza, Agusan del Sur (Lake Dakong Napo, Lake Oro, and Lake Cebulan, of which each lake comprised of 60 samples (30 males and 30 females. To determine the variations and sexual dimorphism in the shell shape of golden apple snail, coordinates was administered to relative warp analysis and the resulting data were subjected to Multivariate Analysis of Variance (MANOVA, Principal Component Analysis (PCA and Canonical Variate Analysis (CVA. The results show statistically significant (P<0.05 from the appended male and female dorsal and ventral/apertural portion. While male and female spire height, body size, and shell shape opening also shows significant variations. These phenotypic distinctions could be associated with geographic isolation, predation and nutrient component of the gastropods. Thus, the importance of using geometric morphometric advances in describing sexual dimorphism in the shell shape of P. caniculata.

  2. Numerical analysis of the performance of a venturi-shaped roof for natural ventilation : influence of building width

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.; Aanen, L.; Bronsema, B.

    2012-01-01

    A numerical analysis with Computational Fluid Dynamics (CFD) is performed to investigate the influence of building width on the performance of a venturi-shaped roof (called Ventec roof) for natural ventilation. The specific roof configuration is intended to create an underpressure in the narrowest

  3. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    Science.gov (United States)

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of

  4. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    International Nuclear Information System (INIS)

    Sanyal, Apratim; Basu, Saptarshi; Kumar, Ranganathan

    2014-01-01

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  5. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Apratim [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Basu, Saptarshi, E-mail: sbasu@mecheng.iisc.ernet.in [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2014-01-24

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  6. On the shape optimization of flapping wings and their performance analysis

    KAUST Repository

    Ghommem, Mehdi; Collier, Nathan; Niemi, Antti H.; Calo, Victor M.

    2014-01-01

    procedure and provide the first methodology to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency

  7. 3D active shape and appearance models in cardiac image analysis

    NARCIS (Netherlands)

    Lelieveldt, B.P.F.; Frangi, A.F.; Mitchell, S.C.; Assen, van H.C.; Ordás, S.; Reiber, J.H.C.; Sonka, M.; Paragios, N.; Chen, Y.; Faugeras, O.

    2006-01-01

    This chapter introduces statistical shape- and appearance models and their biomedical applications. Three- and four-dimensional extension of these models are the main focus. Approaches leading to automated landmark definition are introduced and discussed. The applicability is underlined by

  8. Structural Damage Localization by Outlier Analysis of Signal-processed Mode Shapes

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    Contrary to global modal parameters such as eigenfrequencies, mode shapes inherently provide structural information on a local level. Therefore, this particular modal parameter and its derivatives are utilized extensively for damage identification. Typically, more or less advanced mathematical...

  9. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S. A. Filatau

    2014-01-01

    Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

  10. Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.

    2014-05-01

    Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future

  11. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  12. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Science.gov (United States)

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Facial orientation and facial shape in extant great apes: a geometric morphometric analysis of covariation.

    Science.gov (United States)

    Neaux, Dimitri; Guy, Franck; Gilissen, Emmanuel; Coudyzer, Walter; Vignaud, Patrick; Ducrocq, Stéphane

    2013-01-01

    The organization of the bony face is complex, its morphology being influenced in part by the rest of the cranium. Characterizing the facial morphological variation and craniofacial covariation patterns in extant hominids is fundamental to the understanding of their evolutionary history. Numerous studies on hominid facial shape have proposed hypotheses concerning the relationship between the anterior facial shape, facial block orientation and basicranial flexion. In this study we test these hypotheses in a sample of adult specimens belonging to three extant hominid genera (Homo, Pan and Gorilla). Intraspecific variation and covariation patterns are analyzed using geometric morphometric methods and multivariate statistics, such as partial least squared on three-dimensional landmarks coordinates. Our results indicate significant intraspecific covariation between facial shape, facial block orientation and basicranial flexion. Hominids share similar characteristics in the relationship between anterior facial shape and facial block orientation. Modern humans exhibit a specific pattern in the covariation between anterior facial shape and basicranial flexion. This peculiar feature underscores the role of modern humans' highly-flexed basicranium in the overall integration of the cranium. Furthermore, our results are consistent with the hypothesis of a relationship between the reduction of the value of the cranial base angle and a downward rotation of the facial block in modern humans, and to a lesser extent in chimpanzees.

  14. Experimental and simulation optimization analysis of the Whipple shields against shaped charge

    Science.gov (United States)

    Hussain, G.; Hameed, A.; Horsfall, I.; Barton, P.; Malik, A. Q.

    2012-06-01

    Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile energy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Simulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Experiments also support this evidence.

  15. Analysis of full and cross-shaped boss membranes with piezoresistors in transversal strain configuration

    International Nuclear Information System (INIS)

    Tibrewala, A; Phataralaoha, A; Büttgenbach, S

    2008-01-01

    A 3D force sensor is developed using bulk silicon micromachining for measuring force in the sub-μN range. It is intended for use in high precision coordinate measuring machines. Full and cross-shaped boss membranes are fabricated, where the total chip size is 6.5 × 6.5 mm 2 . The full membrane is 3000 × 3000 µm 2 and the beams of the cross-shaped membrane are 900 × 700 µm 2 with 16 p-diffused piezoresistors in transversal strain configuration. The strains detected by the piezoresistors are measures of the three orthogonal components of the force applied at the tip of the stylus, which is glued on the center of the boss. When a vertical load is applied to the stylus, higher sensitivity is obtained for the cross-shaped membrane than for the full membrane

  16. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, M. E-mail: matsukaw@naka.jaeri.go.jp; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T

    2003-09-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control.

  17. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    International Nuclear Information System (INIS)

    Matsukawa, M.; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T.

    2003-01-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control

  18. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  19. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    International Nuclear Information System (INIS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-01-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ"2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  20. Posterior column acetabular fracture fixation using a W-shaped angular plate: A biomechanical analysis.

    Directory of Open Access Journals (Sweden)

    Ke Su

    Full Text Available The purpose of this study was to compare the stability and feasibility of four fixation constructs in a posterior column acetabular fracture: one reconstruction plate, one reconstruction plate and lag screw, two reconstruction plates, and a W-shaped acetabular angular plate.Twenty embalmed cadaveric pelvises with a posterior column acetabular fractures were allocated to one of four groups: 1 a reconstruction plate, 2 a reconstruction plate with a posterior column lag screw, 3 double reconstruction plates, and 4 a W-shaped acetabular angular plate. These constructs were mechanically loaded on a testing machine, and construct stiffness values were measured. Strain gauges were utilized to measure the mechanical behavior in the condition of compressive force.Final stiffness was not different between the two reconstruction plates (445.81±98.30 N/mm and the W-shaped acetabular angular plate (447.43±98.45 N/mm, p = 0.524, both of which were superior to a single reconstruction plate (248.90±61.95 N/mm and a combined plate and lag screw (326.41±94.34 N/mm. Following the fixation of the W-shaped acetabular angular plate, the strain distribution was similar to the intact condition around the acetabulum. The parameters of the W-shaped acetabular angular plate that were observed at the superior region of the acetabulum were less than those of a single reconstruction plate (p<0.05, a single reconstruction plate with lag screw (p<0.05, and two reconstruction plates (p<0.05.The novel W-shaped acetabular angular plate fixation technique was able to provide the biomechanically stiffest construct for stabilization of a posterior column acetabular fracture; it also resulted in a partial restoration of joint loading parameters toward the intact state.

  1. Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards.

    Science.gov (United States)

    Fabre, Anne-Claire; Cornette, Raphäel; Huyghe, Katleen; Andrade, Denis V; Herrel, Anthony

    2014-09-01

    Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. © 2014 Wiley Periodicals, Inc.

  2. Dynamic modeling and dynamical analysis of pump-turbines in S-shaped regions during runaway operation

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu; Lee, Jae-Myung; Jung, Kwang-Hyo

    2017-01-01

    Highlights: • Novel dynamic model of a pump-turbine in S-shaped regions is proposed. • A stability criterion of runaway point is given. • Global dynamic characteristics of the pump-turbine are investigated. • Effects of the slopes of the characteristic curve on the stability are studied. - Abstract: There is a region of pump-turbine operation, often called the S-shaped region, in which one unit rotational speed corresponds to three unit flows or torques. In this paper, the dynamic model of the pump-turbine in S-shaped regions is established by introducing the nonlinear piecewise function of relative parameters. Then, the global bifurcation diagrams of the pump-turbine are presented to analyze its dynamic characteristics in the S-shaped regions. Meanwhile, a stability criterion of runaway point is given based on the established theoretical model. The numerical experiments are conducted on the model and the results are in good agreement with the theoretical analysis. Furthermore, the effects of the characteristic curve slopes on the stability of the pump-turbine are studied by an innovative use of the three-dimensional bifurcation diagrams. Finally, the factors influencing the runaway stability of pump-turbines are also discussed, based on the dynamic analysis.

  3. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.

    Science.gov (United States)

    Yates, Keegan M; Untaroiu, Costin D

    2018-04-16

    Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Crankshaft strength and rigidity analysis and application to shape optimization; Crank jiku kyodo gosei kaisekiho to keijo saitekika eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Numajiri, S [Mitsubishi Motor Corp., Tokyo (Japan); Tamura, Y [Mitsubishi Automotive Engineering Co. Ltd., Tokyo (Japan)

    1997-10-01

    A crankshaft bending stress analysis method using an elastically supported continuous beam model has been established based on the exact evaluation of the stress concentration at fillet R sections and the crankshaft rigidity. Through various examinations, it was revealed that the calculation results of the bending stress well agreed with the actual measurements. This allowed the reliability analysis and the rigidity analysis to be used to determine optimized crankshaft specifications and web shape, which in turn made it possible to apply this method to the weight reduction of a crankshaft (material removal from web). 1 ref., 7 figs., 1 tab.

  5. Fabrication and analysis of awl-shaped serpentine microsprings for large out-of-plane displacement

    International Nuclear Information System (INIS)

    Chou, Hui-Min; Chen, Rongshun; Lin, Meng-Ju

    2015-01-01

    This work investigates a novel awl-shaped serpentine microspring for a suspension structure, with a lower spring constant under the same unit layout area in out-of-plane motion. Using Castigliano’s theorem, the spring constant of the microspring was theoretically derived and simulations were performed using COMSOL Multiphysics to verify the theoretical results. The proposed awl-shaped serpentine microspring was successfully fabricated using silicon-based micromachining. Experiments were conducted to compare the theoretical and numerical results, which were in close agreement. In addition, a parameter of spring constant to layout area ratio (K/A) is defined to be used as the index for comparing spring constants under the same unit area. Accordingly, the awl-shaped serpentine microspring has a lower K/A value than the traditional serpentine microspring with the same total effective length and folds. With a greater taper angle, more folds, a smaller beam width, and lower beam thickness, the awl-shaped serpentine microspring has a smaller K/A value. Using the proposed mathematical model, the spring constants of microsprings of various sizes and geometric structures can be calculated in out-of-plane motion before the microstructure is fabricated. Thus, it saves time when designing a microspring with a proper spring constant. (paper)

  6. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    NARCIS (Netherlands)

    Ried, Janina S; Jeff M, Janina; Bragg-Gresham, Jennifer L; van Dongen, Jenny; Huffman, Jennifer E; Ahluwalia, Tarunveer S; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L; Jackson, Anne U; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L; Nolte, Ilja M; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M; Salvi, Erika; Smith, Megan T; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W; Wang, Sophie R; Wild, Sarah H; Willems, Sara M; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J L; Barlassina, Cristina; Bartz, Traci M; Beilby, John; Bellis, Claire; Bergman, Richard N; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L; Bornstein, Stefan R; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W K; Chines, Peter S; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J C; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M; Kinnunen, Leena; Knekt, Paul B; Koistinen, Heikki A; Kolcic, Ivana; Kooner, Ishminder K; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M; Lichtner, Peter; Lindgren, Cecilia M; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L; Mcknight, Barbara; Mohlke, Karen L; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E; Morris, Andrew P; Müller, Gabriele; Musk, Arthur W; Narisu, Narisu; Ong, Ken K; Oostra, Ben A; Osmond, Clive; Palotie, Aarno; Pankow, James S; Paternoster, Lavinia; Penninx, Brenda W; Pichler, Irene; Pilia, Maria G; Polašek, Ozren; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rayner, Nigel W; Ribel-Madsen, Rasmus; Rice, Treva K; Richards, Marcus; Ridker, Paul M; Rivadeneira, Fernando; Ryan, Kathy A; Sanna, Serena; Sarzynski, Mark A; Scholtens, Salome; Scott, Robert A; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P; Strauch, Konstantin; Stringham, Heather M; Swertz, Morris A; Swift, Amy J; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W; Wright, Alan F; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Carola Zillikens, M; Boomsma, Dorret I; Bouchard, Claude; Chambers, John C; Chasman, Daniel I; Cusi, Daniele; Gansevoort, Ron T; Gieger, Christian; Hansen, Torben; Hicks, Andrew A; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Palmer, Lyle J; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E H; Shudiner, Alan R; Smit, Jan H; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J; Watkins, Hugh; Wilson, James F; Zeggini, Eleftheria; Abecasis, Goncalo R; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; van Duijn, Cornelia M; Fox, Caroline; Groop, Leif C; Heid, Iris M; Hunter, David J; Kaplan, Robert C; McCarthy, Mark I; North, Kari E; O'Connell, Jeffrey R; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P; Frayling, Timothy; Hirschhorn, Joel N; Müller-Nurasyid, Martina; Loos, Ruth J F

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates

  7. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    DEFF Research Database (Denmark)

    Ried, Janina S; Jeff M, Janina; Chu, Audrey Y

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculate...

  8. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    NARCIS (Netherlands)

    J.S. Ried (Janina); J. Jeff (Janina); A.Y. Chu (Audrey Y); Bragg-Gresham, J.L. (Jennifer L.); J. van Dongen (Jenny); J.E. Huffman (Jennifer); T.S. Ahluwalia (Tarunveer Singh); G. Cadby (Gemma); N. Eklund (Niina); J. Eriksson (Joel); T. Esko (Tõnu); M.F. Feitosa (Mary Furlan); A. Goel (Anuj); M. Gorski (Mathias); C. Hayward (Caroline); N.L. Heard-Costa (Nancy); A.U. Jackson (Anne); Jokinen, E. (Eero); S. Kanoni (Stavroula); K. Kristiansson (Kati); Z. Kutalik (Zoltán); J. Lahti (Jari); J. Luan (Jian'An); R. Mägi (Reedik); A. Mahajan (Anubha); M. Mangino (Massimo); M.C. Medina-Gomez (Carolina); K.L. Monda (Keri); I.M. Nolte (Ilja); L. Perusse (Louis); I. Prokopenko (Inga); Qi, L. (Lu); L.M. Rose (Lynda); Salvi, E. (Erika); Smith, M.T. (Megan T.); H. Snieder (Harold); Standáková, A. (Alena); Ju Sung, Y. (Yun); I. Tachmazidou (Ioanna); A. Teumer (Alexander); G. Thorleifsson (Gudmar); P. van der Harst (Pim); Walker, R.W. (Ryan W.); S.R. Wang (Sophie); S.H. Wild (Sarah); S.M. Willems (Sara); A. Wong (Andrew); W. Zhang (Weihua); E. Albrecht (Eva); A. Couto-Alves (Alexessander); S.J.L. Bakker (Stephan); Barlassina, C. (Cristina); T.M. Bartz (Traci M.); J.P. Beilby (John); C. Bellis (Claire); Bergman, R.N. (Richard N.); S.M. Bergmann (Sven); J. Blangero (John); M. Blüher (Matthias); E.A. Boerwinkle (Eric); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan R.); M. Bruinenberg (M.); H. Campbell (Harry); Y.-D.I. Chen (Yii-Der Ida); Chiang, C.W.K. (Charleston W. K.); P.S. Chines (Peter); F.S. Collins (Francis); Cucca, F. (Fracensco); L.A. Cupples (Adrienne); D'avila, F. (Francesca); E.J.C. de Geus (Eco); G.V. Dedoussis (George); M. Dimitriou (Maria); A. Döring (Angela); K. Hagen (Knut); A.-E. Farmaki (Aliki-Eleni); M. Farrall (Martin); T. Ferreira (Teresa); K. Fischer (Krista); N.G. Forouhi (Nita); N. Friedrich (Nele); A.P. Gjesing (Anette); N. Glorioso (Nicola); M.J. Graff (Maud J.L.); H. Grallert (Harald); N. Grarup (Niels); J. Gräßler (Jürgen); J. Grewal (Jagvir); A. Hamsten (Anders); Harder, M.N. (Marie Neergaard); Hartman, C.A. (Catharina A.); Hassinen, M. (Maija); N. Hastie (Nick); A.T. Hattersley (Andrew); A.S. Havulinna (Aki); M. Heliovaara (Markku); H.L. Hillege (Hans); A. Hofman (Albert); O.L. Holmen (Oddgeir); G. Homuth (Georg); J.J. Hottenga (Jouke Jan); J. Hui (Jennie); L.L.N. Husemoen (Lise Lotte); P.G. Hysi (Pirro); A.J. Isaacs (Aaron); T. Ittermann (Till); S. Jalilzadeh (Shapour); A. James (Alan); T. Jorgensen (Torben); P. Jousilahti (Pekka); A. Jula (Antti); Marie Justesen, J. (Johanne); A.E. Justice (Anne); M. Kähönen (Mika); M. Karaleftheri (Maria); Tee Khaw, K. (Kay); S. Keinanen-Kiukaanniemi (Sirkka); L. Kinnunen (Leena); P. Knekt; H. Koistinen (Heikki); I. Kolcic (Ivana); I.K. Kooner (Ishminder K.); S. Koskinen (Seppo); P. Kovacs (Peter); T. Kyriakou (Theodosios); Laitinen, T. (Tomi); C. Langenberg (Claudia); A. Lewin (Alex); P. Lichtner (Peter); C.M. Lindgren (Cecilia); J. Lindström (Jaana); A. Linneberg (Allan); R. Lorbeer (Roberto); M. Lorentzon (Mattias); R.N. Luben (Robert); V. Lyssenko (Valeriya); S. Männistö (Satu); P. Manunta (Paolo); I.M. Leach (Irene Mateo); W.L. McArdle (Wendy); Mcknight, B. (Barbara); K.L. Mohlke (Karen); E. Mihailov (Evelin); L. Milani (Lili); R. Mills (Rebecca); M.E. Montasser (May E.); A.P. Morris (Andrew); G. Müller (Gabriele); Musk, A.W. (Arthur W.); N. Narisu (Narisu); K.K. Ong (Ken K.); B.A. Oostra (Ben); C. Osmond (Clive); A. Palotie (Aarno); J.S. Pankow (James); L. Paternoster (Lavinia); B.W.J.H. Penninx (Brenda); I. Pichler (Irene); M.G. Pilia (Maria Grazia); O. Polasek (Ozren); P.P. Pramstaller (Peter Paul); O.T. Raitakari (Olli T.); T. Rankinen (Tuomo); Rao, D.C.; N.W. Rayner (Nigel William); Ribel-Madsen, R. (Rasmus); Rice, T.K. (Treva K.); Richards, M. (Marcus); P.M. Ridker (Paul); F. Rivadeneira Ramirez (Fernando); Ryan, K.A. (Kathy A.); S. Sanna (Serena); M.A. Sarzynski (Mark A.); S. Scholtens (Salome); R.A. Scott (Robert); S. Sebert (Sylvain); L. Southam (Lorraine); T. Sparsø (Thomas); V. Steinthorsdottir (Valgerdur); K. Stirrups (Kathy); R.P. Stolk (Ronald); K. Strauch (Konstantin); H.M. Stringham (Heather); M. Swertz (Morris); A.J. Swift (Amy); A. Tönjes (Anke); E. Tsafantakis (Emmanouil); P.J. van der Most (Peter); J.V. van Vliet-Ostaptchouk (Jana); L. Vandenput (Liesbeth); Vartiainen, E. (Erkki); C. Venturini (Cristina); N. Verweij (Niek); J. Viikari (Jorma); Vitart, V. (Veronique); M.-C. Vohl (Marie-Claude); J.M. Vonk (Judith); G. Waeber (Gérard); E. Widen (Elisabeth); G.A.H.M. Willemsen (Gonneke); T. Wilsgaard (Tom); T.W. Winkler (Thomas W.); A.F. Wright (Alan); L.M. Yerges-Armstrong (Laura); Zhao, J.H. (Jing Hua); M.C. Zillikens (Carola); D.I. Boomsma (Dorret); C. Bouchard (Claude); J.C. Chambers (John); D.I. Chasman (Daniel); D. Cusi (Daniele); R.T. Gansevoort (Ron); C. Gieger (Christian); T. Hansen (T.); A.A. Hicks (Andrew); Hu, F. (Frank); K. Hveem (Kristian); M.-R. Jarvelin (Marjo-Riitta); E. Kajantie (Eero); J.S. Kooner (Jaspal S.); D. Kuh (Diana); J. Kuusisto (Johanna); M. Laakso (Markku); T.A. Lakka (Timo); T. Lehtimäki (Terho); A. Metspalu (Andres); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); Palmer, L.J. (Lyle J.); O. Pedersen (Oluf); M. Perola (Markus); A. Peters (Annette); B.M. Psaty (Bruce); Puolijoki, H. (Hannu); R. Rauramaa (Rainer); I. Rudan (Igor); V. Salomaa (Veikko); P.E.H. Schwarz (Peter); Shudiner, A.R. (Alan R.); J.H. Smit (Jan); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); J-A. Zwart (John-Anker); M. Stumvoll (Michael); Tremblay, A. (Angelo); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); Uusitupa, M. (Matti); U. Völker (Uwe); P. Vollenweider (Peter); N.J. Wareham (Nick); H. Watkins (Hugh); J.F. Wilson (James); E. Zeggini (Eleftheria); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C.M. van Duijn (Cornelia); C.S. Fox (Caroline); L. Groop (Leif); I.M. Heid (Iris); Hunter, D.J. (David J.); R.C. Kaplan (Robert); M.I. McCarthy (Mark); K.E. North (Kari); J.R. O´Connell; Schlessinger, D. (David); U. Thorsteinsdottir (Unnur); D.P. Strachan (David); T.M. Frayling (Timothy); J.N. Hirschhorn (Joel); M. Müller-Nurasyid (Martina); R.J.F. Loos (Ruth)

