WorldWideScience

Sample records for silenced normal development

  1. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    Science.gov (United States)

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-12-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.

  2. Silence in the Communication or Communicating through Silence: Silence in Psychoanalysis

    Directory of Open Access Journals (Sweden)

    Rita Marta

    2014-10-01

    Full Text Available This paper is a reflection upon the meaning and importance of silence in the psychoanalytical relationship. Beginning with the silence in the “normal” relationship between people, we show how silence can be experienced as confortable or unconfortable, and how it can be used to achieve a bigger proximity or distance in the relationship with others. We show these same aspects in the psychoanalytical relationship, and the evolution of the regard towards silence along the development of psychoanalysis. We end, presenting the Nacht’s thinking about silence, who emphasizes its integrative and fundamental role in the psychoanalytical relationship. Thus, only through silence certain affects can be born, and silence allows the patient to internalize the analyst.

  3. Filaggrin silencing by shRNA directly impairs the skin barrier function of normal human epidermal keratinocytes and then induces an immune response

    Energy Technology Data Exchange (ETDEWEB)

    Dang, N.N. [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province (China); College of Life Science, Shandong Normal University, Jinan, Shandong Province (China); Pang, S.G. [Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province (China); Song, H.Y. [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province (China); An, L.G. [College of Life Science, Shandong Normal University, Jinan, Shandong Province (China); Ma, X.L. [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province (China)

    2014-11-14

    The objective of this study was to investigate whether a single defect in skin barrier function simulated by filaggrin silencing could induce Th2-predominant inflammation. Filaggrin gene expression was silenced in cultured normal human epidermal keratinocytes (NHEKs) using small hairpin RNA (shRNA, GTTGGCTCAAGCATATTATTT). The efficacy of silencing was confirmed by polymerase chain reaction (PCR) and Western blotting. Filaggrin-silenced cells (LV group), shRNA control cells (NC group), and noninfected cells (Blank group) were evaluated. The expression of cornified cell envelope-related proteins, including cytokeratin (CK)-5, -10, -14, loricrin, involucrin, and transglutaminase (TGM)-1, was detected by Western blotting. Interleukins (IL)-2, IL-4, IL-5, IL-12p70, IL-13, and interferon-gamma (IFN-γ) were detected by enzyme-linked immunosorbent assay (ELISA). After filaggrin was successfully silenced by shRNA, the expressions of CK-5, -10, -14, involucrin, and TGM-1 in NHEKs were significantly downregulated compared to the Blank and NC groups (P<0.05 or P<0.01); only loricrin expression was markedly upregulated (P<0.01). Filaggrin silencing also resulted in significant increases of IL-2, IL-4, IL-5, and IL-13 (P<0.05 or P<0.01), and significant decreases of IL-12p70 and IFN-γ (P<0.01) compared with cells in the Blank and NC groups. Filaggrin silencing impaired normal skin barrier function mainly by targeting the cornified cell envelope. The immune response after filaggrin silencing was characterized by Th2 cells, mainly because of the inhibition of IFN-γ expression. Lack of filaggrin may directly impair skin barrier function and then further induce the immune response.

  4. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  5. Hypermetabolism of compensatory laryngeal muscles in unilateral vocal cord palsy: comparison study between speech and silence with normal subjects by co-registered PET-CT fusion images

    International Nuclear Information System (INIS)

    Pai, Moon Sun; Kim, Hyon Kyong; Kim, Han Su; Chung, Sung Min

    2005-01-01

    There are a few case reports on asymmetric vocal cord uptake on FDG-PET in patients with unilateral vocal cord paralysis, which could be a potential pitfall in the interpretation of FDG-PET images. We evaluated the metabolic activity of laryngeal muscles of patients with unilateral vocal cord paralysis in comparison to normal controls during both speech and silence. Eleven patients with iatrogenic unilateral vocal cord palsy(thyroidectomy 7, lung cancer = 1, others = 3) and 12 normal controls underwent FDG-PET with usual protocol. They were divided into two groups respectively; one group read books aloud for 20 minutes (phonation group) and the other kept silence (non-phonation groups) after FDG injection. Recent neck CT scan were co-registered with FDG-PET to produce PET-CT fusion images to elaborate small laryngeal muscles. In patients with unilateral vocal cord palsy, contralateral non-paralyzed vocal cord showed increased FDG uptake, more intense with phonation group (SUV =5.88, n =5) than non-phonation group (SUV =2.33, n =6) --mainly on thyroarytenoid muscle. Normal control subjects showed symmetric mildly increased FDG uptake (SUV=1.92, n=6) only in phonation group, which was significantly low against patient groups and was localized in lateral cricoarytenoid muscle. Hypermetabolism of contralateral thyroarytenoid muscle in patients with unilateral vocal cord paralysis could be encountered during FDG-PET imaging even with keeping silence. Phonation during FDG-PET study enhance FDG uptake on different laryngeal muscles between unilateral vocal cord paralysis and normal subjects

  6. Epigenetic silencing of CYP24 in the tumor microenvironment

    Science.gov (United States)

    Johnson, Candace S.; Chung, Ivy; Trump, Donald L.

    2010-01-01

    Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059

  7. Development of a gene silencing DNA vector derived from a broad host range geminivirus

    Directory of Open Access Journals (Sweden)

    Hancock Leandria C

    2009-07-01

    Full Text Available Abstract Background Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems. Results The construction of a gene silencing vector derived from the geminivirus Beet curly top virus (BCTV, named pWSRi, is reported. Two versions of the vector have been developed to allow application by biolistic techniques or by agro-infiltration. We demonstrate its ability to silence nuclear genes including ribulose bisphosphate carboxylase small subunit (rbcS, transketolase, the sulfur allele of magnesium chelatase (ChlI, and two homeotic transcription factors in spinach or tomato by generating gene-specific knock-down phenotypes. Onset of phenotypes occurred 3 to 12 weeks post-inoculation, depending on the target gene, in organs that developed after the application. The vector lacks movement genes and we found no evidence for significant spread from the site of inoculation. However, viral amplification in inoculated tissue was detected and is necessary for systemic silencing, suggesting that signals generated from active viral replicons are efficiently transported within the plant. Conclusion The unique properties of the pWSRi vector, the ability to silence genes in meristem tissue, the separation of virus and silencing phenotypes, and the broad natural host range of BCTV, suggest that it will have wide utility.

  8. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...

  9. Silence multiple

    DEFF Research Database (Denmark)

    Søndergaard, Katia Dupret

    The article highlights the importance of silences in the processes of innovation in organizations, and the claim is that silence and the absence of talk distribute authority, responsibility and decisions. The act of silencing is conceptualised as a central “configurating actor”. Using an Actor......-Network Theoretical approach to organization studies silence is conceptualised as both a means and an effect of innovative efforts. It is a way of ordering practices. Thus silencing is thought of as a central potential change agent both in composing a kind of specific organizational collectivity and in composing new...... working practices more generally. In line with the approach to destabilise the mundane, invisible and taken-for-granted aspects of innovative efforts in organisations (crucial for ANT and foucauldian post-structuralism more broadly), this article suggests to non-silence the silence and make...

  10. Ombuds’ corner: Employee silence

    CERN Multimedia

    Vincent Vuillemin

    2013-01-01

    Although around a hundred cases a year are reported to the Ombuds, several issues may still not be disclosed due to employee silence*. The deliberate withholding of concerns, escalating misunderstandings or genuine conflicts can impede the global process of learning and development of a better respectful organizational workplace environment, and prevent the detection and correction of acts violating the CERN Code of Conduct.   For the employee him/herself, such silence can lead to feelings of anger, resentment, helplessness and humiliation. These feelings will inevitably contaminate personal and interpersonal relations, and poison creativity and effectiveness. Employee silence can be explained by many factors; sometimes it is connected to organizational forces. In their published paper*, authors Michael Knoll and Rolf van Dick found four forms of employee silence. People may stay silent if they feel that their opinion is neither welcomed nor valued by their management. They have gi...

  11. How Silent is the Right to Silence?

    Directory of Open Access Journals (Sweden)

    Katherine Biber

    2012-11-01

    Full Text Available A long-held and fundamental principle of our criminal justice system is that people accused of crimes have a right to silence, arising from the presumption of innocence. Rules of evidence try to protect this ‘right’ during trial, by ensuring that juries understand that adverse inferences cannot be drawn from the silence of the accused. Silence, in court, can mean nothing, and we are not to speculate about what might motivate an accused person to remain silent, or what they might have said had they spoken. However, an examination of the jurisprudence in this area shows that the law is often not dealing with actual silence; sometimes when the law refers to the ‘right to silence’, it seems to mean a ‘refusal to hear’. In other instances, there is actual silence, and yet the law refuses to subject that silence to any critical interpretation, insisting that we cannot infer anything from it. While we have learned, from theatre, music, linguistics, religion and psychology, to develop sophisticated means for interpreting silence, the law demands that we set aside these interpretive tools, hearing silence that isn’t there, and inferring nothing about something.

  12. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development.

    Science.gov (United States)

    Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai

    2012-10-05

    The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  14. Hypermetabolism of compensatory laryngeal muscles in unilateral vocal cord palsy: comparison study between speech and silence with normal subjects by co-registered PET-CT fusion images

    International Nuclear Information System (INIS)

    Pai, Moon Sun; Kim, Hyon Kyong; Kim, Han Su

    2006-01-01

    There are a few case report on asymmetric vocal cord uptake on FDG-PET in patients with unilateral vocal cord paralysis, which could be a potential pitfall in the interpretation of FDG-PET images. We evaluated the metabolic activity of laryngeal muscles of patients with unilateral vocal cord paralysis in comparison to normal controls during both speech and silence. Eleven patients with unilateral vocal cord palsy (thyroidectomy=7, lung cancer=1, other=3) and 12 normal controls underwent FDG-PET with usual protocol. They were divided into two groups respectively; one group read books aloud for 20 minutes (phonation group) and the other kept silence (non-phonation groups) after FDG injection. Recent neck CT scan were co-registered with FDG-PET to produce PET-CT fusion images to elaborate small laryngeal muscles. In patients with unilateral vocal cord palsy, contralateral non-paralyzed vocal cord showed hypermetabolism mainly on thyroarytenoid muscle, more intensely with phonation group (SUV=5.88±2.65) than with non-phonation group (SUV=2.30±0.39). Normal control subjects showed hypermetabolism (3.68± 0.96) in interarytenoid muscle and symmetric mild hypermetabolism in both lateral cricoarytenoid muscles in only phonation group. FDG-PET with fusion images using CT scan in patients with unilateral vocal cord paralysis showed hypermetabolism of contralateral non-paralyzed thyroarytedoid muscle, suggesting compensatory action during phonation. Phonation during FDG-PET study enhanced FDG uptake on different laryngeal muscles between patients with unilateral vocal cord paralysis and normal subjects

  15. MicroRNA silencing in primates: towards development of novel therapeutics

    DEFF Research Database (Denmark)

    Petri, Andreas; Lindow, Morten; Kauppinen, Sakari

    2009-01-01

    MicroRNAs (miRNA) comprise an abundant class of small noncoding RNAs that act as important posttranscriptional regulators of gene expression. Accumulating evidence showing that aberrantly expressed miRNAs play important roles in human cancers underscores them as potential targets for therapeutic ...... intervention. Recent reports on efficient miRNA silencing in rodents and nonhuman primates using high-affinity targeting by chemically modified antisense oligonucleotides highlight the utility of such compounds in the development of miRNA-based cancer therapeutics....

  16. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    2015-11-01

    Full Text Available The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx, a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  17. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma.

    Science.gov (United States)

    Yoo, Byoung Kwon; Santhekadur, Prasanna K; Gredler, Rachel; Chen, Dong; Emdad, Luni; Bhutia, Sujit; Pannell, Lewis; Fisher, Paul B; Sarkar, Devanand

    2011-05-01

    There is virtually no effective treatment for advanced hepatocellular carcinoma (HCC) and novel targets need to be identified to develop effective treatment. We recently documented that the oncogene Astrocyte elevated gene-1 (AEG-1) plays a seminal role in hepatocarcinogenesis. Employing yeast two-hybrid assay and coimmunoprecipitation followed by mass spectrometry, we identified staphylococcal nuclease domain containing 1 (SND1), a nuclease in the RNA-induced silencing complex (RISC) facilitating RNAi-mediated gene silencing, as an AEG-1 interacting protein. Coimmunoprecipitation and colocalization studies confirmed that AEG-1 is also a component of RISC and both AEG-1 and SND1 are required for optimum RISC activity facilitating small interfering RNA (siRNA) and micro RNA (miRNA)-mediated silencing of luciferase reporter gene. In 109 human HCC samples SND1 was overexpressed in ≈74% cases compared to normal liver. Correspondingly, significantly higher RISC activity was observed in human HCC cells compared to immortal normal hepatocytes. Increased RISC activity, conferred by AEG-1 or SND1, resulted in increased degradation of tumor suppressor messenger RNAs (mRNAs) that are target of oncomiRs. Inhibition of enzymatic activity of SND1 significantly inhibited proliferation of human HCC cells. As a corollary, stable overexpression of SND1 augmented and siRNA-mediated inhibition of SND1 abrogated growth of human HCC cells in vitro and in vivo, thus revealing a potential role of SND1 in hepatocarcinogenesis. We unravel a novel mechanism that overexpression of AEG-1 and SND1 leading to increased RISC activity might contribute to hepatocarcinogenesis. Targeted inhibition of SND1 enzymatic activity might be developed as an effective therapy for HCC. Copyright © 2011 American Association for the Study of Liver Diseases.

  18. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    Science.gov (United States)

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  19. Breaking Classroom Silences: A View from Linguistic Ethnography

    Science.gov (United States)

    Rampton, Ben; Charalambous, Constadina

    2016-01-01

    This paper addresses potentially problematic classroom episodes in which someone foregrounds a social division that is normally taken for granted. It illustrates the way in which linguistic ethnography can unpack the layered processes that collide in the breaking of silence, showing how linguistic form and practice, individual positioning, local…

  20. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    Directory of Open Access Journals (Sweden)

    Logan M. Decker

    2017-04-01

    Full Text Available In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD, which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC. Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute of the perinuclear meiotic silencing complex (MSC, directly linking the two cellular factors.

  1. Performative Silences

    DEFF Research Database (Denmark)

    Dupret, Katia

    2018-01-01

    static nor neutral. It has performative effects. Silencing as an act, rather than a noun, is conceptualised as a central ‘configurating actor’ of change. Through the description of minute details from a videotaped supervision session in the mental healthcare sector, it is shown how different performative...... configurations of silence makes people relate to each other in new ways and influence new work practices. In spite of its somewhat immaterial connotations, using an Actor-Network Theory approach to organization studies, silencing is conceptualised as both a means and an effect of change efforts, which are socio...

  2. Calcium signalling silencing in atrial fibrillation.

    Science.gov (United States)

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Organizational Silence in Universities as the Predictor of Organizational Culture

    Directory of Open Access Journals (Sweden)

    Erkan YAMAN

    2014-04-01

    Full Text Available The aim of this study is to determine the relationship between the sense of organizational silence and the organizational culture the instructors perceived. In this study, the scale for determining organizational culture developed by İpek (1999 and the scale for measuring organizational silence developed by Çakıcı (2007 and adapted by Soycan (2010 are used. No remarkable difference was found in the academic staff's sense of organizational silence degree according to their genders and educational backgrounds. It was seen that the instructors' sense of organizational silence had remarkable differences according to their age group, faculty, sense of administration type in their institutions, frequency of their face-to-face communication with their administrators and their thoughts of speaking clearly with their administrators. It was observed that research assistants had a significantly higher sense of organizational silence than the lecturers in the sense of ‘Lack of Experience'. It was seen that academicians who had 1-5 years of employment period had the highest sense of organizational silence while those who had 21 years or more employment period had the lowest sense of organizational silence in the sense of ‘Lack of Experience' of organizational silence. When the points that participant academicians got from organizational silence and organizational culture scales analyzed in the correlation table, it was found out that there was a remarkable relationship between the academicians' sense of organizational silence and sense of organizational culture. This relationship was a medium-level negative relationship between subdimensions of two scales. A medium-level negative relationship between the organizational silence (total and the organizational culture was also seen. Based on the findings, university administrators were proposed to create a participant culture in their institutions as well as to encourage instructors to speak clearly and

  4. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops.

    Science.gov (United States)

    Guo, Qigao; Liu, Qing; Smith, Neil A; Liang, Guolu; Wang, Ming-Bo

    2016-12-01

    Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.

  5. "Listening Silence" and Its Discursive Effects

    Science.gov (United States)

    Applebaum, Barbara

    2016-01-01

    While researchers have studied how white silence protects white innocence and white ignorance, in this essay Barbara Applebaum explores a form of white silence that she refers to as "listening silence" in which silence protects white innocence but does not necessarily promote resistance to learning. White listening silence can appear to…

  6. The molecular basis for stability of heterochromatin-mediated silencing in mammals.

    Science.gov (United States)

    Hiragami-Hamada, Kyoko; Xie, Sheila Q; Saveliev, Alexander; Uribe-Lewis, Santiago; Pombo, Ana; Festenstein, Richard

    2009-11-04

    The archetypal epigenetic phenomenon of position effect variegation (PEV) in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3), DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac) and lysine 4 di or tri methylation (H3K4me2/3) are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.

  7. The molecular basis for stability of heterochromatin-mediated silencing in mammals

    Directory of Open Access Journals (Sweden)

    Hiragami-Hamada Kyoko

    2009-11-01

    Full Text Available Abstract The archetypal epigenetic phenomenon of position effect variegation (PEV in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3, DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac and lysine 4 di or tri methylation (H3K4me2/3 are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.

  8. Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation.

    Directory of Open Access Journals (Sweden)

    Thibaut Josse

    2007-09-01

    Full Text Available The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE, a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var205 encoding Heterochromatin Protein 1 and Su(var3-7 and the repeat-associated small interfering RNA (or rasiRNA silencing pathway (aubergine, homeless, armitage, and piwi. In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.

  9. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  10. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  11. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silence...... suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants......In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...

  12. Silêncios Silences

    Directory of Open Access Journals (Sweden)

    Luciano Marcondes Godoy

    1999-01-01

    Full Text Available Muitas são as vivências que se expressarão em SILÊNCIOS. Muitos são os silêncios. No Bloco A, o silêncio denuncia a retirada para um outro mundo, a queda num abismo. No bloco B, o silêncio é controlador, exigindo a fala do analista, um jogo em que o que é falado não tem a menor importância. Surge ainda como expressão da necessidade de discriminar-se do analista e, na sua evolução, como um enfrentamento a um estado sem sentido. No Bloco C, o silêncio é agressivo, e a sobrevivência do analisando e analista ao mesmo criará um espaço que propiciará sonhos que surgirão no Bloco D. Esses momentos de silêncio-sonho são situações em que não há discriminação eu-não eu.Many are the experiences which are expressed through silences. Many are the silences. In Block A, silence denounces a pretreatment to another world, a fall into an abysm. In Block B, silence is a controlling factor, demanding the words of the analyst, a game where what is said does not have any importance what so ever. It emerges also as an expression of the analyst's necessity to discriminate himself, and within his evolution the revision of a senseless state. In Block C, the silence is aggressive. As a response, the survival of the patient and of the analyst will create a place in which dreams will come up. Block D analyses these moments of dream-silence situations, where there aren't any forms of self-non self discrimination.

  13. Long range epigenetic silencing is a trans-species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells.

    Science.gov (United States)

    Forn, Marta; Muñoz, Mar; Tauriello, Daniele V F; Merlos-Suárez, Anna; Rodilla, Verónica; Bigas, Anna; Batlle, Eduard; Jordà, Mireia; Peinado, Miguel A

    2013-12-01

    DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All

  14. Voice and silence in organizations

    Directory of Open Access Journals (Sweden)

    Moaşa, H.

    2011-01-01

    Full Text Available Unlike previous research on voice and silence, this article breaksthe distance between the two and declines to treat them as opposites. Voice and silence are interrelated and intertwined strategic forms ofcommunication which presuppose each other in such a way that the absence of one would minimize completely the other’s presence. Social actors are not voice, or silence. Social actors can have voice or silence, they can do both because they operate at multiple levels and deal with multiple issues at different moments in time.

  15. Do early premalignant changes in normal breast epithelial cells predict cancer development?

    International Nuclear Information System (INIS)

    Clarke, Robert B; Bundred, Nigel J

    2005-01-01

    A recent report suggests that, in an in vitro model of premalignant breast cells (vHMECs), silencing of INK4A gene is accompanied by over-expression of cyclo-oxygenase (COX)-2. This suggests that COX-2 over-expression may be an early event in breast cancer aetiology permitting clones within the normal epithelium to evade apoptosis, to increase their numbers and perhaps acquire further changes that promote the formation of hyperplasias, and eventually carcinomas. While COX-2 expression in normal breast epithelium in vivo has not been proven to be linked to an increased risk of breast cancer, its over-expression in the premalignant model in vitro does provide preliminary evidence that COX-2 inhibition may be a useful chemoprevention strategy

  16. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing.

    Science.gov (United States)

    Hedil, Marcio; Sterken, Mark G; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.

  17. Silence, an Eye of Knowledge

    Directory of Open Access Journals (Sweden)

    Mehdi Aghamohammadi

    2017-04-01

    Full Text Available One of the conspicuous features of the twentieth-century West was silence. This idea could be supported by examining reflections of Ludwig Wittgenstein, Fritz Mauthner, John Cage, Samuel Beckett, Ihab Hassan, Franz Kafka, Wassily Kandinsky, Jean-Paul Sartre, Virginia Woolf, Wolfgang Iser, Jacques Derrida, and Pierre Macherey. To me, silence is not a mere theory, but rather a phenomenon from which we can get practical benefits. I believe silence is an eye, eye of knowledge. We can broaden our knowledge of the world through silence. To convey the idea that silence is an eye, I have concocted the word slence, where  has replaced the letter i and stands for the eye. This means knowledge can enable us to see, thereby acquiring knowledge of, what used to be invisible, and accordingly unknowable. In other words, through silence, we can achieve a certain type of literacy. I substantiate this claim by exploring the Horus myth, Ojo de Dios, John Cage’s 4' 33", the nature of Expressionist paintings, Hinduism, thoughts of Hermes Trismegistus and Ibn al-Arabi, and practices of Mohammad, the prophet of Islam.

  18. The silence.

    Science.gov (United States)

    Millenson, Michael L

    2003-01-01

    Despite several well-crafted Institute of Medicine (IOM) reports, there remains within health care a persistent refusal to confront providers' responsibility for severe quality problems. There is a silence of deed--failing to take corrective actions--and of word--failing to discuss openly the true consequences of that inertia. These silences distort public policy, delay change, and, by leading (albeit inadvertently) to thousands of patient deaths, undermine professionalism. The IOM quality committee, to retain its moral authority, should forgo issuing more reports and instead lead an emergency corrective-action campaign comparable to Flexner's crusade against charlatan medical schools.

  19. Eloquent silences: A musical and lexical analysis of conversation between oncologists and their patients.

    Science.gov (United States)

    Bartels, Josef; Rodenbach, Rachel; Ciesinski, Katherine; Gramling, Robert; Fiscella, Kevin; Epstein, Ronald

    2016-10-01

    Silences in doctor-patient communication can be "connectional" and communicative, in contrast to silences that indicate awkwardness or distraction. Musical and lexical analyses can identify and characterize connectional silences in consultations between oncologists and patients. Two medical students and a professor of voice screened all 1211 silences over 2s in length from 124 oncology office visits. We developed a "strength of connection" taxonomy and examined ten connectional silences for lexical and musical features including pitch, volume, and speaker turn-taking rhythm. We identified connectional silences with good reliability. Typical dialog rhythms surrounding connectional silences are characterized by relatively equal turn lengths and frequent short vocalizations. We found no pattern of volume and pitch variability around these silences. Connectional silences occurred in a wide variety of lexical contexts. Particular patterns of dialog rhythm mark connectional silences. Exploring structures of connectional silence extends our understanding of the audio-linguistic conditions that mark patient-clinician connection. Communicating with an awareness of pitch, rhythm, and silence - in addition to lexical content - can facilitate shared understanding and emotional connection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The organisational silence of midwives and nurses: reasons and results.

    Science.gov (United States)

    Yurdakul, Mine; Beşen, Meltem Aydin; Erdoğan, Semra

    2016-07-01

    The study was conducted to determine the issues about which nurses and midwives remain silent and the reasons for it and the perceived results of silence. Organisational silence is a vitally important issue in the health sector, due to the risks and mistakes that are not reported, and proposals for improvement that are not made. The sample of this descriptive survey, which investigated a cause and effect relationship, was 159 nurses and midwives. The data were collected using a questionnaire and the organisational silence scale. Of the study participants, 84.9% were nurses and 15.1% were midwives. Of all participants 88.7% were women. 8.8% of participants stated that they never remained silent about issues related to work and the workplace. Respondents most often remained silent about issues related to ethics and responsibility. 'Limited improvement and development' was frequently mentioned as a perceived result of organisational silence. Our study determined that organisational silence is quite common among nurses and midwives. Activities that raise the awareness of hospital administrations and employees about preventing the factors that cause and maintain silence in hospitals should be planned. © 2016 John Wiley & Sons Ltd.

  1. Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L

    DEFF Research Database (Denmark)

    Lee, Jungmin; Cao, Dang Viet; Kim, Jiwon

    2017-01-01

    Virus-induced gene silencing (VIGS) is known as a rapid and efficient system for studying functions of interesting genes in plants. Tobacco rattle virus (TRV) is widely applied for the gene silencing of many plants. Although spinach is a TRV-susceptible plant, a TRV-based VIGS system has not yet ...

  2. Decreasing erucic acid level by RNAi-mediated silencing of fatty ...

    African Journals Online (AJOL)

    To develop low level of erucic acid in rapeseeds by intron-spliced hairpin RNA, an inverted repeat unit of a partial BnFAE1.1 gene interrupted by a spliceable intron ... In conclusion, the expression of endogenous BnFAE1.1 was efficiently silenced by the designed RNAi silencer, causing a significant down-regulation in the ...

  3. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    Science.gov (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Maternal Silences: Motherhood and Voluntary Childlessness in Contemporary Christianity

    Directory of Open Access Journals (Sweden)

    Dawn Llewellyn

    2016-06-01

    Full Text Available In Christianity, there is an ideology of motherhood that pervades scripture, ritual, and doctrine, yet there is an academic silence that means relatively little space has been given to motherhood and mothering, and even less to voluntary childlessness, from a faith perspective. By drawing on qualitative in-depth interviews with Christian women living in Britain, narrating their experiences of motherhood and voluntary childlessness, I suggest there are also lived maternal silences encountered by women in contemporary Christianity. There is a maternal expectation produced through church teaching, liturgy and culture that constructs women as ‘maternal bodies’ (Gatrell 2008; this silences and marginalises women from articulating their complex relationship with religion, motherhood, and childlessness in ways that challenge their spiritual development. However, this article also introduces the everyday and intentional tactics women employ to disrupt the maternal expectation, and hereby interrupt the maternal silence.

  5. Judicial review of administrative silence

    Directory of Open Access Journals (Sweden)

    Radošević Ratko S.

    2015-01-01

    Full Text Available Administrative silence is a situation in which the competent authority, within the statutory deadline, has not issued an administrative act at the request of the party. In the case of administrative silence, given the fact that the citizens are unable to protect their rights and legal interests without an administrative act, they are provided with legal protection. In this case, the same legal relationship is created, directly on the basis of the statute, as in the situation in which the party's request is rejected. This means that the party may, under the conditions prescribed by the statute, initiate the procedure of judicial review of administrative silence. In the paper, the author explains the conditions under which the judicial review of administrative silence can be initiated and the role of the court in this judicial procedure.