    2016-01-01

    textabstractLarge consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that

  9. Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes

    KAUST Repository

    Zhong, Hua; Wang, Xiaoping; Salama, Amgad; Sun, Shuyu

    2014-01-01

    We investigate the two-phase flow in a horizontally placed Y-shaped tube with different Young's angle and width in each branch. By using a quasistatic approach, we can determine the specific contact position and the equilibrium contact angle

  10. 3-D shape analysis of palatal surface in patients with unilateral complete cleft lip and palate

    Czech Academy of Sciences Publication Activity Database

    Rusková, H.; Bejdová, Š.; Peterka, Miroslav; Krajíček, V.; Velemínská, J.

    2014-01-01

    Roč. 42, č. 5 (2014), e140-e147 ISSN 1010-5182 Grant - others:GA UK(CZ) 309611 Institutional support: RVO:68378041 Keywords : unilateral cleft of lip and palate * palate shape * surface scanning Subject RIV: FF - HEENT, Dentistry Impact factor: 2.933, year: 2014

  11. Strategies to promote healthier eating at worksites -analysis of experiences from a social shaping perspective

    DEFF Research Database (Denmark)

    Thorsen, Anne Vibeke; Jørgensen, Michael Søgaard; Lassen, Anne Dahl

    2005-01-01

    There is a strong need for strategies that can help promote healthy eating. The paper explores the shaping of initiatives aimed at promoting and implementing healthy eating in a worksite catering setting by analysing the sustainability of the intervention of healthier eating in a canteen model...

  12. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan

    2009-01-01

    Roč. 60, č. 2 (2009), s. 185-212 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009

  13. Spinal shape analysis in 1,020 healthy young adults aged from 19 to 30 years

    Directory of Open Access Journals (Sweden)

    Jakub Krejčí

    2016-03-01

    Full Text Available Background: A number of studies on diseased spine have been published; however, there is a relative paucity of studies investigating spine shape characteristics in healthy populations. Such characteristics are needed for diagnostics of spine disorders and assessment of changes in the spinal shape that may have been caused by influence of the modern life style or intensive sport activity. Objective: The aim of the study was to determine characteristics of the spine shape in a large sample of healthy young adults. Methods: Population cross-sectional study. A non-radiographic surface method (system DTP-3 was used for the assessment of spine shape in the sagittal and frontal planes. A total of 1,020 participants (440 men, 580 women took part in the study, their mean (± SD age was 21.8 ± 1.9 years (range 19.1-29.7 for men and 21.9 ± 1.8 years (range 19.3-29.7 for women. All data were checked for normality and are presented as means, standard deviations, ranges, skewness, and kurtosis. Differences between the sexes were assessed with the two-sample t-test. Results: The average sagittal spinal shape was C3 - 12.9° - C7 - 43.0° - T10 - 27.1° - L5 for men and C3 - 12.1° - C6 - 44.5° - T11 - 34.1° - L5 for women. Men showed a significantly smaller thoracic kyphosis and lumbar lordosis curvatures than women. The average curvature due to the lateral deviation in the frontal plane was 6.1° for both sexes, the curvature was larger than 10° in 9.1% of men and 8.8% of women. We found left lateral deviation in 72.5% of men and in 63.6% of women. Conclusions: The study provides characteristics of the spine shape in a large sample of healthy young adults. Such characteristics should be part and parcel of determining the cut-off level for physiological spinal shape. Based on the results of the study, we suggest a lateral deviation of 10° as the maximum for a curvature to be still considered non-pathological.

  14. Analysis of Stress and Strain Fields in and around Inclusions of Various Shapes in a Cylindrical Specimen Loaded in Tension

    Directory of Open Access Journals (Sweden)

    Neimitz A.

    2016-06-01

    Full Text Available A numerical analysis is performed of the stress field in and around inclusions of various shapes. Inclusions both stiffer and more compliant than the metal matrix are analysed. The critical stresses required for inclusion fracture are estimated after observation of cavities and inclusions by scanning electron microscopy. Real inclusions were observed after performing uniaxial loading to different amounts of overall strain. The material tested was Hardox-400 steel.

  15. Line width and line shape analysis in the inductively coupled plasma by high resolution Fourier transform spectrometry

    International Nuclear Information System (INIS)

    Faires, L.M.; Palmer, B.A.; Brault, J.W.

    1984-01-01

    High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300 0 K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700 0 K. 31 references

  16. Maternal environment and craniofacial growth: geometric morphometric analysis of mandibular shape changes with in utero thyroxine overexposure in mice.

    Science.gov (United States)

    Kesterke, Matthew J; Judd, Margaret A; Mooney, Mark P; Siegel, Michael I; Elsalanty, Mohammed; Howie, R Nicole; Weinberg, Seth M; Cray, James J

    2018-07-01

    An estimated 3% of US pregnancies are affected by maternal thyroid dysfunction, with between one and three of every 1000 pregnancies being complicated by overactive maternal thyroid levels. Excess thyroid hormones are linked to neurological impairment and excessive craniofacial variation, affecting both endochondral and intramembranous bone. Using a geometric morphometric approach, this study evaluates the role of in utero thyroxine overexposure on the growth of offspring mandibles in a sample of 241 mice. Canonical variate analysis utilized 16 unilateral mandibular landmarks obtained from 3D micro-computed tomography to assess shape changes between unexposed controls (n = 63) and exposed mice (n = 178). By evaluating shape changes in the mandible among three age groups (15, 20 and 25 days postnatal) and different dosage levels (low, medium and high), this study found that excess maternal thyroxine alters offspring mandibular shape in both age- and dosage-dependent manners. Group differences in overall shape were significant (P < 0.001), and showed major changes in regions of the mandible associated with muscle attachment (coronoid process, gonial angle) and regions of growth largely governed by articulation with the cranial base (condyle) and occlusion (alveolus). These results compliment recent studies demonstrating that maternal thyroxine levels can alter the cranial base and cranial vault of offspring, contributing to a better understanding of both normal and abnormal mandibular development, as well as the medical implications of craniofacial growth and development. © 2018 Anatomical Society.

  17. Sensitivity analysis of the Galerkin finite element method neutron diffusion solver to the shape of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-02-15

    The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

  18. Analysis spectral shapes from California and central United States ground motion

    International Nuclear Information System (INIS)

    1994-01-01

    The objective of this study is to analyze the spectral shapes from earthquake records with magnitudes and distances comparable to those that dominate seismic hazard at Oak Ridge, in order to provide guidance for the selection of site-specific design-spectrum shapes for use in Oak Ridge. The authors rely heavily on California records because the number of relevant records from the central and eastern United States (CEUS) is not large enough for drawing statistically significant conclusions. They focus on the 0.5 to 10-Hz frequency range for two reasons: (1) this is the frequency range of most engineering interest, and (2) they avoid the effect of well-known differences in the high-frequency energy content between California and CEUS ground motions

  19. The social shaping of the participation of employees in entreprises' environmental work - analysis and possible measures

    DEFF Research Database (Denmark)

    Forman, Marianne; Jørgensen, Michael Søgaard

    The paper deals with the shaping of the participation of employees in enterprises' environmental work. The paper is based on two case studies on Danish enterprises, which, as part of the development of their environ-mental work, emphazised employee involvement. The cases show that it is difficult...... to maintain the participation of employees in environmental work, even in enterprises with an intention to do so. The cases contribute to the identification of those situations, during the shaping of enterprises' environmental work, where choices concerning employee participation are made: 1) The need...... of management to involve employees in the environ-mental work ; 2) The competence building among employees and local supervisors; and 3) The stabilization of the environmental work into routines and structures. The theoretical approach draws on organizational theory emphasizing the connection between...

  20. Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Sael, Lee; Kihara, Daisuke

    2009-01-01

    With structure databases expanding at a rapid rate, the task at hand is to provide reliable clues to their molecular function and to be able to do so on a large scale. This, however, requires suitable encodings of the molecular structure which are amenable to fast screening. To this end, moment-based representations provide a compact and nonredundant description of molecular shape and other associated properties. In this article, we present an overview of some commonly used representations with specific focus on two schemes namely spherical harmonics and their extension, the 3D Zernike descriptors. Key features and differences of the two are reviewed and selected applications are highlighted. We further discuss recent advances covering aspects of shape and property-based comparison at both global and local levels and demonstrate their applicability through some of our studies.

  1. A microscopically motivated constitutive model for shape memory alloys: Formulation, analysis and computations

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Benešová, B.; Sedlák, P.

    2016-01-01

    Roč. 21, č. 3 (2016), s. 358-382 ISSN 1081-2865 R&D Projects: GA ČR GA13-13616S; GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : shape memory alloys * constitutive model * generalized standard materials * dissipation * energetic solution Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://mms.sagepub.com/content/21/3/358

  2. Analysis of contact pressure between the parts of total hip joint endoprosthesis with shape deviations

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Návrat, Tomáš; Hlavoň, Pavel; Koukal, M.; Houfek, Martin

    2007-01-01

    Roč. 40, č. 2 (2007), S558-S558 ISSN 0021-9290. [ISB 2007. Taipei, 01.07.2007-05.07.2007] R&D Projects: GA ČR GA101/05/0136 Institutional research plan: CEZ:AV0Z20760514 Keywords : shape deviation * hip joint endoprosthesis * contact areas Subject RIV: BO - Biophysics Impact factor: 2.897, year: 2007

  3. Analysis of shape isomer yields of Pu in the framework of dynamical ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 78, No. 2 ... Abstract. Data on shape isomer yield for α+235U reaction at Elab α. = 20–29 MeV are ... a fissionable nucleus via different channels can be calculated using a standard Monte ... the liquid drop potential energy Vld(r, J) of a rotating nucleus with an angular momentum. J and the ...

  4. Shape optimization for Navier-Stokes equations with algebraic turbulence model : numerical analysis and computation

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Stebel, Jan

    2011-01-01

    Roč. 63, č. 2 (2011), s. 277-308 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2011 http://link.springer.com/article/10.1007%2Fs00245-010-9121-x

  5. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Science.gov (United States)

    Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der

    2018-04-01

    Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).

  6. Optimization and analysis of shape of coaxial electrode for microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi

    2010-01-01

    The effect of the shape of the electrode to generate 2.45 GHz microwave plasma in pure water is examined. Three variations of a common coaxial electrode are proposed, and compared according to the power required for plasma ignition and the position of plasma ignition in pure water at 6 kPa using a high-speed camera. These coaxial electrodes are calculated using three-dimensional finite-difference time-domain method calculations. The superior shape of coaxial electrode is found to be one with a flat plane on the tip of the inner electrode and dielectric substance located below the tip of the outer electrode. The position of the plasma ignition is related to the shape of the coaxial electrode. By solving the heat-conduction equation of water around the coaxial electrode taking into account the absorption of the microwave energy, the position of the plasma ignition is found to be not where electric field is the largest, but rather where temperature is maximized.

  7. Pulse shape analysis of enriched BEGe detectors in vacuum cryostat and liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. Germanium diodes of BEGe type (Canberra, Belgium) made from isotopically modified material have been procured for Phase II of Gerda. They will improve the sensitivity of the experiment by additional target mass, improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. The PSD efficiencies of the new enriched BEGe detectors were studied in vacuum cryostats as part of the characterization campaign at the HADES underground laboratory. For a deeper understanding of the pulse shape performance of the enriched BEGe detectors, detailed {sup 241}Am surface scans were performed. Unexpectedly high position-dependence of the pulse shape parameter Amplitude-over-Energy was found for some of the detectors. With further investigation this effect was traced to surface charge effects specific to the operational configuration of the detectors inside the vacuum cryostats. The standard behavior is restored when they are operated in liquid argon in the configuration intended for Gerda Phase II. Finally, five of the enriched BEGe diodes were installed in the Gerda liquid argon cryostat prior to the full upgrade. They show a good performance and are able to reject efficiently multi-site-events as well as β- and α-particles.

  8. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Science.gov (United States)

    Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822

  9. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  10. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Directory of Open Access Journals (Sweden)

    C.-C. Lin

    2018-04-01

    Full Text Available Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007. The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007.

  11. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sergiomr@usal.es; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ{sup 2} test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  12. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    Science.gov (United States)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  13. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  14. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox.

    Science.gov (United States)

    Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.

  15. Stress analysis of the conceptual design configurations of constant tension D-shaped superconducting toroidal field coils for TNS

    International Nuclear Information System (INIS)

    Fernades, R.; Smith, R.A.

    1977-01-01

    Conceptual design configurations of D-shaped toroidal field coils applicable to the TNS program are studied under the action of the toroidal field loading condition and the vertical field loading condition, but not the fault condition. Although the analysis is specific to an 8 Tesla design using a niobium titanium superconductor, the results can be extended to a coil with a different conductor material and subjected to a field of different magnitude provided the condition of linear elasticity is not violated. The analysis technique used is the finite element method, with three dimensional finite elements defined in the ANSYS computer code, and supplemented by closed form analytical solutions

  16. Shapes, Proportions, and Variations in Breast Aesthetic Ideals: The Definition of Breast Beauty, Analysis, and Surgical Practice.

    Science.gov (United States)

    Mallucci, Patrick; Branford, Olivier Alexandre

    2015-10-01

    There are few objective analyses in the plastic surgical literature to define an aesthetically pleasing template for breast shape and proportion. The authors previously identified key objective parameters that define breast aesthetic ideals in 2 studies: an observational analysis of 100 models with natural breasts, and a population analysis with 1315 respondents. From these data a simple yet reproducible formula for surgical planning in breast augmentation has been developed to consistently achieve beautiful breasts, namely the ICE principle. This article proposes that this principle be used as the basis for design in aesthetic breast surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  18. Ontogenetic scaling of caudal fin shape in Squalus acanthias (Chondrichthyes, Elasmobranchii): a geometric morphometric analysis with implications for caudal fin functional morphology.

    Science.gov (United States)

    Reiss, Katie L; Bonnan, Matthew F

    2010-07-01

    The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.

  19. Improved non-dimensional dynamic influence function method for vibration analysis of arbitrarily shaped plates with clamped edges

    Directory of Open Access Journals (Sweden)

    Sang-Wook Kang

    2016-03-01

    Full Text Available A new formulation for the non-dimensional dynamic influence function method, which was developed by the authors, is proposed to efficiently extract eigenvalues and mode shapes of clamped plates with arbitrary shapes. Compared with the finite element and boundary element methods, the non-dimensional dynamic influence function method yields highly accurate solutions in eigenvalue analysis problems of plates and membranes including acoustic cavities. However, the non-dimensional dynamic influence function method requires the uneconomic procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues because it produces a non-algebraic eigenvalue problem. This article describes a new approach that reduces the problem of free vibrations of clamped plates to an algebraic eigenvalue problem, the solution of which is straightforward. The validity and efficiency of the proposed method are illustrated through several numerical examples.

  20. High-resolution measurements and multichannel quantum defect analysis of spectral line shapes of autoionizing Rydberg series

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    1997-01-01

    Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum

  1. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    Science.gov (United States)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  2. A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors

    Science.gov (United States)

    Dill, Richard A.; Whitesides, R. Harold

    1996-01-01

    Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.

  3. Design and Analysis of a Fibre-Shaped Micro-Actuator for Robotic Gripping

    Directory of Open Access Journals (Sweden)

    Alberto Borboni

    2013-03-01

    Full Text Available A prototype of an automatic micropositioning system was developed. This prototype uses a shape memory alloy (SMA actuator, a dedicated PI controller and a piece of software to command a desired motion profile for the actuator. The proposed micropositioning system is characterized by a 4 mm stroke, a 1 μm resolution and a 70 g nominal force and can be commanded directly from a personal computer and without human retroaction. The closed loop positioning resolution (1 μm is obtained in spite of inaccurate system behaviour during its movement.

  4. Performance analysis of STT-RAM with cross shaped free layer using Heusler alloys

    Science.gov (United States)

    Bharat Kumary, Tangudu; Ghosh, Bahniman; Awadhiya, Bhaskar; Verma, Ankit Kumar

    2016-01-01

    We have investigated the performance of a spin transfer torque random access memory (STT-RAM) cell with a cross shaped Heusler compound based free layer using micromagnetic simulations. We have designed a free layer using a Cobalt based Heusler compound. Simulation results clearly show that the switching time from one state to the other state has been reduced, also it has been found that the critical switching current density (to switch the magnetization of the free layer of the STT RAM cell) is reduced.

  5. Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate-a conjugate analysis

    International Nuclear Information System (INIS)

    Dogan, M.; Sivrioglu, Mecit; Yılmaz, Onder

    2014-01-01

    Highlights: • Optimum fin shape is determined for natural convection and radiation heat transfer. • Fin array with the optimum shape has a much greater average heat transfer coefficient. • The most important factors affecting the heat transfer coefficient are determined. - Abstract: Steady state natural convection and radiation heat transfer from various shaped thin fin-arrays on a horizontal base plate has been numerically investigated. A conjugate analysis has been carried out in which the conservation equations of mass, momentum and energy for the fluid in the two fin enclosure are solved together with the heat conduction equation in the fin and the base plate. Heat transfer by radiation is also considered in analysis. The heat transfer coefficient has been determined for each of the fin array considered in the present study at the same base and the same total area. The results of the analysis show that there are some important geometrical factors affecting the design of fin arrays. Taking into consideration these factors, an optimum fin shape that yields the highest average heat transfer coefficient has been determined

  6. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2003-01-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D α line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior

  7. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. [Universite de Provence (PIIM), Centre de Saint-Jerome, 13 - Marseille (France); Capes, H.; Guirlet, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D{sub {alpha}} line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior.

  8. Numerical Analysis of the Effect of Particle Shape and Adhesion on the Segregation of Powder Mixtures

    Directory of Open Access Journals (Sweden)

    Alizadeh Behjani Mohammadreza

    2017-01-01

    Full Text Available Segregation of granules is an undesired phenomenon in which particles in a mixture separate from each other based on the differences in their physical and chemical properties. It is, therefore, crucial to control the homogeneity of the system by applying appropriate techniques. This requires a fundamental understanding of the underlying mechanisms. In this study, the effect of particle shape and cohesion has been analysed. As a model system prone to segregation, a ternary mixture of particles representing the common ingredients of home washing powders, namely, spray dried detergent powders, tetraacetylethylenediamine, and enzyme placebo (as the minor ingredient during heap formation is modelled numerically by the Discrete Element Method (DEM with an aim to investigate the effect of cohesion/adhesion of the minor components on segregation quality. Non-spherical particle shapes are created in DEM using the clumped-sphere method based on their X-ray tomograms. Experimentally, inter particle adhesion is generated by coating the minor ingredient (enzyme placebo with Polyethylene Glycol 400 (PEG 400. The JKR theory is used to model the cohesion/adhesion of coated enzyme placebo particles in the simulation. Tests are carried out experimentally and simulated numerically by mixing the placebo particles (uncoated and coated with the other ingredients and pouring them in a test box. The simulation and experimental results are compared qualitatively and quantitatively. It is found that coating the minor ingredient in the mixture reduces segregation significantly while the change in flowability of the system is negligible.

  9. Shaping markets : A neoinstitutional analysis of the emerging organizational field of renewable energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Hoeyrup Christensen, N.

    2013-02-01

    Today, China is the world leading investor in renewable energy. At the heart of this effort lies China's ability to shape markets through industrial policies. Through a neoinstitutional theoretical perspective this dissertation views China's efforts within renewable energy as the emergence of a new organizational field. Despite the importance of organizational fields as a key concept in the neoinstitutional literature, there is a lack of studies on exactly how they emerge. Throughout four articles this dissertation scrutinizes therefore the emergence of the field of renewable energy in China and the mechanisms driving this emergence. Firstly, the relation between state and market is examined, and it is argued that Chinese state interventions in markets, for instance through subsidies, are based in deeply rooted historic grounds. Thus, the article explains the general context in which the Party-state handles subsidized markets, like renewable energy. Secondly, the specific development of the idea of sustainable development, and how it evolves into an institutional logic of its own, is analysed. It is around this institutional logic that renewable energy emerges as a field. The key mechanism in play is the idea work of the Party state by which sustainable development is positioned in the Partystate discourse. Thirdly, subsidization of renewable energy in China is examined as an important feature of the increasing institutionalization of the organizational field. It is shown how negotiation between companies and Party-state is the vital mechanism by which subsidies are determined. Fourthly, it is analysed how the institutional entrepreneurship of one single company resulted in an official recognition of biomass power production as a source of renewable energy, and thereby an expansion of the organizational field. Again, the main mechanism was the company's idea work, through which a crucial link between biomass and sustainable development was

  10. Identifying individuality and variability in team tactics by means of statistical shape analysis and multilayer perceptrons.

    Science.gov (United States)

    Jäger, Jörg M; Schöllhorn, Wolfgang I

    2012-04-01

    Offensive and defensive systems of play represent important aspects of team sports. They include the players' positions at certain situations during a match, i.e., when players have to be on specific positions on the court. Patterns of play emerge based on the formations of the players on the court. Recognition of these patterns is important to react adequately and to adjust own strategies to the opponent. Furthermore, the ability to apply variable patterns of play seems to be promising since they make it harder for the opponent to adjust. The purpose of this study is to identify different team tactical patterns in volleyball and to analyze differences in variability. Overall 120 standard situations of six national teams in women's volleyball are analyzed during a world championship tournament. Twenty situations from each national team are chosen, including the base defence position (start configuration) and the two players block with middle back deep (end configuration). The shapes of the defence formations at the start and end configurations during the defence of each national team as well as the variability of these defence formations are statistically analyzed. Furthermore these shapes data are used to train multilayer perceptrons in order to test whether artificial neural networks can recognize the teams by their tactical patterns. Results show significant differences between the national teams in both the base defence position at the start and the two players block with middle back deep at the end of the standard defence situation. Furthermore, the national teams show significant differences in variability of the defence systems and start-positions are more variable than the end-positions. Multilayer perceptrons are able to recognize the teams at an average of 98.5%. It is concluded that defence systems in team sports are highly individual at a competitive level and variable even in standard situations. Artificial neural networks can be used to recognize

  11. Restoring facial shape in face lifting: the role of skeletal support in facial analysis and midface soft-tissue repositioning.

    Science.gov (United States)

    Stuzin, James M

    2007-01-01

    Aesthetic analysis in facial rejuvenation has traditionally been subordinate to technical solutions. While concerns regarding correction of facial laxity, a reduction in the depth of the nasolabial fold, and improvement of both the jowl and the jawline are worthy goals in rhytidectomy, the aesthetic concept of restoring facial shape to a more youthful appearance is equally important. Restoring facial shape in face lifting requires an understanding of how the face ages and then the formulation of a treatment plan that is individualized for the patient. Re-establishment of facial contour is significantly influenced by the re-elevation of descended facial fat through superficial musculoaponeurotic system manipulation; it can be approached through a variety of technical solutions. Underlying skeletal support affects not only the appearance of the face in youth but also how the face ages and influences the operative plan in terms of the requirements for fat repositioning. Formulating a treatment plan that is patient specific and based on the artistic goals as influenced by skeletal support is the key element for consistency in restoring facial shape in face lifting.

  12. Optimization analysis of convective–radiative longitudinal fins with temperature-dependent properties and different section shapes and materials

    International Nuclear Information System (INIS)

    Mosayebidorcheh, S.; Hatami, M.; Mosayebidorcheh, T.; Ganji, D.D.

    2015-01-01

    Graphical abstract: Temperature distribution along the fins obtained for different material and section shapes. - Highlights: • The steady state thermal analysis of longitudinal fins is presented. • The properties of fins are assumed as a function of temperature. • The rectangular, convex, triangular and concave profiles are considered for fin shape. • Least Square Method (LSM) is used for solving the governing equation. • Thermal optimization of fin geometry is presented based on maximum value of heat transfer. - Abstract: The main aim of this study is to obtain an optimum design point for fin geometry, so that heat transfer rate reaches to a maximum value in a constant fin volume. Effect of fin thicknesses ratio (τ), convection coefficient power index (m), profile power parameter (n), base thickness (δ) and fin material are evaluated in the fin optimization point for heat transfer rate, effectiveness and efficiency. It’s assumed that the thickness of longitudinal fins varies with length in a special profile, so four different shapes (rectangular, convex, triangular and concave) are considered. In present study, temperature-dependent heat generation, convection and radiation are considered and an analytical technique based on the least square method is proposed for the solution methodology. Results show that by increasing the fin thicknesses ratio, maximum heat transfer rate decreases and Copper among the other materials has the most heat transfer rate in a constant volume.

  13. Dispelling dog dogma: an investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape.

    Science.gov (United States)

    Drake, Abby Grace

    2011-01-01

    Heterochrony is an evolutionary mechanism that generates diversity via perturbations of the rate or timing of development that requires very little genetic innovation. As such, heterochrony is thought to be a common evolutionary mechanism in the generation of diversity. Previous research has suggested that dogs evolved via heterochrony and are paedomorphic wolves. This study uses three-dimensional landmark-based coordinate data to investigate heterochronic patterns within the skull morphology of the domestic dog. A total of 677 adult dogs representing 106 different breeds were measured and compared with an ontogenetic series of 401 wolves. Geometric morphometric analysis reveals that the cranial shape of none of the modern breeds of dogs resembles the cranial shapes of adult or juvenile wolves. In addition, investigations of regional heterochrony in the face and neurocranium also reject the hypothesis of heterochrony. Throughout wolf cranial development the position of the face and the neurocranium remain in the same plane. Dogs, however, have a de novo cranial flexion in which the palate is tilted dorsally in brachycephalic and mesaticephalic breeds or tilted ventrally in dolichocephalic and down-face breeds. Dogs have evolved very rapidly into an incredibly morphologically diverse species with very little genetic variation. However, the genetic alterations to dog cranial development that have produced this vast range of phylogenetically novel skull shapes do not coincide with the expectations of the heterochronic model. Dogs are not paedomorphic wolves. © 2011 Wiley Periodicals, Inc.

  14. Morphological and morphometric analysis of the shape, position, number and size of mental foramen on human mandibles

    Directory of Open Access Journals (Sweden)

    Alma Voljevica

    2015-05-01

    Full Text Available Objective. To provide anatomical information on the position, morphological variations and incidence of mental foramen (MF and accessorymental foramen (AMF as they are important for dental surgeons, anesthetists in nerve block and surgical procedures, to avoid injury to the neurovascular bundle in the mental foramen area. Methods. Our study was conducted on 150 adult dry human mandibles from the osteological collection of the Department of Anatomy of the Faculty of Medicine, University of Sarajevo. The location and shape of the MF and the presence of the AMF were studied by visual examination. The size and position of the MF were measured using a digital vernier caliper. SPSS, version 17 software was used for the statistical analysis. Results. Bilateral mental foramina were presented in all 150 mandibles. In the majority of mandibles, the MF was located between the first and second premolar (20.3% or on the level of the root of the second premolar (60.3%, midway between the inferior margin and the alveolar margin of the mandible. Most of the mental foramina were oval in shape (83.3%. An AMF was present in four mandibles (2.7% on the right side. Conclusion. This study may be a very useful new supplement to data on variations in the incidence, position, shape and size of mental and accessory mental foramina, which may help surgeons, anaesthetists, neurosurgeons and dentists in carrying out surgical procedures successfully.

  15. Total peak shape analysis: detection and quantitation of concurrent fronting, tailing, and their effect on asymmetry measurements.

    Science.gov (United States)

    Wahab, M Farooq; Patel, Darshan C; Armstrong, Daniel W

    2017-08-04

    Most peak shapes obtained in separation science depart from linearity for various reasons such as thermodynamic, kinetic, or flow based effects. An indication of the nature of asymmetry often helps in problem solving e.g. in column overloading, slurry packing, buffer mismatch, and extra-column band broadening. However, existing tests for symmetry/asymmetry only indicate the skewness in excess (tail or front) and not the presence of both. Two simple graphical approaches are presented to analyze peak shapes typically observed in gas, liquid, and supercritical fluid chromatography as well as capillary electrophoresis. The derivative test relies on the symmetry of the inflection points and the maximum and minimum values of the derivative. The Gaussian test is a constrained curve fitting approach and determines the residuals. The residual pattern graphically allows the user to assess the problematic regions in a given peak, e.g., concurrent tailing or fronting, something which cannot be easily done with other current methods. The template provided in MS Excel automates this process. The total peak shape analysis extracts the peak parameters from the upper sections (>80% height) of the peak rather than the half height as is done conventionally. A number of situations are presented and the utility of this approach in solving practical problems is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  17. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    Science.gov (United States)

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yuan; Gan, Ruyi, E-mail: 2471390146@qq.com; Wan, Shalang; Xu, Ruilin; Zhou, Hanxing [Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, Chongqing University of Posts and Telecommunications, 400065, Chongqing, Chongqing Municipality (China)

    2016-04-15

    This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3 V under an acceleration of 1 g at 292.11 Hz of frequency, and the output power can be up to 0.155 mW under the load of 0.4 MΩ. The power density is calculated as 496.79 μWmm{sup −3}. Besides that, it is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.

  19. Aerosol measurements, morphological analysis and evaluation of the dynamic shape factor during the TVMA experiment

    International Nuclear Information System (INIS)

    Tarroni, G.; Castellani, C.M.; De Zaiacomo, T.

    1989-05-01

    In the frame of a CEC program concerning studies on the behaviour of aerosols produced in sodium fire (CONT Group), a test called TVMA was projected for the purpose of comparing code calculations with experimental data. The test took place on May 17, 1988 at the CEA CEN-Cadarache. CEA looked after execution of the sodium pool fire and the main parameter measurements. A British (UKAEA) and an Italian (ENEA) team participated in the test with the aim of carrying out measurements on aerosol parameters. The main results obtained by the ENEA team using its own instrumentation, concerning mass aerosol concentration, granulometry and morphological analyses of particles, are reported. The dynamic shape factor for particles in the aerodynamic range 1.9-7 μm, as evaluated by measuring geometric particle sizes after their aerodynamic separation, is also presented. (author)

  20. Analysis of spring-in in U-shaped composite laminates: Numerical and experimental results

    Science.gov (United States)

    Bellini, Costanzo; Sorrentino, Luca; Polini, Wilma; Parodo, Gianluca

    2018-05-01

    The phenomena that happen during the cure process of a composite material laminate are responsible for the rise of residual stresses and, consequently, for the deformation at the end of the manufacturing process. The most analyzed deformation is the spring-in, that represent the flange-to-flange angle deviance from the theoretical value. In this work, the influence of some parameters, such as the laminate thickness, the stacking sequence and the mold radius, on the spring-in angle of a U-shaped laminate was studied exploring a full factorial plan through numerical simulations. First of all, a numerical model proper for cure simulation was introduced and its suitability to simulate the deformation behavior was demonstrated. As a result, only the stacking sequence influenced the spring-in value, while the effect of the tool radius and laminate thickness was minimal.

  1. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yuan Luo

    2016-04-01

    Full Text Available This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3V under an acceleration of 1g at 292.11Hz of frequency, and the output power can be up to 0.155mW under the load of 0.4MΩ. The power density is calculated as 496.79μWmm−3. Besides that, it is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.

  2. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  3. Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS

    Directory of Open Access Journals (Sweden)

    Md. Naimul Haque

    2016-01-01

    Full Text Available Long-span cable-stayed bridges are susceptible to dynamic wind effects due to their inherent flexibility. The fluid flow around the bridge deck should be well understood for the efficient design of an aerodynamically stable long-span bridge system. In this work, the aerodynamic features of a pentagonal-shaped bridge deck are explored numerically. The analytical results are compared with past experimental work to assess the capability of two-dimensional unsteady RANS simulation for predicting the aerodynamic features of this type of deck. The influence of the bottom plate slope on aerodynamic response and flow features was investigated. By varying the Reynolds number (2 × 104 to 20 × 104 the aerodynamic behavior at high wind speeds is clarified.

  4. Numerical analysis of special-shaped surface in abrasive flow machining

    Science.gov (United States)

    Li, Junye; Zhou, Zengwei; Wu, Guiling; Lu, Hui; Sun, Zhihuai

    2018-03-01

    Solid-liquid two-phase abrasive flow machining is a method to effectively polish the surface of Special-shaped surface parts. Based on the processing characteristics of the abrasive flow machining. The standard model and the pressure-coupled SIMPLEC algorithm are used. The shear force and velocity of the near-wall surface of the runner of the solid-liquid two-phase abrasive machining with different inlet pressure are analyzed. The numerical simulation results show that the inlet pressure has little effect on the velocity, and the shear force has a linear relationship with the inlet pressure. To obtain a better polishing effect, the outlet pressure can be appropriately increased.

  5. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    Science.gov (United States)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  6. Analysis of classification and surgical treatment of cervical dumbbell-shaped tumors

    Directory of Open Access Journals (Sweden)

    LIU Jia-gang

    2013-11-01

    Full Text Available Objective To investigate the clinical characteristics, classification, surgical approach, complication and prognosis of cervical dumbbell-shaped tumors. Methods Twenty-six consecutive cases with cervical dumbbell-shaped tumors were retrospectively studied. According to tumor location by imaging examination, all tumors were divided into 3 types. Type Ⅰ (17 cases was mostly intravertebral and foraminal. Surgery through posterior approach was performed and internal fixation was operated in 8 cases. Type Ⅱ (4 cases was mostly paravertebral and foraminal. Surgery through the anterolateral approach was performed without internal fixation. Type Ⅲ (5 cases was equalization of intravertebral and paravertebral, and underwent surgery through combined posterior-anterolateral approach and internal fixation was performed in all of those cases. If the unilateral facet joint was destroyed, internal fixation was necessary. Lateral mass screw internal fixation and transpedicular screw fixation supplemented by fusion with autologous iliac bone graft were used to maintain cervical spinal stability. Results Among 26 patients there were 19 schwannomas, 4 neurofibromas, 2 gangliocytoma and 1 spinal meningioma. Total and subtotal tumor resection was achieved in 23 and 3 patients respectively. Among them 50% (13/26 of the cases were used internal fixation including 8 TypeⅠand 5 Type Ⅲ patients. The follow-up period was from 7 to 62 months, and mean time was 30 months. Four cases (15.38% were found local tumor recurrence. Two cases suffered with surgical infection and cerebrospinal fluid leakage. There was no spinal cord injury and spinal deformity. Conclusion In order to increase the total resection rate and decrease recurrence rate, surgical approach should be selected according to the imaging classification of tumors. Stability reconstruction is absolutely necessary for the patients with facet joint destroyed.

  7. Energy Consumption and Saving Analysis for Laser Engineered Net Shaping of Metal Powders

    Directory of Open Access Journals (Sweden)

    Zhichao Liu

    2016-09-01

    Full Text Available With the increasing awareness of environmental protection and sustainable manufacturing, the environmental impact of laser additive manufacturing (LAM technology has been attracting more and more attention. Aiming to quantitatively analyze the energy consumption and extract possible ways to save energy during the LAM process, this investigation studies the effects of input variables including laser power, scanning speed, and powder feed rate on the overall energy consumption during the laser deposition processes. Considering microhardness as a standard quality, the energy consumption of unit deposition volume (ECUDV, in J/mm3 is proposed as a measure for the average applied energy of the fabricated metal part. The potential energy-saving benefits of the ultrasonic vibration–assisted laser engineering net shaping (LENS process are also examined in this paper. The experimental results suggest that the theoretical and actual values of the energy consumption present different trends along with the same input variables. It is possible to reduce the energy consumption and, at the same time, maintain a good part quality and the optimal combination of the parameters referring to Inconel 718 as a material is laser power of 300 W, scanning speed of 8.47 mm/s and powder feed rate of 4 rpm. When the geometry shaping and microhardness are selected as evaluating criterions, American Iron and Steel Institute (AISI 4140 powder will cause the largest energy consumption per unit volume. The ultrasonic vibration–assisted LENS process cannot only improve the clad quality, but can also decrease the energy consumption to a considerable extent.

  8. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    Science.gov (United States)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  9. Fat, friendless and unhealthy: 9-year old children's perception of body shape stereotypes.