  6. Durability of timber silencers at Wairakei geothermal steam field

    Energy Technology Data Exchange (ETDEWEB)

    Hedley, M E

    1979-02-01

    After early failures of reinforced concrete silencers and because of high costs of concrete-lined steel structures, preliminary tests were undertaken to assess the suitability of timber for silencer construction. Tests indicated that radiata pine treated with pentachlorophenol/oil or untreated red beech had most potential for timber silencer fabrication. One prototype silencer of each material was constructed and both were installed on operational bores in 1965. The red beech silencer had a service life of 4 years. The radiata pine silencer operated for 12/sup 1///sub 2/ years, although replacement had been recommended 1 year before this time expired. The performance of this silencer encouraged the general use of timber for silencer construction and further units were built. Procurement of satisfactory grades of timber has proved difficult and has limited silencer fabrication. Ways of improving timber supply, which require modification of silencer design, are discussed.

  7. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  8. SAD-3, a Putative Helicase Required for Meiotic Silencing by Unpaired DNA, Interacts with Other Components of the Silencing Machinery

    Science.gov (United States)

    Hammond, Thomas M.; Xiao, Hua; Boone, Erin C.; Perdue, Tony D.; Pukkila, Patricia J.; Shiu, Patrick K. T.

    2011-01-01

    In Neurospora crassa, genes lacking a pairing partner during meiosis are suppressed by a process known as meiotic silencing by unpaired DNA (MSUD). To identify novel MSUD components, we have developed a high-throughput reverse-genetic screen for use with the N. crassa knockout library. Here we describe the screening method and the characterization of a gene (sad-3) subsequently discovered. SAD-3 is a putative helicase required for MSUD and sexual spore production. It exists in a complex with other known MSUD proteins in the perinuclear region, a center for meiotic silencing activity. Orthologs of SAD-3 include Schizosaccharomyces pombe Hrr1, a helicase required for RNAi-induced heterochromatin formation. Both SAD-3 and Hrr1 interact with an RNA-directed RNA polymerase and an Argonaute, suggesting that certain aspects of silencing complex formation may be conserved between the two fungal species. PMID:22384347

  9. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.

    Science.gov (United States)

    Bustos-Sanmamed, Pilar; Hudik, Elodie; Laffont, Carole; Reynes, Christelle; Sallet, Erika; Wen, Jiangqi; Mysore, Kirankumar S; Camproux, Anne-Claude; Hartmann, Caroline; Gouzy, Jérome; Frugier, Florian; Crespi, Martin; Lelandais-Brière, Christine

    2014-12-01

    RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Pereira, Francisca; Alves de Matos, António P; Fernandes, Marta; Baptista, Pedro V; Fernandes, Alexandra R

    2017-05-01

    Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells' phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Breaching cultural silence: enhancing resilience among Ugandan ...

    African Journals Online (AJOL)

    Cultural silence is frequently the outcome of deep-seated taboos regarding adults talking to children about sex and death. This paper examines the impact of cultural silence on the resilience of children orphaned by AIDS in Uganda. Cultural silence is often linked with denial. This article explores the complexities of cultural ...

  12. Organizational Silence in Sports Employees

    Science.gov (United States)

    Bastug, Gulsum; Pala, Adem; Yilmaz, Taner; Duyan, Mehdi; Gunel, Ilker

    2016-01-01

    Organizational silence can be defined as a way of behaviour belonging to men and women employees in the organization exhibited without reflecting their feelings, ideas, concerns and suggestions related with their workplaces, works for which they are responsible or other activities of the organization. In the period of organizational silence,…

  13. Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice.

    Directory of Open Access Journals (Sweden)

    Kota Inoue

    2017-07-01

    Full Text Available Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+ RNAs (transcriptome in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby

  14. Silence, an Eye of Knowledge

    Science.gov (United States)

    Aghamohammadi, Mehdi

    2017-01-01

    One of the conspicuous features of the twentieth-century West was silence. This idea could be supported by examining reflections of Ludwig Wittgenstein, Fritz Mauthner, John Cage, Samuel Beckett, Ihab Hassan, Franz Kafka, Wassily Kandinsky, Jean-Paul Sartre, Virginia Woolf, Wolfgang Iser, Jacques Derrida, and Pierre Macherey. To me, silence is not…

  15. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    International Nuclear Information System (INIS)

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-01-01

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0 PE , in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0 PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0 PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  16. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fusaro, Adriana F. [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Correa, Regis L. [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Nakasugi, Kenlee; Jackson, Craig [University of Sydney, NSW 2006 (Australia); Kawchuk, Lawrence [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada); Vaslin, Maite F.S. [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Waterhouse, Peter M., E-mail: peter.waterhouse@sydney.edu.au [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia)

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  17. Sibling violence silenced: rivalry, competition, wrestling, playing, roughhousing, benign.

    Science.gov (United States)

    Phillips, Debby A; Phillips, Kate H; Grupp, Kitty; Trigg, Lisa J

    2009-01-01

    In this article, sibling violence and the silence surrounding it is explicated through professional literature and research findings, exemplars from clinical practice, and statistics. Theoretical positions and discourse analysis have been used to help explain how regular broken bones, bruises, lacerations, and verbal humiliation can be minimized as normal sibling rivalry or roughhousing, which does not cause serious consequences. Nursing should be on the front lines of ending practices of violence. Recognizing sibling violence as such is part of this work and is a social justice issue.

  18. Small RNA-Mediated Epigenetic Myostatin Silencing

    Directory of Open Access Journals (Sweden)

    Thomas C Roberts

    2012-01-01

    Full Text Available Myostatin (Mstn is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.

  19. Chinanteco children’s silences in different classroom situations

    Directory of Open Access Journals (Sweden)

    Valeria Rebolledo Angulo

    2016-01-01

    Full Text Available This article analyzes, from an ethnographic perspective and a sociocultural framework, the construction of silences in the interaction between students and teachers in a multilingual classroom situation in an indigenous community in méxico. the analysis reveals how the silence of the chinanteco speaking children when asked to answer certain questions in class is not always due to their failure to understand spoken and written spanish that is used in class. their silences are responses taking different meanings in specific situations. the silence of the children can be a way of resisting, a way of hiding, and, sometimes, their voices are silenced.

  20. An investigation of noise produced by unsteady gas flow through silencer elements

    Science.gov (United States)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  1. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  2. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Dayarian, Adel; Sengupta, Anirvan M

    2013-01-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  3. Is our knowledge of voice and silence in organizations growing?

    DEFF Research Database (Denmark)

    Knoll, Michael; Wegge, Jürgen; Unterrainer, Christine

    2016-01-01

    This article has three objectives. Firstly, we seek to demonstrate the relevance of voice and silence – that is, whether employees contribute or withhold information, ideas, views and/or concerns at work – for the sustainable development of individuals, organizations and societies. Our second...... objective is to identify emerging (and enduring) issues – conceptual, theoretical and methodological – that have not yet been adequately addressed in voice and silence research. These issues include the relationship between voice and silence, how they may manifest in organizations, their manifold...... antecedents inside and beyond organizational boundaries, their potentially positive and negative effects for internal and external stakeholders, and methodological questions. The third objective is to propose opportunities for addressing these issues with the ultimate aim to build a broader and more...

  4. Normal growth and development

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002456.htm Normal growth and development To use the sharing features on this page, please enable JavaScript. A child's growth and development can be divided into four periods: ...

  5. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set.

    Directory of Open Access Journals (Sweden)

    Monika Mahajan

    Full Text Available Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi through post-transcriptional gene silencing (PTGS of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  6. Choosing Silence for Equality in and through Schooling

    Science.gov (United States)

    Lees, Helen E.

    2016-01-01

    This article considers silences and equality as combined from a theoretical perspective. Equality in and through chosen, deliberate and regular silence experience is seen as an equaliser: if no one is speaking no one can dominate. The article uses a bifurcated concept of silence: weak, negative forms and strong, positive forms. Only the strong…

  7. [E. M. Jellinek's silenced and silencing transgenerational story].

    Science.gov (United States)

    Kelemen, Gábor; Márk, Mónika

    2013-01-01

    Jellinek is a kind of archetypal character for future generations in the field of addiction studies. His implosion in the arena of alcoholism around the age of 50 was an unexpected challenge to medical science. We know very little about his own role models giving an intellectual and moral compass to his pragmatic creativity. More than 30 years has passed since Jellinek's death when an American sociologist Ron Roizen started unearthing his silent story. Roizen discerned that there are a lot of unsaid and muted issues in his personal Hungarian past. Our paper, based on the authors' research in Hungarian archives and other sources reveals that not just Jellinek's personal but his transgenerational narrative has been not-yet-said. This silenced and silencing history appears an unfinished business of acculturation of the family, which started prior to four generations. Authors have been concluding that the issue of religious conversion is a critical point in the process of acculturation. They examine the counter move of loyalty to family values and driving force of assimilation making their story unspeakable.

  8. Things talked about while we remain silence and things we’re silence about while talking: The starting assumptions for an anthropology of silence about the nearest past

    Directory of Open Access Journals (Sweden)

    Đerić Gordana

    2007-01-01

    Full Text Available Wars of the last decade of the 20th century in former Yugoslavia have brought the whole region into the center of media attention and, accordingly, have aroused interest of the western academic theory. Since the latest ′discovery of the Balkans′ was brought into being precisely due to wars, one shouldn’t be surprised to find that many academic approaches to questions of Yugoslavia dismemberment are biased, superficial or exotic. On the other hand, Serbian academic auditorium was far from being active in elaborating questions of its own contemporality and closest past - for various reasons, but mostly because of its detachment from systematic explorations. Thus, acknowledgement and presentations of mentioned issues were left to be the job of media publicists, others outside of academic community or were left to be treated in the time to come. Domestic scholars were rarely intrigued to deal with these matters, despite the fact that images of recent wars were often built on stereotypes and propaganda and that the formed knowledge of the entire subject suffered from severe simplification. The themes of great violence were particularly avoided which left some of the crucial war events out of the academic focus - the reason being, very probably, the estimation that what made Serbia and the region worldwide known is best to be forgotten. Contemporary academic silence on recent wars, in retrospection, could easily be placed within the continuum of silence during the socialist period and war which preceded it. Having all mentioned in mind, this paper not only investigates reasons for avoiding the issues of the nearest past and influences of silence in socialism on what came afterwards, but also highlights the importance of exploring semantics and functions of silence and silencing in recent wars, as well as the relationship between silence and social memory constructions.

  9. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  10. Listen and the question of silence

    DEFF Research Database (Denmark)

    Doubinsky, Sebastien

    2018-01-01

    Listen is a film about words, but around words. The words become useless and are surrounded by silence. And the whole film is constructed on this silence, which builds up like an unbreakable wall. The question is thus: what are we listening to? What should we listen to? And maybe, even more crucial...

  11. The ethics of silence: Does conflict of interest explain employee silence?

    Science.gov (United States)

    Anderson, James

    2018-03-01

    Employee silence constitutes a significant threat to organizational success. This article argues that silence is a by-product of a structural Conflict of Interest (COI) between employees and their employers. This argument turns on the claim, also defended here, that employees are in a privileged position vis-à-vis knowledge of their work and that leaders-whether they recognize it or not-are dependent on their employees for reliable information about the work they are doing. Employee voice, therefore, is an organizational necessity. It is also a moral achievement as it involves risking one's personal interests for the sake of the organization. Leaders must take steps to mitigate COI and encourage employee voice; this article provides several strategies for doing exactly that.

  12. Silence as a Response to Everyday Violence

    DEFF Research Database (Denmark)

    Gammeltoft, Tine

    2016-01-01

    Across the world, existing research indicates that many women respond with silence to marital abuse. This article offers an ethnographic investigation of the social and psychic forces behind Vietnamese women’s silencing of violence and a theoretical exploration of how the psychoanalytic concept...... of fantasy—understood as unconscious or subconscious mental processes—may contribute to the analysis of everyday violence and psychic distress. Distinguishing between what I term deliberate and subconscious silence, I explore the role that fantasy plays when Vietnamese women silently endure intimate partner...

  13. In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available The trehalose metabolic enzymes have been considered as potential targets for drug or vaccine in several organisms such as Mycobacterium, plant nematodes, insects and fungi due to crucial role of sugar trehalose in embryogenesis, glucose uptake and protection from stress. Trehalose-6-phosphate phosphatase (TPP is one of the enzymes of trehalose biosynthesis that has not been reported in mammals. Silencing of tpp gene in Caenorhabditis elegans revealed an indispensable functional role of TPP in nematodes.In the present study, functional role of B. malayi tpp gene was investigated by siRNA mediated silencing which further validated this enzyme to be a putative antifilarial drug target. The silencing of tpp gene in adult female B. malayi brought about severe phenotypic deformities in the intrauterine stages such as distortion and embryonic development arrest. The motility of the parasites was significantly reduced and the microfilarial production as well as their in vitro release from the female worms was also drastically abridged. A majority of the microfilariae released in to the culture medium were found dead. B. malayi infective larvae which underwent tpp gene silencing showed 84.9% reduced adult worm establishment after inoculation into the peritoneal cavity of naïve jirds.The present findings suggest that B. malayi TPP plays an important role in the female worm embryogenesis, infectivity of the larvae and parasite viability. TPP enzyme of B. malayi therefore has the potential to be exploited as an antifilarial drug target.

  14. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  15. Mutuality, Self-Silencing, and Disordered Eating in College Women

    Science.gov (United States)

    Wechsler, Lisa S.; Riggs, Shelley A.; Stabb, Sally D.; Marshall, David M.

    2006-01-01

    The current study examined patterns of association among mutuality, self-silencing, and disordered eating in an ethnically diverse sample of college women (N = 149). Partner mutuality and overall self-silencing were negatively correlated and together were associated with six disordered eating indices. All four self-silencing subscales were…

  16. A conversation analysis of the function of silence in writing conferences

    Directory of Open Access Journals (Sweden)

    Milad Mirzaee

    2016-07-01

    Full Text Available One of the recent issues in English as a Second/Foreign Language (ESL/EFL writing instruction has been the quest for a more effective way to give feedback to L2 learners’ writing drafts. Although teacher- learner writing conferences have been increasingly used for providing ample opportunity for negotiating revisions, relatively little attention has been given to actual teacher-learner conversation. Drawing on sociocultural theory, which holds that all cognitive developments are results of ‘social interactions’, and drawing on conversation analysis as an analytical tool, this study attempts to explore the different functions of ‘silence’ in writing conferences during teacher-learner conversation. The data comes from transcripts of six 1-hour writing conferences video-recorded in a graduate program with 7 candidates in Iran. During the writing conferences, learners’ drafts were discussed. Findings of the study demonstrated that teacher’s silence can play a key role in the management of turns in writing conferences, thereby providing the parties with various opportunities for accomplishing intersubjectivity: the teacher used silence to rethink the information provided during writing conferences, and the learner exploited silence to revise the writing draft. The current study, reporting a range of functions of silence in writing conferences, offers an extension to the existing literature and draws language teachers’, specifically writing instructors’, attention to different functions of silence in writing conferences.

  17. Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy.

    Science.gov (United States)

    Wang, Junjian; Wang, Haibin; Wang, Ling-Yu; Cai, Demin; Duan, Zhijian; Zhang, Yanhong; Chen, Peng; Zou, June X; Xu, Jianzhen; Chen, Xinbin; Kung, Hsing-Jien; Chen, Hong-Wu

    2016-11-01

    Recombinant TRAIL and agonistic antibodies to death receptors (DRs) have been in clinical trial but displayed limited anti-cancer efficacy. Lack of functional DR expression in tumors is a major limiting factor. We report here that chromatin regulator KDM4A/JMJD2A, not KDM4B, has a pivotal role in silencing tumor cell expression of both TRAIL and its receptor DR5. In TRAIL-sensitive and -resistant cancer cells of lung, breast and prostate, KDM4A small-molecule inhibitor compound-4 (C-4) or gene silencing strongly induces TRAIL and DR5 expression, and causes TRAIL-dependent apoptotic cell death. KDM4A inhibition also strongly sensitizes cells to TRAIL. C-4 alone potently inhibits tumor growth with marked induction of TRAIL and DR5 expression in the treated tumors and effectively sensitizes them to the newly developed TRAIL-inducer ONC201. Mechanistically, C-4 does not appear to act through the Akt-ERK-FOXO3a pathway. Instead, it switches histone modifying enzyme complexes at promoters of TRAIL and DR5 transcriptional activator CHOP gene by dissociating KDM4A and nuclear receptor corepressor (NCoR)-HDAC complex and inducing the recruitment of histone acetylase CBP. Thus, our results reveal KDM4A as a key epigenetic silencer of TRAIL and DR5 in tumors and establish inhibitors of KDM4A as a novel strategy for effectively sensitizing tumors to TRAIL pathway-based therapeutics.

  18. After the Blackbird Whistles: Listening to Silence in Classrooms

    Science.gov (United States)

    Schultz, Katherine

    2010-01-01

    Background/Context: Students spend a large part of their time in schools in silence. However, teachers tend to spend most of their time attending to student talk. Anthropological and linguistic research has contributed to an understanding of silence in particular communities, offering explanations for students' silence in school. This research…

  19. Memories Persist in Silence

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Arenas Grisales

    2012-08-01

    Full Text Available This article exposes the hypothesis that memory artifacts, created to commemorate the victims of armed conflict in Colombia, are an expression of the underground memories and a way of political action in the midst of war. We analyze three cases of creations of memory artifacts in Medellín, Colombia, as forms of suffering, perceiving and resisting the power of armed groups in Medellín. The silence, inherent in these objects, should not be treated as an absence of language, but as another form of expression of memory. Silence is a tactic used to overcome losses and reset everyday life in contexts of protracted violence.

  20. Silence and Denial in Everyday Life—The Case of Animal Suffering

    Directory of Open Access Journals (Sweden)

    Deidre Wicks

    2011-02-01

    Full Text Available How can we make sense of the fact that we live in a world where good people co-exist in silence about widespread animal suffering. How is it that sites of suffering such as laboratories, factory farms, abattoirs and animal transportation are all around us and yet we ‘do not, in a certain sense, know about them’ [1]. This ‘not knowing’ is one of the most difficult barriers for animal activists who must constantly develop new strategies in an attempt to catch public attention and translate it into action. Recent contributions from the ‘sociology of denial’ have elucidated many of the mechanisms involved in ‘not knowing’ in relation to human atrocities and genocide. In this context, ‘denial’ refers to the maintenance of social worlds in which an undesirable situation is unrecognized, ignored or made to seem normal [2]. These include different types of denial: personal, official and cultural, as well as the process of normalization whereby suffering becomes invisible through routinization, tolerance, accommodation, collusion and cover up. Denial and normalization reflect both personal and collective states where suffering is not acknowledged [3]. In this paper, I will examine insights from the sociology of denial and apply them to human denial and normalization of animal suffering. This will include an examination of denial which is both individual and social and the implications of these insights for theory and practice in the human/animal relationship.

  1. Drosophila PAF1 Modulates PIWI/piRNA Silencing Capacity.

    Science.gov (United States)

    Clark, Josef P; Rahman, Reazur; Yang, Nachen; Yang, Linda H; Lau, Nelson C

    2017-09-11

    To test the directness of factors in initiating PIWI-directed gene silencing, we employed a Piwi-interacting RNA (piRNA)-targeted reporter assay in Drosophila ovary somatic sheet (OSS) cells [1]. This assay confirmed direct silencing roles for piRNA biogenesis factors and PIWI-associated factors [2-12] but suggested that chromatin-modifying proteins may act downstream of the initial silencing event. Our data also revealed that RNA-polymerase-II-associated proteins like PAF1 and RTF1 antagonize PIWI-directed silencing. PAF1 knockdown enhances PIWI silencing of reporters when piRNAs target the transcript region proximal to the promoter. Loss of PAF1 suppresses endogenous transposable element (TE) transcript maturation, whereas a subset of gene transcripts and long-non-coding RNAs adjacent to TE insertions are affected by PAF1 knockdown in a similar fashion to piRNA-targeted reporters. Additionally, transcription activation at specific TEs and TE-adjacent loci during PIWI knockdown is suppressed when PIWI and PAF1 levels are both reduced. Our study suggests a mechanistic conservation between fission yeast PAF1 repressing AGO1/small interfering RNA (siRNA)-directed silencing [13, 14] and Drosophila PAF1 opposing PIWI/piRNA-directed silencing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Tospovirus : induction and suppression of RNA silencing

    NARCIS (Netherlands)

    Hedil, Marcio

    2016-01-01

    While infecting their hosts, viruses must deal with host immunity. In plants the antiviral RNA silencing pathway is an important part of plant innate immunity. Tospoviruses are segmented negative-stranded RNA viruses of plants. To counteract the antiviral RNA silencing response in plants,

  3. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  4. Gender Differences in Self-Silencing and Psychological Distress in Informal Cancer Carers

    Science.gov (United States)

    Ussher, Jane M.; Perz, Janette

    2010-01-01

    This study examined gender differences in self-silencing, the relationship between self-silencing and psychological distress, and reasons for self-silencing in informal cancer carers (329 women, 155 men), using a mixed-method design. Men reported greater self-silencing than women on the Silencing the Self Scale; however, women reported higher…

  5. Conifers have a unique small RNA silencing signature

    OpenAIRE

    Dolgosheina, Elena V.; Morin, Ryan D.; Aksay, Gozde; Sahinalp, S. Cenk; Magrini, Vincent; Mardis, Elaine R.; Mattsson, Jim; Unrau, Peter J.

    2008-01-01

    Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an u...

  6. Locus-specific ribosomal RNA gene silencing in nucleolar dominance.

    Directory of Open Access Journals (Sweden)

    Michelle S Lewis

    2007-08-01

    Full Text Available The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs, the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent.

  7. Enhancer-driven chromatin interactions during development promote escape from silencing by a long non-coding RNA

    Directory of Open Access Journals (Sweden)

    Korostowski Lisa

    2011-11-01

    Full Text Available Abstract Background Gene regulation in eukaryotes is a complex process entailing the establishment of transcriptionally silent chromatin domains interspersed with regions of active transcription. Imprinted domains consist of clusters of genes, some of which exhibit parent-of-origin dependent monoallelic expression, while others are biallelic. The Kcnq1 imprinted domain illustrates the complexities of long-range regulation that coexists with local exceptions. A paternally expressed repressive non-coding RNA, Kcnq1ot1, regulates a domain of up to 750 kb, encompassing 14 genes. We study how the Kcnq1 gene, initially silenced by Kcnq1ot1, undergoes tissue-specific escape from imprinting during development. Specifically, we uncover the role of chromosome conformation during these events. Results We show that Kcnq1 transitions from monoallelic to biallelic expression during mid gestation in the developing heart. This transition is not associated with the loss of methylation on the Kcnq1 promoter. However, by exploiting chromosome conformation capture (3C technology, we find tissue-specific and stage-specific chromatin loops between the Kcnq1 promoter and newly identified DNA regulatory elements. These regulatory elements showed in vitro activity in a luciferase assay and in vivo activity in transgenic embryos. Conclusions By exploring the spatial organization of the Kcnq1 locus, our results reveal a novel mechanism by which local activation of genes can override the regional silencing effects of non-coding RNAs.

  8. The physics of chromatin silencing: Bi-stability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad

    A mean-field dynamical model of chromatin silencing in budding yeast is provided and the conditions giving rise to two states: one silenced and another un-silenced, is studied. Based on these conditions, the space of control parameters is divided into two distinct regions of mono-stable and bi-stable solutions (the bifurcation diagram). Then, considering both the discrete and continuous versions of the model, the formation of a stable boundary between the silenced and un-silenced areas on DNA is investigated. As a result, a richer phase diagram is provided. The dynamics of the boundary is also studied under different conditions. Consequently, assuming negative feedback due to possible depletion of silencing proteins, the model explains a paradoxical epigenetic behavior of yeast that happens under some mutation. A stochastic treatment of the model is also considered to verify the results of the mean-field approximation and also to understand the role of intrinsic noise at single cell level. This model could be used as a general guide to discuss chromatin silencing in many organisms.

  9. Control of thermoacoustic instability with a drum-like silencer

    Science.gov (United States)

    Zhang, Guangyu; Wang, Xiaoyu; Li, Lei; Jing, Xiaodong; Sun, Xiaofeng

    2017-10-01

    Theoretical investigation is carried out by a novel method of controlling thermoacoustic instability with a drum-like silencer. It is shown that by decreasing the frequency of thermoacoustic system, the instability can be suppressed with the help of drum-like silencer. The purely reactive silencer, which is composed of a flexible membrane and a backing cavity, is usually known as a noise control device that works effectively in low frequency bandwidth without any aerodynamic loss. In present research, the silencer is exploited in a Rijke tube, as a means of decreasing the natural frequency of the system, and consequently changing the resonance period of the system. The "transfer element method" (TEM) is used to consider the interactions between the acoustic waves and the flexible membranes of the silencer. The effects of all possible properties of the silencer on the growth rate and resonance frequency of the thermoacoustic system are explored. According to the calculation results, it is found that for some properties of the silencer, the resonance frequencies are greatly decreased and then the phase difference between the unsteady heat release and the pressure fluctuation is increased. Consequently, the instability is suppressed with some dissipation that can not be able to control its onset in the original system. Therefore, when the damping is low, but not zero, it is effective to control thermoacoustic instability with this technique.

  10. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  11. Histone Methylation and Epigenetic Silencing in Breast Cancer

    National Research Council Canada - National Science Library

    Simon, Jeffrey A; Lange, Carol A

    2008-01-01

    .... EZH2 is a histone methyltransferase which modifies lysine-27 of histone H3 an epigenetic mark which is generally linked to gene silencing and is implicated in tumor suppressor silencing during breast cancer progression...

  12. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea

    2015-09-01

    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  13. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing

    NARCIS (Netherlands)

    Hedil, M.; Sterken, M.G.; Ronde, de D.; Lohuis, D.; Kormelink, R.

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS.

  14. No-Big-Silence teeb klubituuri / Urmas Hännile

    Index Scriptorium Estoniae

    Hännile, Urmas

    2009-01-01

    Rockansamblist No-Big-Silence ja dark-popansamblist Sinine, nende kontsertttuurist mööda Eestimaad, tutvustamisel bändide uued albumid (No-Big-Silence "Starstealer" ja Sinine "Butterflies"), Pärnus on kontsert 24. oktoobril klubis Sugar

  15. Breaking the silence

    DEFF Research Database (Denmark)

    Konradsen, Hanne; Kirkevold, Marit; McCallin, Antoinette

    2012-01-01

    and individual interviews were analyzed using the grounded theory method. The findings revealed that the main concern of the patients was feeling isolated, which was resolved using a process of interactional integration. Interactional integration begins by breaking the silence to enable the progression from...

  16. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  17. Toward a science of silence: The consequences of leaving a memory unsaid

    DEFF Research Database (Denmark)

    Stone, Charles; Coman, Alin; Brown, Adam

    2012-01-01

    of the silence—and listeners—those attending to the speaker. Although the topic of silence is widely discussed, it is rarely mentioned in the empirical literature on memory. Three factors are employed to classify silence into different types: whether a silence is accompanied by covert remembering, whether...... the silence is intentional or unintentional, and whether the silenced memory is related or unrelated to the memories emerging in a conversation. These factors appear to be critical when considering the mnemonic consequences. Moreover, the influence of silence on memory varies between speaker and listener...

  18. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  19. Sounds and silence: An optical topography study of language recognition at birth

    Science.gov (United States)

    Peña, Marcela; Maki, Atsushi; Kovaic, Damir; Dehaene-Lambertz, Ghislaine; Koizumi, Hideaki; Bouquet, Furio; Mehler, Jacques

    2003-09-01

    Does the neonate's brain have left hemisphere (LH) dominance for speech? Twelve full-term neonates participated in an optical topography study designed to assess whether the neonate brain responds specifically to linguistic stimuli. Participants were tested with normal infant-directed speech, with the same utterances played in reverse and without auditory stimulation. We used a 24-channel optical topography device to assess changes in the concentration of total hemoglobin in response to auditory stimulation in 12 areas of the right hemisphere and 12 areas of the LH. We found that LH temporal areas showed significantly more activation when infants were exposed to normal speech than to backward speech or silence. We conclude that neonates are born with an LH superiority to process specific properties of speech.

  20. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination.

    Directory of Open Access Journals (Sweden)

    Alison E Ringel

    Full Text Available Sir2 is an NAD(+-dependent histone deacetylase required to mediate transcriptional silencing and suppress rDNA recombination in budding yeast. We previously identified Tdh3, a glyceraldehyde 3-phosphate dehydrogenase (GAPDH, as a high expression suppressor of the lethality caused by Sir2 overexpression in yeast cells. Here we show that Tdh3 interacts with Sir2, localizes to silent chromatin in a Sir2-dependent manner, and promotes normal silencing at the telomere and rDNA. Characterization of specific TDH3 alleles suggests that Tdh3's influence on silencing requires nuclear localization but does not correlate with its catalytic activity. Interestingly, a genetic assay suggests that Tdh3, an NAD(+-binding protein, influences nuclear NAD(+ levels; we speculate that Tdh3 links nuclear Sir2 with NAD(+ from the cytoplasm.

  1. Epigenetic Silencing and Resistance to Imatinib Mesylate in CML

    National Research Council Canada - National Science Library

    Issa, Jean-Pierre

    2004-01-01

    ...). In this project, we are exploring the hypothesis that epigenetic silencing associated with promoter DNA methylation mediates resistance in selected cases, and that reversal of silencing by decitabine...

  2. Epigenetic Silencing and Resistance to Imatinib Mesylate in CML

    National Research Council Canada - National Science Library

    Issa, Jean-Pierre

    2005-01-01

    ...). In this project, we are exploring the hypothesis that epigenetic silencing associated with promoter DNA methylation mediates resistance in selected cases, and that reversal of silencing by decitabine...

  3. Epigenetic Silencing and Resistance to Imatinib Mesylate in CML

    National Research Council Canada - National Science Library

    Issa, Jean-Pierre

    2006-01-01

    ...). In this project we are exploring the hypothesis that epigenetic silencing associated with promoter DNA methylation mediates resistance in selected cases and that reversal of silencing by decitabine...

  4. Organizational Silence, from Roots to Solutions: A Case Study in Iran Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Mehdi Afkhami Ardakani

    2015-05-01

    Full Text Available Organizational silence is defined as the lack of effective interactions among staff and it stands opposite to the concept of organizational voice. In the present research, the purpose is to measure the silence behavior among the Research Institute of Petroleum Industry (RIPI staff before and after the implementation of a comprehensive suggestion system. A suggestion system is an internal structure easily accessed by all the staff to state their suggestions in a pre-structured format. The roots of silence behavior are studied based on a deep literature review to find out possible solutions to improve organizational voice. To conduct the research, a self-structured questionnaire has been developed and distributed among all the staff. A quasi-experimental methodology has been adopted to compare pretest and post-test results of silence status before and after implementing the suggestion system. The results show that the silence behavior has been meaningfully reduced. This is based on a simple t-test performed by SPSS software, where there is a meaningful difference between the silence status of pre-test and post-test. In other words, a suggestion system could be a communication opportunity to encourage staff to provide suggestions and to cooperate for promoting the organization, which will finally reduce the organization silence. A major gap within the studies of Iranian scholars about organizational silence is the failure to introduce effective solutions to reduce it. However, this research is innovative in the sense that it fills the mentioned gap. This research shows that large scale organizations like RIPI need to consider methods like suggestion systems to break bureaucratic obstacles so that their staff can easily find open routes to share their ideas and suggestions in a prestructured format. This cooperating will lead to mutual benefits for both parts, since suggestions could be used to enhance organizational structure and performance and

  5. Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma

    Science.gov (United States)

    Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.

    2012-01-01

    Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009

  6. Prediction of the diffuse-field transmission loss of interior natural-ventilation openings and silencers.

    Science.gov (United States)

    Bibby, Chris; Hodgson, Murray

    2017-01-01

    The work reported here, part of a study on the performance and optimal design of interior natural-ventilation openings and silencers ("ventilators"), discusses the prediction of the acoustical performance of such ventilators, and the factors that affect it. A wave-based numerical approach-the finite-element method (FEM)-is applied. The development of a FEM technique for the prediction of ventilator diffuse-field transmission loss is presented. Model convergence is studied with respect to mesh, frequency-sampling and diffuse-field convergence. The modeling technique is validated by way of predictions and the comparison of them to analytical and experimental results. The transmission-loss performance of crosstalk silencers of four shapes, and the factors that affect it, are predicted and discussed. Performance increases with flow-path length for all silencer types. Adding elbows significantly increases high-frequency transmission loss, but does not increase overall silencer performance which is controlled by low-to-mid-frequency transmission loss.

  7. Antiviral RNA silencing viral counter defense in plants

    NARCIS (Netherlands)

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing

  8. Anti-viral RNA silencing: do we look like plants ?

    Directory of Open Access Journals (Sweden)

    Lecellier Charles-Henri

    2006-01-01

    Full Text Available Abstract The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(miRNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (siRNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.

  9. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    2016-11-09

    Nov 9, 2016 ... Spodoptera exigua larval development by silencing chitin synthase gene with RNA interference. Bull. Entomol. Res. 98:613-619. Dow JAT (1999). The Multifunctional Drosophila melanogaster V-. ATPase is encoded by a multigene family. J. Bioenerg. Biomembr. 31:75-83. Fire A, Xu SQ, Montgomery MK, ...

  10. PLK-1 Silencing in Bladder Cancer by siRNA Delivered With Exosomes.

    Science.gov (United States)

    Greco, Kristin A; Franzen, Carrie A; Foreman, Kimberly E; Flanigan, Robert C; Kuo, Paul C; Gupta, Gopal N

    2016-05-01

    To use exosomes as a vector to deliver small interfering ribonucleic acid (siRNA) to silence the polo-like kinase 1 (PLK-1) gene in bladder cancer cells. Exosomes were isolated from both human embryonic kidney 293 (HEK293) cell and mesenchymal stem cell (MSC) conditioned media. Fluorescently labeled exosomes were co-cultured with bladder cancer and normal epithelial cells and uptake was quantified by image cytometry. PLK-1 siRNA and negative control siRNA were loaded into HEK293 and MSC exosomes using electroporation. An invasive bladder cancer cell line (UMUC3) was co-cultured with the electroporated exosomes. Quantitative reverse transcriptase polymerase chain reaction was performed. Protein analysis was performed by Western blot. Annexin V staining and MTT assays were used to investigate effects on apoptosis and viability. Bladder cancer cell lines internalize an increased percentage of HEK293 exosomes when compared to normal bladder epithelial cells. Treatment of UMUC3 cells with exosomes electroporated with PLK-1 siRNA achieved successful knockdown of PLK-1 mRNA and protein when compared to cells treated with negative control exosomes. HEK293 and MSC exosomes were effectively used as a delivery vector to transport PLK-1 siRNA to bladder cancer cells in vitro, resulting in selective gene silencing of PLK-1. The use of exosomes as a delivery vector for potential intravesical therapy is attractive. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Tobacco rattle virus (TRV) based silencing of cotton enoyl-CoA reductase (ECR) gene and the role of very long chain fatty acids in normal leaf development and resistance to wilt disease

    Science.gov (United States)

    A Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of Enoyl-CoA reductase (GhECR) in pathogen defense. Amino acid sequence al...

  12. MLH1-Silenced and Non-Silenced Subgroups of Hypermutated Colorectal Carcinomas Have Distinct Mutational Landscapes

    Science.gov (United States)

    Donehower, Lawrence A.; Creighton, Chad J.; Schultz, Nikolaus; Shinbrot, Eve; Chang, Kyle; Gunaratne, Preethi H.; Muzny, Donna; Sander, Chris; Hamilton, Stanley R.; Gibbs, Richard A.; Wheeler, David

    2014-01-01

    Approximately 15% of colorectal carcinomas (CRC) exhibit a hypermutated genotype accompanied by high levels of microsatellite instability (MSI-H) and defects in DNA mismatch repair. These tumors, unlike the majority of colorectal carcinomas, are often diploid, exhibit frequent epigenetic silencing of the MLH1 DNA mismatch repair gene, and have a better clinical prognosis. As an adjunct study to The Cancer Genome Atlas consortium that recently analyzed 224 colorectal cancers by whole exome sequencing, we compared the 35 CRC (15.6%) with a hypermutated genotype to those with a non-hypermutated genotype. We found that 22 (63%) of hypermutated CRC exhibited transcriptional silencing of the MLH1 gene, a high frequency of BRAF V600E gene mutations and infrequent APC and KRAS mutations, a mutational pattern significantly different from their non-hypermutated counterparts. However, the remaining 13 (37%) hypermutated CRC lacked MLH1 silencing, contained tumors with the highest mutation rates (“ultramutated” CRC), and exhibited higher incidences of APC and KRAS mutations, but infrequent BRAF mutations. These patterns were confirmed in an independent validation set of 250 exome-sequenced CRC. Analysis of mRNA and microRNA expression signatures revealed that hypermutated CRC with MLH1 silencing had greatly reduced levels of WNT signaling and increased BRAF signaling relative non-hypermutated CRC. Our findings suggest that hypermutated CRC include one subgroup with fundamentally different pathways to malignancy than the majority of CRC. Examination of MLH1 expression status and frequencies of APC, KRAS, and BRAF mutation in CRC may provide a useful diagnostic tool that could supplement the standard microsatellite instability assays and influence therapeutic decisions. PMID:22899370

  13. Expression profiling of c-kit and its impact after esiRNA silencing during gonadal development in catfish.

    Science.gov (United States)

    Laldinsangi, C; Senthilkumaran, B

    2018-04-03

    C-kit receptor is a member of a family of growth factor receptors that have tyrosine kinase activity, and are involved in the transduction of growth regulatory signals across plasma membrane by activation of its ligand, kitl/scf. The present study analysed mRNA and protein expression profiles of c-kit in the gonads of catfish, Clarias gariepinus, using real time PCR, in situ hybridization and immunohistochemistry. Tissue distribution analysis revealed higher expression mainly in the catfish gonads. Ontogeny studies showed minimal expression during early developmental stages and highest during 50-75 days post hatch, and the dimorphic expression in gonads decreased gradually till adulthood, which might suggest an important role for this gene around later stages of sex differentiation and gonadal development. Expression of C-kit was analysed at various phases of gonadal cycle in both male and female, which showed minimal expression during the resting phase, and higher expression in male compared to females during the pre-spawning phase. In vitro and in vivo induction using human chorionic gonadotropin elevated the expression of c-kit indicating the regulatory influence of hypothalamo-hypophyseal axis. In vivo transient gene silencing using c-kit-esiRNA in adult catfish during gonadal recrudescence showed a decrease in c-kit expression, which affected the expression level of germ cell meiotic marker sycp3, as well as several factors and steroidogenic enzyme genes involved in germ cell development. Decrease in the levels of serum 11-KT and T were also observed after esiRNA silencing. The findings of this study suggest that c-kit has an important role in the process of germ cell proliferation, development and maturation during gonadal development and recrudescence in catfish. Copyright © 2018. Published by Elsevier Inc.

  14. The dynamics and efficacy of antiviral RNA silencing: A model study

    Directory of Open Access Journals (Sweden)

    Hogeweg Paulien

    2008-03-01

    Full Text Available Abstract Background Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression. Results We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios. Conclusion The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.

  15. The RNA silencing pathway: the bits and pieces that matter.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Cellular pathways are generally proposed on the basis of available experimental knowledge. The proposed pathways, however, may be inadequate to describe the phenomena they are supposed to explain. For instance, by means of concise mathematical models we are able to reveal shortcomings in the current description of the pathway of RNA silencing. The silencing pathway operates by cleaving siRNAs from dsRNA. siRNAs can associate with RISC, leading to the degradation of the target mRNA. We propose and analyze a few small extensions to the pathway: a siRNA degrading RNase, primed amplification of aberrant RNA pieces, and cooperation between aberrant RNA to trigger amplification. These extensions allow for a consistent explanation for various types of silencing phenomena, such as virus induced silencing, transgene and transposon induced silencing, and avoidance of self-reactivity, as well as for differences found between species groups.

  16. Sexuality and 'silence' among Khasi youth of Meghalaya, Northeast India.

    Science.gov (United States)

    War, Ryntihlin Jennifer; Albert, Sandra

    2013-01-01

    The importance of sex education has been well documented in the literature, but there exists a lack of research involving indigenous youth in India. This paper describes perceptions, knowledge and attitudes towards sex education, sexuality, pre-marital sex, rape and homosexuality among indigenous students from the matrilineal Khasi tribe attending a university in Meghalaya in northeast India. Qualitative and quantitative data were collected during and after reproductive health, sexuality and life skills courses. Despite the impression of sexual permissiveness of indigenous peoples that exists in India, students reported a societal silence on issues related to sexuality. Lack of appropriate words in the indigenous language potentially contributes to this silence. Although co-habitation is common and culturally acceptable, students disapproved of pre-marital sex. The influence of Christianisation was also perceived in the frequent reference to sin and guilt associated with masturbation, homosexuality, pre-marital sex and abortion. Students reported that the sex education received in school was 'childish' and inadequate for their adult needs. Many had unrealistic images of what constituted 'normal' sex and also blamed women for rape. The majority of indigenous students expressed the need for non-judgmental fora for discussions on sexual health and for sexuality education.

  17. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects

    DEFF Research Database (Denmark)

    Strandgren, Charlotte; Nasser, Hasina Abdul; McKenna, Tomás

    2015-01-01

    model to study the possibility of recovering from HGPS bone disease upon silencing of the HGPS mutation, and the potential benefits from treatment with resveratrol. We show that complete silencing of the transgenic expression of progerin normalized bone morphology and mineralization already after 7...... weeks. The improvements included lower frequencies of rib fractures and callus formation, an increased number of osteocytes in remodeled bone, and normalized dentinogenesis. The beneficial effects from resveratrol treatment were less significant and to a large extent similar to mice treated with sucrose...... alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant...

  18. Silencing criticism in Mexico

    Directory of Open Access Journals (Sweden)

    Ximena Suárez

    2017-10-01

    Full Text Available Journalists and human rights defenders in Mexico are being attacked in an attempt to silence their criticism. Many are forced to flee or risk being assassinated. The consequences are both personal and of wider social significance.

  19. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    Science.gov (United States)

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. Copyright © 2016

  20. Suppressors of RNA silencing encoded by tomato leaf curl ...

    Indian Academy of Sciences (India)

    2013-01-06

    Jan 6, 2013 ... Virus encoded RNA-silencing suppressors (RSSs) are the key components evolved by the viruses to ... severe disease symptom in the host (Briddon et al. ..... Voinnet O 2001 RNA silencing as a plant immune system against.

  1. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    Science.gov (United States)

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  4. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  5. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    Science.gov (United States)

    Sun, Daoyang; Nandety, Raja Sekhar; Zhang, Yanlong; Reid, Michael S; Niu, Lixin; Jiang, Cai-Zhong

    2016-05-01

    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Stability of RNA silencing-based traits after virus infection

    DEFF Research Database (Denmark)

    Jørgensen, Bodil; Albrechtsen, Merete

    2007-01-01

    with constructs based on virus coat protein (CP) genes or other viral genes has been successfully used to engineer PTGS-mediated virus resistance into a large number of crop plants and some transgenic lines have been commercially exploited. However the discovery that plant viruses encode suppressors of gene...... silencing has raised concerns that virus infection of crop plants might reverse the new silencing-based traits. Most studies of virus suppression of silencing have used model systems based on silencing of reporter genes. A few studies have analysed the effects of virus infections on plants with genetically...... engineered virus resistance based on either a simple sense or an inverted repeat construct. We decided to use genetically engineered virus resistance in potato as a model system for further studies of the effect of virus infection on genetically engineered traits. We present for the first time a comparison...

  7. Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica).

    Science.gov (United States)

    Dare, Andrew P; Tomes, Sumathi; Jones, Midori; McGhie, Tony K; Stevenson, David E; Johnson, Ross A; Greenwood, David R; Hellens, Roger P

    2013-05-01

    We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  8. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  9. Mutations in ash1 and trx enhance P-element-dependent silencing in Drosophila melanogaster.

    Science.gov (United States)

    McCracken, Allen; Locke, John

    2016-08-01

    In Drosophila melanogaster, the mini-w(+) transgene in Pci is normally expressed throughout the adult eye; however, when other P or KP elements are present, a variegated-eye phenotype results, indicating random w(+) silencing during development called P-element-dependent silencing (PDS). Mutant Su(var)205 and Su(var)3-7 alleles act as haplo-suppressors/triplo-enhancers of this variegated phenotype, indicating that these heterochromatic modifiers act dose dependently in PDS. Previously, we recovered a spontaneous mutation of P{lacW}ci(Dplac) called P{lacW}ci(DplacE1) (E1) that variegated in the absence of P elements, presumably due to the insertion of an adjacent gypsy element. From a screen for genetic modifiers of E1 variegation, we describe here the isolation of five mutations in ash1 and three in trx that enhance the E1 variegated phenotype in a dose-dependent and cumulative manner. These mutant alleles enhance PDS at E1, and in E1/P{lacW}ci(Dplac), but suppress position effect variegation (PEV) at In(1)w(m)(4). This opposite action is consistent with a model where ASH1 and TRX mark transcriptionally active chromatin domains. If ASH1 or TRX function is lost or reduced, heterochromatin can spread into these domains creating a sink that diverts heterochromatic proteins from other variegating locations, which then may express a suppressed phenotype.

  10. PhOBF1, a petunia ocs element binding factor, plays an important role in antiviral RNA silencing.

    Science.gov (United States)

    Sun, Daoyang; Li, Shaohua; Niu, Lixin; Reid, Michael S; Zhang, Yanlong; Jiang, Cai-Zhong

    2017-02-01

    Virus-induced gene silencing (VIGS) is a common reverse genetics strategy for characterizing the function of genes in plants. The detailed mechanism governing RNA silencing efficiency triggered by viruses is largely unclear. Here, we reveal that a petunia (Petunia hybrida) ocs element binding factor, PhOBF1, one of the basic leucine zipper (bZIP) transcription factors, was up-regulated by Tobacco rattle virus (TRV) infection. Simultaneous silencing of PhOBF1 and a reporter gene, phytoene desaturase (PDS) or chalcone synthase (CHS), by TRV-based VIGS led to a failure of the development of leaf photobleaching or the white-corollas phenotype. PhOBF1 silencing caused down-regulation of RNA silencing-related genes, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonautes (AGOs). After inoculation with the TRV-PhPDS, PhOBF1-RNAi lines exhibited a substantially impaired PDS silencing efficiency, whereas overexpression of PhOBF1 resulted in a recovery of the silencing phenotype (photobleaching) in systemic leaves. A compromised resistance to TRV and Tobacco mosaic virus was found in PhOBF1-RNAi lines, while PhOBF1-overexpressing lines displayed an enhanced resistance to their infections. Compared with wild-type plants, PhOBF1-silenced plants accumulated lower levels of free salicylic acid (SA), salicylic acid glucoside, and phenylalanine, contrarily to higher levels of those in plants overexpressing PhOBF1. Furthermore, transcripts of a number of genes associated with the shikimate and phenylpropanoid pathways were decreased or increased in PhOBF1-RNAi or PhOBF1-overexpressing lines, respectively. Taken together, the data suggest that PhOBF1 regulates TRV-induced RNA silencing efficiency through modulation of RDRs, DCLs, and AGOs mediated by the SA biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Silence of the Genes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. Silence of the Genes - 2006 Nobel Prize in Physiology or Medicine. Utpal Nath Saumitra Das. General Article Volume 12 Issue 4 April 2007 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Bodies, Spaces, Voices, Silences

    Directory of Open Access Journals (Sweden)

    Donatella Mazzoleni

    2013-07-01

    Full Text Available A good architecture should not only allow functional, formal and technical quality for urban spaces, but also let the voice of the city be perceived, listened, enjoyed. Every city has got its specific sound identity, or “ISO” (R. O. Benenzon, made up of a complex texture of background noises and fluctuation of sound figures emerging and disappearing in a game of continuous fadings. For instance, the ISO of Naples is characterized by a spread need of hearing the sound return of one’s/others voices, by a hate of silence. Cities may fall ill: illness from noise, within super-crowded neighbourhoods, or illness from silence, in the forced isolation of peripheries. The proposal of an urban music therapy denotes an unpublished and innovative enlarged interdisciplinary research path, where architecture, music, medicine, psychology, communication science may converge, in order to work for rebalancing spaces and relation life of the urban collectivity, through the care of body and sound dimensions.

  13. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing

    OpenAIRE

    Hedil, Marcio; Sterken, Mark G.; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silen...

  14. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    Science.gov (United States)

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    Science.gov (United States)

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  16. HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes.

    Science.gov (United States)

    Zalewski, Wojciech; Orczyk, Wacław; Gasparis, Sebastian; Nadolska-Orczyk, Anna

    2012-11-07

    CKX genes encode cytokinin dehydrogenase enzymes (CKX), which metabolize cytokinins in plants and influence developmental processes. The genes are expressed in different tissues and organs during development; however, their exact role in barley is poorly understood. It has already been proven that RNA interference (RNAi)-based silencing of HvCKX1 decreased the CKX level, especially in those organs which showed the highest expression, i.e. developing kernels and roots, leading to higher plant productivity and higher mass of the roots [1]. The same type of RNAi construct was applied to silence HvCKX2 and analyze the function of the gene. Two cultivars of barley were transformed with the same silencing and selection cassettes by two different methods: biolistic and via Agrobacterium. The mean Agrobacterium-mediated transformation efficiency of Golden Promise was 3.47% (±2.82). The transcript level of HvCKX2 in segregating progeny of T(1) lines was decreased to 34%. The reduction of the transcript in Agrobacterium-derived plants resulted in decreased CKX activity in the developing and developed leaves as well as in 7 DAP (days after pollination) spikes. The final phenotypic effect was increased productivity of T(0) plants and T(1) lines. Higher productivity was the result of the higher number of seeds and higher grain yield. It was also correlated with the higher 1000 grain weight, increased (by 7.5%) height of the plants and higher (from 0.5 to 2) numbers of spikes. The transformation efficiency of Golden Promise after biolistic transformation was more than twice as low compared to Agrobacterium. The transcript level in segregating progeny of T(1) lines was decreased to 24%. Otherwise, the enzyme activity found in the leaves of the lines after biolistic transformation, especially in cv. Golden Promise, was very high, exceeding the relative level of the control lines. These unbalanced ratios of the transcript level and the activity of the CKX enzyme negatively

  17. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sizolwenkosi Mlotshwa

    2008-03-01

    Full Text Available Dicer-like (DCL enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA that triggers silencing into the primary short interfering RNAs (siRNAs that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR-dependent pathway that uses the target RNA as substrate to generate secondary siRNAs. Here we report that Arabidopsis DCL2-but not DCL4-is required for transitivity in cell-autonomous, post-transcriptional silencing of transgenes. An insertion mutation in DCL2 blocked sense transgene-induced silencing and eliminated accumulation of the associated RDR-dependent siRNAs. In hairpin transgene-induced silencing, the dcl2 mutation likewise eliminated accumulation of secondary siRNAs and blocked transitive silencing, but did not block silencing mediated by primary siRNAs. Strikingly, in all cases, the dcl2 mutation eliminated accumulation of all secondary siRNAs, including those generated by other DCL enzymes. In contrast, mutations in DCL4 promoted a dramatic shift to transitive silencing in the case of the hairpin transgene and enhanced silencing induced by the sense transgene. Suppression of hairpin and sense transgene silencing by the P1/HC-Pro and P38 viral suppressors was associated with elimination of secondary siRNA accumulation, but the suppressors did not block processing of the stem of the hairpin transcript into primary siRNAs. Thus, these viral suppressors resemble the dcl2 mutation in their effects on siRNA biogenesis. We conclude that DCL2 plays an essential, as opposed to redundant, role in transitive silencing of transgenes and may play a more important role in silencing of viruses than currently thought.

  18. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

    Science.gov (United States)

    Yang, Weiyuan; Cai, Yuanping; Hu, Li; Wei, Qian; Chen, Guoju; Bai, Mei; Wu, Hong; Liu, Juanxu; Yu, Yixun

    2017-02-02

    Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was present at varying levels in tissues examined. VIGS-mediated PhCESA3 silencing resulted in dwarfing of plant height, which was consistent with the phenotype of the A. thaliana rsw1 mutant (a temperature-sensitive allele of AtCESA1), the A. thaliana cev1 mutant (the AtCESA3 mild mutant), and the antisense AtCESA3 line. However, PhCESA3 silencing led to swollen stems, pedicels, filaments, styles and epidermal hairs as well as thickened leaves and corollas, which were not observed in the A. thaliana cev1 mutant, the rsw1 mutant and the antisense AtCESA3 line. Further micrographs showed that PhCESA3 silencing reduced the length and increased the width of cells, suggesting that PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

  19. Physical Development: What's Normal? What's Not?

    Science.gov (United States)

    ... Stages Listen Español Text Size Email Print Share Physical Development: What’s Normal? What’s Not? Page Content Article ... growth . The timing and speed of a child's physical development can vary a lot, because it is ...

  20. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  1. Arabidopsis RNA Polymerase V Mediates Enhanced Compaction and Silencing of Geminivirus and Transposon Chromatin during Host Recovery from Infection.

    Science.gov (United States)

    Coursey, Tami; Regedanz, Elizabeth; Bisaro, David M

    2018-04-01

    Plants employ RNA-directed DNA methylation (RdDM) and dimethylation of histone 3 lysine 9 (H3K9me2) to silence geminiviruses and transposable elements (TEs). We previously showed that canonical RdDM (Pol IV-RdDM) involving RNA polymerases IV and V (Pol IV and Pol V) is required for Arabidopsis thaliana to recover from infection with Beet curly top virus lacking a suppressor protein that inhibits methylation (BCTV L2 - ). Recovery, which is characterized by reduced viral DNA levels and symptom remission, allows normal floral development. Here, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to confirm that >90% of BCTV L2 - chromatin is highly compacted during recovery, and a micrococcal nuclease-chromatin immunoprecipitation assay showed that this is largely due to increased nucleosome occupancy. Physical compaction correlated with augmented cytosine and H3K9 methylation and with reduced viral gene expression. We additionally demonstrated that these phenomena are dependent on Pol V and by extension the Pol IV-RdDM pathway. BCTV L2 - was also used to evaluate the impact of viral infection on host loci, including repressed retrotransposons Ta3 and Athila6A Remarkably, an unexpected Pol V-dependent hypersuppression of these TEs was observed, resulting in transcript levels even lower than those detected in uninfected plants. Hypersuppression is likely to be especially important for natural recovery from wild-type geminiviruses, as viral L2 and AL2 proteins cause ectopic TE expression. Thus, Pol IV-RdDM targets both viral and TE chromatin during recovery, simultaneously silencing the majority of viral genomes and maintaining host genome integrity by enforcing tighter control of TEs in future reproductive tissues. IMPORTANCE In plants, RdDM pathways use small RNAs to target cytosine and H3K9 methylation, thereby silencing DNA virus genomes and transposable elements (TEs). Further, Pol IV-RdDM involving Pol IV and Pol V is a key aspect of host

  2. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots

    Directory of Open Access Journals (Sweden)

    Ida Bagus Andika

    2016-09-01

    Full Text Available Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  4. Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways

    DEFF Research Database (Denmark)

    Dallosso, A R; Øster, Bodil; Greenhough, A

    2012-01-01

    Loss of tumour suppressor gene function can occur as a result of epigenetic silencing of large chromosomal regions, referred to as long-range epigenetic silencing (LRES), and genome-wide analyses have revealed that LRES is present in many cancer types. Here we utilize Illumina Beadchip methylation...... array analysis to identify LRES across 800 kb of chromosome 5q31 in colorectal adenomas and carcinomas (n=34) relative to normal colonic epithelial DNA (n=6). This region encompasses 53 individual protocadherin (PCDH) genes divided among three gene clusters. Hypermethylation within these gene clusters......–polymerase chain reaction showed that PCDHGC3 is the highest expressed PCDH in normal colonic epithelium, and that there was a strong reciprocal relationship between PCDHGC3 methylation and expression in carcinomas (R=−0.84). PCDH LRES patterns are reflected in colorectal tumour cell lines; adenoma cell lines...