    Science.gov (United States)

    Hill, A J; Silver, E K

    1995-06-01

    Society has a very negative view of overweight, leading to prejudice and discrimination. In an examination of the scope of these views, 9-year old children's attributions of the social functioning and health of thin and overweight body shapes were investigated. One hundred and eighty eight girls and boys completed a series of ratings of four silhouette figures depicting a thin and heavy boy and girl. The children's own body shape preference, dietary restraint, height and weight were also measured. The ratings of the four silhouette variations were dominated by the size of the figure being judged. The overweight body shape was associated with poor social functioning, impaired academic success, and low perceived health, healthy eating and fitness. Gender and the raters own body weight had only limited impact on these stereotypical judgements. Children's judgements of themselves on the same attributes showed a greater perceived relevance of weight for girls and a confusion of healthy eating with dieting. Pre-adolescent children's perception of thinness and overweight echo the prejudices against overweight voiced by society. Health promotion at all ages will require a more considered presentation of the health implications of overweight.

  10. Employment of neural networks for analysis of chemical composition and cooling rate effect on CCT diagrams shape

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Trzaska, J.

    2004-01-01

    The paper presents possibility of employment of the original supercooled austenite transformation anisothermic diagrams forecasting method for analysis of the chemical composition effect on the CCT diagrams shape. The developed model makes it possible to substitute computer simulation for the costly and time consuming experiments. The information derived from calculations make it possible to plot diagrams illustrating the effects of the particular elements or pairs of elements, as well as cooling rate and/or austenitizing temperature, on any temperature or time describing transformations in steel during its continuous cooling. Evaluation is also possible of the effect of the aforementioned factors on hardness and fractions of the particular structural constituents. (author)

  11. Stress analysis of martensitic transformation in Cu-Al-Be polycrystalline and single-crystalline shape memory alloy

    International Nuclear Information System (INIS)

    Kaouache, B.; Berveiller, S.; Inal, K.; Eberhardt, A.; Patoor, E.

    2003-01-01

    The aim of this study is to analyze the martensitic transformation in a shape memory alloy during a superelastic loading, focusing on internal strains, stresses and phases fractions. The behavior of the austenite phase is studied by X-ray diffraction stress analysis during in situ tensile test at room temperature. Both single-crystal and polycrystal samples have been investigated. The results are discussed with the aim to correlate the microstructural variations with the local stress state evolution in the austenitic phase while variants of martensite form and develop during a superelastic loading

  12. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis

    International Nuclear Information System (INIS)

    Fu, Chien-Yu; Chang, Hwan-You; Tseng, Sheng-Yang; Yang, Shih-Mo; Hsu, Long; Liu, Cheng-Hsien

    2014-01-01

    Multicellular spheroids (MCS), formed by self-assembly of single cells, are commonly used as a three-dimensional cell culture model to bridge the gap between in vitro monolayer culture and in vivo tissues. However, current methods for MCS generation and analysis still suffer drawbacks such as being labor-intensive and of poor controllability, and are not suitable for high-throughput applications. This study demonstrates a novel microfluidic chip to facilitate MCS formation, culturing and analysis. The chip contains an array of U-shaped microstructures fabricated by photopolymerizing the poly(ethylene glycol) diacrylate hydrogel through defining the ultraviolet light exposure pattern with a photomask. The geometry of the U-shaped microstructures allowed trapping cells into the pocket through the actions of fluid flow and the force of gravity. The hydrogel is non-adherent for cells, promoting the formation of MCS. Its permselective property also facilitates exchange of nutrients and waste for MCS, while providing protection of MCS from shearing stress during the medium perfusion. Heterotypic MCS can be formed easily by manipulating the cell trapping steps. Subsequent drug susceptibility analysis and long-term culture could also be achieved within the same chip. This MCS formation and culture platform can be used as a micro-scale bioreactor and applied in many cell biology and drug testing studies. (paper)

  13. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters

    Science.gov (United States)

    Yu, Xin; Cao, Liang; Liu, Jinhu; Zhao, Bo; Shan, Xiujuan; Dou, Shuozeng

    2014-09-01

    We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species ( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices (83.7%), elliptic Fourier coefficients (98.6%), or the combination of both methods (94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks (Liaodong Bay, LD; Bohai Bay, BH; Huanghe (Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta (50%-54%) and C. stigmatias (65.7%-75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone (70.2%) or in combination with shape indices (75.8%) than using only shape indices (65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.

  14. Design and property analysis of a hybrid linear actuator based on shape memory alloy

    International Nuclear Information System (INIS)

    Zhang, Xiaoguang; Hu, Jinhong; Mao, Shixin; Dong, Erbao; Yang, Jie

    2014-01-01

    This paper introduces two methods for solving two bottlelike problems regarding the shape memory alloy (SMA) application as actuators. These methods are ‘rotating output,’ which aims to solve the problem of the low working frequency caused by the demand for cool time, and ‘accumulated shifting,’ which solves the problem of difficult-to-obtain output displacements in a large scale. We also introduce a hybrid linear actuator that applies the two methods and achieves both a strong force and an accurate large output displacement while working at a high frequency based on the SMA wires and DC motors. A prototype of this actuator was fabricated and tested to verify the two methods. This hybrid actuator system dynamic model, which was composed of the constitutive model of the SMA, the electrical and heat transfer behavior of the SMA wires and the dynamics of the linear actuation system, was established and discussed. Our study aims to illuminate the application of an SMA in actuators with the proposed methods with regard to its two main problems. An actuator with a high power-weight ratio and the capability to work at a high frequency, as well as accurate linear step displacements in a large scale, is also presented. (paper)

  15. The Analysis for the Effect of Mixing Vane Shape on TDC

    International Nuclear Information System (INIS)

    Moon, Kang Hoon; Park, Ho Young; Kim, Kang Hoon; Park, Eung Jun; Suh, Jung Min

    2011-01-01

    The Thermal Diffusion Coefficient (TDC) is an input parameter to subchannel code, and it is required to predict local flow conditions in a PWR fuel bundle. TDC influences on the prediction of thermal interchange or mixing of thermal energy between the hot subchannel and interconnected adjacent subchannels. The thermal mixing term in the energy equation is generally represented in terms of a non-dimensional inverse Peclet number or TDC. The parameters associated with thermal mixing can be defined as Eq.(1): TDC =Pe x De/a (1) where: Pe : Inverse Peclet Number (dimensionless) = ε/ Va De : Equivalent hydraulic diameter, in. a : Lateral flow area between channels per unit length, in 2 /in ε : Mixing coefficient, in 2 /sec V : Velocity, in/sec TDC is an important factor to evaluate thermal performance. So, flow temperature maps were obtained from the 5x5 rod bundle test section to assess the thermal performance of corresponding fuels. The flow temperatures were measured by thermocouple at the end of heated length and the centroid of subchannel. There are two typical methods to arrange the hot and cold fuel rods as shown in Fig. 1. Configuration Fig. 1(b) is adopted in this work. This paper presents how to determine the TDC and verifies whether all TDC with the effect of mixing vane shape is valid with respect to current design value

  16. Analysis of a pico tubular-type hydro turbine performance by runner blade shape using CFD

    Science.gov (United States)

    Park, J. H.; Lee, N. J.; Wata, J. V.; Hwang, Y. C.; Kim, Y. T.; Lee, Y. H.

    2012-11-01

    There has been a considerable interest recently in the topic of renewable energy. This is primarily due to concerns about environmental impacts of fossil fuels. Moreover, fluctuating and rising oil prices, increase in demand, supply uncertainties and other factors have led to increased calls for alternative energy sources. Small hydropower, among other renewable energy sources, has been evaluated to have adequate development value because it is a clean, renewable and abundant energy resource. In addition, small hydropower has the advantage of low cost development by using rivers, agricultural reservoirs, sewage treatment plants, waterworks and water resources. The main concept of the tubular-type hydro turbine is based on the difference in water pressure levels in pipe lines, where the energy which was initially wasted by using a reducing valve at the pipeline of waterworks, is collected by turbine in the hydro power generator. In this study, in order to acquire the performance data of a pico tubular-type hydro turbine, the output power, head and efficiency characteristics by different runner blade shapes are examined. The pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  17. Microscopic analysis of shape transition in neutron-deficient Yb isotopes

    Science.gov (United States)

    Fu, Y.; Tong, H.; Wang, X. F.; Wang, H.; Wang, D. Q.; Wang, X. Y.; Yao, J. M.

    2018-01-01

    The development of nuclear collectivity in even-even Yb-170152 is studied with three types of mean-field calculations: the nonrelativistic Hartree-Fock plus BCS calculation using the Skyrme SLy4 force plus a density-dependent δ pairing force and the relativistic mean-field calculation using a point-coupling energy functional supplemented with either a density-independent δ pairing force or a separable pairing force. The low-lying states are obtained by solving a five-dimensional collective Hamiltonian with parameters determined from the three mean-field solutions. The energy surfaces, excitation energies, electric multiple transition strengths, and differential isotope shifts are presented in comparison with available data. Our results show that different treatments of pairing correlations have a significant influence on the speed of developing collectivity as the increase of neutron number. All the calculations demonstrate the important role of dynamic shape-mixing effects in resolving the puzzle in the dramatic increase of charge radius from 152Yb to 154Yb and the role of triaxiality in Yb 160 ,162 ,164 .

  18. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    Science.gov (United States)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  19. Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator

    Science.gov (United States)

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  20. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals

    Science.gov (United States)

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-01-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. PMID:24397462

  1. Multi-scale analysis of the fatigue of shape memory alloys

    International Nuclear Information System (INIS)

    Zheng, Lin

    2016-01-01

    Shape Memory Alloy (SMA) is a typical smart material having many applications from aerospace industry, mechanical and civil engineering, to biomedical devices, where the material's fatigue is a big concern. One of the challenging issues in studying the fatigue behaviors of SMA polycrystals is the interaction between the material damage and the martensitic phase transformation which takes place in a macroscopic homogeneous mode or a heterogeneous mode (forming macroscopic patterns (Luders-like bands) due to the localized deformations and localized heating/cooling). Such pattern formation and evolution imply the governing physical mechanisms in the material system such as the fatigue process, but there is still no fatigue study of SMAs by tracing the macro-band patterns and the local material responses. To bridge this gap, systematic tensile fatigue experiments are conducted on pseudo-elastic NiTi polycrystalline strips by in-situ optical observation on the band-pattern evolutions and by tracing the deformation history of the cyclic phase transformation zones where fatigue failure occurs. These experimental results help to better understand the stress- and frequency-dependent fatigue behaviors. Particularly, it is found that the local residual strain rather than the structural nominal/global residual strain is a good indicator on the material's damage leading to the fatigue failure, which is important for understanding and modeling the fatigue process in SMAs. (author)

  2. On low-dimensional models at NMR line shape analysis in nanomaterial systems

    Science.gov (United States)

    Kucherov, M. M.; Falaleev, O. V.

    2018-03-01

    We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated.

  3. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K.; Mohan, S. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012 (India); Bysakh, S. [Central Glass and Ceramics Research Institute, Kolkata-700032 (India); Kumar, A.; Kamat, S. V. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  4. Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes

    KAUST Repository

    Zhong, Hua

    2014-12-01

    We investigate the two-phase flow in a horizontally placed Y-shaped tube with different Young\\'s angle and width in each branch. By using a quasistatic approach, we can determine the specific contact position and the equilibrium contact angle of fluid in each branch based on the minimization problem of the free energy of the system. The wettability condition and the width of the two branches play important roles in the distribution of fluid in each branch. We also consider the effect of gravity. Some fluid in the upper branch will be pulled down due to the competition of the surface energy and the gravitational energy. The result provides some insights on the theory of two-phase flow in porous media. In particular, it highlights that the inhomogeneous wettability distribution affects the direction of the fluid penetrating a given porous medium domain. It also sheds light on the current debate whether relative permeability may be considered as a full tensor rather than a scalar.

  5. Capturing multiple values of ecosystem services shaped by environmental worldviews: a spatial analysis.

    Science.gov (United States)

    Van Riper, Carena J; Kyle, Gerard T

    2014-12-01

    Two related approaches to valuing nature have been advanced in past research including the study of ecosystem services and psychological investigations of the factors that shape behavior. Stronger integration of the insights that emerge from these two lines of enquiry can more effectively sustain ecosystems, economies, and human well-being. Drawing on survey data collected from outdoor recreationists on Santa Cruz Island within Channel Islands National Park, U.S., our study blends these two research approaches to examine a range of tangible and intangible values of ecosystem services provided to stakeholders with differing biocentric and anthropocentric worldviews. We used Public Participation Geographic Information System methods to collect survey data and a Social Values for Ecosystem Services mapping application to spatially analyze a range of values assigned to terrestrial and aquatic ecosystems in the park. Our results showed that preferences for the provision of biological diversity, recreation, and scientific-based values of ecosystem services varied across a spatial gradient. We also observed differences that emerged from a comparison between survey subgroups defined by their worldviews. The implications emanating from this investigation aim to support environmental management decision-making in the context of protected areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  7. VRF ("Visual RobFit") — nuclear spectral analysis with non-linear full-spectrum nuclide shape fitting

    Science.gov (United States)

    Lasche, George; Coldwell, Robert; Metzger, Robert

    2017-09-01

    A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.

  8. Cell shape imaging analysis: A fast and reliable technique for the investigation of internalised carbon nanotubes in flat macrophages

    International Nuclear Information System (INIS)

    Tian, F; Beyerle, A; Kreyling, W; Stoeger, T; Prina-Mello, A; Estrada, G G

    2009-01-01

    The aim of this work is to elucidate the mechanisms involved in the morphological adaptation and regulation of macrophages in the presence of internalised materials. This development will accelerate the toxicology assessment of novel nanomaterials and subsequently reduce their environmental and health exposure. For this purpose, we adapted our established in vitro culture system to investigate and measure cell shape changes with and without functionalized carbon nanotubes (CNTs). Two nanomaterials, such as fluorescent polystyrene (PS) beads and functionalized CNTs, were employed to track the material location under confocal microscopy, light microscopy and Transmission Electron Microscopy (TEM). It was found that particles equally spread throughout the entire cytoplasm in spherical macrophage; whereas when macrophages where forced to adhere to the substrate, via fibronectin coating, the accumulation of particles and tubes was limited to the vicinity of the nucleus due to the modified cellular micro architecture. TEM analysis also confirmed these findings and demonstrated that CNTs of about 5 |am laid at the bottom of adherent cells. Therefore, this cell shape analysis and manipulation may result very important for the quantification of internalised novel materials with high aspect ratio like nanotubes, nanorods and nanowires.

  9. Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae,) from the northern Chinese coast

    Science.gov (United States)

    Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng

    2017-08-01

    The otolith morphology of two croaker species (Collichthys lucidus and Collichthys niveatus) from three areas (Liaodong Bay, LD; Huanghe (Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast were investigated for species identification and stock discrimination. The otolith contour shape described by elliptic Fourier coefficients (EFC) were analysed using principal components analysis (PCA) and stepwise canonical discriminant analysis (CDA) to identify species and stocks. The two species were well differentiated, with an overall classification success rate of 97.8%. And variations in the otolith shapes were significant enough to discriminate among the three geographical samples of C. lucidus (67.7%) or C. niveatus (65.2%). Relatively high mis-assignment occurred between the geographically adjacent LD and HRE samples, which implied that individual mixing may exist between the two samples. This study yielded information complementary to that derived from genetic studies and provided information for assessing the stock structure of C. lucidus and C. niveatus in the Bohai Sea and the Yellow Sea.

  10. Application of statistical shape analysis for the estimation of bone and forensic age using the shapes of the 2nd, 3rd, and 4th cervical vertebrae in a young Japanese population.

    Science.gov (United States)

    Rhee, Chang-Hoon; Shin, Sang Min; Choi, Yong-Seok; Yamaguchi, Tetsutaro; Maki, Koutaro; Kim, Yong-Il; Kim, Seong-Sik; Park, Soo-Byung; Son, Woo-Sung

    2015-12-01

    From computed tomographic images, the dentocentral synchondrosis can be identified in the second cervical vertebra. This can demarcate the border between the odontoid process and the body of the 2nd cervical vertebra and serve as a good model for the prediction of bone and forensic age. Nevertheless, until now, there has been no application of the 2nd cervical vertebra based on the dentocentral synchondrosis. In this study, statistical shape analysis was used to build bone and forensic age estimation regression models. Following the principles of statistical shape analysis and principal components analysis, we used cone-beam computed tomography (CBCT) to evaluate a Japanese population (35 males and 45 females, from 5 to 19 years old). The narrowest prediction intervals among the multivariate regression models were 19.63 for bone age and 2.99 for forensic age. There was no significant difference between form space and shape space in the bone and forensic age estimation models. However, for gender comparison, the bone and forensic age estimation models for males had the higher explanatory power. This study derived an improved objective and quantitative method for bone and forensic age estimation based on only the 2nd, 3rd and 4th cervical vertebral shapes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    Science.gov (United States)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  12. Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients

    International Nuclear Information System (INIS)

    Hemke, Robert; Lavini, Cristina; Maas, Mario; Nusman, Charlotte M.; Berg, J.M. van den; Schonenberg-Meinema, Dieneke; Kuijpers, Taco W.; Dolman, Koert M.; Rossum, Marion A.J. van

    2014-01-01

    To compare DCE-MRI parameters and the relative number of time-intensity curve (TIC) shapes as derived from pixel-by-pixel DCE-MRI TIC shape analysis between knees of clinically active and inactive juvenile idiopathic arthritis (JIA) patients. DCE-MRI data sets were prospectively obtained. Patients were classified into two clinical groups: active disease (n = 43) and inactive disease (n = 34). Parametric maps, showing seven different TIC shape types, were created per slice. Statistical measures of different TIC shapes, maximal enhancement (ME), maximal initial slope (MIS), initial area under the curve (iAUC), time-to-peak (TTP), enhancing volume (EV), volume transfer constant (K trans ), extravascular space fractional volume (V e ) and reverse volume transfer constant (k ep ) of each voxel were calculated in a three-dimensional volume-of-interest of the synovial membrane. Imaging findings from 77 JIA patients were analysed. Significantly higher numbers of TIC shape 4 (P = 0.008), median ME (P = 0.015), MIS (P = 0.001) and iAUC (P = 0.002) were observed in clinically active compared with inactive patients. TIC shape 5 showed higher presence in the clinically inactive patients (P = 0.036). The pixel-by-pixel DCE-MRI TIC shape analysis method proved capable of differentiating clinically active from inactive JIA patients by the difference in the number of TIC shapes, as well as the descriptive parameters ME, MIS and iAUC. (orig.)

  13. Coupled behavior of shape memory alloy-based morphing spacecraft radiators: experimental assessment and analysis

    Science.gov (United States)

    Bertagne, C.; Walgren, P.; Erickson, L.; Sheth, R.; Whitcomb, J.; Hartl, D.

    2018-06-01

    Thermal control is an important aspect of spacecraft design, particularly in the case of crewed vehicles, which must maintain a precise internal temperature at all times in spite of significant variations in the external thermal environment and internal heat loads. Future missions beyond low Earth orbit will require radiator systems with high turndown ratios, defined as the ratio between the maximum and minimum heat rejection rates achievable by the radiator system. Current radiators are only able to achieve turndown ratios of 3:1, far less than the 12:1 turndown ratio requirement expected for future missions. An innovative morphing radiator concept uses the temperature-induced phase transformation of shape memory alloy (SMA) materials to achieve turndown ratios that are predicted to exceed 12:1 via substantial geometric reconfiguration. Developing mathematical and computational models of these morphing radiators is challenging due to the strong two-way thermomechanical coupling not present in traditional fixed-geometry radiators and not widely considered in the literature. Although existing simulation tools are capable of analyzing the behavior of some thermomechanically coupled structures, general problems involving radiation and deformation cannot be modeled using publicly available codes due to the complexity of modeling spatially evolving boundary fields. This paper provides important insight into the operational response of SMA-based morphing radiators by employing computational tools developed to overcome previous shortcomings. Several example problems are used to demonstrate the novel radiator concept. Additionally, a prototype morphing radiator was designed, fabricated, and tested in a thermal environment compatible with mission operations. An associated finite element model of the prototype was developed and executed. Model predictions of radiator performance generally agree with the experimental data, giving confidence that the tools developed are able

  14. Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Sawrab Chowdhury

    2017-04-01

    Full Text Available In this article, porous core porous cladding photonic crystal fiber (P-PCF has been proposed for aqueous analytes sensing applications. Guiding properties of the proposed P-PCF has been numerically investigated by utilizing the full vectorial finite element method (FEM. The relative sensitivity and confinement loss are obtained by varying distinct geometrical parameters like the diameter of air holes, a pitch of the core and cladding region over a wider range of wavelength. The proposed P-PCF is organized with five rings air hole in the cladding and two rings air hole in a core territory which maximizes the relative sensitivity expressively and minimizes confinement loss depressively compare with the prior-PCF structures. After completing all investigations, it is also visualized that the relative sensitivity is increasing with the increment of the wavelength of communication band (O + E + S + C + L + U. Higher sensitivity is gained by using higher band for all applied liquids. Finally the investigating effects of different structural parameters of the proposed P-PCF are optimized which shows the sensitivity of 60.57%, 61.45% and 61.82%; the confinement loss of 8.71 × 10−08 dB/m, 1.41 × 10−10 dB/m and 6.51 × 10−10 dB/m for Water (n = 1.33, Ethanol (n = 1.354 and Benzene (n = 1.366 respectively at 1.33 μm wavelength. The optimized P-PCF with higher sensitivity and lower confinement loss has high impact in the area of the chemical as well as gas sensing purposes. Keywords: Porous shaped PCF, Sensitivity, Optical sensing, Liquid sensor, Confinement loss

  15. Geometric analysis of root canals prepared by four rotary NiTi shaping systems.

    Science.gov (United States)

    Hashem, Ahmed Abdel Rahman; Ghoneim, Angie Galal; Lutfy, Reem Ahmed; Foda, Manar Yehia; Omar, Gihan Abdel Fatah

    2012-07-01

    A great number of nickel-titanium (NiTi) rotary systems with noncutting tips, different cross-sections, superior resistance to torsional fracture, varying tapers, and manufacturing method have been introduced to the market. The purpose of this study was to evaluate and compare the effect of 4 rotary NiTi preparation systems, Revo-S (RS; Micro-Mega, Besancon Cedex, France), Twisted file (TF; SybronEndo, Amersfoort, The Netherlands), ProFile GT Series X (GTX; Dentsply, Tulsa Dental Specialties, Tulsa, OK), and ProTaper (PT; Dentsply Maillefer, Ballaigues, Switzerland), on volumetric changes and transportation of curved root canals. Forty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 25° to 40° were divided according to the instrument used in canal preparation into 4 groups of 10 samples each: group RS, group TF, group GTX, and group PT. Canals were scanned using an i-CAT CBCT scanner (Imaging Science International, Hatfield, PA) before and after preparation to evaluate the volumetric changes. Root canal transportation and centering ratio were evaluated at 1.3, 2.6, 5.2, and 7.8 mm from the apex. The significance level was set at P ≤ .05. The PT system removed a significantly higher amount of dentin than the other systems (P = .025). At the 1.3-mm level, there was no significant difference in canal transportation and centering ratio among the groups. However, at the other levels, TF maintained the original canal curvature recording significantly the least degree of canal transportation as well as the highest mean centering ratio. The TF system showed superior shaping ability in curved canals. Revo-S and GTX were better than ProTaper regarding both canal transportation and centering ability. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    Science.gov (United States)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  17. A novel method for automated grid generation of ice shapes for local-flow analysis

    Science.gov (United States)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  18. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  19. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  20. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    Science.gov (United States)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  1. Model-based, semiquantitative and time intensity curve shape analysis of dynamic contrast-enhanced MRI: a comparison in patients undergoing antiangiogenic treatment for recurrent glioma

    NARCIS (Netherlands)

    Lavini, Cristina; Verhoeff, Joost J. C.; Majoie, Charles B.; Stalpers, Lukas J. A.; Richel, Dick J.; Maas, Mario

    2011-01-01

    To compare time intensity curve (TIC)-shape analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data with model-based analysis and semiquantitative analysis in patients with high-grade glioma treated with the antiangiogenic drug bevacizumab. Fifteen patients had a pretreatment

  2. Shaping the Marketers of Tomorrow: An Analysis of 25 Years of Marketing Education Review

    Science.gov (United States)

    Morrison, Stacey A.; Blair, Amanda J.; McMullan, Kylie L.; Flostrand, Andrew

    2017-01-01

    This article presents a bibliometric analysis of "Marketing Education Review" from its inception in 1990 until 2014. A brief history of the journal is presented and its content is analyzed. In total, 706 articles were studied in terms of their authorship, manuscript, and content characteristics. Descriptive statistics provide an overview…

  3. Computer image analysis of seed shape and seed color for flax cultivar description

    Czech Academy of Sciences Publication Activity Database

    Wiesnerová, Dana; Wiesner, Ivo

    2008-01-01

    Roč. 61, č. 2 (2008), s. 126-135 ISSN 0168-1699 R&D Projects: GA ČR GA521/03/0019 Institutional research plan: CEZ:AV0Z50510513 Keywords : image analysis * cultivar description * flax Subject RIV: EA - Cell Biology Impact factor: 1.273, year: 2008

  4. Strength analysis of CARR-CNS with crescent-shape moderator cell and helium sub-cooling jacket covering cell

    International Nuclear Information System (INIS)

    Yu Qingfeng; Feng Quanke; Kawai Takeshi; Shen Feng; Yuan Luzheng; Cheng Liang

    2005-01-01

    The new type of the moderator cell was developed for the cold neutron source (CNS) of the China Advanced Research Reactor (CARR) which is now being constructed at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the helium sub-cooling jacket is adopted. The structure of the moderator cell is optimized by the stress FEM analysis. A crescent-shape would help to increase the volume of the moderator cell for fitting it to the four cold neutron guide tubes, even if liquid hydrogen, not liquid deuterium, was used as a cold moderator. The helium sub-cooling jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the outer shell of the moderator cell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down first into the helium sub-cooling jacket and then flows up to the condenser. The theory of the self-regulation suitable to the thermo-siphon type of the CNS is also applicable and validated

  5. Sensitivity Analysis for Iceberg Geometry Shape in Ship-Iceberg Collision in View of Different Material Models

    Directory of Open Access Journals (Sweden)

    Yan Gao

    2014-01-01

    Full Text Available The increasing marine activities in Arctic area have brought growing interest in ship-iceberg collision study. The purpose of this paper is to study the iceberg geometry shape effect on the collision process. In order to estimate the sensitivity parameter, five different geometry iceberg models and two iceberg material models are adopted in the analysis. The FEM numerical simulation is used to predict the scenario and the related responses. The simulation results including energy dissipation and impact force are investigated and compared. It is shown that the collision process and energy dissipation are more sensitive to iceberg local shape than other factors when the elastic-plastic iceberg material model is applied. The blunt iceberg models act rigidly while the sharp ones crush easily during the simulation process. With respect to the crushable foam iceberg material model, the iceberg geometry has relatively small influence on the collision process. The spherical iceberg model shows the most rigidity for both iceberg material models and should be paid the most attention for ice-resist design for ships.

  6. Fourier X-ray line shape analysis of lattice defects from a single reflection

    International Nuclear Information System (INIS)

    Misra, N.K.; Bhanumurthy, K.

    1981-01-01

    A method of single reflection Fourier analysis has been described considering the fact that the rms strain (averaged over a distance) is not independent of averaging distance. Following the procedure of N.K. Misra and T.B. Ghosh (1976) and considering the initial slopes of dAsub(L)/dL against L curves, (Asub(L) is the Lsub(th) order Fourier coefficient) the effective size of the coherently diffracting domains and the rms strain in them are determined. The results of this analysis for pure Ti and Ag-3.55% Ga, Ag-15% In and Cu-12.46% Ge alloys compare fairly well with those obtained from different multiple reflections techniques. (author)

  7. Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.

    Science.gov (United States)

    Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R

    1994-05-01

    1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.

  8. Corpus Callosum Analysis using MDL-based Sequential Models of Shape and Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Davies, Rhodri H.; Ryberg, Charlotte

    2004-01-01

    are proposed, but all remain applicable to other domain problems. The well-known multi-resolution AAM optimisation is extended to include sequential relaxations on texture resolution, model coverage and model parameter constraints. Fully unsupervised analysis is obtained by exploiting model parameter...... that show that the method produces accurate, robust and rapid segmentations in a cross sectional study of 17 subjects, establishing its feasibility as a fully automated clinical tool for analysis and segmentation.......This paper describes a method for automatically analysing and segmenting the corpus callosum from magnetic resonance images of the brain based on the widely used Active Appearance Models (AAMs) by Cootes et al. Extensions of the original method, which are designed to improve this specific case...

  9. Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: a feasibility study.

    Science.gov (United States)

    Dall'Asta, Andrea; Schievano, Silvia; Bruse, Jan L; Paramasivam, Gowrishankar; Kaihura, Christine Tita; Dunaway, David; Lees, Christoph C

    2017-07-01

    The antenatal detection of facial dysmorphism using 3-dimensional ultrasound may raise the suspicion of an underlying genetic condition but infrequently leads to a definitive antenatal diagnosis. Despite advances in array and noninvasive prenatal testing, not all genetic conditions can be ascertained from such testing. The aim of this study was to investigate the feasibility of quantitative assessment of fetal face features using prenatal 3-dimensional ultrasound volumes and statistical shape modeling. STUDY DESIGN: Thirteen normal and 7 abnormal stored 3-dimensional ultrasound fetal face volumes were analyzed, at a median gestation of 29 +4  weeks (25 +0 to 36 +1 ). The 20 3-dimensional surface meshes generated were aligned and served as input for a statistical shape model, which computed the mean 3-dimensional face shape and 3-dimensional shape variations using principal component analysis. Ten shape modes explained more than 90% of the total shape variability in the population. While the first mode accounted for overall size differences, the second highlighted shape feature changes from an overall proportionate toward a more asymmetric face shape with a wide prominent forehead and an undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in principal component analysis shape space suggested differences between normal and abnormal fetuses (median and interquartile range distance values, 7.31 ± 5.54 for the normal group vs 13.27 ± 9.82 for the abnormal group) (P = .056). This feasibility study demonstrates that objective characterization and quantification of fetal facial morphology is possible from 3-dimensional ultrasound. This technique has the potential to assist in utero diagnosis, particularly of rare conditions in which facial dysmorphology is a feature. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Analysis and Assessment of Parameters Shaping Methane Hazard in Longwall Areas

    Directory of Open Access Journals (Sweden)

    Eugeniusz Krause

    2013-01-01

    Full Text Available Increasing coal production concentration and mining in coal seams of high methane content contribute to its growing emission to longwall areas. In this paper, analysis of survey data concerning the assessment of parameters that influence the level of methane hazard in mining areas is presented. The survey was conducted with experts on ventilation and methane hazard in coal mines. The parameters which influence methane hazard in longwall areas were assigned specific weights (numerical values. The summary will show which of the assessed parameters have a strong, or weak, influence on methane hazard in longwall areas close to coal seams of high methane content.

  11. Correlation Relationship of Performance Shaping Factors (PSFs) for Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bheka, M. Khumalo; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    At TMI-2, operators permitted thousands of gallons of water to escape from the reactor plant before realizing that the coolant pumps were behaving abnormally. The coolant pumps were then turned off, which in turn led to the destruction of the reactor itself as cooling was completely lost within the core. Human also plays a role in many aspects of complex systems e.g. in design and manufacture of hardware, interface between human and system and also in maintaining such systems as well as for coping with unusual events that place the NPP system at a risk. This is why human reliability analysis (HRA) - an aspect of risk assessments which systematically identifies and analyzes the causes and consequences of human decisions and actions - is important in nuclear power plant operations. It either upgrades or degrades human performance; therefore it has an impact on the possibility of error. These PSFs can be used in various HRA methods to estimate Human Error Probabilities (HEPs). There are many current HRA methods who propose sets of PSFs for normal operation mode of NPP. Some of these PSFs in the sets have some degree of dependency and overlap. Overlapping PSFs introduce error in HEP evaluations due to the fact that some elements are counted more than once in data; this skews the relationship amongst PSF and masks the way that the elements interact to affect performance. This study uses a causal model that represents dependencies and relationships amongst PSFs for HEP evaluation during normal NPP operational states. The model is built taking into consideration the dependencies among PSFs and thus eliminating overlap. The use of an interdependent model of PSFs is expected to produce more accurate HEPs compared to other current methods. PSF sets produced in this study can be further used as nodes (variables) and directed arcs (causal influence between nodes) in HEP evaluation methods such as Bayesian belief (BN) networks. This study was done to estimate the relationships

  12. Analysis of transverse momentum and event shape in νN scattering

    International Nuclear Information System (INIS)

    Bosetti, P.C.; Graessler, H.; Lanske, D.; Schulte, R.; Schultze, K.; Simopoulou, E.; Vayaki, A.; Barnham, K.W.J.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Hoffmann, E.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.; Albajar, C.; Batley, J.R.; Myatt, G.; Perkins, D.H.; Radojicic, D.; Renton, P.; Saitta, S.; Bullock, F.W.; Burke, S.

    1990-01-01

    The transverse momentum distributions of hadrons produced in neutrino-nucleon charged current interactions and their dependence on W are analysed in detail. It is found that the components of the transverse momentum in the event plane and normal to it increase with W at about the same rate throughout the available W range. A comparison with e + e - data is made. Studies of the energy flow and angular distributions in the events classified as planar do not show clear evidence for high energy, wide angle gluon radiation, in contrast to the conclusion of a previous analysis of similar neutrino data. (orig.)

  13. Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape

    International Nuclear Information System (INIS)

    Clara, F M; Scandurra, A G; Meschino, G J; Passoni, L I

    2011-01-01

    This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.

  14. How does uncertainty shape patient experience in advanced illness? A secondary analysis of qualitative data.

    Science.gov (United States)

    Etkind, Simon Noah; Bristowe, Katherine; Bailey, Katharine; Selman, Lucy Ellen; Murtagh, Fliss Em

    2017-02-01

    Uncertainty is common in advanced illness but is infrequently studied in this context. If poorly addressed, uncertainty can lead to adverse patient outcomes. We aimed to understand patient experiences of uncertainty in advanced illness and develop a typology of patients' responses and preferences to inform practice. Secondary analysis of qualitative interview transcripts. Studies were assessed for inclusion and interviews were sampled using maximum-variation sampling. Analysis used a thematic approach with 10% of coding cross-checked to enhance reliability. Qualitative interviews from six studies including patients with heart failure, chronic obstructive pulmonary disease, renal disease, cancer and liver failure. A total of 30 transcripts were analysed. Median age was 75 (range, 43-95), 12 patients were women. The impact of uncertainty was frequently discussed: the main related themes were engagement with illness, information needs, patient priorities and the period of time that patients mainly focused their attention on (temporal focus). A typology of patient responses to uncertainty was developed from these themes. Uncertainty influences patient experience in advanced illness through affecting patients' information needs, preferences and future priorities for care. Our typology aids understanding of how patients with advanced illness respond to uncertainty. Assessment of these three factors may be a useful starting point to guide clinical assessment and shared decision making.

  15. Cultural Models Shaping Stalking From a Content Analysis of Italian Newspapers

    Directory of Open Access Journals (Sweden)

    Andrea Caputo

    2013-08-01

    Full Text Available The increasing spread of stalking in recent years has captured the community’s and media’s interest and highlighted complex legal, clinical and cultural issues. This phenomenon, far from being an individual problem, can be considered as a product of a growing culture that seems to reveal the crisis of current rules of social coexistence. This work aims at detecting the cultural repertoires that organise the stalking discourse, from an analysis of Italian newspaper articles, within a socio-constructivist paradigm. Emotional text analysis was conducted on a corpus of headlines and subheadings derived from 496 articles. These articles were published in major national newspapers and helped to identify four cultural repertoires (clusters that characterise the social representation of stalking: gender violence and women’s social independence (Cluster 1, psychological violence and control as illusion of intimacy (Cluster 2, anomic violence and intolerant individualism (Cluster 3, domestic violence and women’s marital obligation (Cluster 4. These repertoires are conceived along three latent dimensions which respectively refer to the cultural functions of stalking (Factor 1, representations of the victim (Factor 2, and gender inequalities (Factor 3. The paper offers a key to a social contextualisation of stalking in Italy, in order to re-think work practices within institutional agencies that deal with this phenomenon.

  16. Isotopic identification using Pulse Shape Analysis of current signals from silicon detectors: Recent results from the FAZIA collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, G., E-mail: pastore@fi.infn.it [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Gruyer, D. [INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Ottanelli, P. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Le Neindre, N. [LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen (France); Pasquali, G. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Alba, R. [INFN LNS, Via S.Sofia 62, 95123 Catania (Italy); Barlini, S.; Bini, M. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Bonnet, E. [SUBATECH, EMN-IN2P3/CNRS-Université de Nantes, Nantes (France); GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex (France); Bougault, R. [LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen (France); Bruno, M. [INFN, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Casini, G. [INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Chbihi, A. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); and others

    2017-07-11

    The FAZIA apparatus exploits Pulse Shape Analysis (PSA) to identify nuclear fragments stopped in the first layer of a Silicon-Silicon-CsI(Tl) detector telescope. In this work, for the first time, we show that the isotopes of fragments having atomic number as high as Z∼20 can be identified. Such a remarkable result has been obtained thanks to a careful construction of the Si detectors and to the use of low noise and high performance digitizing electronics. Moreover, optimized PSA algorithms are needed. This work deals with the choice of the best algorithm for PSA of current signals. A smoothing spline algorithm is demonstrated to give optimal results without requiring too much computational resources.

  17. Automated Method for Fractographic Analysis of Shape and Size of Dimples on Fracture Surface of High-Strength Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Ihor Konovalenko

    2018-03-01

    Full Text Available An automated method for analyzing the shape and size of dimples of ductile tearing formed during static and impact fracture of titanium alloys VT23 and VT23M is proposed. The method is based on the analysis of the image topology. The method contains the operations of smoothing the initial fractographic image; its convolution with a filter to identify the topological ridges; thresholding with subsequent skeletonization to identify boundaries between dimples; clustering to isolate the connected areas that represent the sought objects—dimples. For each dimple, the following quantitative characteristics were calculated: area, coefficient of roundness and visual depth in units of image intensity. The surface of ductile tearing was studied by analyzing the peculiarities of parameter distribution of the found dimples. The proposed method is applied to fractograms of fracture surfaces of titanium alloys VT23 and VT23M.

  18. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  19. Three-dimensional shape analysis of coarse aggregates: New techniques for and preliminary results on several different coarse aggregates and reference rocks

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Quiroga, P.N.; Fowler, D.W.; Saleh, H.A.; Livingston, R.A.; Garboczi, E.J.; Ketcham, P.M.; Hagedorn, J.G.; Satterfield, S.G.