  5. Silence and Memories of War: An Autoethnographic Exploration of Family Secrecy.

    Science.gov (United States)

    Rober, Peter; Rosenblatt, Paul C

    2017-03-01

    A personal journey and a scientific challenge, this is an autoethnographic study about my own family's secrecy. I knew my grandfather had been a German prisoner of war during World War II. We all knew. But nobody talked about it. Then one day I decided I wanted to do systematic research on the issue of family secrecy around my grandfather's war experiences. Researching one's own family can be called autoethnography. It could be said that autoethnography is an approach to research that aims to describe and systemically analyze (graphy) personal experience (auto) to understand social and cultural phenomena (ethno). This scientific approach is quite new in the field of family therapy. This study has been an important personal quest, but it also led to important reflections on silences in families, on my own professional development, and on methodological issues concerning autoethnographical research. For one thing, it highlights some of the positive aspects of family secrecy and silences, and invites us-when confronted with family secrecy in clinical practice-to carefully consider the potential destructive and life-giving aspects of the silence. © 2015 Family Process Institute.

  6. The Curious Silence of the Dog and Paul of Tarsus; Revisiting The Argument from Silence

    Directory of Open Access Journals (Sweden)

    Michael Gary Duncan

    2012-03-01

    Full Text Available In this essay I propose an interpretative and explanatory structure for the so-called argumentum ex silento, or argument from silence (henceforth referred to as the AFS. To this end, I explore two examples, namely, Sherlock Holmes’s oft-quoted notice of the “curious incident of the dog in the night-time” from Arthur Conan Doyle’s short story “Silver Blaze,” and the historical question of Paul of Tarsus’s silence on biographical details of the historical Jesus. Through these cases, I conclude that the AFS serves as a dialogical topos best evaluated and understood through the perceived authority of the arguer and the willingness of the audience to accept that authority, due to the “curious” nature of the negative evidence that the argument employed.

  7. Surprised by Bird, Bard, and Bach: Language, Silence, and Transcendence.

    Science.gov (United States)

    Suhor, Charles

    1991-01-01

    Argues the importance of the relationships among silence and literature, the arts, and other experiences that point toward transcendence. Suggests that English teachers can expand the repertoire of classroom activities and teaching techniques that make use of silence. (KEH)

  8. Strategy of gene silencing in cassava for validation of resistance genes

    International Nuclear Information System (INIS)

    Cortes, Simon; Lopez, Camilo

    2010-01-01

    Cassava (Manihot esculenta) is a major source of food for more than 1000 million people in the world and constitutes an important staple crop. Cassava bacterial blight, caused by the gram negative bacterium Xanthomonas axonopodis pv. manihotis, is one of the most important constraints for this crop. A candidate resistance gene against cassava bacterial blight, named RXam1, has been identified previously. In this work, we employed the gene silencing approach using the African cassava mosaic virus (ACMV) to validate the function of the RXam1 gene. We used as positive control the su gen, which produce photo blanching in leaves when is silenced. Plants from the SG10735 variety were bombardment with the ACMV-A-SU+ACMV-B y ACMV-A-RXam1+ACMV-B constructions. The silencing efficiency employing the su gene was low, only one of seven plants showed photo blanching. In the putative silenced plants for the RXam1 gene, no presence of siRNAs corresponding to RXam1 was observed; although a low diminution of the RXam1 gene expression was obtained. The growth curves for the Xam strain CIO136 in cassava plants inoculated showing a little but no significance difference in the susceptibility in the silenced plants compared to not silenced

  9. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1.

    OpenAIRE

    Taiko Kim To; Jong-Myong Kim; Akihiro Matsui; Yukio Kurihara; Taeko Morosawa; Junko Ishida; Maho Tanaka; Takaho Endo; Tetsuji Kakutani; Tetsuro Toyoda; Hiroshi Kimura; Shigeyuki Yokoyama; Kazuo Shinozaki; Motoaki Seki

    2011-01-01

    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that t...

  10. Active compressor engine silencer reduces exhaust noise

    International Nuclear Information System (INIS)

    Denenberg, J.N.; Miller, S.K.; Jay, M.A.

    1994-01-01

    An active industrial silencer on a compressor engine at a Tenneco Gas station has reduced low-frequency 'rumbling' noise by 8 dB during trials while lowering backpressure about 90$. This 8 dB reduction of the piston firing frequency corresponds to a more than 80% decrease in emitted acoustic power. The silencing unit, installed on one of six engines at the station near Eden, N.Y., continues in operation. Based on the results, the manufacturer is identifying additional compressor sites for further tests. This paper reviews this project

  11. Marie Nimier, au cœur du silence

    Directory of Open Access Journals (Sweden)

    Joëlle Papillon

    2012-01-01

    Full Text Available Dans La Reine du silence, Marie Nimier se confronte à la figure de son père, l’écrivain Roger Nimier, mort lorsqu’elle avait cinq ans. Elle y montre le poids qui pèse sur l’enfant d’écrivain, mais aussi celui de l’héritage du secret familial et de l’injonction au silence. La difficulté de l’élaboration de son récit de filiation se révèle dans les constants recommencements et reformulations, qui constituent la marque de la tension angoissante entre l’obligation de dire et celle de taire. In La Reine du silence, Marie Nimier confronts her father’s memory – the writer Roger Nimier, who died when she was five years old. The novel describes the burden of being a writer’s child, along with that of inheriting family secrets and submitting to a code of silence. The difficulty of recounting her relationship with her late father is evidenced by the narrator’s numerous “false starts” and her constant rewritings. The hesitant nature of the narration captures an anguish born of two irreconcilable obligations : the need to put things into words and the pressure to remain silent.

  12. Gendered Communication in Iranian University Classrooms: The Relationship between Politeness and Silence in Persian Culture

    Directory of Open Access Journals (Sweden)

    Saeedeh Shafiee Nahrkhalaji

    2013-05-01

    Full Text Available This study examined naturally-occurring university classroominteractions at Iranian universities and provided an analysis ofsilence patterns as politeness strategies used by male andfemale students. Since empirical studies of silence inclassroom settings are scarce, this paper aimed to explainsuch phenomena using participant interviews, classroomobservation and detailed discourse analysis of classroominteraction. Silence patterns and their interpretations werescrutinized in these observations and were discussed inrelation to specific conceptualization of politeness anddevices employed to exercise it. The study found that femalesseem to be the most silent in the cross-sex classrooms, whilethe distribution of silence is more nearly equal in the same sexclassrooms. Based on the comments from follow-upinterviews, reasons for intentional silence as a politenessstrategy were categorized into four groups: silence as a face savingstrategy, silence as a ‘don’t do the FTA’ strategy,silence as a power strategy, and silence as an off-recordstrategy.

  13. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  14. Communicative Silences: Forms and Functions

    Science.gov (United States)

    Bruneau, Thomas J.

    1973-01-01

    The nature of silence is discussed as an imposition of mind, as an interdependent signification ground for speech signs, as a relationship to mental time (as opposed to artificial time), and as it relates to sensation, perception and metaphorical movement. (Author)

  15. ORGANIZATIONAL SILENCE: SUATU PENGHAMBAT DALAM MEWUJUDKAN KREATIFITAS ORGANISASIONAL

    Directory of Open Access Journals (Sweden)

    Berta Bekti Retnawati

    2016-11-01

    Full Text Available There are powerful forces in many organzations that cause widespread withholding of information about potential problems or issues by employess, this collective-level phenomenon as ‘organizational silence’. One significant effect of organizational silence relates to lack of organizational creativity.There are five major organizational factors that enhance creativity in a work environment: organizational climate, leadership style, organizational culture, resources and skills, the structure and system of an organization. Keywords: organizational silence, organizational creativity

  16. The Gift of Silence

    Science.gov (United States)

    Haskins, Cathleen

    2011-01-01

    Slowing down, quieting the mind and body, and experiencing silence nourishes the spirit. Montessori educators are mandated to cultivate not just the intellect but the whole child. They recognize that nurturing the spirit of the child is part of what makes this form of education work so well. This article discusses the benefits of stillness and…

  17. Simultaneous Silencing of Xylanase Genes in Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Néstor García

    2017-12-01

    Full Text Available The endo-β-1,4-xylanase BcXyn11A is one of several plant cell-wall degrading enzymes that the phytopathogenic fungus Botrytis cinerea secretes during interaction with its hosts. In addition to its enzymatic activity, this protein also acts as an elicitor of the defense response in plants and has been identified as a virulence factor. In the present work, other four endoxylanase coding genes (Bcxyn11B, Bcxyn11C, Bcxyn10A, and Bcxyn10B were identified in the B. cinerea genome and the expression of all five genes was analyzed by Q-RT- PCR in vitro and in planta. A cross-regulation between xylanase genes was identified analyzing their expression pattern in the ΔBcxyn11A mutant strain and a putative BcXyn11A-dependt induction of Bcxyn10B gene was found. In addition, multiple knockdown strains were obtained for the five endoxylanase genes by transformation of B. cinerea with a chimeric DNA construct composed of 50-nt sequences from the target genes. The silencing of each xylanase gene was analyzed in axenic cultures and during infection and the results showed that the efficiency of the multiple silencing depends on the growth conditions and on the cross-regulation between them. Although the simultaneous silencing of the five genes was observed by Q-RT-PCR when the silenced strains were grown on medium supplemented with tomato extract, the endoxylanase activity measured in the supernatants was reduced only by 40%. Unexpectedly, the silenced strains overexpressed the Bcxyn11A and Bcxyn11C genes during the infection of tomato leaves, making difficult the analysis of the role of the endo-β-1,4-xylanases in the virulence of the fungus.

  18. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  19. Le silence, ce cri qui résonne dans l’écriture de Viviane Forrester

    Directory of Open Access Journals (Sweden)

    Amelia Peral Crespo

    2015-11-01

    Full Text Available The Holocaust Literature is tied to Silence from its beginning as the writing to silence. Write about the Holocaust and relate the experiences lived in first person or transmit them to the coming generations means leaving the silence which, for years, was the ideal refuge. This research focuses on the literary production of Viviane Forrester. The different expressions of silence that characterize her writings are analyzed. Silence is the cry that underlies in the most profound of the human being that return from the concentration camps, as Lazarus from the dead. It is a silence that grows to a cry because Forrester’s writing, almost in parallel to the fragmentary writing of Blanchot, an-nounces livre à venir, expressing the cry in silence without the ending of the word

  20. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    Science.gov (United States)

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  1. FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Julia Brun

    Full Text Available BACKGROUND: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2 acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model. METHODOLOGY/PRINCIPAL FINDINGS: Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/β-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.

  2. [Psychomotor development and its disorders: between normal and pathological development].

    Science.gov (United States)

    Vericat, Agustina; Bibiana Orden, Alicia

    2013-10-01

    This article discusses some aspects of psychomotor development and its disorders, with special emphasis on psychomotor retardation. Diagnostic classifications of psychomotor problems, such as DSM-IV and CIE-10, are referred to and their advantages and disadvantages are analyzed. The concept of normality as a synonym for the statistical mean in the context of psychomotor disorders is also analyzed in order to consider its dynamic and variability, thereby avoiding the normality/pathology opposition, while some issues, such as the social and cultural aspects, are highlighted, making it possible to rethink the universality and relativity of psychomotor development.

  3. Silencing of the Drosophila ortholog of SOX5 leads to abnormal neuronal development and behavioral impairment.

    Science.gov (United States)

    Li, Airong; Hooli, Basavaraj; Mullin, Kristina; Tate, Rebecca E; Bubnys, Adele; Kirchner, Rory; Chapman, Brad; Hofmann, Oliver; Hide, Winston; Tanzi, Rudolph E

    2017-04-15

    SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element.

    Science.gov (United States)

    Vetukuri, Ramesh R; Tian, Zhendong; Avrova, Anna O; Savenkov, Eugene I; Dixelius, Christina; Whisson, Stephen C

    2011-12-01

    Phytophthora infestans is the notorious oomycete causing late blight of potato and tomato. A large proportion of the P. infestans genome is composed of transposable elements, the activity of which may be controlled by RNA silencing. Accumulation of small RNAs is one of the hallmarks of RNA silencing. Here we demonstrate the presence of small RNAs corresponding to the sequence of a short interspersed retrotransposable element (SINE) suggesting that small RNAs might be involved in silencing of SINEs in P. infestans. This notion was exploited to develop novel tools for gene silencing in P. infestans by engineering transcriptional fusions of the PiAvr3a gene, encoding an RXLR avirulence effector, to the infSINEm retroelement. Transgenic P. infestans lines expressing either 5'-infSINEm::PiAvr3a-3' or 5'-PiAvr3a::SINEm-3' chimeric transcripts initially exhibited partial silencing of PiAvr3a. Over time, PiAvr3a either recovered wild type transcript levels in some lines, or became fully silenced in others. Introduction of an inverted repeat construct was also successful in yielding P. infestans transgenic lines silenced for PiAvr3a. In contrast, constructs expressing antisense or aberrant RNA transcripts failed to initiate silencing of PiAvr3a. Lines exhibiting the most effective silencing of PiAvr3a were either weakly or non-pathogenic on susceptible potato cv. Bintje. This study expands the repertoire of reverse genetics tools available for P. infestans research, and provides insights into a possible mode of variation in effector expression through spread of silencing from adjacent retroelements. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Giving Voice: Narrating silence, history and memory in André Brink ...

    African Journals Online (AJOL)

    Giving Voice: Narrating silence, history and memory in André Brink\\'s The Other Side of Silence and Before I Forget. ... Both narrators, though, draw attention to the problems associated with this reconstructive and potentially ... Article Metrics.

  6. Self-Silencing, Emotional Awareness, and Eating Behaviors in College Women

    Science.gov (United States)

    Shouse, Sarah H.; Nilsson, Johanna

    2011-01-01

    Self-silencing (or the suppression of expressing one's thoughts, feelings, and needs) can have a negative impact on the mental health of women, from depression to disordered eating behaviors. The authors examined the relationship between self-silencing and disordered eating as well as intuitive eating. The authors also explored whether emotional…

  7. L’architecture du silence de la Shoah dans les fictions de Sylvie Germain

    Directory of Open Access Journals (Sweden)

    José Luis Arráez Llobregat

    2015-11-01

    Full Text Available Silences concerning the Shoah constitute a leitmotiv in Sylvie Germain’s narrative work. Motive and motivation intentionally emerge as a proteiform phenomenon from the writer-philosopher’s genius and from the historical and ideological substance, which imbue the novelist in every sec-tion of her literary creation. The pur-pose of this study is to interpret those silences in a set of selected novels where the Shoah takes up either a primary or a secondary role, but in any case a relevant one. To this end this study carries out a detailed study of the silence coming from the narrator’s origin, the victims, the murderers or God. Beyond the silence in humans and supreme beings, this study also investigates the spatial silence in that apocalyptic world.

  8. Assessment of RNAi-induced silencing in banana (Musa spp.).

    Science.gov (United States)

    Dang, Tuong Vi T; Windelinckx, Saskia; Henry, Isabelle M; De Coninck, Barbara; Cammue, Bruno P A; Swennen, Rony; Remy, Serge

    2014-09-18

    In plants, RNA- based gene silencing mediated by small RNAs functions at the transcriptional or post-transcriptional level to negatively regulate target genes, repetitive sequences, viral RNAs and/or transposon elements. Post-transcriptional gene silencing (PTGS) or the RNA interference (RNAi) approach has been achieved in a wide range of plant species for inhibiting the expression of target genes by generating double-stranded RNA (dsRNA). However, to our knowledge, successful RNAi-application to knock-down endogenous genes has not been reported in the important staple food crop banana. Using embryogenic cell suspension (ECS) transformed with ß-glucuronidase (GUS) as a model system, we assessed silencing of gusAINT using three intron-spliced hairpin RNA (ihpRNA) constructs containing gusAINT sequences of 299-nt, 26-nt and 19-nt, respectively. Their silencing potential was analysed in 2 different experimental set-ups. In the first, Agrobacterium-mediated co-transformation of banana ECS with a gusAINT containing vector and an ihpRNA construct resulted in a significantly reduced GUS enzyme activity 6-8 days after co-cultivation with either the 299-nt and 19-nt ihpRNA vectors. In the second approach, these ihpRNA constructs were transferred to stable GUS-expressing ECS and their silencing potential was evaluated in the regenerated in vitro plants. In comparison to control plants, transgenic plants transformed with the 299-nt gusAINT targeting sequence showed a 4.5 fold down-regulated gusA mRNA expression level, while GUS enzyme activity was reduced by 9 fold. Histochemical staining of plant tissues confirmed these findings. Northern blotting used to detect the expression of siRNA in the 299-nt ihpRNA vector transgenic in vitro plants revealed a negative relationship between siRNA expression and GUS enzyme activity. In contrast, no reduction in GUS activity or GUS mRNA expression occurred in the regenerated lines transformed with either of the two gusAINT oligo target

  9. Precedents and consequences of prosocial behaviors of voice and silence

    Directory of Open Access Journals (Sweden)

    Alicia Omar

    2015-09-01

    Full Text Available Prosocial behavior is that which that encourages solidarity and harmony in interpersonal relationships, and produce personal or collective benefits. Although early research on job prosociality was focused on the study of conventional behaviors such as help, courtesy and sportsmanship, the identification and operationalization of new dimensions is rapidly expanding this nomological network. Such is the case of prosocial voice and prosocial silence, recently introduced in the scientific literature. The aim of this study is to explore possible relationships between employee’s voice and employee’s silence, and their personality structure; and examine the role of interpersonal justice perceptions on such relationships. We worked with a sample of 316 employees- aged 37 years and holding a 4.2-year signority working at public and private companies in southern and central Rosario (Argentina. The subjects completed Colquitt’ Justice Organizational Scale, Eysenck Personality Questionnaire, and Van Dyne’s Prosocial Voice and Prosocial Silence Scales. Extraversion and neuroticism emerged as the strongest predictors of prosocial voice and prosocial silence, respectively. Interpersonal justice perceptions emerged as moderators of the ‘natural’ tendency of extraverted workers to engage in prosocial voice, and emotionally controlled workers to engage in prosocial silence. Such findings would indicate that the promotion of high levels of interpersonal justice on job contexts could help workers to engage in more prosocial behavior with positive effects for the organization. 

  10. RELATIONSHIP BETWEEN AFFECTIVE COMMITMENT ANDORGANIZATIONAL SILENCE: A CONCEPTUAL DISCUSSION

    Directory of Open Access Journals (Sweden)

    Fitnat Nazlı Sayğan

    2011-07-01

    Full Text Available In this study, the affective commitment that is oneof the components oforganizational commitment put forth by Allen and Meyer (Allen, Meyer 1996will be differentiated from the other commitment components. The importance ofcreating an emotional commitment to organizations will be examined and theorganizational factors needed to form organizational commitment will beinvestigated. Also, organizational silence is a situation that the company avoided.In the study, the reasons and the drawbacks of silence are focused on and thefactors that cause employees to remain silent are discussed.The aim of this study is intended to manifest the relationship of ‘organizationalsilence' with affective commitment’ which is one ofthe components of‘organizational commitment’ on the basis of literature. In this study, a negativecorrelation between affective commitment and organizational silence is suggested

  11. A new component of the Nasonia sex determining cascade is maternally silenced and regulates transformer expression.

    Science.gov (United States)

    Verhulst, Eveline C; Lynch, Jeremy A; Bopp, Daniel; Beukeboom, Leo W; van de Zande, Louis

    2013-01-01

    Although sex determination is a universal process in sexually reproducing organisms, sex determination pathways are among the most highly variable genetic systems found in nature. Nevertheless, general principles can be identified among the diversity, like the central role of transformer (tra) in insects. When a functional TRA protein is produced in early embryogenesis, the female sex determining route is activated, while prevention of TRA production leads to male development. In dipterans, male development is achieved by prevention of female-specific splicing of tra mRNA, either mediated by X-chromosome dose or masculinizing factors. In Hymenoptera, which have haplodiploid sex determination, complementary sex determination and maternal imprinting have been identified to regulate timely TRA production. In the parasitoid Nasonia, zygotic transformer (Nvtra) expression and splicing is regulated by a combination of maternal provision of Nvtra mRNA and silencing of Nvtra expression in unfertilized eggs. It is unclear, however, if this silencing is directly on the tra locus or whether it is mediated through maternal silencing of a trans-acting factor. Here we show that in Nasonia, female sex determination is dependent on zygotic activation of Nvtra expression by an as yet unknown factor. This factor, which we propose to term womanizer (wom), is maternally silenced during oogenesis to ensure male development in unfertilized eggs. This finding implicates the upstream recruitment of a novel gene in the Nasonia sex determining cascade and supports the notion that sex determining cascades can rapidly change by adding new components on top of existing regulators.

  12. A New Component of the Nasonia Sex Determining Cascade Is Maternally Silenced and Regulates Transformer Expression

    Science.gov (United States)

    Bopp, Daniel; Beukeboom, Leo W.; van de Zande, Louis

    2013-01-01

    Although sex determination is a universal process in sexually reproducing organisms, sex determination pathways are among the most highly variable genetic systems found in nature. Nevertheless, general principles can be identified among the diversity, like the central role of transformer (tra) in insects. When a functional TRA protein is produced in early embryogenesis, the female sex determining route is activated, while prevention of TRA production leads to male development. In dipterans, male development is achieved by prevention of female-specific splicing of tra mRNA, either mediated by X-chromosome dose or masculinizing factors. In Hymenoptera, which have haplodiploid sex determination, complementary sex determination and maternal imprinting have been identified to regulate timely TRA production. In the parasitoid Nasonia, zygotic transformer (Nvtra) expression and splicing is regulated by a combination of maternal provision of Nvtra mRNA and silencing of Nvtra expression in unfertilized eggs. It is unclear, however, if this silencing is directly on the tra locus or whether it is mediated through maternal silencing of a trans-acting factor. Here we show that in Nasonia, female sex determination is dependent on zygotic activation of Nvtra expression by an as yet unknown factor. This factor, which we propose to term womanizer (wom), is maternally silenced during oogenesis to ensure male development in unfertilized eggs. This finding implicates the upstream recruitment of a novel gene in the Nasonia sex determining cascade and supports the notion that sex determining cascades can rapidly change by adding new components on top of existing regulators. PMID:23717455

  13. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    Science.gov (United States)

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  14. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  15. Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly.

    Directory of Open Access Journals (Sweden)

    Oliver A Zill

    Full Text Available Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1 proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.

  16. Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma.

    Science.gov (United States)

    Fiaschetti, G; Abela, L; Nonoguchi, N; Dubuc, A M; Remke, M; Boro, A; Grunder, E; Siler, U; Ohgaki, H; Taylor, M D; Baumgartner, M; Shalaby, T; Grotzer, M A

    2014-02-04

    microRNA-9 is a key regulator of neuronal development aberrantly expressed in brain malignancies, including medulloblastoma. The mechanisms by which microRNA-9 contributes to medulloblastoma pathogenesis remain unclear, and factors that regulate this process have not been delineated. Expression and methylation status of microRNA-9 in medulloblastoma cell lines and primary samples were analysed. The association of microRNA-9 expression with medulloblastoma patients' clinical outcome was assessed, and the impact of microRNA-9 restoration was functionally validated in medulloblastoma cells. microRNA-9 expression is repressed in a large subset of MB samples compared with normal fetal cerebellum. Low microRNA-9 expression correlates significantly with the diagnosis of unfavourable histopathological variants and with poor clinical outcome. microRNA-9 silencing occurs via cancer-specific CpG island hypermethylation. HES1 was identified as a direct target of microRNA-9 in medulloblastoma, and restoration of microRNA-9 was shown to trigger cell cycle arrest, to inhibit clonal growth and to promote medulloblastoma cell differentiation. microRNA-9 is a methylation-silenced tumour suppressor that could be a potential candidate predictive marker for poor prognosis of medulloblastoma. Loss of microRNA-9 may confer a proliferative advantage to tumour cells, and it could possibly contribute to disease pathogenesis. Thus, re-expression of microRNA-9 may constitute a novel epigenetic regulation strategy against medulloblastoma.

  17. Two distinct mechanisms silence chinmo in Drosophila neuroblasts and neuroepithelial cells to limit their self-renewal.

    Science.gov (United States)

    Dillard, Caroline; Narbonne-Reveau, Karine; Foppolo, Sophie; Lanet, Elodie; Maurange, Cédric

    2018-01-25

    Whether common principles regulate the self-renewing potential of neural stem cells (NSCs) throughout the developing central nervous system is still unclear. In the Drosophila ventral nerve cord and central brain, asymmetrically dividing NSCs, called neuroblasts (NBs), progress through a series of sequentially expressed transcription factors that limits self-renewal by silencing a genetic module involving the transcription factor Chinmo. Here, we find that Chinmo also promotes neuroepithelium growth in the optic lobe during early larval stages by boosting symmetric self-renewing divisions while preventing differentiation. Neuroepithelium differentiation in late larvae requires the transcriptional silencing of chinmo by ecdysone, the main steroid hormone, therefore allowing coordination of neural stem cell self-renewal with organismal growth. In contrast, chinmo silencing in NBs is post-transcriptional and does not require ecdysone. Thus, during Drosophila development, humoral cues or tissue-intrinsic temporal specification programs respectively limit self-renewal in different types of neural progenitors through the transcriptional and post-transcriptional regulation of the same transcription factor. © 2018. Published by The Company of Biologists Ltd.

  18. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    Directory of Open Access Journals (Sweden)

    Marcio Hedil

    2016-07-01

    Full Text Available The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  19. Two classes of silencing RNAs move between C. elegans tissues

    Science.gov (United States)

    Jose, Antony M; Garcia, Giancarlo A; Hunter, Craig P

    2011-01-01

    Summary Organism-wide RNA interference (RNAi) is due to the transport of mobile silencing RNA throughout the organism but the identities of these mobile RNA species in animals are unknown. Here we present genetic evidence that both the initial double-stranded RNA (dsRNA), which triggers RNAi, and at least one dsRNA intermediate produced during RNAi can act as or generate mobile silencing RNA in Caenorhabditis elegans. This dsRNA intermediate requires the long dsRNA-binding protein RDE-4, the endonuclease DCR-1, which cleaves long dsRNA into double-stranded short-interfering RNA (ds-siRNA), and the putative nucleotidyltransferase MUT-2 (RDE-3). However, single-stranded siRNA and downstream secondary siRNA produced upon amplification by the RNA-dependent RNA Polymerase RRF-1 do not generate mobile silencing RNA. Restricting inter-tissue transport to long dsRNA and directly processed siRNA intermediates rather than amplified siRNA may serve to modulate the extent of systemic silencing in proportion to available dsRNA. PMID:21984186

  20. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    Science.gov (United States)

    Hedil, Marcio; Kormelink, Richard

    2016-07-23

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  1. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  2. Adaptation of the Four Forms of Employee Silence Scale in a Polish sample

    Directory of Open Access Journals (Sweden)

    Krystyna Adamska

    2017-06-01

    Full Text Available Background Silence is understood as a decision not to speak up in situations of observed irregularities both in productivity and ethics. The study examined the validity of the Four Forms of Employee Silence Scale (FFESS in the Polish population. The scale is a four-factor measure designed to capture differently motivated tendencies to be silent in organizations. The scale distinguishes acquiescent, quiescent, prosocial and opportunistic silence. Employee silence has been linked to many important individual outcomes: failure to react to ethical transgressions, stress and depression, and lower creativity and productivity. Participants and procedure A total of 1044 employees of various organizations working for at least six months at a given position provided the responses for the validation study. Results The results confirmed the superiority of the four-factor model shown by adequate fit indexes: The FFESS has adequate internal consistency at both the scale and item levels. The criterion-related validity of the scale was established by correlating four forms of silence with measures of emotional attitude toward organization, procedural justice, relational contract and turnover intention. Conclusions The four forms of employee silence are empirically distinct concepts in the Polish sample. The scale may be used as the measurement of individual differences. It can also serve as a tool for diagnosing a climate of silence in an organization.

  3. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    Science.gov (United States)

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  4. Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses.

    Science.gov (United States)

    Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line; Pooggin, Mikhail M

    2014-10-01

    Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing

  5. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    Science.gov (United States)

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    Science.gov (United States)

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  7. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease

    NARCIS (Netherlands)

    Ellendorff, U.; Fradin, E.F.; Jonge, de R.; Thomma, B.P.H.J.