    2006-01-01

    The shape of aggregates used in concrete is an important parameter that helps determine many concrete properties, especially the rheology of fresh concrete and early-age mechanical properties. This paper discusses the sample preparation and image analysis techniques necessary for obtaining an aggregate particle image in 3-D, using X-ray computed tomography, which is then suitable for spherical harmonic analysis. The shapes of three reference rocks are analyzed for uncertainty determination via direct comparison to the geometry of their reconstructed images. A Virtual Reality Modeling Language technique is demonstrated that can give quick and accurate 3-D views of aggregates. Shape data on several different kinds of coarse aggregates are compared and used to illustrate potential mathematical shape analyses made possible by the spherical harmonic information

  20. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    Science.gov (United States)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  1. GPR Detection of Buried Symmetrically Shaped Mine-like Objects using Selective Independent Component Analysis

    DEFF Research Database (Denmark)

    Karlsen, Brian; Sørensen, Helge Bjarup Dissing; Larsen, Jan

    2003-01-01

    from small-scale anti-personal (AP) mines to large-scale anti-tank (AT) mines were designed. Large-scale SF-GPR measurements on this series of mine-like objects buried in soil were performed. The SF-GPR data was acquired using a wideband monostatic bow-tie antenna operating in the frequency range 750......This paper addresses the detection of mine-like objects in stepped-frequency ground penetrating radar (SF-GPR) data as a function of object size, object content, and burial depth. The detection approach is based on a Selective Independent Component Analysis (SICA). SICA provides an automatic...... ranking of components, which enables the suppression of clutter, hence extraction of components carrying mine information. The goal of the investigation is to evaluate various time and frequency domain ICA approaches based on SICA. Performance comparison is based on a series of mine-like objects ranging...

  2. Robust design for shape parameters of high pressure thermal vapor compressor by numerical analysis

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A high motive pressure Thermal Vapor Compressor(TVC) for a commercial Multi-Effect Desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio

  3. Fringe projection application for surface variation analysis on helical shaped silicon breast

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  4. Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, M., E-mail: matteo.martucci@roma2.infn.it [University of Rome “Tor Vergata”, Department of Physics, I-00133 Rome (Italy); INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Boezio, M. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bravar, U. [Space Science Center, University of New Hampshire (United States); Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Christian, E.R.; De Nolfo, G.A. [Heliospheric Physics Laboratory, NASA/Goddard Space Flight Center (United States); Mergè, M. [INFN, Sezione di Rome “Tor Vergata”, I-00133 Rome (Italy); University of Rome “Tor Vergata”, Department of Physics, I-00133 Rome (Italy); Mocchiutti, E. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Munini, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); University of Trieste, Department of Physics, I-34147 Trieste (Italy); Ricci, M. [INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Ryan, J.M. [Space Science Center, University of New Hampshire (United States); Sotgiu, A. [University of Rome “Tor Vergata”, Department of Physics, I-00133 Rome (Italy); Stochaj, S. [Electrical and Computer Engineering, New Mexico State University (United States); Thakur, N. [Heliospheric Physics Laboratory, NASA/Goddard Space Flight Center (United States); Adriani, O. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G.C. [University of Naples “Federico II”, Department of Physics, I-80126 Naples (Italy); INFN, Sezione di Naples, I-80126 Naples (Italy); and others

    2014-04-01

    The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.

  5. Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment

    International Nuclear Information System (INIS)

    Martucci, M.; Boezio, M.; Bravar, U.; Carbone, R.; Christian, E.R.; De Nolfo, G.A.; Mergè, M.; Mocchiutti, E.; Munini, R.; Ricci, M.; Ryan, J.M.; Sotgiu, A.; Stochaj, S.; Thakur, N.; Adriani, O.; Barbarino, G.C.

    2014-01-01

    The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work

  6. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    Science.gov (United States)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  7. Finite element analysis of laser engineered net shape (LENSTM) tungsten clad squeeze pins

    International Nuclear Information System (INIS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-01-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local 'squeeze' pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ('soldering'). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS TM process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding

  8. Deuterium depth profiling in JT-60U W-shaped divertor tiles by nuclear reaction analysis

    International Nuclear Information System (INIS)

    Hayashi, T.; Ochiai, K.; Masaki, K.; Gotoh, Y.; Kutsukake, C.; Arai, T.; Nishitani, T.; Miya, N.

    2006-01-01

    Deuterium concentrations and depth profiles in plasma-facing graphite tiles used in the divertor of JAERI Tokamak-60 Upgrade (JT-60U) were investigated by nuclear reaction analysis (NRA). The highest deuterium concentration of D/ 12 C of 0.053 was found in the outer dome wing tile, where the deuterium accumulated probably through the deuterium-carbon co-deposition. In the outer and inner divertor target tiles, the D/ 12 C data were lower than 0.006. Additionally, the maximum (H + D)/ 12 C in the dome top tile was estimated to be 0.023 from the results of NRA and secondary ion mass spectroscopy (SIMS). Orbit following Monte-Carlo (OFMC) simulation showed energetic deuterons caused by neutral beam injections (NBI) were implanted into the dome region with high heat flux. Furthermore, the surface temperature and conditions such as deposition and erosion significantly influenced the accumulation process of deuterium. The deuterium depth profile, scanning electron microscope (SEM) observation and OFMC simulation indicated the deuterium was considered to accumulate through three processes: the deuterium-carbon co-deposition, the implantation of energetic deuterons and the deuterium diffusion into the bulk

  9. Performance analysis of different PSF shapes for the quad-HIDAC PET submillimetre resolution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Maynez, Leticia, E-mail: lortega@uacj.mx [Departamento de Ingenieria Eectrica y Computacion , Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico); Dominguez de Jesus Ochoa, Humberto; Villegas Osiris Vergara, Osslan; Gordillo, Nelly; Guadalupe Cruz Sanchez, Vianey; Gutierrez Casas, Efren David [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico)

    2011-10-01

    In pre-clinical applications, it is quite important to preserve the image resolution because it is necessary to show the details of structures of small animals. Therefore, small animal PET scanners require high spatial resolution and good sensitivity. For the quad-HIDAC PET scanner, which has virtually continuous spatial sampling; improvements in resolution, noise and contrast are obtained as a result of avoiding artifacts introduced by binning the data into sampled projections used during the reconstruction process. In order to reconstruct high-resolution images in 3D-PET, background correction and resolution recovery are included within the Maximum Likelihood list-mode Expectation Maximization reconstruction model. This paper, introduces the performance analysis of the Gaussian, Laplacian and Triangular kernels. The Full-Width Half-Maximum used for each kernel was varied from 0.8 to 1.6 mm. For each quality compartment within the phantom, transaxial middle slices from the 3D reconstructed images are shown. Results show that, according to the quantitative measures, the triangular kernel has the best performance.

  10. POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.

    Science.gov (United States)

    Wang, Bin; Li, Huaxing

    2016-01-01

    This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h  = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h  ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h  ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.

  11. Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases

    International Nuclear Information System (INIS)

    Kianifar, Ali; Zeinali Heris, Saeed; Mahian, Omid

    2012-01-01

    An exergy analysis has been conducted to show the effect of a small fan on the exergy efficiency in a pyramid-shaped solar still. The tests were carried out in Mashhad (36° 36′ N), for two solar still systems. One of them was equipped with a small fan (active system), to enhance the evaporation rate while the other one was tested in passive condition (no fan). To examine the effects of radiation and water depth on exergy efficiency, experiments in two seasons and two different depths of water in the solar still basin were performed. The results show that during summer, active unit has higher exergy efficiency than passive one while in winter there is no considerable difference between the exergy efficiency of the units. Results also reveal that the exergy efficiency is higher when the water depth in the basin is lower. Finally, the economic analysis shows a considerable reduction in production cost of the water (8–9%) when the active system is used. -- Highlights: ► Using a small fan in the solar still; reduces the productive cost of fresh water up to 9%. ► Effects of the fan and basin depth on the exergy efficiency during summer and winter were examined. ► Utilizing an active system will increase the daily productivity of fresh water by 20%.

  12. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    Directory of Open Access Journals (Sweden)

    Alex Shlemov

    2015-01-01

    Full Text Available Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological and true biological sources (from stochastic biochemical processes. In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA, and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development. The method is tested on several different data geometries (e.g., nuclear positions and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field.

  13. Thermal Analysis Of Cover Plate Of Galvanizing Bath Tub At Bridge amp Roof Co. I Ltd. By Shape Modification

    Directory of Open Access Journals (Sweden)

    Anirban Jana

    2015-08-01

    Full Text Available This project is aimed for thermally analyzing stress and strain on cover plate of galvanizing bath tub at Bridge amp Roof co. I Ltd in order to maintain 450C in bath tub. Along with analysis part cover plate shape was modified due to its continuous use amp prevailing conditions at the workshop. The cover plate consist of insulating materials compacted to retain the heat in the bath tub. The thermal convection of air is less than thermal resistance of insulating materials used thus heat loss is negligible. Thermal convection air 0.0579 w m k Thermal Resistance Insulator 7.046 w m k. Thermal analysis report show at 450C. Deformation is effecting end portion 2-3 mm. Stress amp Strain at that portion is also low 0.1-0.3 Mpa. Heat transfer of air is more than insulating materials. Thus Heat transfer rate of Insulating materials being low they dont conduct heat from the bath tub to the atmosphere. So temperature of the bath tub is maintained. QA 1806.25 W Heat transfer rate of Air by convection QI 270.43 W Heat transfer rate of Insulation materials

  14. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis.

    Science.gov (United States)

    Burgaleta, Miguel; Sanjuán, Ana; Ventura-Campos, Noelia; Sebastian-Galles, Núria; Ávila, César

    2016-01-15

    Naturally acquiring a language shapes the human brain through a long-lasting learning and practice process. This is supported by previous studies showing that managing more than one language from early childhood has an impact on brain structure and function. However, to what extent bilingual individuals present neuroanatomical peculiarities at the subcortical level with respect to monolinguals is yet not well understood, despite the key role of subcortical gray matter for a number of language functions, including monitoring of speech production and language control - two processes especially solicited by bilinguals. Here we addressed this issue by performing a subcortical surface-based analysis in a sample of monolinguals and simultaneous bilinguals (N=88) that only differed in their language experience from birth. This analysis allowed us to study with great anatomical precision the potential differences in morphology of key subcortical structures, namely, the caudate, accumbens, putamen, globus pallidus and thalamus. Vertexwise analyses revealed significantly expanded subcortical structures for bilinguals compared to monolinguals, localized in bilateral putamen and thalamus, as well as in the left globus pallidus and right caudate nucleus. A topographical interpretation of our results suggests that a more complex phonological system in bilinguals may lead to a greater development of a subcortical brain network involved in monitoring articulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Landmark-based geometric morphometric analysis of wing shape among certain species of Aedes mosquitoes in District Dehradun (Uttarakhand), India.

    Science.gov (United States)

    Mondal, Ritwik; Devi, N Pemola; Jauhari, R K

    2015-06-01

    Insect wing morphology has been used in many studies to describe variations among species and populations using traditional morphometrics, and more recently geometric morphometrics. A landmark-based geometric morphometric analysis of the wings of three species of Aedes (Diptera: Culicidae), viz. Ae. aegypti, Ae. albopictus and Ae. pseudotaeniatus, at District Dehradun was conducted belling on the fact that it can provide insight into the population structure, ecology and taxonomic identification. Adult Aedes mosquito specimens were randomly collected using aerial nets and morphologically examined and identified. The landmarks were identified on the basis of landmark based geometric morphometric analysis thin-plate spline (mainly the software tps-Util 1.28; tps-Dig 1.40; tps-Relw 1.53; and tps-Spline 1.20) and integrated morphometrics programme (mainly twogroup win8 and PCA win8) were utilized. In relative warp (RW) analysis, the first two RW of Ae. aegypti accounted for the highest value (95.82%), followed by Ae. pseudotaeniatus (90.89%), while the lowest (90.12%) being recorded for Ae. albopictus. The bending energies of Ae. aegypti and Ae. pseudotaeniatus were quite identical being 0.1882 and 0.1858 respectively, while Ae. albopictus recorded the highest value of 0.9774. The mean difference values of the distances among Aedes species performing Hotelling's T 2 test were significantly high, predicting major differences among the taxa. In PCA analysis, the horizontal and vertical axis summarized 52.41 and 23.30% of variances respectively. The centroid size exhibited significant differences among populations (non-parametric Kruskal-Wallis test, H = 10.56, p < 0.01). It has been marked out that the geometric morphometrics utilizes powerful and comprehensive statistical procedures to analyze the shape differences of a morphological feature, assuming that the studied mosquitoes may represent different genotypes and probably come from one diverse gene pool.

  16. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    Science.gov (United States)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  17. Shape analysis of spatial relationships between orbito-ocular and endocranial structures in modern humans and fossil hominids.

    Science.gov (United States)

    Pereira-Pedro, Ana Sofia; Masters, Michael; Bruner, Emiliano

    2017-12-01

    The orbits and eyes of modern humans are situated directly below the frontal lobes and anterior to the temporal lobes. Contiguity between these orbital and cerebral elements could generate spatial constraints, and potentially lead to deformation of the eye and reduced visual acuity during development. In this shape analysis we evaluate whether and to what extent covariation exists between ocular morphology and the size and spatial position of the frontal and temporal areas in adult modern humans. Magnetic resonance imaging (MRI) was used to investigate patterns of variation among the brain and eyes, while computed tomography (CT) was used to compare cranial morphology in this anatomical region among modern humans, extinct hominids and chimpanzees. Seventeen landmarks and semi-landmarks that capture the outline of the eye, frontal lobe, anterior fossa/orbital roof and the position of the temporal tips were sampled using lateral scout views in two dimensions, after projection of the average grayscale values of each hemisphere, with midsagittal and parasagittal elements overlapped onto the same plane. MRI results demonstrated that eye position in adult humans varies most with regard to its horizontal distance from the temporal lobes and, secondly, in its vertical distance from the frontal lobes. Size was mainly found to covary with the distance between the eye and temporal lobes. Proximity to these cerebral lobes may generate spatial constraints, as some ocular deformation was observed. Considering the CT analysis, modern humans vary most with regard to the orientation of the orbits, while interspecific variation is mainly associated with separation between the orbits and endocranial elements. These findings suggest that size and position of the frontal and temporal lobes can affect eye and orbit morphology, though potential effects on eye shape require further study. In particular, possible effects of these spatial and allometric relationships on the eye and vision

  18. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    International Nuclear Information System (INIS)

    Celis, B. de; Fuente, R. de la; Williart, A.; Celis Alonso, B. de

    2007-01-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2 (Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis

  19. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences.

    Science.gov (United States)

    Gloger, Oliver; Bülow, Robin; Tönnies, Klaus; Völzke, Henry

    2017-11-24

    We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences. Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences. The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences. This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.

  20. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs.

    NARCIS (Netherlands)

    Eck, van H.J.; Jacobs, J.M.E.; Stam, P.; Ton, J.; Stiekema, W.J.; Jacobsen, E.

    1994-01-01

    Tuber shape in potato is commonly regarded as displaying continuous variation, yet at the diploid level phenotypes can be discerned visually, having round or long tubers. Inheritance of qualitative tuber shape can be explained by a single locus Ro, round being dominant to long. With restriction

  1. Statistical models of shape optimisation and evaluation

    CERN Document Server

    Davies, Rhodri; Taylor, Chris

    2014-01-01

    Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.

  2. FANAC - a shape analysis program for resonance parameter extraction from neutron capture data for light and medium-weight nuclei

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1977-11-01

    A least-squares shape analysis program is described which is used at the Karlsruhe Nuclear Research Center for the extraction of resonance parameters from high-resolution capture data. The FORTRAN program was written for light to medium-weight or near-magic target nuclei whose cross sections are characterized on one hand by broad s-wave levels with negligible Doppler broadening but pronounced multi-level interference, on the other hand by narrow p-, d- ... wave resonances with negligible multi-level interference but pronounced Doppler broadening. Accordingly the Reich-Moore multi-level formalism without Doppler broadening is used for s-wave levels, and a single-level description with Doppler braodening for p-, d- ... wave levels. Calculated capture yields are resolution broadened. Multiple-collision events are simulated by Monte Carlo techniques. Up to five different time-of-flight capture data sets can be fitted simultaneously for samples containing up to ten isotopes. Input and output examples are given and a FORTRAN list is appended. (orig.)

  3. Defect window analysis by using SEM-contour based shape quantifying method for sub-20nm node production

    Science.gov (United States)

    Hibino, Daisuke; Hsu, Mingyi; Shindo, Hiroyuki; Izawa, Masayuki; Enomoto, Yuji; Lin, J. F.; Hu, J. R.

    2013-04-01

    The impact on yield loss due to systematic defect which remains after Optical Proximity Correction (OPC) modeling has increased, and achieving an acceptable yield has become more difficult in the leading technology beyond 20 nm node production. Furthermore Process-Window has become narrow because of the complexity of IC design and less process margin. In the past, the systematic defects have been inspected by human-eyes. However the judgment by human-eyes is sometime unstable and not accurate. Moreover an enormous amount of time and labor will have to be expended on the one-by-one judgment for several thousands of hot-spot defects. In order to overcome these difficulties and improve the yield and manufacturability, the automated system, which can quantify the shape difference with high accuracy and speed, is needed. Inspection points could be increased for getting higher yield, if the automated system achieves our goal. Defect Window Analysis (DWA) system by using high-precision-contour extraction from SEM image on real silicon and quantifying method which can calculate the difference between defect pattern and non-defect pattern automatically, which was developed by Hitachi High-Technologies, has been applied to the defect judgment instead of the judgment by human-eyes. The DWA result which describes process behavior might be feedback to design or OPC or mask. This new methodology and evaluation results will be presented in detail in this paper.

  4. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    Science.gov (United States)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  5. Exploring Context and the Factors Shaping Team-Based Primary Healthcare Policies in Three Canadian Provinces: A Comparative Analysis.

    Science.gov (United States)

    Misfeldt, Renée; Suter, Esther; Mallinson, Sara; Boakye, Omenaa; Wong, Sabrina; Nasmith, Louise

    2017-08-01

    This paper discusses findings from a high-level scan of the contextual factors and actors that influenced policies on team-based primary healthcare in three Canadian provinces: British Columbia, Alberta and Saskatchewan. The team searched diverse sources (e.g., news reports, press releases, discussion papers) for contextual information relevant to primary healthcare teams. We also conducted qualitative interviews with key health system informants from the three provinces. Data from documents and interviews were analyzed qualitatively using thematic analysis. We then wrote narrative summaries highlighting pivotal policy and local system events and the influence of actors and context. Our overall findings highlight the value of reviewing the context, relationships and power dynamics, which come together and create "policy windows" at different points in time. We observed physician-centric policy processes with some recent moves to rebalance power and be inclusive of other actors and perspectives. The context review also highlighted the significant influence of changes in political leadership and prioritization in driving policies on team-based care. While this existed in different degrees in the three provinces, the push and pull of political and professional power dynamics shaped Canadian provincial policies governing team-based care. If we are to move team-based primary healthcare forward in Canada, the provinces need to review the external factors and the complex set of relationships and trade-offs that underscore the policy process. Copyright © 2017 Longwoods Publishing.

  6. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  7. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    Science.gov (United States)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  8. The line shape analysis of electron spectroscopy spectra by the artifical intelligence methods for identification of C sp.sup.2./sup./sp.sup.3./sup. bonds

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Stobinski, L.; Jozwik, A.

    2010-01-01

    Roč. 247, 11-12 (2010), s. 2838-2842 ISSN 0370-1972 R&D Projects: GA ČR GA202/09/0428 Institutional research plan: CEZ:AV0Z10100521 Keywords : carbon nanotubes * temperature functionalization * electron spectroscopy * line shape analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.344, year: 2010

  9. Application of otolith shape analysis in identifying different ecotypes of Coilia ectenes in the Yangtze Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Radhakrishnan, K.V.; Li, Y.; Jayalakshmy, K.V.; Liu, M.; Murphy, B.R.; Xie, S.

    The variability in otolith shape of the tapertail anchovy Coilia ectenes was investigated as a tool for identifying its different ecotypes. The outlines of 350 sagittal otoliths of known ecotypes collected from seven sampling areas, covering most...

  10. Shape and texture analysis of the carotid plaque, and its correlation with cerebral infarctions on CT, and cerebrovascular symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Kalomiris, Konstantinos; Tegos, Thomas J; Sabetai, Michael; Nicolaides, Andrew N [Irvine Laboratory for Cardiovascular Investigations and Research, Imperial College School of Medicine at St Mary` , Praed Street, London W2 1NY (United Kingdom)

    1999-12-31

    This work has studied the relationship between ultrasonic texture characteristics, ultrasonic shape characteristics, cerebral infarctions on CT, and cerebrovascular symptoms, in an attempt to identify the unstable carotid plaque, i.e. the plaque associated with high prevalence of ipsilateral cerebral infarctions on CT, and cerebrovascular symptoms. The morphological features used were : the grey scale median (GSM) for the texture, and the bending energy (BE) for the shape. It has been shown that echoluscent plaques (plaques with low GSM) with irregular shape (high BE) are associated with high prevalence of ipsilateral cerebral infarctions on CT and cerebrovascular symptoms, whereas echogenic plaques (high GSM) with smooth shape (low BE) are associated with low prevalence of ipsilateral cerebral infarctions on CT and cerebrovascular symptoms. Previous work has demonstrated the significance of the GSM in identifying the unstable carotid plaques, but no attempt, to our knowledge, has been made to establish the clinical significance of the ultrasonic shape characteristics of the carotid plaque. The importance of the ultrasonic texture and shape characteristics will be established in prospective studies of patients with asymptomatic carotid plaques, aiming at the identification of patients with a high risk for stroke, and therefore for a better selection of asymptomatic patients who might benefit from a carotid endarterectomy. (authors) 5 refs., 3 figs.

  11. Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis

    Science.gov (United States)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei

    2018-01-01

    We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.

  12. Project Analysis of Aerodynamics Configuration of Re-entry Сapsule-shaped Body Based on Numerical Methods for Newtonian Flow Theory

    Directory of Open Access Journals (Sweden)

    V. E. Minenko

    2015-01-01

    engineering technique allows a multi-fold increasing rate of the capsule shape analysis at an early designing stage. Reviewed design parameters can be further considered as the optimality criteria when choosing the SC shape, and the engineering technique can be further extended to a full-fledged programme on the numerical selection of the optimal aerodynamic solutions with continuously transferred results for engineering development of the SC.

  13. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

    Science.gov (United States)

    Tadic, Marin; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinovic-Runic, Jasmina; Stojanovic, Zoran

    2017-05-01

    Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio ∼5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.

  14. The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Hamidreza Barikani

    2014-01-01

    Full Text Available Background: The aim of this in vitro study was to evaluate the effect of shape, diameter and length of implants on their primary stability based on resonance frequency analysis. Materials and Methods: Replace select tapered and Branemark MK III implants were selected. Each of these two selected groups was divided into nine subgroups based on the implant length (IL (short, medium and long and the implant diameter (ID (narrow platform [NP], regular platform [RP] and wide platform [WP]. Five implants were assigned to each of the nine subgroups. Implants were placed in artificial bone blocks with bone quality similar to D3 bone. Immediately after the implant placement, its primary stability was measured using Osstell Mentor equipment. T-test and Tukey′s honest significant difference Post hoc were performed for data analysis. Statistical significance was defined at P < 0.05. Results: Replace select system showed significantly higher primary stability compared to the Branemark system, when using the short implants for all three diameters (P ≤ 0.004. However, in medium length implants there were no significant differences between the two implant systems (P ≥ 0.31. In long implants, only when the NP and RP implants were used, the Replace Select system showed significantly higher primary stability compared to the Branemark system (P = 0.000. In the replace select system, long implants had a significantly higher primary stability compared to medium and short length implants (P ≤ 0.003. In the NP and RP Branemark implants, short implants showed significantly lower primary stability compared to medium and long implants (P ≤ 0.002. However, in WP Branemark implants, primary stability increased significantly with increasing the IL from short to medium and from medium to long (P = 0.000. There were also significant differences between NP and the two other wider implants in both systems (P = 0.000. Conclusion: The use of tapered implants is

  15. Shell Shape Analysis and Spatial Allometry Patterns of Manila Clam (Ruditapes philippinarum in a Mesotidal Coastal Lagoon

    Directory of Open Access Journals (Sweden)

    Nathalie Caill-Milly

    2012-01-01

    Full Text Available While gradual allometric changes of shells are intrinsically driven by genotype, morphometrical shifts can also be modulated by local environmental conditions. Consequently the common use of a unique dimension (usually length to assess bivalves’ growth may mask phenotypic differences in valve shape among populations. A morphometric exhaustive study was conducted on Manila clam, Ruditapes philippinarum, by acquiring data in the French Arcachon Bay (intrasite phenotypic variability and by comparing with other sites in the literature (intersite phenotypic variability. 2070 shells were subsampled, weighted, and automatically measured using TNPC software. Some ratios’ values indicate a relatively round and globular shape shell in comparison with other sites confirming poor conditions for some individuals. Among adult clams, three main morphological groups were identified and discussed according to spatial considerations. Allometric relations for pairs of shell descriptors were determined by testing classical linear and piecewise regression models on log-transformed relation of Huxley. A significant shape change correlated to size was observed; it corresponds to the second year of life of the clam. Relationships between density, disease, and shell shape are demonstrated and discussed related to other potential factors affecting shell shape. Finally, consequences on population regulation are addressed.

  16. URABN LEGIBILITY AND SHAPING THE IMAGE OF DOHA: Visual Analysis of the Environmental Graphics of the 15th. Asian Games

    Directory of Open Access Journals (Sweden)

    Abeer A. Hasanin

    2007-11-01

    Full Text Available This paper explores urban legibility and the associated elements that contribute to the image of the city. It investigates the graphics of the 15th. Asian Games that took place in Doha, December 2006, while placing emphasis on environmental graphics as a vehicle for shaping our indoor and outdoor visual environment. Utilizing the concept of environmental quality and its underlying notion of legibility, the paper analytically describes the environmental graphics of the games event and preliminarily measures Doha residents’ reactions to graphics-based urban settings within the city. The results of performing these procedures reveal that environmental graphics can contribute in shaping the memory of city images and can help establish associations between people past, present and future experience of urban scenes. such results call for including environmental graphics in the work of architects and urban designers toward shaping better memorable images of cities.

  17. Apparent diffusion coefficient histogram shape analysis for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.

    Science.gov (United States)

    Meng, Jie; Zhu, Lijing; Zhu, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2016-10-22

    To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced cervical cancers. This prospective study was approved by the local ethics committee and informed consent was obtained from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion weighted magnetic resonance imaging (b values, 0 and 800 s/mm 2 ) before CCRT, at the end of 2nd and 4th week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated several histogram shape related parameters including skewness, kurtosis, s-sD av , width, standard deviation, as well as first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually observe dynamic changes of the histogram shape following CCRT. All parameters except width and standard deviation showed significant changes during CCRT (all P histogram also changed obviously following CCRT. ADC histogram shape analysis held the potential in monitoring early tumor response in patients with advanced cervical cancers undergoing CCRT.

  18. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  19. Supra-molecular structure of TGBC* phases studied by means of Deuterium NMR line-shape analysis

    Czech Academy of Sciences Publication Activity Database

    Domenici, V.; Veracini, C.A.; Hamplová, Věra; Kašpar, Miroslav

    2008-01-01

    Roč. 495, č. 11 (2008), s. 133-144 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z10100520 Keywords : banana -shaped * deuterium NMR * magnetic field * rod-like * smectic * twist grain boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  20. Role of flood discharge in shaping stream geometry: Analysis of a small modern stream in the Uinta Basin, USA

    Directory of Open Access Journals (Sweden)

    Guang-Ming Hu

    2017-01-01

    This stream example demonstrates the subtleties of stream flow and the importance of flood discharge in shaping the channel geometry. Although it is difficult to scale up this example to a large river system that carves geomorphic landscape, this case shows how river geometries vary from the traditional patterns due to different gradient.

  1. Analysis of experimental data: The average shape of extreme wave forces on monopile foundations and the NewForce model

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Ghadirian, Amin

    2017-01-01

    Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values are co...... to the average shapes. For more nonlinear wave shapes, higher order terms has to be considered in order for the NewForce model to be able to predict the expected shapes.......Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values...... are compared across the sea states. It is found that the force shapes show a clear similarity when grouped after the values of the normalised peak force, F/(ρghR2), normalised depth h/(gT2p) and presented in a normalised time scale t/Ta. For the largest force events, slamming can be seen as a distinct ‘hat...

  2. Design and analysis of high-numerical-aperture beam shaping systems; Design und Analyse von Strahlformungssystemen hoher numerischer Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Hagen

    2009-11-24

    The generation of light tailored to measure stands today in the center of many innovative applications. A possibility of the flexible manipulation of light is the laser-beam shaping.Aim is thereby to transform the intensity profile of a laser beam to a wanted profile. The main topic of this thesis is the modeling and propagation of laser light in paraxial and non-paraxial beam-shaping systems as well as the optimization of these systems by means of a generalized projection algorithm. This algorithm is applied for the optimization by means of aspherical formula or polynomials point-by-point parametrized beam shaping surfaces. It is shown that during the optimization a regardment of diffraction, interference, and abberations is possible. The latter can not only be regarded, but directly used for the beam shaping. Finally it is shown that the aberrations of spherical catalogue lenses are already sufficient for some beam-shaping applications. The efficiency of the developed optimization algorithms is demonstrated both on paraxial and on non-paraxial beam-shaping examples with a numerical aperture of up to 0.62. Finally in the present thesis concepts for the achromatization and for the wave-length multiplexing are introduced, which are based on the application of diverse surfaces and materials with different dispersion. While the achromatization aims to make the optical function of a beam-shaping system wave-length independent, the wavelength multiplexing tries directly to realize different optical functions for diverse design wavelengths. [German] Die Erzeugung massgeschneiderten Lichts steht heute im Mittelpunkt vieler innovativer Anwendungen. Eine Moeglichkeit der flexiblen Manipulation von Licht ist die Laserstrahlformung. Ziel ist es dabei, das Intensitaetsprofil eines Laserstrahls in ein gewuenschtes Profil umzuformen. Schwerpunkt dieser Arbeit ist die Modellierung und Ausbreitung von Laserlicht in paraxialen und nicht-paraxialen Strahlformungssystemen sowie die

  3. Thin-plate spline analysis of mandibular shape changes induced by functional appliances in Class II malocclusion : A long-term evaluation.

    Science.gov (United States)

    Franchi, Lorenzo; Pavoni, Chiara; Faltin, Kurt; Bigliazzi, Renato; Gazzani, Francesca; Cozza, Paola

    2016-09-01

    The purpose of this work was to evaluate the long-term morphological mandibular changes induced by functional treatment of Class II malocclusion with mandibular retrusion. Forty patients (20 females, 20 males) with Class II malocclusion consecutively treated with either a Bionator or an Activator followed by fixed appliances were compared with a control group of 40 subjects (19 females, 21 males) with untreated Class II malocclusion. Lateral cephalograms were available at the start of treatment (T1, mean age 9.9 years), at the end of treatment with functional appliances (T2, mean age 12.2 years), and for long-term follow-up (T3, mean age 18.3 years). Mandibular shape changes were analyzed on lateral cephalograms of the subjects in both groups via thin-plate spline (TPS) analysis. Shape differences were statistically analyzed by conducting permutation tests on Goodall F statistics. In the long term, both the treated and control groups exhibited significant longitudinal mandibular shape changes characterized by upward and forward dislocation of point Co associated with a vertical extension in the gonial region and backward dislocation of point B. Functional appliances induced mandible's significant posterior morphogenetic rotation over the short term. The treated and control groups demonstrated similar mandibular shape over the long term.

  4. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    Science.gov (United States)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  5. A tolerance analysis on design parameters of parabolic and hyperbolic secant active GRIN materials for laser beam shaping purposes

    International Nuclear Information System (INIS)

    Gómez-Varela, A I; Bao-Varela, C; Flores-Arias, M T

    2014-01-01

    The present paper considers two gain GRIN media, characterized by a complex parabolic and hyperbolic secant refractive index profile, for the design of uniform beam shaper systems. A general condition for beam shaping is obtained from the equation describing the evolution of the half-width of a plane Gaussian beam in the GRIN media. The simulation of the irradiance evolution of an input plane Gaussian beam—operating at 575 nm and beam waist radius of 0.45 mm—in each material is shown, in order to examine the beam shaping quality in terms of thickness of the active GRIN media and input beam wavelength. (paper)

  6. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model....... The maximal differences between the CAFU estimations and the true left ventricular volumes of the digital phantoms were 11 ml for the end-diastolic volume (EDV), 3 ml for the end-systolic volume (ESV) and 3% for the ejection fraction (EF). The largest differences were seen in the smallest heart....... In the patient group the EDV calculated using QGS and CAFU showed good agreement for large hearts and higher CAFU values compared with QGS for the smaller hearts. In the larger hearts, ESV was much larger for QGS than for CAFU both in the phantom and patient studies. In the smallest hearts there was good...

  7. Particle identification in a wide dynamic range based on pulse-shape analysis with solid-state detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Hilscher, D.; Ortlepp, H.G.

    1994-04-01

    Heavy ions detected in a planar silicon detector were identified by exploiting a recently proposed combination of the pulse-shape and the time-of-flight techniques. We were able to resolve charge numbers up to Z = 16 within a wide dynamic range of ∼ 1:5, and to identify even isotopes for the elements up to Magnesium. The simple scheme of signal processing is based on conventional electronics and cheap enough to be exploited in large multidetector arrays. (orig.)

  8. Shell shape analysis and spatial allometry patterns of Manila Clam (Ruditapes philippinarium) in a mesotidal coastal lagoon

    OpenAIRE

    Caill-Milly, Nathalie; Bru, Noëlle; Mahé, Kélig; D'Amico, Franck

    2012-01-01

    While gradual allometric changes of shells are intrinsically driven by genotype, morphometrical shifts can also be modulated by local environmental conditions. Consequently the common use of a unique dimension (usually length) to assess bivalves’ growth may mask phenotypic differences in valve shape among populations. A morphometric exhaustive study was conducted on Manila clam, Ruditapes philippinarum, by acquiring data in the French Arcachon Bay (intrasite phenotypic variability) and by com...

  9. Finite element analysis in defining the optimal shape and safety factor of retentive clasp arms of removable partial denture

    Directory of Open Access Journals (Sweden)

    Šćepanović Miodrag

    2013-01-01

    Full Text Available Bacground/Aim. Retentive force of removable partial denture (RPD directly depends on elastic force of stretched retentive clasp arms (RCAs. During deflection RCA must have even stress distribution. Safety factor is the concept which can be applied in estimating durability and functionality of RCAs. This study was based on analyzing properties of clasps designed by conventional clasp wax profiles and defining the optimal shapes of RCAs for stress distribution and safety factor aspects. Methods. Computer-aided-design (CAD models of RCAs with simulated properties of materials used for fabrication of RPD cobalt-chromium-molybdenum (CoCrMo alloy, commercially pure titanium (CPTi and polyacetale were analyzed. Results. The research showed that geometrics of Rapidflex profiles from the BIOS concept are defined for designing and modeling RCAs from CoCrMo alloys. I-Bar and Bonihard clasps made from CPTi might have the same design as Co- CrMo clasp only by safety factor aspect, but it is obvious that CPTi are much more flexible, so their shape must be more massive. Polyacetale clasps should not be fabricated by BIOS concept for CoCrMo alloy. A proof for that is the low value of safety factor. Conclusion. The BIOS concept should be used only for RCAs made of CoCrMo alloy and different wax profiles should be used for fabricating clasps of other investigated materials. The contribution of this study may be the improvement of present systems for defining the clasps shapes made from CoCrMo alloys. The more significant application is possibility of creating new concepts in defining shapes of RCA made from CPTi and polyacetale.

  10. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    Science.gov (United States)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  11. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results

    Directory of Open Access Journals (Sweden)

    Domingos M. C. Rodrigues

    2017-12-01

    Full Text Available Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli. Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.

  12. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results.

    Science.gov (United States)

    Rodrigues, Domingos M C; Lopes, Rafaela N; Franco, Marcos A R; Werneck, Marcelo M; Allil, Regina C S B

    2017-12-19

    Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli . Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.

  13. Spherical blurred shape model for 3-D object and pose recognition: quantitative analysis and HCI applications in smart environments.

    Science.gov (United States)

    Lopes, Oscar; Reyes, Miguel; Escalera, Sergio; Gonzàlez, Jordi

    2014-12-01

    The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of discriminative and computationally efficient descriptors is still an open issue. In this paper, we propose a novel point cloud descriptor called spherical blurred shape model (SBSM) that successfully encodes the structure density and local variabilities of an object based on shape voxel distances and a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and scale invariant, robust to noise and occlusions, highly discriminative for multiple categories of complex objects like the human hand, and computationally efficient since the SBSM complexity is linear to the number of object voxels. Experimental evaluation in public depth multiclass object data, 3-D facial expressions data, and a novel hand poses data sets show significant performance improvements in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal is also proved for object spotting in 3-D scenes and for real-time automatic hand pose recognition in human computer interaction scenarios.

  14. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    Energy Technology Data Exchange (ETDEWEB)

    Agasthya, G; Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural, unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.

  15. Quantitative CT texture and shape analysis: Can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Bayanati, Hamid; Thornhill, Rebecca E.; Souza, Carolina A.; Sethi-Virmani, Vineeta; Gupta, Ashish; Dennie, Carole [University of Ottawa, The Ottawa Hospital Research Institute, Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Road, Box 232, Ottawa, ON (Canada); Maziak, Donna [University of Ottawa, The Ottawa Hospital Research Institute, Department of Surgery - Division of Thoracic Surgery, The Ottawa Hospital, Ottawa, ON (Canada); Amjadi, Kayvan [University of Ottawa, The Ottawa Hospital Research Institute, Department of Respiratory Medicine, The Ottawa Hospital, Ottawa, ON (Canada)

    2014-09-13

    To assess the accuracy of CT texture and shape analysis in the differentiation of benign and malignant mediastinal nodes in lung cancer. Forty-three patients with biopsy-proven primary lung malignancy with pathological mediastinal nodal staging and unenhanced CT of the thorax were studied retrospectively. Grey-level co-occurrence and run-length matrix textural features, as well as morphological features, were extracted from 72 nodes. Differences between benign and malignant features were assessed using Mann-Whitney U tests. Receiver operating characteristic (ROC) curves for each were constructed and the area under the curve (AUC) calculated with histopathology diagnosis as outcome. Combinations of features were also entered as predictors in logistic regression models and optimal threshold criteria were used to estimate sensitivity and specificity. Using optimum-threshold criteria, the combined textural and shape features identified malignant mediastinal nodes with 81 % sensitivity and 80 % specificity (AUC = 0.87, P < 0.0001). Using this combination, 84 % malignant and 71 % benign nodes were correctly classified. Quantitative CT texture and shape analysis has the potential to accurately differentiate malignant and benign mediastinal nodes in lung cancer. (orig.)