    2009-01-01

    RNA silencing is a conserved mechanism in eukaryotes that plays an important role in various biological processes including regulation of gene expression. RNA silencing also plays a role in genome stability and protects plants against invading nucleic acids such as transgenes and viruses. Recently,

  8. Driving in unheard silence: Disability and the politics of shutting up.

    Science.gov (United States)

    Lourens, Heidi

    2018-03-01

    The politics of silence is central to disability experience and the field of disability studies. In this analytical autoethnography, I write about my silences as a visually impaired woman. I explore and make sense of personal life stories through a theoretical perspective. The analysis of these personal experiences lead me to argue that disability-related silences are mostly created through the confluence of inaccessible physical and social environments and the psychological internalisation of these worlds. I also discuss the ways in which I am currently regaining my voice. Further research on resistance by disabled persons is recommended.

  9. Piecing Together Past and Present in Bhutan: Narration, Silence and Forgetting in Conflict

    Directory of Open Access Journals (Sweden)

    Line Kikkenborg Christensen

    2018-02-01

    Full Text Available What happens when conflict is silenced in official narratives but not forgotten among a population? This article explores this question using interview data from anthropological fieldwork in Bhutan. In Bhutan, the ethnic conflict of the early 1990s is surrounded by silence and is not openly discussed. Despite this silence, young Bhutanese have formed a multiplicity of narratives about the conflict. The article highlights three different narratives of conflict, as well as the oblivion found among informants. The main argument is that the silence surrounding the conflict in Bhutan has contributed to two forms of societal rift: between the authorities and the people, and between people themselves. The article contributes to the discussion about what role social memories play in conflicts, by suggesting that silence may cause wariness and hinder processes that help societies to move past conflict in a constructive way.

  10. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops

    OpenAIRE

    Guo, Qigao; Liu, Qing; Smith, Neil A.; Liang, Guolu; Wang, Ming-Bo

    2016-01-01

    Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing ...

  11. Between the Unbearable Weight and Lightness of the Past. Banal Silence in Spain's Post-Dictatorship Memory Politics.

    Science.gov (United States)

    Brescó de Luna, Ignacio

    2018-05-04

    This paper explores the role of silence in Spain's post-dictatorship memory politics. More specifically, the paper examines the forgotten Spanish colonial past in North Africa vis-à-vis the so-called pact of silence that accompanied Spain's transition to democracy after the Franco dictatorship. Drawing on various theoretical approaches in relation to collective memory, traditionally assumed associations between silence and forgetting are questioned. As is argued, silence may nurture and preserve memory just as it may also feed into forgetting. In the former case, silence typically enshrouds a living memory of a past that still weighs on the present, as the pact of silence in Spain clearly illustrates. In the latter case, silence signals a past perceived as already left behind and alien to society's current problems, as is the case of the Spanish colonial past in North Africa. In order to further explore the latter case, the notion of banal silence is introduced. Such notion points to cases where silence over certain contentious historical issues goes unnoticed by society, thus becoming naturalized. The paper concludes with some final reflexions on memory, banal silence and political change.

  12. Silence in liturgy as the space for the Holy Ghost’s activity

    Directory of Open Access Journals (Sweden)

    Adelajda Sielepin

    2006-06-01

    Full Text Available The aim of this article is to clarify the essential and often neglected function of liturgical silence. In practice silence is usually intended to prepare the participants for listening or reflecting upon the word, especially when proclaimed by the minister. Whereas it is vital to know that silence constitutes a creative element of the liturgy, because the involvement of the Holy Spirit. In His action and cooperation with the participants He enables them to get into communion with Christ the Word and the Person and eventually to join effectively His mission. In that sense silence helps the Holy Ghost to fulfill His function in continuing the dialogue between God and man as well as in enhancing one’s spiritual skills for the fruitful participation in the Mystery of Christ and the Church.

  13. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    Science.gov (United States)

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  15. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing.

    Science.gov (United States)

    Fusaro, Adriana F; Barton, Deborah A; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L; Kawchuk, Lawrence M; Vaslin, Maite F S; Correa, Regis L; Waterhouse, Peter M

    2017-10-10

    The plant viral family Luteoviridae is divided into three genera: Luteovirus , Polerovirus and Enamovirus . Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.

  16. "Differently normal" and "normally different": negotiations of female embodiment in women's accounts of 'atypical' sex development.

    Science.gov (United States)

    Guntram, Lisa

    2013-12-01

    During recent decades numerous feminist scholars have scrutinized the two-sex model and questioned its status in Western societies and medicine. Along the same line, increased attention has been paid to individuals' experiences of atypical sex development, also known as intersex or 'disorders of sex development' (DSD). Yet research on individuals' experiences of finding out about their atypical sex development in adolescence has been scarce. Against this backdrop, the present article analyses 23 in-depth interviews with women who in their teens found out about their atypical sex development. The interviews were conducted during 2009-2012 and the interviewees were all Swedish. Drawing on feminist research on female embodiment and social scientific studies on diagnosis, I examine how the women make sense of their bodies and situations. First, I aim to explore how the women construe normality as they negotiate female embodiment. Second, I aim to investigate how the divergent manners in which these negotiations are expressed can be further understood via the women's different access to a diagnosis. Through a thematic and interpretative analysis, I outline two negotiation strategies: the "differently normal" and the "normally different" strategy. In the former, the women present themselves as just slightly different from 'normal' women. In the latter, they stress that everyone is different in some manner and thereby claim normalcy. The analysis shows that access to diagnosis corresponds to the ways in which the women present themselves as "differently normal" and "normally different", thus shedding light on the complex role of diagnosis in their negotiations of female embodiment. It also reveals that the women make use of what they do have and how alignments with and work on norms interplay as normality is construed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Identification and characterization of two RNA silencing suppressors encoded by ophioviruses

    NARCIS (Netherlands)

    Robles Luna, Gabriel; Reyes, Carina A.; Peña, Eduardo J.; Ocolotobiche, Eliana; Baeza, Cecilia; Borniego, Maria Belén; Kormelink, Richard; García, María Laura

    2017-01-01

    Citrus psorosis virus and Mirafiori lettuce big-vein virus are two members of the genus Ophiovirus, family Ophioviridae. So far, how these viruses can interfere in the antiviral RNA silencing pathway is not known. In this study, using a local GFP silencing assay on Nicotiana benthamiana, the

  18. An Empirical Study to Determine The Relationship between Occupational Self-Efficacy and Organizational Silence

    Directory of Open Access Journals (Sweden)

    Cem KAHYA

    2015-06-01

    Full Text Available The concept of occupational self-efficacy means the efficacy perceptions of employees in their occupational fields, and the concept of organizational silence means the employees avoid to voice their ideas and suggestions about organizational issues. The main aim of this study is to examine the relationship between the concepts of occupational self-efficacy and organizational silence by revealing employees’ perceptions of occupational self-efficacy and organizational silence level. With this aim, the survey study was conducted on total 114 academicians who work in University of Bayburt. As a result of research, while the significant relationship was found between employees’ perceptions of occupational self-efficacy and organizational silence level, there was reached a result that this relationship incurred the negatively relationship between perceptions of occupational self-efficacy and negative silence.

  19. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  20. Establishment of an efficient virus-induced gene silencing (VIGS) assay in Arabidopsis by Agrobacterium-mediated rubbing infection.

    Science.gov (United States)

    Manhães, Ana Marcia E de A; de Oliveira, Marcos V V; Shan, Libo

    2015-01-01

    Several VIGS protocols have been established for high-throughput functional genomic screens as it bypasses the time-consuming and laborious process of generation of transgenic plants. The silencing efficiency in this approach is largely hindered by a technically demanding step in which the first pair of newly emerged true leaves at the 2-week-old stage are infiltrated with a needleless syringe. To further optimize VIGS efficiency and achieve rapid inoculation for a large-scale functional genomic study, here we describe a protocol of an efficient VIGS assay in Arabidopsis using Agrobacterium-mediated rubbing infection. The Agrobacterium inoculation is performed by simply rubbing the leaves with Filter Agent Celite(®) 545. The highly efficient and uniform silencing effect was indicated by the development of a visibly albino phenotype due to silencing of the Cloroplastos alterados 1 (CLA1) gene in the newly emerged leaves. In addition, the albino phenotype could be observed in stems and flowers, indicating its potential application for gene functional studies in the late vegetative development and flowering stages.

  1. Silencing CAPN2 Expression Inhibited Castration-Resistant Prostate Cancer Cells Proliferation and Invasion via AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Pu Li

    2017-01-01

    Full Text Available The mRNA expression of CAPN2 was upregulated in CRPC cells (DU145 and PC3 than that in non-CRPC cells. Silencing CAPN2 expression could inhibit DU145 and PC3 cells proliferation by cell cycle arrest at G1 phase. Knockdown of CPAN2 level suppressed the migration and invasion capacity of CRPC cells by reducing matrix metalloproteinase-2 (MMP-2 and MMP-9 activation, as well as repressing the phosphorylation protein expression of AKT and mTOR. In addition, we found that the expression of CAPN2 was elevated in Pca tissues than that in normal control tissues. Therefore, we showed the important roles of CAPN2 in the development and progression in CRPC cells, suggesting a new therapeutic intervention for treating castration-resistant prostate cancer patients.

  2. Identifying Silence Climate in Organizations in the Framework of Contemporary Management Approaches

    Directory of Open Access Journals (Sweden)

    Mustafa Emre Civelek

    2015-10-01

    Full Text Available Dynamic competition conditions in present day, bring about the consequence for businesses to face varied problems with each passing day. At this point, current management approaches include studies that would shed light on the new problems of businesses. Organizational Silence, a concept that has recently been being voiced in business world, has come up in such context. Organizational silence could be expressed as the employee behavior of keeping silent about certain negativities due to various reasons in an organization. Since knowledge sharing in modern organizations is of capital importance in terms of responding hastily to the changes in a competitive environment, spread of this behavior of employees to organization culture and climate presents a threat of indifference. In this study, the concept of Organizational Silence is defined and the effects of conceived silence climate on management of organizations are discussed.

  3. Identifying Silence Climate in Organizations in the Framework of Contemporary Management Approaches

    Directory of Open Access Journals (Sweden)

    Mustafa Emre Civelek

    2015-12-01

    Full Text Available Dynamic competition conditions in present day bring about the consequence for businesses to face varied problems with each passing day. At this point, current management approaches include studies that would shed light on the new problems of businesses. Organizational Silence, a concept that has recently been being voiced in business world, has come up in such context. Organizational silence could be expressed as the employee behavior of keeping silent about certain negativities due to various reasons in an organization. Since knowledge sharing in modern organizations is of capital importance in terms of responding hastily to the changes in a competitive environment, spread of this behavior of employees to organization culture and climate presents a threat of indifference. In this study, the concept of Organizational Silence is defined and the effects of conceived silence climate on management of organizations are discussed.

  4. Analysing the significance of silence in qualitative interviewing: questioning and shifting power relations

    DEFF Research Database (Denmark)

    Bengtsson, Tea Torbenfeldt; Fynbo, Lars

    2017-01-01

    In this article we analyse the significance of silence in qualitative interviews with 36 individuals interviewed about high-risk, illegal activities. We describe how silence expresses a dynamic power relationship between interviewer and interviewee. In the analysis, we focus on two different types...... significant data. We conclude that silence constitutes possibilities for interviewees and interviewers to handle the complex power at play in qualitative interviewing either by maintaining or by losing control of the situation....

  5. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    Science.gov (United States)

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (philar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  6. Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules

    DEFF Research Database (Denmark)

    Kjær, Gabriela Didina Constantin; Grønlund, Mette; Stougaard, Jens

    2008-01-01

    Virus-induced gene silencing (VIGS) can provide a shortcut to plants with altered expression of specific genes. Here, we report that VIGS of the Nodule inception gene (Nin) can alter the nodulation phenotype and Nin gene expression in Pisum sativum. PsNin was chosen as target because of the disti...

  7. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing

    Directory of Open Access Journals (Sweden)

    Adriana F. Fusaro

    2017-10-01

    Full Text Available The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV, however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense.

  8. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes

    Directory of Open Access Journals (Sweden)

    Tanurdzic Milos

    2004-04-01

    Full Text Available Abstract Background Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study. Results Several DNA constructs targeting a Ceratopteris protoporphyrin IX magnesium chelatase (CrChlI gene that is required for chlorophyll biosynthesis were each introduced into young gametophytes by biolistic delivery. Their transient expression in individual cells resulted in a colorless cell phenotype that affected most cells of the mature gametophyte, including the meristem and gametangia. The colorless phenotype was associated with a 7-fold decrease in the abundance of the endogenous transcript. While a construct designed to promote the transient expression of a CrChlI double stranded, potentially hairpin-forming RNA was found to be the most efficient in systemically silencing the endogenous gene, a plasmid containing the CrChlI cDNA insert alone was sufficient to induce silencing. Bombarded, colorless hermaphroditic gametophytes produced colorless embryos following self-fertilization, demonstrating that the silencing signal could be transmitted through gametogenesis and fertilization. Bombardment of young gametophytes with constructs targeting the Ceratopteris filamentous temperature sensitive (CrFtsZ and uroporphyrin dehydrogenase (CrUrod genes also produced the expected mutant phenotypes. Conclusion A method that induces the systemic silencing of target genes in the Ceratopteris gametophyte is described. It provides a simple, inexpensive and rapid means to test the functions of genes involved in gametophyte development, especially those involved in cellular processes common to all plants.

  9. Silencing p75NTR prevents proNGF-induced endothelial cell death and development of acellular capillaries in rat retina

    Directory of Open Access Journals (Sweden)

    Ahmed Y Shanab

    Full Text Available Accumulation of the nerve growth factor precursor (proNGF and its receptor p75NTR have been associated with several neurodegenerative diseases in both brain and retina. However, whether proNGF contributes to microvascular degeneration remain unexplored. This study seeks to investigate the mechanism by which proNGF/p75NTR induce endothelial cell (EC death and development of acellular capillaries, a surrogate marker of retinal ischemia. Stable overexpression of the cleavage-resistant proNGF and molecular silencing of p75NTR were utilized in human retinal EC and rat retinas in vivo. Stable overexpression of proNGF decreased NGF levels and induced retinal vascular cell death evident by 1.9-fold increase in acellular capillaries and activation of JNK and cleaved-PARP that were mitigated by p75NTRshRNA. In vitro, overexpression of proNGF did not alter TNF-α level, reduced NGF, however induced EC apoptosis evident by activation of JNK and p38 MAPK, cleaved-PARP. Silencing p75NTR using siRNA restored expression of NGF and TrkA activation and prevented EC apoptosis. Treatment of EC with human-mutant proNGF induced apoptosis that coincided with marked protein interaction and nuclear translocation of p75NTR and the neurotrophin receptor interacting factor. These effects were abolished by a selective p75NTR antagonist. Therefore, targeting p75NTR represents a potential therapeutic strategy for diseases associated with aberrant expression of proNGF.

  10. RNA interference: ready to silence cancer?

    Science.gov (United States)

    Mocellin, Simone; Costa, Rodolfo; Nitti, Donato

    2006-01-01

    RNA interference (RNAi) is considered the most promising functional genomics tool recently developed. As in other medical fields, this biotechnology might revolutionize the approach to dissecting the biology of cancer, ultimately speeding up the discovery pace of novel targets suitable for molecularly tailored antitumor therapies. In addition, preclinical results suggest that RNAi itself might be used as a therapeutic weapon. With the aim of illustrating not only the potentials but also the current limitations of RNAi as a tool in the fight against cancer, here we summarize the physiology of RNAi, discuss the main technical issues of RNAi-based gene silencing, and review some of the most interesting preclinical results obtained so far with its implementation in the field of oncology.

  11. Giving Voice: Narrating silence, history and memory in André Brink ...

    African Journals Online (AJOL)

    This essay examines André Brink's two most recent novels, The Other Side of Silence (2002) and Before I Forget (2004), in terms of their voicing of silence and the rewriting of history and memory. Each has a theme familiar to Brink's readers – an historical story of colonial violence and violation avenged; and the recounting ...

  12. Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma

    Science.gov (United States)

    Fiaschetti, G; Abela, L; Nonoguchi, N; Dubuc, A M; Remke, M; Boro, A; Grunder, E; Siler, U; Ohgaki, H; Taylor, M D; Baumgartner, M; Shalaby, T; Grotzer, M A

    2014-01-01

    Background: microRNA-9 is a key regulator of neuronal development aberrantly expressed in brain malignancies, including medulloblastoma. The mechanisms by which microRNA-9 contributes to medulloblastoma pathogenesis remain unclear, and factors that regulate this process have not been delineated. Methods: Expression and methylation status of microRNA-9 in medulloblastoma cell lines and primary samples were analysed. The association of microRNA-9 expression with medulloblastoma patients' clinical outcome was assessed, and the impact of microRNA-9 restoration was functionally validated in medulloblastoma cells. Results: microRNA-9 expression is repressed in a large subset of MB samples compared with normal fetal cerebellum. Low microRNA-9 expression correlates significantly with the diagnosis of unfavourable histopathological variants and with poor clinical outcome. microRNA-9 silencing occurs via cancer-specific CpG island hypermethylation. HES1 was identified as a direct target of microRNA-9 in medulloblastoma, and restoration of microRNA-9 was shown to trigger cell cycle arrest, to inhibit clonal growth and to promote medulloblastoma cell differentiation. Conclusions: microRNA-9 is a methylation-silenced tumour suppressor that could be a potential candidate predictive marker for poor prognosis of medulloblastoma. Loss of microRNA-9 may confer a proliferative advantage to tumour cells, and it could possibly contribute to disease pathogenesis. Thus, re-expression of microRNA-9 may constitute a novel epigenetic regulation strategy against medulloblastoma. PMID:24346283

  13. The Silence of Michelangelo

    DEFF Research Database (Denmark)

    Foote, Jonathan

    2016-01-01

    In one of the many anecdotes about Michelangelo, the master neared completion of his colossal Moses, tapped him on the knee with his hammer and exclaimed,"Perché non parli?" As an act that liberates latent thoughts or material potentials, his cadenced hammer spoke through careful, repetitive, and...... and distractive, instead activate a contemplative place of silence. Perhaps more than merely a tool for removing stone, the hammer was an instrument for sonorous meditation with materials and thinking....

  14. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation

    KAUST Repository

    Chen, Hao

    2010-09-28

    The Arabidopsis FIERY1 (FRY1) locus was originally identified as a negative regulator of stress-responsive gene expression and later shown to be required for suppression of RNA silencing. In this study we discovered that the FRY1 locus also regulates lateral root formation. Compared with the wild type, fry1 mutant seedlings generated significantly fewer lateral roots under normal growth conditions and also exhibited a dramatically reduced sensitivity to auxin in inducing lateral root initiation. Using transgenic plants that overexpress a yeast homolog of FRY1 that possesses only the 3\\', 5\\'-bisphosphate nucleotidase activity but not the inositol 1-phosphatase activity, we demonstrated that the lateral root phenotypes in fry1 result from loss of the nucleotidase activity. Furthermore, a T-DNA insertion mutant of another RNA silencing suppressor, XRN4 (but not XRN2 or XRN3), which is an exoribonuclease that is inhibited by the substrate of the FRY1 3\\', 5\\'-bisphosphate nucleotidase, exhibits similar lateral root defects. Although fry1 and xrn4 exhibited reduced sensitivity to ethylene, our experiments demonstrated that restoration of ethylene sensitivity in the fry1 mutant is not sufficient to rescue the lateral root phenotypes of fry1. Our results indicate that RNA silencing modulated by FRY1 and XRN4 plays an important role in shaping root architecture. © 2010 Blackwell Publishing Ltd.

  15. RNAi dynamics in Juvenile Fasciola spp. Liver flukes reveals the persistence of gene silencing in vitro.

    Directory of Open Access Journals (Sweden)

    Paul McVeigh

    2014-09-01

    Full Text Available Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (dsRNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain, validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL and B (FheCatB cysteine proteases, and a σ-class glutathione transferase (FheσGST.Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200-320 nt dsRNAs or 27 nt short interfering (siRNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control

  16. Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan.

    Science.gov (United States)

    Varkouhi, Amir K; Verheul, Rolf J; Schiffelers, Raymond M; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-12-15

    N,N,N-Trimethylated chitosan (TMC) is a biodegradable polymer emerging as a promising nonviral vector for nucleic acid and protein delivery. In the present study, we investigated whether the introduction of thiol groups in TMC enhances the extracellular stability of the complexes based on this polymer and promotes the intracellular release of siRNA. The gene silencing activity and the cellular cytotoxicity of polyplexes based on thiolated TMC were compared with those based on the nonthiolated counterpart and the regularly used lipidic transfection agent Lipofectamine. Incubation of H1299 human lung cancer cells expressing firefly luciferase with siRNA/thiolated TMC polyplexes resulted in 60-80% gene silencing activity, whereas complexes based on nonthiolated TMC showed less silencing (40%). The silencing activity of the complexes based on Lipofectamine 2000 was about 60-70%. Importantly, the TMC-SH polyplexes retained their silencing activity in the presence of hyaluronic acid, while nonthiolated TMC polyplexes hardly showed any silencing activity, demonstrating their stability against competing anionic macromolecules. Under the experimental conditions tested, the cytotoxicity of the thiolated and nonthiolated siRNA complexes was lower than those based on Lipofectamine. Given the good extracellular stability and good silencing activity, it is concluded that polyplexes based on TMC-SH are attractive systems for further in vivo evaluations.

  17. Veiled Word(s) – Sacred Silence

    DEFF Research Database (Denmark)

    Isar, Nicoletta

    2014-01-01

    or secret prayer, and divine silence, which are at the very centre of the Byzantine altar. The main focus is to investigate the liminal nature of the Mystery, manifested through concealing-revealing devices, which are thresholds in the liturgical participation of the Byzantine subject. Fear and secrecy...

  18. Homology-dependent Gene Silencing in Paramecium

    Science.gov (United States)

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  19. Recognition of Speech of Normal-hearing Individuals with Tinnitus and Hyperacusis

    Directory of Open Access Journals (Sweden)

    Hennig, Tais Regina

    2011-01-01

    Full Text Available Introduction: Tinnitus and hyperacusis are increasingly frequent audiological symptoms that may occur in the absence of the hearing involvement, but it does not offer a lower impact or bothering to the affected individuals. The Medial Olivocochlear System helps in the speech recognition in noise and may be connected to the presence of tinnitus and hyperacusis. Objective: To evaluate the speech recognition of normal-hearing individual with and without complaints of tinnitus and hyperacusis, and to compare their results. Method: Descriptive, prospective and cross-study in which 19 normal-hearing individuals were evaluated with complaint of tinnitus and hyperacusis of the Study Group (SG, and 23 normal-hearing individuals without audiological complaints of the Control Group (CG. The individuals of both groups were submitted to the test List of Sentences in Portuguese, prepared by Costa (1998 to determine the Sentences Recognition Threshold in Silence (LRSS and the signal to noise ratio (S/N. The SG also answered the Tinnitus Handicap Inventory for tinnitus analysis, and to characterize hyperacusis the discomfort thresholds were set. Results: The CG and SG presented with average LRSS and S/N ratio of 7.34 dB NA and -6.77 dB, and of 7.20 dB NA and -4.89 dB, respectively. Conclusion: The normal-hearing individuals with or without audiological complaints of tinnitus and hyperacusis had a similar performance in the speech recognition in silence, which was not the case when evaluated in the presence of competitive noise, since the SG had a lower performance in this communication scenario, with a statistically significant difference.

  20. Silence is golden : keeping a lid on noise quiets opposition to oilpatch operations

    International Nuclear Information System (INIS)

    Macedo, R.

    2006-01-01

    Record levels of drilling activity have led to denser well spacings that are often close to residential areas. Many oil and gas operators are now investing in noise suppression technology in order to suppress public concern over noise levels. This article reviewed some new silencing technologies available to the oil and gas industry. Issues concerning permissible sound levels for remote facilities were discussed. Silencing equipment details were presented for turbine exhaust engines, turbo inlet systems, reciprocating engines, and specialty silencers for ventilation systems. Issues concerning acoustical systems and retrofits for existing buildings were also examined. It was noted that a new muffler has been acoustically engineered to provide engine exhaust noise removal along with an internal acoustic treatment to eliminate radiated noise from the muffler shell. The loudest noise source at a compression station is often the engine exhaust of large reciprocating engines. Various computer programs are now available that analyze noise, create models to predict noise levels in decibels for nearby residents, and help to engineer noise control plans. It was concluded that many of the new sound-proofing technologies for the walls and roofs of buildings and enclosures were developed during the design of new compression units built by TransCanada Pipeline on main pipelines across Canada. 2 figs

  1. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    Science.gov (United States)

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v /F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  2. The effects of sedative music, arousal music, and silence on electrocardiography signals.

    Science.gov (United States)

    Dousty, Mehdy; Daneshvar, Sabalan; Haghjoo, Majid

    2011-01-01

    Research indicates that music can affect heart rate, blood pressure, and skin conductance. Music can stimulate central emotions in the brain and release biochemical materials that change the physiologic state. We sought to compare changes in the electrical function of the heart in response to music. Subjects were asked to listen to 2 types of music, namely, sedative and arousal music, in conjunction with two 30-second periods of complete silence. The experiment was conducted in 4 segments: the first and third parts were silence, and the second and fourth parts were music. First, the response to each type of music was compared with that to the preceding period of silence. Next, the responses to both types of music were compared. Finally, the response to music regardless of the type was compared with that to silence. The amplitude of polarization and depolarization changed in response to different kinds of music. The electrical function of the heart in response to music, irrespective of the music type, differed from that in response to silence. The 2 types of music impacted the electrical function of the heart in different ways: the arousal music influenced T-wave maximum amplitude, whereas no such change was recorded in response to the sedative music. The bandwidth of the polarization and depolarization of the heart rate and R-wave amplitude increased in response to music by comparison with silence. In addition, the heart did not seem to try to synchronize with music. The mean R-wave amplitude in sedative music is higher than the arousal music, so our heart works differently when different types of music are heard. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  4. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

    DEFF Research Database (Denmark)

    Hedman, Hanna K; Kirpekar, Finn; Elmroth, Sofi K C

    2011-01-01

    expression, and the other one focused on the function of endogenous miRNAs. In both cases, the active molecule consists of a ∼20-nucleotide-long RNA duplex. In the siRNA case, improved systemic stability is of central interest for its further development toward clinical applications. With respect to mi......RNA processing and function, understanding its influence on mRNA targeting and the silencing ability of individual miRNAs, e.g., under pathological conditions, remains a scientific challenge. In the present study, a model system is presented where the influence of the two clinically used anticancer drugs......, cisplatin and oxaliplatin, on siRNA's silencing capacity has been evaluated. More specifically, siRNAs targeting the 3' UTR region of Wnt-5a mRNA (NM_003352) were constructed, and the biologically active antisense RNA strand was pre-platinated. Platinum adducts were detected and characterized...

  5. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility

    International Nuclear Information System (INIS)

    Godon, C.; Cordelieres, F.P.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Godon, C.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Cordelieres, F.P.; Cordelieres, F.P.; Biard, D.

    2008-01-01

    The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, iso-genic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway.PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1(KD) and XRCC1(KD) cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1(KD) cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity. (authors)

  6. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.

    Science.gov (United States)

    Gallo, Christopher M; Smith, Daniel L; Smith, Jeffrey S

    2004-02-01

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD(+) salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD(+) concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD(+) concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.

  7. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  8. The Role of Silence at the Retreats of a Buddhist Community

    Directory of Open Access Journals (Sweden)

    Orsolya Huszár

    2016-12-01

    Full Text Available The purpose of the study is to establish that the definition of silence as simply an absence of something or as the background of communication proves to be inadequate in a number of communicative instances. The interpretation of silence is culturally determined, and the underappreciation of its role is typical in low-context Western cultures; this is also evinced by the neglect of the topic in the literature. The present study will describe the communicative functions of silence through the findings of field work conducted at the retreats of a Buddhist community in Hungary, providing empirical input for the relevant theoretical constructs. The research findings show that silence is accorded a central role in essentially every component of the retreat (meditations, relaxation, ceremonies, teachings, small-group sharings, meals and rest; and while each event at the retreat focuses primarily on a different specific function of communication, the entire retreat does involve the linkage, affecting, revelational and – to a certain extent – activating functions (to follow the five-element typology of J. Vernon Jensen, as well as – to a lesser extent – the judgmental function. The research also shows that it requires time for individuals in a low-context culture to recognize the “point” of silence – something that the retreats provide the right opportunity for. In fact, the insights the individuals arrived at through these occasions could be put to use in their daily lives, helping their problem-solving and social relationships and in general improving their quality of life.

  9. Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing

    Directory of Open Access Journals (Sweden)

    Chantelle Ahlenstiel

    2015-01-01

    Full Text Available Transcriptional gene silencing (TGS of mammalian genes can be induced by short interfering RNA (siRNA targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA, which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation.

  10. The Application of Coconut Fiber as Dissipative Silencer

    Science.gov (United States)

    Madlan, M. A.; Ghazali, M. I.; Zaman, I.; Kasron, M. Z.; Ying, T. C.

    2017-01-01

    Heat ventilation air conditioning system (HVAC) is one of the ducting systems that broadly applied in the building. There are HVAC silencers in the market, however the sound absorptive material commonly used is mineral wool. In this research study, a sound absorptive material made of coconut fiber was tested to identify its performance as a potential replacement of green material for ducting silencer. The experiment was carried out in a testing apparatus that follows the BS EN ISO 11691:2009 standard. Different configurations of sound absorptive material and contents of coconut fiber were investigated in the study. The trend of insertion loss at 1/3 octave frequency was identified where at frequency below 3000Hz, the insertion loss of dissipative silencer is observed high at certain frequency with a very narrow range. At 3000Hz, the insertion loss of 4dB to 6dB is constant until 4000Hz and drops until 5000Hz before it increases again steadily up to 13dB at 10000Hz. A similar trend was observed for different configuration of sound absorptive material. Despite the configuration different, the outcome shows that the insertion loss is increasing with higher content of coconut fiber.

  11. Silencing Deafness: Displacing Disability in the Nineteenth Century

    Directory of Open Access Journals (Sweden)

    Esme Cleall

    2015-03-01

    Full Text Available This article traces the way in which the language of displacement and silence were used in nineteenth-century discussions of deafness and connects this tendency to the marginalised place deaf experience occupies historically. Throughout the nineteenth century, a period which saw the consolidation of ‘the deaf and dumb’ as a social category, the word ‘forgetting’ crept into numerous discussions of deafness by both deaf and hearing commentators. Some, such as the educationalist Alexander Graeme Bell, were overt in their desire to forget deafness, demanding disability was ‘bred out’ and deaf culture condemned to the forgotten past. Others used the term ambivalently and sometimes metaphorically discussing the deaf as ‘forgotten’ by society, and ‘children of silence’. Some even pleaded that people who were deaf were not forgotten. But, though varied, the use of the imagery of forgetting and silence to evoke deafness is recurrent, and may, therefore, be seen to reveal something about how deaf experience can be approached as a displacement where deafness was spatially and imaginatively marginalised. I argue that one of the consequences of the conceptual framing of deafness through the language of forgetting was actively to silence deafness and to neutralise the idea that disability should be marginal and could be forgotten.

  12. Sox6 directly silences epsilon globin expression in definitive erythropoiesis.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available Sox6 is a member of the Sox transcription factor family that is defined by the conserved high mobility group (HMG DNA binding domain, first described in the testis determining gene, Sry. Previous studies have suggested that Sox6 plays a role in the development of the central nervous system, cartilage, and muscle. In the Sox6-deficient mouse, p100H, epsilony globin is persistently expressed, and increased numbers of nucleated red cells are present in the fetal circulation. Transfection assays in GM979 (erythroleukemic cells define a 36-base pair region of the epsilony proximal promoter that is critical for Sox6 mediated repression. Electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation (ChIP assays demonstrate that Sox6 acts as a repressor by directly binding to the epsilony promoter. The normal expression of Sox6 in wild-type fetal liver and the ectopic expression of epsilony in p100H homozygous fetal liver demonstrate that Sox6 functions in definitive erythropoiesis. The present study shows that Sox6 is required for silencing of epsilony globin in definitive erythropoiesis and suggests a role for Sox6 in erythroid cell maturation. Thus, Sox6 regulation of epsilony globin might provide a novel therapeutical target in the treatment of hemoglobinopathies such as sickle cell anemia and thalassemia.

  13. Friction coefficient measurements of silencers on specialized duct tract

    Directory of Open Access Journals (Sweden)

    Sehnalek Stanislav

    2016-01-01

    Full Text Available This article describes test methods on air duct track in Laboratory of Environmental Engineering. It focuses on measurement of silencer parameter like is pressure loss coeffcient. Firstly, the paper describe the measurement apparatus with description of calculation method by standard ISO 7235 and energy equation. Then the paper presents three ways how to accomplish measurement because such way is not covered by procedure in standard. Then follows the evaluation of results of measurements on three types of silencer designed for HVAC applications. The article is concluded with discussion over measured data with outline for further research.

  14. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  15. Linguistic and Psychological Perspectives on Prolonged Periods of Silence in Dual-Language Learners

    Science.gov (United States)

    Le Pichon, Emmanuelle; de Jonge, Maretha

    2016-01-01

    In this paper, we present an examination of the literature on prolonged periods of silence in children from the perspective of two different scientific fields. The aim is to call attention to the inherent complexity of the factors that may be involved in the etiology of mutistic behavior during child development. Medical and linguistic literature…

  16. Silence in the second language classroom

    CERN Document Server

    King, J

    2013-01-01

    Why are second language learners in Japan's universities so silent? This book investigates the perplexing but intriguing phenomenon of classroom silence and draws on ideas from psychology, sociolinguistics and anthropology to offer a unique insight into the reasons why some learners are either unable or unwilling to speak in a foreign language.

  17. Developing Visualization Support System for Teaching/Learning Database Normalization

    Science.gov (United States)

    Folorunso, Olusegun; Akinwale, AdioTaofeek

    2010-01-01

    Purpose: In tertiary institution, some students find it hard to learn database design theory, in particular, database normalization. The purpose of this paper is to develop a visualization tool to give students an interactive hands-on experience in database normalization process. Design/methodology/approach: The model-view-controller architecture…

  18. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    Science.gov (United States)

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Transgene-induced gene silencing is not affected by a change in ploidy level.

    Directory of Open Access Journals (Sweden)

    Daniela Pignatta

    Full Text Available BACKGROUND: Whole genome duplication, which results in polyploidy, is a common feature of plant populations and a recurring event in the evolution of flowering plants. Polyploidy can result in changes to gene expression and epigenetic instability. Several epigenetic phenomena, occurring at the transcriptional or post-transcriptional level, have been documented in allopolyploids (polyploids derived from species hybrids of Arabidopsis thaliana, yet findings in autopolyploids (polyploids derived from the duplication of the genome of a single species are limited. Here, we tested the hypothesis that an increase in ploidy enhances transgene-induced post-transcriptional gene silencing using autopolyploids of A. thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Diploid and tetraploid individuals of four independent homozygous transgenic lines of A. thaliana transformed with chalcone synthase (CHS inverted repeat (hairpin constructs were generated. For each line diploids and tetraploids were compared for efficiency in post-transcriptional silencing of the endogenous CHS gene. The four lines differed substantially in their silencing efficiency. Yet, diploid and tetraploid plants derived from these plants and containing therefore identical transgene insertions showed no difference in the efficiency silencing CHS as assayed by visual scoring, anthocyanin assays and quantification of CHS mRNA. CONCLUSIONS/SIGNIFICANCE: Our results in A. thaliana indicated that there is no effect of ploidy level on transgene-induced post-transcriptional gene silencing. Our findings that post-transcriptional mechanisms were equally effective in diploids and tetraploids supports the use of transgene-driven post-transcriptional gene silencing as a useful mechanism to modify gene expression in polyploid species.

  20. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    International Nuclear Information System (INIS)

    Anesti, Anna-Maria; Simpson, Guy R; Price, Toby; Pandha, Hardev S; Coffin, Robert S

    2010-01-01

    Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEX GM-CSF , we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials

  1. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.; Burroughs, A. Maxwell; Lanzuolo, Chiara; Breiling, Achim; Imhof, Axel; Orlando, Valerio

    2013-01-01

    .Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  2. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level.

    Science.gov (United States)

    Tyč, Dimitrij; Nocarová, Eva; Sikorová, Lenka; Fischer, Lukáš

    2017-08-01

    Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.

  3. Efficient transformation and artificial miRNA gene silencing in Lemna minor.

    Science.gov (United States)

    Cantó-Pastor, A; Mollá-Morales, A; Ernst, E; Dahl, W; Zhai, J; Yan, Y; Meyers, B C; Shanklin, J; Martienssen, R

    2015-01-01

    Despite rapid doubling time, simple architecture and ease of metabolic labelling, a lack of genetic tools in the Lemnaceae (duckweed) has impeded the full implementation of this organism as a model for biological research. Here, we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via Agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a magnesium chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic L. minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Identification of Novel Fibrosis Modifiers by In Vivo siRNA Silencing

    Directory of Open Access Journals (Sweden)

    Elisabeth H. Vollmann

    2017-06-01

    Full Text Available Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo.

  5. Strategies for Improving siRNA-Induced Gene Silencing Efficiency.

    Science.gov (United States)

    Safari, Fatemeh; Rahmani Barouji, Solmaz; Tamaddon, Ali Mohammad

    2017-12-01

    Purpose: Human telomerase reverse transcriptase (hTERT) plays a crucial role in tumorigenesis and progression of cancers. Gene silencing of hTERT by short interfering RNA (siRNA) is considered as a promising strategy for cancer gene therapy. Various algorithms have been devised for designing a high efficient siRNA which is a significant issue in the clinical usage. Thereby, in the present study, the relation of siRNA designing criteria and the gene silencing efficiency was evaluated. Methods: The siRNA sequences were designed and characterized by using on line soft wares. Cationic co-polymer (polyethylene glycol-g-polyethylene imine (PEG-g-PEI)) was used for the construction of polyelectrolyte complexes (PECs) containing siRNAs. The cellular uptake of the PECs was evaluated. The gene silencing efficiency of different siRNA sequences was investigated and the effect of observing the rational designing on the functionality of siRNAs was assessed. Results: The size of PEG-g-PEI siRNA with N/P (Nitrogen/Phosphate) ratio of 2.5 was 114 ± 0.645 nm. The transfection efficiency of PECs was desirable (95.5% ± 2.4%.). The results of Real-Time PCR showed that main sequence (MS) reduced the hTERT expression up to 90% and control positive sequence (CPS) up to 63%. These findings demonstrated that the accessibility to the target site has priority than the other criteria such as sequence preferences and thermodynamic features. Conclusion: siRNA opens a hopeful window in cancer therapy which provides a convenient and tolerable therapeutic approach. Thereby, using the set of criteria and rational algorithms in the designing of siRNA remarkably affect the gene silencing efficiency.

  6. Silencing of voices in a Swedish science classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-03-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.

  7. Investigation of normal organ development with fetal MRI

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.

    2007-01-01

    The understanding of the presentation of normal organ development on fetal MRI forms the basis for recognition of pathological states. During the second and third trimesters, maturational processes include changes in size, shape and signal intensities of organs. Visualization of these developmental processes requires tailored MR protocols. Further prerequisites for recognition of normal maturational states are unequivocal intrauterine orientation with respect to left and right body halves, fetal proportions, and knowledge about the MR presentation of extrafetal/intrauterine organs. Emphasis is laid on the demonstration of normal MR appearance of organs that are frequently involved in malformation syndromes. In addition, examples of time-dependent contrast enhancement of intrauterine structures are given. (orig.)

  8. Investigation of normal organ development with fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Integrative Morphology Group, Vienna (Austria)

    2007-10-15

    The understanding of the presentation of normal organ development on fetal MRI forms the basis for recognition of pathological states. During the second and third trimesters, maturational processes include changes in size, shape and signal intensities of organs. Visualization of these developmental processes requires tailored MR protocols. Further prerequisites for recognition of normal maturational states are unequivocal intrauterine orientation with respect to left and right body halves, fetal proportions, and knowledge about the MR presentation of extrafetal/intrauterine organs. Emphasis is laid on the demonstration of normal MR appearance of organs that are frequently involved in malformation syndromes. In addition, examples of time-dependent contrast enhancement of intrauterine structures are given. (orig.)

  9. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    Science.gov (United States)

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  10. MicroRNA-mediated myostatin silencing in caprine fetal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Bushuai Zhong

    Full Text Available Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi mediated by microRNAs (miRNAs is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN response genes, such as interferon beta (IFN-β and 2'-5'-oligoadenylate synthetase 2 (OAS2, were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats.

  11. MRI of normal and pathological fetal lung development

    International Nuclear Information System (INIS)

    Kasprian, Gregor; Balassy, Csilla; Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    Normal fetal lung development is a complex process influenced by mechanical and many biochemical factors. In addition to ultrasound, fetal magnetic resonance imaging (MRI) constitutes a new method to investigate this process in vivo during the second and third trimester. The techniques of MRI volumetry, assessment of signal intensities, and MRI spectroscopy of the fetal lung have been used to analyze this process and have already been applied clinically to identify abnormal fetal lung growth. Particularly in conditions such as oligohydramnios and congenital diaphragmatic hernia (CDH), pulmonary hypoplasia may be the cause of neonatal death. A precise diagnosis and quantification of compromised fetal lung development may improve post- and perinatal management. The main events in fetal lung development are reviewed and MR volumetric data from 106 normal fetuses, as well as different examples of pathological lung growth, are provided

  12. MRI of normal and pathological fetal lung development

    Energy Technology Data Exchange (ETDEWEB)

    Kasprian, Gregor [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: gregor.kasprian@meduniwien.ac.at; Balassy, Csilla [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Prayer, Daniela [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria)

    2006-02-15

    Normal fetal lung development is a complex process influenced by mechanical and many biochemical factors. In addition to ultrasound, fetal magnetic resonance imaging (MRI) constitutes a new method to investigate this process in vivo during the second and third trimester. The techniques of MRI volumetry, assessment of signal intensities, and MRI spectroscopy of the fetal lung have been used to analyze this process and have already been applied clinically to identify abnormal fetal lung growth. Particularly in conditions such as oligohydramnios and congenital diaphragmatic hernia (CDH), pulmonary hypoplasia may be the cause of neonatal death. A precise diagnosis and quantification of compromised fetal lung development may improve post- and perinatal management. The main events in fetal lung development are reviewed and MR volumetric data from 106 normal fetuses, as well as different examples of pathological lung growth, are provided.

  13. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  14. Epigenetic Silencing of the Protocadherin Family Member PCDH-γ-All in Astrocytomas

    Directory of Open Access Journals (Sweden)

    Anke Waha

    2005-03-01

    Full Text Available In a microarray-based methylation analysis of astrocytomas [World Health Organization (WHO grade II], we identified a CpG island within the first exon of the protocadherin-γ subfamily A11 (PCDH-γ-A11 gene that showed hypermethylation compared to normal brain tissue. Bisulfite sequencing and combined bisulfite restriction analysis (COBRA was performed to screen low- and high-grade astrocytomas for the methylation status of this CpG island. Hypermethylation was detected in 30 of 34 (88% astrocytomas (WHO grades II and III, 20 of 23 (87% glioblastomas (WHO grade IV, 8 of 8 (100% glioma cell lines. There was a highly significant correlation (P = .00028 between PCDH-γ-A11 hypermethylation and decreased transcription as determined by competitive reverse transcription polymerase chain reaction in WHO grades II and III astrocytomas. After treatment of glioma cell lines with a demethylating agent, transcription of PCDH-γ-A11 was restored. In summary, we have identified PCDH-γ-A11 as a new target silenced epigenetically in astrocytic gliomas. The inactivation of this cell-cell contact molecule might be involved in the invasive growth of astrocytoma cells into normal brain parenchyma.

  15. Polycomb complexes and silencing mechanisms

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided...... mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference....

  16. GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Guillaume Jannot

    2016-12-01

    Full Text Available MicroRNAs and Argonaute form the microRNA induced silencing complex or miRISC that recruits GW182, causing mRNA degradation and/or translational repression. Despite the clear conservation and molecular significance, it is unknown if miRISC-GW182 interaction is essential for gene silencing during animal development. Using Caenorhabditis elegans to explore this question, we examined the relationship and effect on gene silencing between the GW182 orthologs, AIN-1 and AIN-2, and the microRNA-specific Argonaute, ALG-1. Homology modeling based on human Argonaute structures indicated that ALG-1 possesses conserved Tryptophan-binding Pockets required for GW182 binding. We show in vitro and in vivo that their mutations severely altered the association with AIN-1 and AIN-2. ALG-1 tryptophan-binding pockets mutant animals retained microRNA-binding and processing ability, but were deficient in reporter silencing activity. Interestingly, the ALG-1 tryptophan-binding pockets mutant phenocopied the loss of alg-1 in worms during larval stages, yet was sufficient to rescue embryonic lethality, indicating the dispensability of AINs association with the miRISC at this developmental stage. The dispensability of AINs in miRNA regulation is further demonstrated by the capacity of ALG-1 tryptophan-binding pockets mutant to regulate a target of the embryonic mir-35 microRNA family. Thus, our results demonstrate that the microRNA pathway can act independently of GW182 proteins during C. elegans embryogenesis.

  17. Fermitins, the orthologs of mammalian Kindlins, regulate the development of a functional cardiac syncytium in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    James H Catterson

    Full Text Available The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2 is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2, the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans.

  18. [Effects of ezrin silencing on pancreatic cancer cell line Panc-1].

    Science.gov (United States)

    Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie

    2012-12-01

    To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.

  19. Ways to Promote the Classroom Participation of International Students by Understanding the Silence of Japanese University Students

    Science.gov (United States)

    Kim, Soonhyang; Ates, Burcu; Grigsby, Yurimi; Kraker, Stefani; Micek, Timothy A.

    2016-01-01

    The authors explored the role of silence and deciphered its meaning and usefulness as a teaching and learning strategy for Japanese students through a survey of Japanese university students in their home country. This study has revealed that participant responses were evenly divided among comfortable with silence, uncomfortable with silence, and…

  20. RNAi-mediated Gene Silencing of Mutant Myotilin Improves Myopathy in LGMD1A Mice

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Recent progress suggests gene therapy may one day be an option for treating some forms of limb girdle muscular dystrophy (LGMD. Nevertheless, approaches targeting LGMD have so far focused on gene replacement strategies for recessive forms of the disease. In contrast, no attempts have been made to develop molecular therapies for any of the eight dominantly inherited forms of LGMD. Importantly, the emergence of RNA interference (RNAi therapeutics in the last decade provided new tools to combat dominantly inherited LGMDs with molecular therapy. In this study, we describe the first RNAi-based, preclinical gene therapy approach for silencing a gene associated with dominant LGMD. To do this, we developed adeno-associated viral vectors (AAV6 carrying designed therapeutic microRNAs targeting mutant myotilin (MYOT, which is the underlying cause of LGMD type 1A (LGMD1A. Our best MYOT-targeted microRNA vector (called miMYOT significantly reduced mutant myotilin mRNA and soluble protein expression in muscles of LGMD1A mice (the TgT57I model both 3 and 9 months after delivery, demonstrating short- and long-term silencing effects. This MYOT gene silencing subsequently decreased deposition of MYOT-seeded intramuscular protein aggregates, which is the hallmark feature of LGMD1A. Histological improvements were accompanied by significant functional correction, as miMYOT-treated animals showed increased muscle weight and improved specific force in the gastrocnemius, which is one of the most severely affected muscles in TgT57I mice and patients with dominant myotilin mutations. These promising results in a preclinical model of LGMD1A support the further development of RNAi-based molecular therapy as a prospective treatment for LGMD1A. Furthermore, this study sets a foundation that may be refined and adapted to treat other dominant LGMD and related disorders.

  1. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities.

    Science.gov (United States)

    Wroblewski, Tadeusz; Piskurewicz, Urszula; Tomczak, Anna; Ochoa, Oswaldo; Michelmore, Richard W

    2007-09-01

    The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3. We developed an efficient strategy for analysis of this large family of low expressed genes using post-transcriptional gene silencing (PTGS). We transformed lettuce cv. Diana (carrying Dm3) using chimeric gene constructs designed to simultaneously silence RGC2B and the GUS reporter gene via the production of interfering hairpin RNA (ihpRNA). Transient assays of GUS expression in leaves accurately predicted silencing of both genes and were subsequently used to assay silencing in transgenic T(1) plants and their offspring. Levels of mRNA were reduced not only for RGC2B but also for all seven diverse RGC2 family members tested. We then used the same strategy to show that the resistance specificity encoded by the genetically defined Dm18 locus in lettuce cv. Mariska is the result of two resistance specificities, only one of which was silenced by ihpRNA derived from RGC2B. Analysis of progeny from crosses between transgenic, silenced tester stocks and lettuce accessions carrying other resistance genes previously mapped to the RGC2 locus indicated that two additional resistance specificities to B. lactucae, Dm14 and Dm16, as well as resistance to lettuce root aphid (Pemphigus bursarius L.), Ra, are encoded by RGC2 family members.

  2. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors.

    Directory of Open Access Journals (Sweden)

    Xing-sheng Shu

    Full Text Available BACKGROUND: PRDM (PRDI-BF1 and RIZ domain containing proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS: Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5 nasopharyngeal, 44% (8/18 esophageal, 76% (13/17 gastric, 50% (2/4 cervical, and 25% (3/12 hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2'-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP in multiple primary tumors, including 93% (43/46 nasopharyngeal, 58% (25/43 esophageal, 88% (37/42 gastric and 63% (29/46 hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. CONCLUSIONS/SIGNIFICANCE: PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker.

  3. Optical silencing of C. elegans cells with arch proton pump.

    Directory of Open Access Journals (Sweden)

    Ayako Okazaki

    Full Text Available BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch, a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm. Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR in optogenetic studies of C. elegans.

  4. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  5. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Science.gov (United States)

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  6. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Directory of Open Access Journals (Sweden)

    Jiangyu Wu

    2013-01-01

    Full Text Available RNA interference (RNAi was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc. of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.

  7. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Science.gov (United States)

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  8. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function

    Science.gov (United States)

    Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique

    2006-01-01

    Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454

  9. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    Wehling-Henricks, Michelle; Li, Zhenzhi; Lindsey, Catherine; Wang, Ying; Welc, Steven S.; Ramos, Julian N.; Khanlou, Négar; Kuro-o, Makoto; Tidball, James G.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a lethal muscle disease involving progressive loss of muscle regenerative capacity and increased fibrosis. We tested whether epigenetic silencing of the klotho gene occurs in the mdx mouse model of DMD and whether klotho silencing is an important feature of the disease. Our findings show that klotho undergoes muscle-specific silencing at the acute onset of mdx pathology. Klotho experiences increased methylation of CpG sites in its promoter region, which is associated with gene silencing, and increases in a repressive histone mark, H3K9me2. Expression of a klotho transgene in mdx mice restored their longevity, reduced muscle wasting, improved function and greatly increased the pool of muscle-resident stem cells required for regeneration. Reductions of fibrosis in late, progressive stages of the mdx pathology achieved by transgene expression were paralleled by reduced expression of Wnt target genes (axin-2), transforming growth factor-beta (TGF-β1) and collagens types 1 and 3, indicating that Klotho inhibition of the profibrotic Wnt/TGFβ axis underlies its anti-fibrotic effect in aging, dystrophic muscle. Thus, epigenetic silencing of klotho during muscular dystrophy contributes substantially to lost regenerative capacity and increased fibrosis of dystrophic muscle during late progressive stages of the disease. PMID:27154199

  10. Silencing of the rotavirus NSP4 protein decreases the incidence of biliary atresia in murine model.

    Directory of Open Access Journals (Sweden)

    Jiexiong Feng

    Full Text Available Biliary atresia is a common disease in neonates which causes obstructive jaundice and progressive hepatic fibrosis. Our previous studies indicate that rotavirus infection is an initiator in the pathogenesis of experimental biliary atresia (BA through the induction of increased nuclear factor-kappaB and abnormal activation of the osteopontin inflammation pathway. In the setting of rotavirus infection, rotavirus nonstructural protein 4 (NSP4 serves as an important immunogen, viral protein 7 (VP7 is necessary in rotavirus maturity and viral protein 4 (VP4 is a virulence determiner. The purpose of the current study is to clarify the roles of NSP4, VP7 and VP4 in the pathogenesis of experimental BA. Primary cultured extrahepatic biliary epithelia were infected with Rotavirus (mmu18006. Small interfering RNA targeting NSP4, VP7 or VP4 was transfected before rotavirus infection both in vitro and in vivo. We analyzed the incidence of BA, morphological change, morphogenesis of viral particles and viral mRNA and protein expression. The in vitro experiments showed NSP4 silencing decreased the levels of VP7 and VP4, reduced viral particles and decreased cytopathic effect. NSP4-positive cells had strongly positive expression of integrin subunit α2. Silencing of VP7 or VP4 partially decreased epithelial injury. Animal experiments indicated after NSP4 silencing, mouse pups had lower incidence of BA than after VP7 or VP4 silencing. However, 33.3% of VP4-silenced pups (N = 6 suffered BA and 50% of pups (N = 6 suffered biliary injury after VP7 silencing. Hepatic injury was decreased after NSP4 or VP4 silencing. Neither VP4 nor VP7 were detected in the biliary ducts after NSP4. All together, NSP4 silencing down-regulates VP7 and VP4, resulting in decreased incidence of BA.

  11. Excavating silences and tensions of agency|passivity in science education reform

    Science.gov (United States)

    Rivera Maulucci, Maria S.

    2010-12-01

    I reflect on studies by Rodriguez and Carlone, Haun-Frank, and Kimmel to emphasize the ways in which they excavate silences in the science education literature related to linguistic and cultural diversity and situating the problem of reform in teachers rather than contextual factors, such as traditional schooling discourses and forces that serve to marginalize science. I propose that the current push for top-down reform and accountability diminishes opportunities for receptivity, learning with and from students in order to transform teachers' practices and promote equity in science education. I discuss tensions of agency and passivity in science education reform and argue that attention to authentic caring constitutes another silence in the science education literature. I conclude that the current policy context positions teachers and science education researchers as tempered radicals struggling against opp(reg)ressive reforms and that there is a need for more studies to excavate these and other silences.

  12. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  13. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing.

    Science.gov (United States)

    Delfosse, Verónica C; Agrofoglio, Yamila C; Casse, María F; Kresic, Iván Bonacic; Hopp, H Esteban; Ziegler-Graff, Véronique; Distéfano, Ana J

    2014-02-13

    Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  15. Olfactory granule cell development in normal and hyperthyroid rats.

    Science.gov (United States)

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  16. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  17. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  18. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Science.gov (United States)

    Valli, Adrian; Busnadiego, Idoia; Maliogka, Varvara; Ferrero, Diego; Castón, José R; Rodríguez, José Francisco; García, Juan Antonio

    2012-01-01

    RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  19. The impact of organizational culture on employees’ organizational silence In Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Ebrahim Parcham

    2017-01-01

    Full Text Available Introduction: Organizational Culture is one of the most important factors that can change the climate of silence. The main aim of this research was to investigate the influence of organizational culture on employees’ organizational silence in Shiraz University of Medical Sciences. Method: This research was a descriptive-correlation one. The target population was chosen from 1900 staff of the University of Medical sciences and Health Care headquarter in Shiraz. Thus 311 employees were selected using the Krejcie and Morgan sampling table. The instrument used in this research was Denison (2006 organizational culture questionnaire and Dimitris Buratas and Maria Vacula (2007 organizational culture. Cornbrash’s alpha method was used to calculate the reliability. The Item analysis and expert consensus were applied to calculate the validity of instruments. All gathered data analyzed with PLS software. Results: The results showed that the four dimensions of organizational culture include organizational involvement, organizational adaptability, organizational concistency and organizational mission was moderate and the mean scores obtained for each factor were 2.85, 2.82, 2.94 and 2.93 respectively. Structural equation model showed Organizational culture has a significant positive impact on organizational silence (β=0.68; P<.001. Conclusion: Based on the results and impact of organizational culture on organizational silence that is positive and significant; The organization further efforts to strengthen various aspects of organizational culture, especially the employees’ involvement in decision making; Employees can better express their opinions and thus reduced their organizational silence. In other words strengthening corporate culture is combined with the reduction of organizational silence. Medical organizations can establish appropriate reward system for creative ideas and suggestions to encourage people express their ideas As a result, reduced

  20. Identification and characterization of a silencer regulatory element in the 3'-flanking region of the murine CD46 gene.