  16. Otolith shape analysis as a tool for stock discrimination of the black scabbardfish, Aphanopus carbo Lowe, 1839 (Pisces: Trichiuridae, in Portuguese waters

    Directory of Open Access Journals (Sweden)

    Inês Farias

    2009-12-01

    Full Text Available The variability in otolith contour shape of black scabbardfish (Aphanopus carbo from Portuguese waters was analysed for stock discrimination purposes. The contour shape of otoliths from specimens caught off mainland Portugal, Madeira and Azores archipelagos was digitised and extracted according to the closed-form Fourier analysis technique. Mainland and Madeira specimens were compared through the adjustment of a MANOVA model to the normalised elliptic Fourier descriptor (NEFDs obtained for the otoliths of 200 females and 200 males sampled at each area. Significant differences were found between areas and between sexes; the interaction term was not statistically significant. The effect of the area also proved to be significant when samples from the three regions were considered. These results were further supported by the discriminant analysis of the individual NEFDs for which the correct classifications were 87.5-89% when they were considered by sex and total length for the mainland and Madeira, and 90.9-97.7%, when NEFDs from the three areas were compared by sex and fish length. Otolith contour shape was shown to be a possible tool for differentiating between black scabbardfish stocks in the NE Atlantic.

  17. 3D depth image analysis for indoor fall detection of elderly people

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2016-02-01

    Full Text Available This paper presents a new fall detection method of elderly people in a room environment based on shape analysis of 3D depth images captured by a Kinect sensor. Depth images are pre-processed by a median filter both for background and target. The silhouette of moving individual in depth images is achieved by a subtraction method for background frames. The depth images are converted to disparity map, which is obtained by the horizontal and vertical projection histogram statistics. The initial floor plane information is obtained by V disparity map, and the floor plane equation is estimated by the least square method. Shape information of human subject in depth images is analyzed by a set of moment functions. Coefficients of ellipses are calculated to determine the direction of individual. The centroids of the human body are calculated and the angle between the human body and the floor plane is calculated. When both the distance from the centroids of the human body to the floor plane and the angle between the human body and the floor plane are lower than some thresholds, fall incident will be detected. Experiments with different falling direction are performed. Experimental results show that the proposed method can detect fall incidents effectively.

  18. Experimental Study of Particle Separation in a L Kr Ionization Chamber by Multiple Measuring of dE/d x Using the Shape Analysis of Signal

    International Nuclear Information System (INIS)

    Cantoni, P.; Frabetti, P.L.; Stagni, L.

    1994-01-01

    Charged particle (π - k) separation in the momentum range 0.5 - 0.7 GeV/c using a new method of shape analysis of the signal from a liquid krypton (L Kr) ionization chamber has been experimentally studied. The detector has been exposed to pions and protons at T11 test beam at the CERN PS. The shape of the preamplifier output signal was recorded by a waveform digitizer, then it was doubly 'differentiated' to obtain few measurements of dE/d x inside a 2 cm gap. This permits an increase of the boundary momentum of 2 σ separation from 0.6 GeV/c to 0.68 GeV/c. The comparison with the Monte Carlo result shows good agreement. (author). 11 refs.; 9 figs

  19. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.

    Science.gov (United States)

    Kar, Subrata; Majumder, D Dutta

    2017-08-01

    hidden layer of 10 neurons and 2 output neurons. Of the 16-sample database, 10 datasets for training, 3 datasets for validation, and 3 datasets for testing were used in the ANN classification system. From the SSM (µ) confusion matrix, the number of output datasets of true positive, false positive, true negative and false negative was 6, 0, 10, and 0, respectively. The sensitivity, specificity and accuracy were each equal to 100%. The method of diagnosing brain cancer presented in this study is a successful model to assist doctors in the screening and treatment of brain cancer patients. The presented FES successfully identified the presence of brain cancer in CT and MR images using the extracted shape-based features and the use of NFS for the identification of brain cancer in the early stages. From the analysis and diagnosis of the disease, the doctors can decide the stage of cancer and take the necessary steps for more accurate treatment. Here, we have presented an investigation and comparison study of the shape-based feature extraction method with the use of NFS for classifying brain tumors as showing normal or abnormal patterns. The results have proved that the shape-based features with the use of NFS can achieve a satisfactory performance with 100% accuracy. We intend to extend this methodology for the early detection of cancer in other regions such as the prostate region and human cervix.

  20. Poly(vinylidene fluoride)-based ion track membranes with different pore diameters and shapes. SEM observations and conductometric analysis

    International Nuclear Information System (INIS)

    Nuryanthi, Nunung; Yamaki, Tetsuya; Koshikawa, Hiroshi; Asano, Masaharu; Enomoto, Kazuyuki; Sawada, Shin-ichi; Maekawa, Yasunari; Voss, Kay-Obbe; Trautmann, Christina; Neumann, Reinhard

    2010-01-01

    Poly(vinylidene fluoride) (PVDF) membranes with conical and cylindrical nanopores were prepared in a controlled manner by the ion-track technique, which involved heavy-ion beam irradiation and subsequent alkaline etching. The etching behavior mainly depended on the energy deposition of the ion beams, and thus its depth distribution, estimated by theoretical simulation, was successfully applied to control the shapes and diameters of the etched pores. Scanning electron microscopy (SEM) and electrolytic conductometry provided an insight into the critical experimental parameters. Interestingly, applying a higher voltage to the conductometry cell promoted track etching up to breakthrough probably because electrophoretic migration of the dissolved products occurred out of each pore. (author)

  1. Green technology foresight of high technology: a social shaping of technology approach to the analysis of hopes and hypes

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Jørgensen, Ulrik

    2009-01-01

    Protection Agency with the purpose of acquiring knowledge about the environmental potentials and risks related to the three areas of technology. The foresight was organized with a social shaping of technology (SST) approach to the field in order to cater for the complex relationship between societal demands......, technology options, innovation dynamics and environmental impacts. The approach involved studying actor-networks, laboratory programs and technology trajectories as well as deconstructing different stakeholders’ high tech visions. The identified environmental potentials and risks related to the three areas...

  2. Pulse-Shape Analysis of PDM-QPSK Modulation Formats for 100 and 200 Gb/s DWDM transmissions

    OpenAIRE

    Macho Ortiz, Andrés; Rodriguez Horche, Paloma

    2013-01-01

    Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlin...

  3. Application of Green's differential equation to the analysis of ion-matrix sheaths around wedge-shaped cathodes

    International Nuclear Information System (INIS)

    Donolato, C

    2005-01-01

    A relation between the gradient of the electric field and mean curvature of equipotential surfaces (Green's differential equation) is applied to a two-dimensional free-boundary problem arising in the study of ion sheaths around wedge-shaped cathodes. With the assumption that the equipotential lines are hyperbolae, this relation leads to a nonlinear ordinary differential equation for the potential along the bisector line of the wedge. An approximate solution is found, which yields, in particular, the sheath width along this line as a function of the wedge angle. The resulting values are in good agreement with published results obtained by numerically solving Poisson's equation

  4. Pupil shape in the animal kingdom: from the pseudopupil to the vertical pupil.

    Science.gov (United States)

    González-Martín-Moro, J; Gómez-Sanz, F; Sales-Sanz, A; Huguet-Baudin, E; Murube-del-Castillo, J

    2014-12-01

    To study the different pupil shapes adopted by the different animal species. Review of the related literature, using PubMed database. The initial search strategy was pupil shape (limited to animals). The first volume of System of Ophthalmology (Duke-Elder) and Evolution's witness (I. Schwab) were also reviewed. An optic illusion called pseudopupil is usually observed in the compound eyes of insects. The pupil is circular in most vertebrates, however slit vertical pupils are present in cats and in some snake species. Vertical pupils could have a photoprotective function, as it makes a more complete closure possible in photopic conditions, and helps to camouflage the predator. It has also been hypothesized that it could help to correct chromatic aberration. Ruminants are usually endowed with horizontal pupils. This shape could improve the capacity of the eye to detect vertical silhouettes. Some marine animals have crescent-shaped pupils. In these animals, a superior operculum helps to protect the inferior retina from the great amount of light coming from above. There is a surprising variability in pupil shape. Through this variability, nature has fitted the eye to different circumstances. The theories proposed to explain this high variability are discussed in detail in the article. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  6. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  7. Insights on stock structure of round sardinella Sardinella aurita off north-west Africa based on otolith shape analysis.

    Science.gov (United States)

    Bacha, M; Jeyid, A M; Jaafour, S; Yahyaoui, A; Diop, M; Amara, R

    2016-10-01

    This study examines the geographic variability in otolith shape of round sardinella Sardinella aurita as a tool for stock discrimination. Fish were analysed from six sampling locations from Senegal to the Mediterranean coast of Morocco. A combination of otolith shape indices and elliptic Fourier descriptors was investigated by multivariate statistical procedures. Within the studied area, three distinct groups were identified with an overall correct classification of 78%. Group A: Nador (Alboran Sea), group B: Casablanca (northern Morocco) and group C: Senegalese-Mauritanian. The results of this study confirm the absence of an Atlantic Ocean-Mediterranean Sea transition for this species, the Gibraltar Strait acting as an efficient barrier for S. aurita population separation. Off north-west Africa, fish from northern Morocco form a single group which is clearly isolated from Senegalese-Mauritanian waters, confirming the existence of a distinct stock in this area. Among group C, some discontinuity exists and suggests the existence of a sedentary fraction of S. aurita in northern Mauritania (Arguin Bank). The results are discussed in relation to oceanographic features and physical barriers to dispersal and fish management strategy in the study area. © 2016 The Fisheries Society of the British Isles.

  8. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  9. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization.

    Science.gov (United States)

    Kenyon, Julia C; Tanner, Sian J; Legiewicz, Michal; Phillip, Pretty S; Rizvi, Tahir A; Le Grice, Stuart F J; Lever, Andrew M L

    2011-08-01

    Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.

  10. Isogeometric Shape Optimization of Vibrating Membranes

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh; Evgrafov, Anton; Gersborg, Allan Roulund

    2011-01-01

    We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization....

  11. A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis.

    Science.gov (United States)

    Schmitter, Daniel; Wachowicz, Paulina; Sage, Daniel; Chasapi, Anastasia; Xenarios, Ioannis; Simanis; Unser, Michael

    2013-01-01

    The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and

  12. Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library.

    Science.gov (United States)

    Lüthy, Monique; Wheldon, Mary C; Haji-Cheteh, Chehasnah; Atobe, Masakazu; Bond, Paul S; O'Brien, Peter; Hubbard, Roderick E; Fairlamb, Ian J S

    2015-06-01

    Synthetic routes to six 3-D scaffolds containing piperazine, pyrrolidine and piperidine cores have been developed. The synthetic methodology focused on the use of N-Boc α-lithiation-trapping chemistry. Notably, suitably protected and/or functionalised medicinal chemistry building blocks were synthesised via concise, connective methodology. This represents a rare example of lead-oriented synthesis. A virtual library of 190 compounds was then enumerated from the six scaffolds. Of these, 92 compounds (48%) fit the lead-like criteria of: (i) -1⩽AlogP⩽3; (ii) 14⩽number of heavy atoms⩽26; (iii) total polar surface area⩾50Å(2). The 3-D shapes of the 190 compounds were analysed using a triangular plot of normalised principal moments of inertia (PMI). From this, 46 compounds were identified which had lead-like properties and possessed 3-D shapes in under-represented areas of pharmaceutical space. Thus, the PMI analysis of the 190 member virtual library showed that whilst scaffolds which may appear on paper to be 3-D in shape, only 24% of the compounds actually had 3-D structures in the more interesting areas of 3-D drug space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water.

    Science.gov (United States)

    Liu, Ruimei; Feng, Feng; Chen, Guolin; Liu, Zhimin; Xu, Zhigang

    2016-07-01

    This study reports the development of a novel dummy template molecularly imprinted polymer (MIP)-coated barbell-shaped stir bar. The MIP stir bar coatings were prepared by using 2,2-bis(4-hydroxyphenyl)butane (BPB), 4,4'-dihydroxydiphenylmethane (BPF), 4-tert-butylphenol (PTBP), and tetrabromobisphenol A (TBBA) as dummy templates using a capillary in situ polymerization method. Uniform coatings can be prepared controllably. The method is simple, easy, and reproducible. The barbell-shaped stir bar was developed by using medical silicone tubes as wheels. The wheels could be removed and reinstalled when necessary; therefore, the barbell-shaped stir bar was easy to disassemble and reassemble. The novel MIP-coated stir bar showed good selectivity for the target analyte, bisphenol A (BPA). The established method is selective and sensitive with a lower detection limit for BPA of 0.003 μg/L. The dummy template MIP-coated stir bar is suitable for trace BPA analysis in real environmental water samples without template leakage. The novel stir bar can be used at least 100 times.

  14. Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast

    Science.gov (United States)

    Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng

    2017-11-01

    Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.

  15. Representations of Celebrities’ Weight and Shape during Pregnancy and Postpartum: A Content Analysis of Three Entertainment Magazine Websites

    Science.gov (United States)

    Gow, Rachel W.; Lydecker, Janet A.; Lamanna, Jennifer D.; Mazzeo, Suzanne E.

    2011-01-01

    Entertainment magazine websites provide a continuous stream of celebrity news accessed by over 13 million unique viewers each month. Celebrities’ experiences of pregnancy and new motherhood appear to be popular topics within these media outlets; however, little research has investigated the content of this coverage. In this study, investigators coded articles (N = 387) published between August 1, 2007 and August 1, 2008 on three popular entertainment magazine websites. Relatively few articles about celebrities’ pregnancies discussed weight (13%) or shape (30%), and an even smaller proportion (6.2%) included any discussion of postpartum body dissatisfaction. This suggests a gap between portrayal of celebrities’ pregnancies and postpartum experiences and those of non-celebrity women. This disparity is concerning as it might lead to unrealistic expectations about pregnancy and postpartum for both pregnant readers and a more general audience. This study provides important initial information about the messages these media provide regarding pregnancy-related appearance. PMID:21873126

  16. Representations of celebrities' weight and shape during pregnancy and postpartum: a content analysis of three entertainment magazine websites.

    Science.gov (United States)

    Gow, Rachel W; Lydecker, Janet A; Lamanna, Jennifer D; Mazzeo, Suzanne E

    2012-01-01

    Entertainment magazine websites provide a continuous stream of celebrity news accessed by over 13 million unique viewers each month. Celebrities' experiences of pregnancy and new motherhood appear to be popular topics within these media outlets; however, little research has investigated the content of this coverage. In this study, investigators coded articles (N=387) published between August 1, 2007 and August 1, 2008 on three popular entertainment magazine websites. Relatively few articles about celebrities' pregnancies discussed weight (13%) or shape (30%), and an even smaller proportion (6.2%) included any discussion of postpartum body dissatisfaction. This suggests a gap between portrayal of celebrities' pregnancies and postpartum experiences and those of non-celebrity women. This disparity is concerning as it might lead to unrealistic expectations about pregnancy and postpartum for both pregnant readers and a more general audience. This study provides important initial information about the messages these media provide regarding pregnancy-related appearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  18. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize.

    Directory of Open Access Journals (Sweden)

    Lu Jiang

    Full Text Available Kernel shape related traits (KSRTs have been shown to have important influences on grain yield. The previous studies that emphasize kernel length (KL and kernel width (KW lack a comprehensive evaluation of characters affecting kernel shape. In this study, materials of the basic generations (B73, Mo17, and B73 × Mo17, 82 intermated B73 × Mo17 (IBM individuals, and the corresponding triple testcross (TTC populations were used to evaluate heterosis, investigate correlations, and characterize the quantitative trait loci (QTL for six KSRTs: KL, KW, length to width ratio (LWR, perimeter length (PL, kernel area (KA, and circularity (CS. The results showed that the mid-parent heterosis (MPH for most of the KSRTs was moderate. The performance of KL, KW, PL, and KA exhibited significant positive correlation with heterozygosity but their Pearson's R values were low. Among KSRTs, the strongest significant correlation was found between PL and KA with R values was up to 0.964. In addition, KW, PL, KA, and CS were shown to be significant positive correlation with 100-kernel weight (HKW. 28 QTLs were detected for KSRTs in which nine were augmented additive, 13 were augmented dominant, and six were dominance × additive epistatic. The contribution of a single QTL to total phenotypic variation ranged from 2.1% to 32.9%. Furthermore, 19 additive × additive digenic epistatic interactions were detected for all KSRTs with the highest total R2 for KW (78.8%, and nine dominance × dominance digenic epistatic interactions detected for KL, LWR, and CS with the highest total R2 (55.3%. Among significant digenic interactions, most occurred between genomic regions not mapped with main-effect QTLs. These findings display the complexity of the genetic basis for KSRTs and enhance our understanding on heterosis of KSRTs from the quantitative genetic perspective.

  19. Numerical analysis of the influence of the fuel pellet shape on the pellet-cladding contact condition

    International Nuclear Information System (INIS)

    Marajofsky, Adolfo; Denis, Alicia C.; Soba, Alejandro

    2004-01-01

    One of the problems of greater concern in nuclear fuels operation is that of pellet-cladding interaction (PCI), since it may be cause of fuel failure. In unfailed claddings, the occurrence of contact with the pellet is generally evidenced by a typical deformation pattern known as bamboo effect. In the present work different pellets' shapes are proposed, all of them with a chamfer next to the top and bottom surfaces. The performance of these pellets design is simulated with a numerical code, DIONISIO, previously developed in this working group, which makes use of the finite elements method. It provides the temperature, stress and strain distribution and the inventory of fission gases by analyzing phenomena like thermal expansion, elasticity, plasticity, creep, irradiation growth, PCI, swelling and densification. The pellets' design tested are grouped into two types: those with a straight chamfer running from the central pellet plane to both extremes (R-type pellets) and those with the chamfer occupying one quarter of the pellet's height leaving a central ring of the standard, cylindrical shape (M-type pellets). Different chamfer depths were numerically tested. It was found that the gap increase associated with the introduction of a deep chamfer is responsible for a significant temperature increment. But chamfers which leave a gap of 110 to 150 μm (assuming a normal fuel element with a gap 90 μm thick) gave place to pellets with an adequate thermal response and, moreover, the disappearance of the bamboo effect or even the appearance of an inverse effect, that is, pellets which make contact with the cladding in the region around its middle plane. (author) [es

  20. Buckling Analysis for the Shape of the Thin-tube Support of Radioisotope Thermoelectric Generator to investigate structure integrity

    International Nuclear Information System (INIS)

    Park, Jong Han; Son, Kwang Jae; Hong, Jintae; Kim, Jong Bum

    2016-01-01

    Radiation detection using scintillator light produced in materials is one of the oldest and most useful techniques for the detection of a variety of radiations. A detector using plastic scintillators is well known to have an easy operation because it consists of a chemically stable material. In general, a plastic scintillator using a polymer such as polymethylmethacrylate (PMMA), polyvinyltoluene (PVT) or polystyrene (PS) is added to an organic scintillator. As an organic scintillator, the first solute is p-terphenyl or 2.5-diphenyloxazole (PPO), and the second solute is 1,4-bis [5-phenyl-2-oxazol] benzene (POPOP). A method for preparing a plastic scintillator is a mixture of a polymer and organic scintillators used for thermal polymerization. In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However