    Science.gov (United States)

    Nomura, M; Tsujimura, A; Begum, N A; Matsumoto, M; Wabiko, H; Toyoshima, K; Seya, T

    2000-01-01

    The murine membrane cofactor protein (CD46) gene is expressed exclusively in testis, in contrast to human CD46, which is expressed ubiquitously. To elucidate the mechanism of differential CD46 gene expression among species, we cloned entire murine CD46 genomic DNA and possible regulatory regions were placed in the flanking region of the luciferase reporter gene. The reporter gene assay revealed a silencing activity not in the promoter, but in the 3'-flanking region of the gene and the silencer-like element was identified within a 0.2-kb region between 0.6 and 0.8 kb downstream of the stop codon. This silencer-like element was highly similar to that of the pig MHC class-I gene. The introduction of a mutation into this putative silencer element of murine CD46 resulted in an abrogation of the silencing effect. Electrophoretic mobility-shift assay indicated the presence of the binding molecule(s) for this silencer sequence in murine cell lines and tissues. A size difference of the protein-silencer-element complex was observed depending upon the solubilizers used for preparation of the nuclear extracts. A mutated silencer sequence failed to interact with the binding molecules. The level of the binding factor was lower in the testicular germ cells compared with other organs. Thus the silencer element and its binding factor may play a role in transcriptional regulation of murine CD46 gene expression. These results imply that the effects of the CD46 silencer element encompass the innate immune and reproductive systems, and in mice may determine the testicular germ-cell-dominant expression of CD46. PMID:11023821

  1. Flexible tools for gene expression and silencing in tomato.

    Science.gov (United States)

    Fernandez, Ana I; Viron, Nicolas; Alhagdow, Moftah; Karimi, Mansour; Jones, Matthew; Amsellem, Ziva; Sicard, Adrien; Czerednik, Anna; Angenent, Gerco; Grierson, Donald; May, Sean; Seymour, Graham; Eshed, Yuval; Lemaire-Chamley, Martine; Rothan, Christophe; Hilson, Pierre

    2009-12-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources.

  2. The great silence science and philosophy of Fermi's paradox

    CERN Document Server

    Cirkovic, Milan M

    2018-01-01

    The Great Silence explores the multifaceted problem named after the great Italian physicist Enrico Fermi and his legendary 1950 lunchtime question "Where is everybody?" In many respects, Fermi's paradox is the richest and the most challenging problem for the entire field of astrobiology and the Search for ExtraTerrestrial Intelligence (SETI) studies. This book shows how Fermi's paradox is intricately connected with many fields of learning, technology, arts, and even everyday life. It aims to establish the strongest possible version of the problem, to dispel many related confusions, obfuscations, and prejudices, as well as to offer a novel point of entry to the many solutions proposed in existing literature. Cirkovic argues that any evolutionary worldview cannot avoid resolving the Great Silence problem in one guise or another.

  3. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer.

    Directory of Open Access Journals (Sweden)

    Tingxiu Xiang

    Full Text Available Breast cancer (BrCa is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1 is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90% and 53 of 66 (80% primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.

  4. Propensity for Bistability of Bursting and Silence in the Leech Heart Interneuron

    Directory of Open Access Journals (Sweden)

    Tatiana Dashevskiy

    2018-02-01

    Full Text Available The coexistence of neuronal activity regimes has been reported under normal and pathological conditions. Such multistability could enhance the flexibility of the nervous system and has many implications for motor control, memory, and decision making. Multistability is commonly promoted by neuromodulation targeting specific membrane ionic currents. Here, we investigated how modulation of different ionic currents could affect the neuronal propensity for bistability. We considered a leech heart interneuron model. It exhibits bistability of bursting and silence in a narrow range of the leak current parameters, conductance (gleak and reversal potential (Eleak. We assessed the propensity for bistability of the model by using bifurcation diagrams. On the diagram (gleak, Eleak, we mapped bursting and silent regimes. For the canonical value of Eleak we determined the range of gleak which supported the bistability. We use this range as an index of propensity for bistability. We investigated how this index was affected by alterations of ionic currents. We systematically changed their conductances, one at a time, and built corresponding bifurcation diagrams in parameter planes of the maximal conductance of a given current and the leak conductance. We found that conductance of only one current substantially affected the index of propensity; the increase of the maximal conductance of the hyperpolarization-activated cationic current increased the propensity index. The second conductance with the strongest effect was the conductance of the low-threshold fast Ca2+ current; its reduction increased the propensity index although the effect was about two times smaller in magnitude. Analyzing the model with both changes applied simultaneously, we found that the diagram (gleak, Eleak showed a progressively expanded area of bistability of bursting and silence.

  5. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Sateesh Krishnamurthy

    2012-01-01

    Full Text Available The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE or human airway epithelia (HAE grown at the air–liquid interface (ALI, the delivery of a Dicer-substrate small-interfering RNA (DsiRNA duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF, a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi responses.

  6. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer.

    Science.gov (United States)

    Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng; Chen, May R; Simon, Priscilla S; Bhutia, Yangzom D; Martin, Pamela M; Thangaraju, Muthusamy; Browning, Darren D; Ganapathy, Vadivel; Heaton, Christopher M; Gu, Keni; Lee, Jeffrey R; Liu, Kebin

    2015-07-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. ©2015 American Association for Cancer Research.

  7. IFNγ induces DNA methylation-silenced GPR109A expression via pSTAT1/p300 and H3K18 acetylation in colon cancer

    Science.gov (United States)

    Bardhan, Kankana; Paschall, Amy V.; Yang, Dafeng; Chen, May R.; Simon, Priscilla S.; Bhutia, Yangzom; Martin, Pamela M.; Thangaraju, Muthusamy; Browning, Darren D.; Ganapathy, Vadivel; Heaton, Christopher M.; Gu, Keni; Lee, Jeffrey R.; Liu, Kebin

    2015-01-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A has been the subject of extensive studies, however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wildtype mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoters to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoters to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. PMID:25735954

  8. Surface functionalisation of PLGA nanoparticles for gene silencing

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Lichawska, Agata; Arpanaei, Ayyoob

    2010-01-01

    . In addition, particles containing cetylated-PEI achieved 64% silencing of TNFα in J774.1 cells. This rapid method for surface modification of PLGA nanoparticles promotes its application for alternative cetylated functional derivatives as a strategy to control specific biological properties of nanoparticles....

  9. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Adrian Valli

    Full Text Available RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  10. Designing and Manufacturing a Noise Controlling Silencer for the Cooling Tower Pump of Sarcheshmeh Copper Power Station

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-08-01

    Full Text Available Background One of the most common harmful factors in the workplace is noise. Noise control is a factor beneficial for health and safety in the workplace. Objectives The current study aimed to design and manufacture a silencer for the cooling tower pump of Sarcheshmeh Copper power station in order to control noise. Methods In this study, sound pressure level was measured by the use of a sound level meter (B & K 2260. Measurement was carried out in the light of ISO 1996 standard. After studying technical and acoustic features of the noise source, a dispersive-absorptive silencer was designed to control noise pollution generated by the cooling tower pump of the thermal station. After analyzing the frequencies of sound pressure level and using available data, a cylindrical silencer (with a diameter of 1.5 m and height of 3 m was designed and manufactured. The internal part of the silencer was filled with different columns of absorbent material covered with punched metal. Therefore, the silencer consisted of (1 acoustic diffuser, (2 acoustic chamber, and (3 acoustic channels. Results Measurements showed that, at a distance of 1 m from the source, sound pressure level reduced from 127 dBA before installing the silencer to 79 dBA after the installation, resulting in a reduction of 48 dBA. Conclusions Using a silencer with absorbent material (glass wool is very effective in reducing the noise generated by the pump.

  11. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2010-09-01

    The Wnt\\/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in bone development and remodeling. The objectives of this study were firstly, to determine the effects of dexamethasone exposure on Wnt\\/β-catenin signaling at an intracellular and transcriptional level, and secondly, to assess the phenotypic effects of silencing the Wnt antagonist, Dickkopf-1 (Dkk1) in the setting of dexamethasone exposure.

  12. Conifers have a unique small RNA silencing signature.

    Science.gov (United States)

    Dolgosheina, Elena V; Morin, Ryan D; Aksay, Gozde; Sahinalp, S Cenk; Magrini, Vincent; Mardis, Elaine R; Mattsson, Jim; Unrau, Peter J

    2008-08-01

    Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants approximately 260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes.

  13. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.

    Directory of Open Access Journals (Sweden)

    Pengfei Ding

    2015-06-01

    Full Text Available Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.

  14. Deletion of an X-inactivation boundary disrupts adjacent gene silencing.

    Directory of Open Access Journals (Sweden)

    Lindsay M Horvath

    2013-11-01

    Full Text Available In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI, although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.

  15. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  16. Tacit Authorization : A Legal Solution for Administrative Silence

    NARCIS (Netherlands)

    Hoogstra, Nicole; de Graaf, K.J.

    2016-01-01

    This article discusses one of the current legal instruments to stimulate timely decision-making by administrative authorities, namely the ‘Lex silencio positivo’ or the ‘Silence is Consent’ rule. Tacit authorization prescribes that the license sought by the applicant will be granted automatically if

  17. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  18. The Shadow of Silence on the Sexual Rights of Married Iranian Women

    Directory of Open Access Journals (Sweden)

    Roksana Janghorban

    2015-01-01

    Full Text Available There has been a recent shift in the field of sexual health, representing a move away from biomedical concerns to sexual rights frameworks. However, few studies on sexuality are based on a rights framework. The unspoken nature of sexuality in Iranian culture has led to a lack of national studies on the topic. The objective of this study was to explore the perceptions and experiences of married Iranian women on sexual rights in their sexual relationships. In this grounded theory study, 37 participants (25 married women, 5 husbands, and 7 midwives were selected. Data were collected through in-depth interviews and analyzed through open, axial, and selective coding using MAXQDA software version 2007. The analysis revealed the core category of “sexual interaction in the shadow of silence.” The interrelated categories subsumed under the core category included adopting a strategy of silence, trying to negotiate sex, seeking help, and sexual adjustment. The silence originating from women’s interactions with their families and society, from girlhood to womanhood, was identified as the core concept in Iranian women’s experiences of sexual rights. A focus on husbands’ roles seems salient because they can direct or alter some learned feminine roles, especially silence regarding sexual matters, which then affects the realization of women’s sexual rights.

  19. Uudised : Rannap sai raha lõpuks kätte. No Big Silence esitleb uut heliplaati

    Index Scriptorium Estoniae

    2000-01-01

    Pärnus toimunud lühima öö laulukonkursil võitis peaauhinna R. Rannap. Ans. No-Big-Silence on soojendusbändiks 2. juulil Tallinna Lauluväljakul toimuval Iron Maideni kontserdil. Ans. No-Big-Silence esitleb oma uut heliplaati "successful, bitch and beautiful"

  20. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla.

    Science.gov (United States)

    Hosokawa, Munetaka; Yamauchi, Takayoshi; Takahama, Masayoshi; Goto, Mariko; Mikano, Sachiko; Yamaguchi, Yuki; Tanaka, Yoshiyuki; Ohno, Sho; Koeda, Sota; Doi, Motoaki; Yazawa, Susumu

    2013-05-01

    The corolla of Petunia 'Magic Samba' exhibits unstable anthocyanin expression depending on its phosphorus content. Phosphorus deficiency enhanced post-transcriptional gene silencing of chalcone synthase - A in the corolla. Petunia (Petunia hybrida) 'Magic Samba' has unstable red-white bicolored corollas that respond to nutrient deficiency. We grew this cultivar hydroponically using solutions that lacked one or several nutrients to identify the specific nutrient related to anthocyanin expression in corolla. The white area of the corolla widened under phosphorus (P)-deficient conditions. When the P content of the corolla grown under P-deficient conditions dropped to 40 corollas until the plants died. Other elemental deficiencies had no clear effects on anthocyanin suppression in the corolla. After phosphate was resupplied to the P-deficient plants, anthocyanin was restored in the corollas. The expression of chalcone synthase-A (CHS-A) was suppressed in the white area that widened under P-suppressed conditions, whereas the expression of several other genes related to anthocyanin biosynthesis was enhanced more in the white area than in the red area. Reddish leaves and sepals developed under the P-deficient condition, which is a typical P-deficiency symptom. Two genes related to anthocyanin biosynthesis were enhanced in the reddish organs. Small interfering RNA analysis of CHS-A showed that the suppression resulted from post-transcriptional gene silencing (PTGS). Thus, it was hypothesized that the enhancement of anthocyanin biosynthetic gene expression due to P-deficiency triggered PTGS of CHS-A, which resulted in white corolla development.

  1. Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin.

    Directory of Open Access Journals (Sweden)

    Yixiang Han

    Full Text Available RNA-binding protein Musashi-2 (Msi2 is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML. However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.

  2. Computerized tomography and head growth curve infantile macrocephaly with normal psychomotor development

    International Nuclear Information System (INIS)

    Eda, Isematsu; Kitahara, Tadashi; Takashima, Sachio; Takeshita, Kenzo

    1982-01-01

    Macrocephaly was defined as a head measuring larger than 98th percentile. We have evaluated CT findings and head growth curves in 25 infants with large heads. Ten (40%) of 25 infants with large heads were normal developmentally and neurologically. Five (20%) of those were mentally retarded. The other 10 infants (40%) included hydrocephalus (4 cases), malformation syndrome (3 cases), brain tumor (1 case), metabolic disorder (1 case) and degenerative disorder (1 case). Their head growth curves were typed as (I), (II) and (III): Type (I) (excessive head growth curve to 2 SDs above normal); Type (II) (head growth curve gradually approached to 2 SDs above normal); Type (III) (head growth curve parallel to 2 SDs above normal). Ten of macrocephaly with normal psychomotor development were studied clinically and radiologically in details. They were all male. CT pictures of those showed normal or various abnormal findings: ventricular dilatations, wide frontal and temporal subdural spaces, wide interhemispheric fissures, wide cerebral sulci, and large sylvian fissures. CT findings in 2 of those, which because normal after repeated CT examinations, resembled benign subdural collection. CT findings in one of those were external hydrocephalus. Head growth curves were obtained from 8 of those. Six cases revealed type (II) and two cases did type (III). The remaining 2 cases could not be followed up. We consider that CT findings of infants showed macrocephaly with normal psychomotor development reveals normal or various abnormal (ventricular dilatations, benign subdural collection, external hydrocephalus) and their head growth curves are not at least excessive. Infants with mental retardation showed similar CT findings and head growth curves as those with normal psychomotor development. It was difficult to distinguish normal from mentally retarded infants by either CT findings or head growth curves. (author)

  3. What does it take to break the silence in teams: Authentic leadership or proactive followership?

    NARCIS (Netherlands)

    Günter, Hannes; Schreurs, Bert; van Emmerik, Hetty; Sun, Shuhua

    2017-01-01

    Leadership may help break the silence in teams, but this may not be equally true for all employees. Using behavioral plasticity theory, we propose that authentic leadership—a set of leadership behaviors through which leaders enact their true selves—reduces silence and motivates speaking up in

  4. LNA-antisense rivals siRNA for gene silencing

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Wengel, Jesper; Stenvang, Jan

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing unprecedented binding affinity toward complementary DNA and RNA while obeying the Watson-Crick base-pairing rules. For efficient gene silencing in vitro and in vivo, fully modified or chimeric LNA oligonucleotides have been a...

  5. Resounding Silences : Subtle Norm Regulation in Everyday Interactions

    NARCIS (Netherlands)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.

    In this article we suggest a mechanism for norm regulation that does not rely on explicit information exchange or costly reinforcement, but rather on the sensitivity of group members to social cues in their environment. We examine whether brief conversational silences can (a) signal a threat to

  6. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis.

    Science.gov (United States)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D; Manunta, Maria D; Hart, Stephen L; Khaw, Peng T

    2016-02-24

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  7. Breaking an epigenetic chromatin switch: curious features of hysteresis in Saccharomyces cerevisiae telomeric silencing.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi H Nagaraj

    Full Text Available In addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor. We find that SIR silencing has many characteristics of a non-linear bistable system, as observed in conventional genetic switches, which are based on activities of a few promoters affecting each other through the abundance of their gene products. Quite remarkably, our experiments in yeast telomeric silencing show a very distinctive pattern when it comes to the transition from bistability to monostability. In particular, the loss of the stable silenced state, upon increasing the inhibitor concentration, does not seem to show the expected saddle node behavior, instead looking like a supercritical pitchfork bifurcation. In other words, the 'off' state merges with the 'on' state at a threshold concentration leading to a single state, as opposed to the two states remaining distinct up to the threshold and exhibiting a discontinuous jump from the 'off' to the 'on' state. We argue that this is an inevitable consequence of silenced and active regions coexisting with dynamic domain boundaries. The experimental observations in our study therefore have broad implications for the understanding of chromatin silencing in yeast and beyond.

  8. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation.

    Science.gov (United States)

    Beal, Allison M; Ramos-Hernández, Natalia; Riling, Chris R; Nowelsky, Erin A; Oliver, Paula M

    2011-11-13

    Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iT(reg) cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iT(reg) cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1(-/-) cells. We found that Ndfip1 expression was transiently upregulated during iT(reg) cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iT(reg) cell differentiation.

  9. Working memory in Farsi-speaking children with normal development and cochlear implant.

    Science.gov (United States)

    Soleymani, Zahra; Amidfar, Meysam; Dadgar, Hooshang; Jalaie, Shohre

    2014-04-01

    Working memory has an important role in language acquisition and development of cognition skills. The ability of encoding, storage and retrieval of phonological codes, as activities of working memory, acquired by audition sense. Children with cochlear implant experience a period that they are not able to perceive sounds. In order to assess the effect of hearing on working memory, we investigated working memory as a cognition skill in children with normal development and cochlear implant. Fifty students with normal hearing and 50 students with cochlear implant aged 5-7 years participated in this study. Children educated in the preschool, the first and second grades. Children with normal development were matched based on age, gender, and grade of education with cochlear implant. Two components of working memory including phonological loop and central executive were compared between two groups. Phonological loop assessed by nonword repetition task and forward digit span. To assess central executive component backward digit span was used. The developmental trend was studied in children with normal development and cochlear implant as well. The effect of age at implantation in children with cochlear implants on components of working memory was investigated. There are significant differences between children with normal development and cochlear implant in all tasks that assess working memory (p memory between different grades showed significant differences both in children with normal development and in children with cochlear implant (p implied that children with cochlear implant may experience difficulties in working memory. Therefore, these children have problems in encoding, practicing, and repeating phonological units. The results also suggested working memory develops when the child grows up. In cochlear implant children, with decreasing age at implantation and increasing their experience in perceiving sound, working memory skills improved. Copyright © 2014 Elsevier

  10. Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Maciej Pietrzak

    Full Text Available Ribosomal deficits are documented in mild cognitive impairment (MCI, which often represents an early stage Alzheimer's disease (AD, as well as in advanced AD. The nucleolar rRNA genes (rDNA, transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation.To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups.In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosomal deficits and, ultimately, dementia.

  11. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.

    Science.gov (United States)

    Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U Deva; Mishra, Krishnaveni

    2015-12-02

    Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The Dens: Normal Development, Developmental Variants and Anomalies, and Traumatic Injuries

    Directory of Open Access Journals (Sweden)

    William T O′Brien

    2015-01-01

    Full Text Available Accurate interpretation of cervical spine imagining can be challenging, especially in children and the elderly. The biomechanics of the developing pediatric spine and age-related degenerative changes predispose these patient populations to injuries centered at the craniocervical junction. In addition, congenital anomalies are common in this region, especially those associated with the axis/dens, due to its complexity in terms of development compared to other vertebral levels. The most common congenital variations of the dens include the os odontoideum and a persistent ossiculum terminale. At times, it is necessary to distinguish normal development, developmental variants, and developmental anomalies from traumatic injuries in the setting of acute traumatic injury. Key imaging features are useful to differentiate between traumatic fractures and normal or variant anatomy acutely; however, the radiologist must first have a basic understanding of the spectrum of normal developmental anatomy and its anatomic variations in order to make an accurate assessment. This review article attempts to provide the basic framework required for accurate interpretation of cervical spine imaging with a focus on the dens, specifically covering the normal development and ossification of the dens, common congenital variants and their various imaging appearances, fracture classifications, imaging appearances, and treatment options.

  13. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers

    Directory of Open Access Journals (Sweden)

    Pizzichini Daniele

    2007-03-01

    Full Text Available Abstract Background Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch and violaxanthin (in the beta-beta branch. None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold. Results In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species. Conclusion Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content.

  14. Breaking the Silence Surrounding Mental Health on Campus

    Science.gov (United States)

    Roper, Larry D.

    2013-01-01

    Mentally ill students are able to participate in higher education at unprecedented rates. While colleges and universities have been responsive to the therapeutic needs, we have failed to successfully create supportive campus climates. Campus leaders are challenged to demonstrate ethical leadership that breaks the silence and confronts the stigma…

  15. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    Science.gov (United States)

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  16. An intronic microRNA silences genes that are functionally antagonistic to its host gene.

    Science.gov (United States)

    Barik, Sailen

    2008-09-01

    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.

  17. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats

    NARCIS (Netherlands)

    Fitzgerald, A.; Kan, van J.A.L.; Plummer, K.M.

    2004-01-01

    RNA-mediated gene silencing has been demonstrated in plants, animals, and more recently in filamentous fungi. Here, we report high frequency, RNA-mediated gene silencing in the apple scab fungus, Venturia inaequalis. The green fluorescent protein (GFP) transgene was silenced in a GFP-expressing

  18. Underground laboratories: Cosmic silence, loud science

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, Eugenio, E-mail: coccia@lngs.infn.i [Department of Physics, University of Rome ' Tor Vergata' and INFN Gran Sasso National Laboratory (Italy)

    2010-01-01

    Underground laboratories provide the low radioactive background environment necessary to host key experiments in the field of particle and astroparticle physics, nuclear astrophysics and other disciplines that can profit of their characteristics and of their infrastructures. The cosmic silence condition existing in these laboratories allows the search for extremely rare phenomena and the exploration of the highest energy scales that cannot be reached with accelerators. I briefly describe all the facilities that are presently in operation around the world.

  19. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism.

    Science.gov (United States)

    Yu, Li; Sun, Yifan; Li, Jingjing; Wang, Yan; Zhu, Yuxing; Shi, Yong; Fan, Xiaojun; Zhou, Jianda; Bao, Ying; Xiao, Jie; Cao, Ke; Cao, Peiguo

    2017-08-15

    Radiotherapy has been used increasingly to treat primary hepatocellular carcinoma. Clinically, the main cause of radiotherapy failure is cellular radioresistance, conferred via glycolytic metabolism. Our previous study demonstrated that Girdin is upregulated in primary hepatocellular carcinoma and promotes the invasion and metastasis of tumor cells. However, whether Girdin underlies the radio-sensitivity of hepatocellular carcinoma remains unclear. A short hairpin RNA (shRNA) was used to silence CCDC88A (encoding Girdin), and real-time PCR was performed to determine CCDC88A mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of Girdin silencing on cellular radiosensitivity. Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the signaling pathway downstream of Girdin. Finally, animal experiments were performed to demonstrate the effect of CCDC88A silencing on the radiosensitivity of hepatoma in vivo. shRNA-induced Girdin silencing suppressed glycolysis and enhanced the radio-sensitivity of hepatic cell lines, HepG2 and Huh-7. Furthermore, silencing of Girdin inhibited the PI3K/AKT/HIF-1α signaling pathway, which is a central regulator of glycolysis. Girdin can regulate glycolysis in hepatocellular carcinoma cells through the PI3K/AKT/HIF-1α signaling pathway, which decreases the sensitivity of tumor cells to radiotherapy.

  20. Pnc1p-mediated nicotinamide clearance modifies the epigenetic properties of rDNA silencing in Saccharomyces cerevisiae.

    Science.gov (United States)

    McClure, Julie M; Gallo, Christopher M; Smith, Daniel L; Matecic, Mirela; Hontz, Robert D; Buck, Stephen W; Racette, Frances G; Smith, Jeffrey S

    2008-10-01

    The histone deacetylase activity of Sir2p is dependent on NAD(+) and inhibited by nicotinamide (NAM). As a result, Sir2p-regulated processes in Saccharomyces cerevisiae such as silencing and replicative aging are susceptible to alterations in cellular NAD(+) and NAM levels. We have determined that high concentrations of NAM in the growth medium elevate the intracellular NAD(+) concentration through a mechanism that is partially dependent on NPT1, an important gene in the Preiss-Handler NAD(+) salvage pathway. Overexpression of the nicotinamidase, Pnc1p, prevents inhibition of Sir2p by the excess NAM while maintaining the elevated NAD(+) concentration. This growth condition alters the epigenetics of rDNA silencing, such that repression of a URA3 reporter gene located at the rDNA induces growth on media that either lacks uracil or contains 5-fluoroorotic acid (5-FOA), an unusual dual phenotype that is reminiscent of telomeric silencing (TPE) of URA3. Despite the similarities to TPE, the modified rDNA silencing phenotype does not require the SIR complex. Instead, it retains key characteristics of typical rDNA silencing, including RENT and Pol I dependence, as well as a requirement for the Preiss-Handler NAD(+) salvage pathway. Exogenous nicotinamide can therefore have negative or positive impacts on rDNA silencing, depending on the PNC1 expression level.

  1. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  2. 47 CFR 80.304 - Watch requirement during silence periods.

    Science.gov (United States)

    2010-10-01

    ....304 Section 80.304 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.304 Watch requirement during silence periods. Each ship station operating on...

  3. Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent

    Science.gov (United States)

    Cummings, A.; Chang, I.-J.

    1988-11-01

    Internal mean flow within the pores of a bulk-reacting porous acoustic absorbent, driven by mean static pressure gradients, is shown here to be an important feature of the acoustics of dissipative silencers in flow ducts, particularly in the case of internal combustion engine exhaust silencers. Theoretical treatments are presented here, both to describe the effect of internal flow on the bulk acoustic perties of the porous medium and to find the effect of the absorbent in situ, in the form of the sound transmission loss of the silencer. The measured transmission loss of an experimental silencer is compared to predicted data and good agreement between the two is obtained. The effects of mean fluid flow in the central passage and internal flow in the absorbent are separately demonstrated.

  4. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  5. "Was it something I said?" "No, it was something you posted!" A study of the spiral of silence theory in social media contexts.

    Science.gov (United States)

    Gearhart, Sherice; Zhang, Weiwu

    2015-04-01

    New media technologies make it necessary for scholars to reassess mass communication theories developed among legacy media. One such theory is the spiral of silence theory originally proposed by Noelle-Neumann in the 1970s. Increasing diversity of media content, selectivity, social networking site (SNS) interactivity, and the potential for anonymity have posed various challenges to its theoretical assumptions. While application of the spiral of silence in SNS contexts has been theorized, its empirical testing is scarce. To fill this void, the Pew 2012 Search, Social Networks, and Politics survey is used to test the theory. Results reveal that encountering agreeable political content predicts speaking out, while encountering disagreeable postings stifles opinion expression, supporting the spiral of silence theory in the SNS environment. However, certain uses of SNSs and psychological factors demonstrate a liberating effect on opinion expression.

  6. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    Science.gov (United States)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  7. Silencing of the Mitogen-Activated Protein Kinases (MAPK) Fus3 and Slt2 in Pseudocercospora fijiensis Reduces Growth and Virulence on Host Plants.

    Science.gov (United States)

    Onyilo, Francis; Tusiime, Geoffrey; Tripathi, Jaindra N; Chen, Li-Hung; Falk, Bryce; Stergiopoulos, Ioannis; Tushemereirwe, Wilberforce; Kubiriba, Jerome; Tripathi, Leena

    2018-01-01

    Pseudocercospora fijiensis , causal agent of the black Sigatoka disease (BSD) of Musa spp., has spread globally since its discovery in Fiji 1963 to all the banana and plantain growing areas across the globe. It is becoming the most damaging and economically important disease of this crop. The identification and characterization of genes that regulate infection processes and pathogenicity in P. fijiensis will provide important knowledge for the development of disease-resistant cultivars. In many fungal plant pathogens, the Fus3 and Slt2 are reported to be essential for pathogenicity. Fus3 regulates filamentous-invasion pathways including the formation of infection structures, sporulation, virulence, and invasive and filamentous growth, whereas Slt2 is involved in the cell-wall integrity pathway, virulence, invasive growth, and colonization in host tissues. Here, we used RNAi-mediated gene silencing to investigate the role of the Slt2 and Fus3 homologs in P. fijiensis in pathogen invasiveness, growth and pathogenicity. The PfSlt2 and PfFus3 silenced P. fijiensis transformants showed significantly lower gene expression and reduced virulence, invasive growth, and lower biomass in infected leaf tissues of East African Highland Banana (EAHB). This study suggests that Slt2 and Fus3 MAPK signaling pathways play important roles in plant infection and pathogenic growth of fungal pathogens. The silencing of these vital fungal genes through host-induced gene silencing (HIG) could be an alternative strategy for developing transgenic banana and plantain resistant to BSD.

  8. Silencing of the Mitogen-Activated Protein Kinases (MAPK Fus3 and Slt2 in Pseudocercospora fijiensis Reduces Growth and Virulence on Host Plants

    Directory of Open Access Journals (Sweden)

    Francis Onyilo

    2018-03-01

    Full Text Available Pseudocercospora fijiensis, causal agent of the black Sigatoka disease (BSD of Musa spp., has spread globally since its discovery in Fiji 1963 to all the banana and plantain growing areas across the globe. It is becoming the most damaging and economically important disease of this crop. The identification and characterization of genes that regulate infection processes and pathogenicity in P. fijiensis will provide important knowledge for the development of disease-resistant cultivars. In many fungal plant pathogens, the Fus3 and Slt2 are reported to be essential for pathogenicity. Fus3 regulates filamentous-invasion pathways including the formation of infection structures, sporulation, virulence, and invasive and filamentous growth, whereas Slt2 is involved in the cell-wall integrity pathway, virulence, invasive growth, and colonization in host tissues. Here, we used RNAi-mediated gene silencing to investigate the role of the Slt2 and Fus3 homologs in P. fijiensis in pathogen invasiveness, growth and pathogenicity. The PfSlt2 and PfFus3 silenced P. fijiensis transformants showed significantly lower gene expression and reduced virulence, invasive growth, and lower biomass in infected leaf tissues of East African Highland Banana (EAHB. This study suggests that Slt2 and Fus3 MAPK signaling pathways play important roles in plant infection and pathogenic growth of fungal pathogens. The silencing of these vital fungal genes through host-induced gene silencing (HIG could be an alternative strategy for developing transgenic banana and plantain resistant to BSD.

  9. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.

    Science.gov (United States)

    Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin

    2014-01-01

    Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.

  10. RNAi-mediated silencing of enolase confirms its biological importance in Clonorchis sinensis.

    Science.gov (United States)

    Wang, Xiaoyun; Chen, Wenjun; Tian, Yanli; Huang, Yan; Li, Xuerong; Yu, Xinbing

    2014-04-01

    Clonorchis sinensis (C. sinensis) infection is still a common public health problem in freshwater fish consumption areas in Asian countries. More molecular evidence are required to speed up the prevention strategies to control this kind of infectious disease. In the present study, to confirm the biological importance of Csenolase followed by our previous observations of the key metabolic enzyme, we explored the RNA silence effect of the Csenolase-derived RNA interference (RNAi) in C. sinensis. The extramembranous region aa105-226 was selected as the target sequence of RNA silence. Csenolase-derived double strand RNA (dsRNA-Csenolase, 366 bp) was synthetized and delivered into C. sinensis by soaking approach. The penetration of dsRNA into adult worms and metacercariae was tracked using fluorescently labeled RNA. Western blotting and qRT-PCR experiments were performed to determine dsRNA-Csenolase-silencing effect. Our results showed that, after incubating for 120 h, dsRNA-Csenolase could effectively target and downregulate the expression of Csenolase in both adult worms (P sinensis adult worms (P sinensis, allowing further applications in identifying functional genes in C. sinensis.

  11. SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2017-09-01

    Full Text Available RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3, was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3 is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6 silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.

  12. The normal development of Platynereis dumerilii (Nereididae, Annelida

    Directory of Open Access Journals (Sweden)

    Henrich Thorsten

    2010-12-01

    Full Text Available Abstract Background The polychaete annelid Platynereis dumerilii is an emerging model organism for the study of molecular developmental processes, evolution, neurobiology and marine biology. Annelids belong to the Lophotrochozoa, the so far understudied third major branch of bilaterian animals besides deuterostomes and ecdysozoans. P. dumerilii has proven highly relevant to explore ancient bilaterian conditions via comparison to the deuterostomes, because it has accumulated less evolutionary change than conventional ecdysozoan models. Previous staging was mainly referring to hours post fertilization but did not allow matching stages between studies performed at (even slightly different temperatures. To overcome this, and to provide a first comprehensive description of P. dumerilii normal development, a temperature-independent staging system is needed. Results Platynereis dumerilii normal development is subdivided into 16 stages, starting with the zygote and ending with the death of the mature worms after delivering their gametes. The stages described can be easily identified by conventional light microscopy or even by dissecting scope. Developmental landmarks such as the beginning of phototaxis, the visibility of the stomodeal opening and of the chaetae, the first occurrence of the ciliary bands, the formation of the parapodia, the extension of antennae and cirri, the onset of feeding and other characteristics are used to define different developmental stages. The morphology of all larval stages as well as of juveniles and adults is documented by light microscopy. We also provide an overview of important steps in the development of the nervous system and of the musculature, using fluorescent labeling techniques and confocal laser-scanning microscopy. Timing of each developmental stage refers to hours post fertilization at 18 ± 0.1°C. For comparison, we determined the pace of development of larvae raised at 14°C, 16°C, 20°C, 25°C, 28°C and

  13. RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology.

    Science.gov (United States)

    Moazeni, Maryam; Khoramizadeh, Mohammad Reza; Kordbacheh, Parivash; Sepehrizadeh, Zargham; Zeraati, Hojat; Noorbakhsh, Fatemeh; Teimoori-Toolabi, Ladan; Rezaie, Sassan

    2012-09-01

    The introduction of RNA silencing machinery in fungi has led to the promising application of RNAi methodology to knock down essential vital factor or virulence factor genes in the microorganisms. Efg1p is required for development of a true hyphal growth form which is known to be essential for interactions with human host cells and for the yeast's pathogenesis. In this paper, we describe the development of a system for presenting and studying the RNAi function on the EFG1 gene in C. albicans. The 19-nucleotide siRNA was designed on the basis of the cDNA sequence of the EFG1 gene in C. albicans and transfection was performed by use of a modified-PEG/LiAc method. To investigate EFG1 gene silencing in siRNA-treated cells, the yeasts were grown in human serum; to induce germ tubes a solid medium was used with the serum. Quantitative changes in expression of the EFG1 gene were analyzed by measuring the cognate EFG1 mRNA level by use of a quantitative real-time RT-PCR assay. Compared with the positive control, true hyphae formation was significantly reduced by siRNA at concentrations of 1 μM, 500 nM, and 100 nM (P < 0.05). In addition, siRNA at a concentration of 1 μM was revealed to inhibit expression of the EFG1 gene effectively (P < 0.05). On the basis of the potential of post-transcriptional gene silencing to control the expression of specific genes, these techniques may be regarded as promising means of drug discovery, with applications in biomedicine and functional genomics analysis.

  14. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  15. On the Threshold: Time and the Speaking Subject in Harold Pinter’s Silence

    Directory of Open Access Journals (Sweden)

    Beatrice Nori

    2017-07-01

    Full Text Available The article investigates Harold Pinter’s play Silence from a linguistic and phenomenological point of view. Silence is probably one of the least studied – though one of the most difficult and compelling – of Pinter’s plays. The author iden­tifies the broken syntax and the combi­nation of utterances and silences as indicators of time and space shifts. She claims that the patchwork which appears from the structure of the play depicts the loss of logic, and that the abandonmen­t of chronological time in linguistic terms conveys the subjecti­ve, circular, and illogical elemen­t of the human experience of time. Characters’ bodies and utterances materialize both their own past recollections and their presen­t experiences. The presen­t work may be useful to theatre scholars as an example of drama as a portrayal of philosophical and linguistic theories about time and discourse.

  16. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). Ahmed M. A. Mohammed. Abstract. RNA interference is a post- transcriptional gene regulation mechanism that is predominantly found in eukaryotic organisms. RNAi demonstrated a successful ...

  17. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.

    Science.gov (United States)

    Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee

    2017-12-01

    Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Abdominal aortic aneurysm development in men following a "normal" aortic ultrasound scan.

    Science.gov (United States)

    Hafez, H; Druce, P S; Ashton, H A

    2008-11-01

    To determine predictors related to abdominal aortic aneurysm (AAA) development following a "normal" aortic ultrasound scan. Over a 23-year period, 22 961 men participated in an AAA screening programme. Maximum aortic diameter of less than 30 mm was deemed "normal". 4308 of these "normal" individuals were later re-scanned at intervals for research purposes. AAA prevalence was 4.4% at initial scanning. In those with a normal scan, 46 patients subsequently presented with AAAs incidentally detected and 120 (2.8%) had AAAs identified as part of the ongoing surveillance. The median initial aortic size of these 166 men was 25 mm (range 15-29 mm). Over the follow-up period, there have been 24 (14%) AAA-related deaths, 24 patients underwent successful AAA surgery and 36 died of unrelated causes. In those with an initial aortic diameter of <25 mm who later developed an AAA, the odds ratio for AAA-related mortality was 2 (95% CI 1-4.1, p=0.03, x(2)). AAAs can develop following an initial "normal" scan and men with an aortic diameters of 25-29 mm appear to be at greater risk. Surveillance for this sub-group may further reduce the incidence of undiagnosed AAA and AAA-related mortality.

  19. RNA-mediated gene silencing signals are not graft transmissible from the rootstock to the scion in greenhouse-grown apple plants Malus sp.

    Science.gov (United States)

    Flachowsky, Henryk; Tränkner, Conny; Szankowski, Iris; Waidmann, Sascha; Hanke, Magda-Viola; Treutter, Dieter; Fischer, Thilo C

    2012-01-01

    RNA silencing describes the sequence specific degradation of RNA targets. Silencing is a non-cell autonomous event that is graft transmissible in different plant species. The present study is the first report on systemic acquired dsRNA-mediated gene silencing of transgenic and endogenous gene sequences in a woody plant like apple. Transgenic apple plants overexpressing a hairpin gene construct of the gusA reporter gene were produced. These plants were used as rootstocks and grafted with scions of the gusA overexpressing transgenic apple clone T355. After grafting, we observed a reduction of the gusA gene expression in T355 scions in vitro, but not in T355 scions grown in the greenhouse. Similar results were obtained after silencing of the endogenous Mdans gene in apple that is responsible for anthocyanin biosynthesis. Subsequently, we performed grafting experiments with Mdans silenced rootstocks and red leaf scions of TNR31-35 in order to evaluate graft transmitted silencing of the endogenous Mdans. The results obtained suggested a graft transmission of silencing signals in in vitro shoots. In contrast, no graft transmission of dsRNA-mediated gene silencing signals was detectable in greenhouse-grown plants and in plants grown in an insect protection tent.

  20. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier

    DEFF Research Database (Denmark)

    Gomes, Maria João; Kennedy, Patrick J; Martins, Susana

    2017-01-01

    AIM: Explore the use of transferrin-receptor peptide-functionalized nanoparticles (NPs) targeting blood-brain barrier (BBB) as siRNA carriers to silence P-glycoprotein (P-gp). MATERIALS & METHODS: Permeability experiments were assessed through a developed BBB cell-based model; P-gp mRNA expression...

  1. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2001-12-01

    Full Text Available Abstract Background Post-transcriptional gene silencing (PTGS by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs for their ability to silence cytoplasmic RNA genomes. Results Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. Conclusions Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus.

  2. Speaking of Silence: Comments from an Irish Studies Perspective

    DEFF Research Database (Denmark)

    McQuaid, Sara Dybris; Beville, Maria

    2012-01-01

    argue that silence in its own right is a unique and important route to understanding the complexities of modern Ireland in cultural, contemporary and historical terms. This is true, not least in the case of Northern Ireland where the difficult struggle to construct a unified political consciousness...

  3. Bureaucratic Constructions of Sexual Diversity: "Sensitive", "Controversial" and Silencing

    Science.gov (United States)

    Ullman, Jacqueline; Ferfolja, Tania

    2015-01-01

    National research illustrates the high degree of discrimination that prevails against lesbian, gay, bisexual, transgender and queer (LGBTQ) students resulting in diminished educational outcomes, both academic and social. This phenomenon is influenced by the prevalence of whole-school silences around LGBTQ topics in many Australian schools. This…

  4. Silencing cinema: film censorship around the world

    OpenAIRE

    Biltereyst, Daniël; Vande Winkel, Roel

    2013-01-01

    Why does oppression by censorship affect the film industry far more frequently than any other mass media? "Silencing Cinema" brings together the key issues and authors to examine instances of film censorship throughout the world. Including essays by some of today's leading film historians, the book offers groundbreaking historical research on film censorship in major film production countries, including the United States, the United Kingdom, Russia/Soviet Union, India, China, and Nigeria, amo...

  5. Small silencing RNAs: an expanding universe.

    Science.gov (United States)

    Ghildiyal, Megha; Zamore, Phillip D

    2009-02-01

    Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.

  6. TGF-β induces the expression of Nedd4 family-interacting protein 1 (Ndfip1) to silence IL-4 production during iTreg cell differentiation

    Science.gov (United States)

    Beal, Allison M.; Ramos-Hernández, Natalia; Riling, Chris R.; Nowelsky, Erin A.; Oliver, Paula M.

    2011-01-01

    Mice deficient for the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that these animals contain fewer inducible regulatory (iTreg) cells. In vitro, Ndfip1-deficient T cells express normal levels of the transcription factor Foxp3 during the first 48 hours of iTreg cell differentiation, however this cannot be sustained. Abortive Foxp3 expression is because Ndfip1–/– cells produce interleukin 4 (IL-4). We demonstrate that Ndfip1 is transiently unregulated during iTreg cell differentiation in a transforming growth factor-β (TGF-β) dependent manner. Once expressed Ndfip1 promotes Itch-mediated degradation of the transcription factor JunB, thus preventing IL-4 production. Based on these data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation. PMID:22080920

  7. Duplication of an upstream silencer of FZP increases grain yield in rice.

    Science.gov (United States)

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  8. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    Science.gov (United States)

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  9. Is phonology bypassed in normal or dyslexic development?

    Science.gov (United States)

    Pennington, B F; Lefly, D L; Van Orden, G C; Bookman, M O; Smith, S D

    1987-01-01

    A pervasive assumption in most accounts of normal reading and spelling development is that phonological coding is important early in development but is subsequently superseded by faster, orthographic coding which bypasses phonology. We call this assumption, which derives from dual process theory, the developmental bypass hypothesis. The present study tests four specific predictions of the developmental bypass hypothesis by comparing dyslexics and nondyslexics from the same families in a cross-sectional design. The four predictions are: 1) That phonological coding skill develops early in normal readers and soon reaches asymptote, whereas orthographic coding skill has a protracted course of development; 2) that the correlation of adult reading or spelling performance with phonological coding skill is considerably less than the correlation with orthographic coding skill; 3) that dyslexics who are mainly deficient in phonological coding skill should be able to bypass this deficit and eventually close the gap in reading and spelling performance; and 4) that the greatest differences between dyslexics and developmental controls on measures of phonological coding skill should be observed early rather than late in development.None of the four predictions of the developmental bypass hypothesis were upheld. Phonological coding skill continued to develop in nondyslexics until adulthood. It accounted for a substantial (32-53 percent) portion of the variance in reading and spelling performance in adult nondyslexics, whereas orthographic coding skill did not account for a statistically reliable portion of this variance. The dyslexics differed little across age in phonological coding skill, but made linear progress in orthographic coding skill, surpassing spelling-age (SA) controls by adulthood. Nonetheless, they didnot close the gap in reading and spelling performance. Finally, dyslexics were significantly worse than SA (and Reading Age [RA]) controls in phonological coding skill

  10. Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments

    Directory of Open Access Journals (Sweden)

    Gyöngyi Munkácsy

    2016-01-01

    Full Text Available No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal–Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E−06. Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E−04. There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.

  11. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein

    Directory of Open Access Journals (Sweden)

    Arase Sachiko

    2012-03-01

    Full Text Available Abstract Background Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. Results Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. Conclusions Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.

  12. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. PMID:25206893

  13. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity.

    Science.gov (United States)

    Huang, Chung-Hao; Hsiao, Weng-Rong; Huang, Ching-Wen; Chen, Kuan-Chun; Lin, Shih-Shun; Chen, Tsung-Chi; Raja, Joseph A J; Wu, Hui-Wen; Yeh, Shyi-Dong

    2015-01-01

    The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) ((109)KFTMHNQ(117)), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif ((397)IYFL(400)) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

  14. The Role Of Self - Efficacy Perception in Silencing Organization: A St udy On Accommodation Enterprises in Alanya

    Directory of Open Access Journals (Sweden)

    Engin Üngüren

    2015-06-01

    Full Text Available Qualified employees has an undeniable a place and importance in the labor-intensive tourism sector to achieve competitive advantage, improve service and product quality, carry out sustainable development. As well qualified employees increase the competitiveness of countries in the international market. Providing opportunities for using qualified employees’ full potential is an important method in obtaining competitive advantage of the company. In this context, the main aim of the research is to determine the impact of self-efficacy on organizational silence. Sub-objectives of this research is to determine employees’ ideas and thoughts which provide contribution to business, whether there is a difference among employees’ perceptions of organizational silence and perceptions of self efficacy according to employees’ demographic and occupational characteristics. The research data were obtained by the survey carried out in the accommodation businesses. On the basis of the quantitative paradigm, descriptive research model, comparative model, the relational model and the relational model approaches are used. The findings of the research pointed out that perception of self-efficacy had decisive influence on organizational silence. As a result of research was determined that employees, who have low self-efficacy, was in silent by not expressing ideas and thought and employees, who have high self-efficacy, did not hesitate to share their ideas and thoughts.

  15. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  16. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  17. The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing.

    Science.gov (United States)

    Bortolamiol, Diane; Pazhouhandeh, Maghsoud; Marrocco, Katia; Genschik, Pascal; Ziegler-Graff, Véronique

    2007-09-18

    Plants employ post-transcriptional gene silencing (PTGS) as an antiviral defense response. In this mechanism, viral-derived small RNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. ARGONAUTE1 (AGO1) is a key component of RISC: it carries the RNA slicer activity. As a counter-defense, viruses have evolved various proteins that suppress PTGS. Recently, we showed that the Polerovirus P0 protein carries an F box motif required to form an SCF-like complex, which is also essential for P0's silencing suppressor function. Here, we investigate the molecular mechanism by which P0 impairs PTGS. First we show that P0's expression does not affect the biogenesis of primary siRNAs in an inverted repeat-PTGS assay, but it does affect their activity. Moreover, P0's expression in transformed Arabidopsis plants leads to various developmental abnormalities reminiscent of mutants affected in miRNA pathways, which is accompanied by enhanced levels of several miRNA-target transcripts, suggesting that P0 acts at the level of RISC. Interestingly, ectopic expression of P0 triggered AGO1 protein decay in planta. Finally, we provide evidence that P0 physically interacts with AGO1. Based on these results, we propose that P0 hijacks the host SCF machinery to modulate gene silencing by destabilizing AGO1.

  18. Normal motor milestone development for use to promote child care

    Directory of Open Access Journals (Sweden)

    Mahdin A. Husaini

    2016-10-01

    Full Text Available Background Motor behavior is an essential aspect of child development, and usually assessed in terms of age of achievement of motor milestone. The early detection of infants experiencing subtle delays in motor maturation can allow early intervention in developmental problems. Intervention can be more effective if delays are identified early. In order to facilitate the identification of early delays, the Center of Nutrition and Foods Research and Development in Bogor has designed a simple tool to monitor the child (aged 3 to 18 months motor development. Objective To develop an observable of normal gross motor maturation for use to detect deviance or motor delay. Methods A total of 2100 healthy children, aged 3-18 months, from high socio-economic group, in urban and suburban areas, were studied. Body length, weight and motor development were measured on all children. Gross motor development was measured 17 pre selected milestones: lie, sit, crawl, creep, stand Mth assistance, walk with assistance, stand alone, walk alone, and run. Results There were no differences between males and females in the comparison of attainment motor maturation therefore a sex combined curve was developed. Conclusion The curve of normal motor milestone development can be used as a tool to evaluate motor development over time, and/or as a child development card for use in primary health care.

  19. Performances of Student Activism: Sound, Silence, Gender, and Dis/ability

    Science.gov (United States)

    Pasque, Penny A.; Vargas, Juanita Gamez

    2014-01-01

    This chapter explores the various performances of activism by students through sound, silence, gender, and dis/ability and how these performances connect to social change efforts around issues such as human trafficking, homeless children, hunger, and children with varying abilities.

  20. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes.

    Science.gov (United States)

    Ramesh Kumar, D; Saravana Kumar, P; Gandhi, M Rajiv; Al-Dhabi, Naif Abdullah; Paulraj, M Gabriel; Ignacimuthu, S

    2016-05-01

    RNA interference (RNAi) has been used as a gene silencing strategy by the introduction of long double stranded RNA (dsRNA) for the control of pest insects. The aim of the present study was to examine whether the expression of vg gene which is responsible for wing development, can be repressed by chitosan/dsRNA based nanoparticles in Aedes aegypti. The vestigial gene (vg) was amplified from adult mosquito and cloned in pLitmus28i vector. Genetically engineered recombinant plasmid was transformed into RNase III deficient strain for synthesis of bacterially expressed dsRNA. Nanoparticles were prepared via electrostatic interaction between cationic polymer chitosan and anionic nucleic acids (dsRNA). The formation of chitosan/dsRNAnanoparticles and their size were confirmed by Atomic force microscopy (AFM). Chitosan/dsRNA mediated knockdown of Enhanced Green Fluorescence Protein (EGFP) was demonstrated in Sf21 cells. Further, we tested whether such an approach could be used to target vg gene in Ae. aegypti. The results showed that chitosan/dsRNA caused significant mortality, delayed growth development and caused adult wing-malformation. A qRT-PCR analysis confirmed that the chitosan/dsRNA mediated transcriptional level was downregulated. Our findings suggest that vg gene intervention strategies through RNAi can emerge as viable option for pest control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors

  2. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  3. Characterization of the RNA silencing suppression activity of the Ebola virus VP35 protein in plants and mammalian cells.

    Science.gov (United States)

    Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S

    2012-03-01

    Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.

  4. Silencing of OSBP-related protein 8 (ORP8) modifies the macrophage transcriptome, nucleoporin p62 distribution, and migration capacity

    International Nuclear Information System (INIS)

    Béaslas, Olivier; Vihervaara, Terhi; Li, Jiwei; Laurila, Pirkka-Pekka; Yan, Daoguang; Olkkonen, Vesa M.

    2012-01-01

    ORP8 is an oxysterol/cholesterol binding protein anchored to the endoplasmic reticulum and the nuclear envelope, and is abundantly expressed in the macrophage. We created and characterized mouse RAW264.7 macrophages with ORP8 stably silenced using shRNA lentiviruses. A microarray transcriptome and gene ontology pathway analysis revealed significant alterations in several nuclear pathways and ones associated with centrosome and microtubule organization. ORP8 knockdown resulted in increased expression and altered subcellular distribution of an interaction partner of ORP8, nucleoporin NUP62, with an intranuclear localization aspect and association with cytoplasmic vesicular structures and lamellipodial edges of the cells. Moreover, ORP8 silenced cells displayed enhanced migration, and a more pronounced microtubule cytoskeleton than controls expressing a non-targeting shRNA. ORP8 was shown to compete with Exo70 for interaction with NUP62, and NUP62 knockdown abolished the migration enhancement of ORP8-silenced cells, suggesting that the endogenous ORP8 suppresses migration via binding to NUP62. As a conclusion, the present study reveals new, unexpected aspects of ORP8 function in macrophages not directly involving lipid metabolism, but rather associated with nuclear functions, microtubule organization, and migration capacity. -- Highlights: ► The phenotype of Raw264.7 macrophage with ORP8 silenced is characterized. ► ORP8 silencing alters mRNA levels of nuclear and microtubule/centrosome pathways. ► ORP8 silencing results in increased expression and altered distribution of NUP62. ► ORP8 silenced macrophages show enhanced migration and altered microtubule cytoskeleton. ► ORP8 competes in vitro with Exo70 for binding to NUP62.

  5. Relationship between Organizational Mobbing and Silence Behavior among Teachers

    Science.gov (United States)

    Hüsrevsahi, Selda Polat

    2015-01-01

    This study mainly aims to investigate the correlation between teachers' exposure to mobbing in their workplaces and their display of the act of silence. This study is based on a survey design where data from 312 teachers were collected and analyzed using correlation and regression analyses. Specifically, "The Structure and Dimensions of…

  6. Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing

    Science.gov (United States)

    Kelleher, Erin S.

    2016-01-01

    Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression. PMID:27516614

  7. Organizational Silence: suatu Penghambat dalam Mewujudkan Kreatifitas Organisasional

    OpenAIRE

    Retnawati, Berta Bekti

    2003-01-01

    There are powerful forces in many organzations that cause widespread withholding of information about potential problems or issues by employess, this collective-level phenomenon as ‘organizational silence’. One significant effect of organizational silence relates to lack of organizational creativity.There are five major organizational factors that enhance creativity in a work environment: organizational climate, leadership style, organizational culture, resources and skills, the structure and...

  8. Silence et divulgation dans des familles d’adolescents vivant avec le VIH depuis la naissance : une exploration qualitative

    Science.gov (United States)

    Proulx-Boucher, Karène; Blais, Martin; Fernet, Mylène; Richard, Marie-Ève; Otis, Joanne; Josy Lévy, Joseph; Samson, Johanne; Lapointe, Normand; Morin, Guylaine; Thériault, Jocelyne; Trottier, Germain

    2011-01-01

    OBJECTIF : Les études ciblant les enfants nés avec le VIH se sont principalement intéressées à la période précédant l’annonce du diagnostic à l’enfant. L’objectif de cette étude est d’explorer les dynamiques de communication intrafamiliale suivant l’annonce du diagnostic. MÉTHODOLOGIE : Vingt-neuf jeunes (de dix à 18 ans) vivant avec le VIH depuis la naissance ont accordé des entrevues individuelles semi-dirigées portant sur : 1) le dévoilement du statut sérologique, 2) leurs relations familiales et 3) l’éducation sexuelle en milieu familial. Les témoignages ont fait l’objet d’une analyse de contenu. RÉSULTATS : Les jeunes ont appris en moyenne à l’âge de 11 ans leur diagnostic VIH+. La dynamique qui s’installe après cette annonce apparaît régie par le silence : les échanges qui s’ensuivent portent en majorité sur des questions relatives à la médication et à la prévention d’une transmission sexuelle du virus. Ce silence préserverait l’équilibre familial en occupant trois fonctions : protéger la mère d’un sentiment de culpabilité à l’égard de la transmission, assurer l’harmonie familiale, se sentir normal face aux autres. Le diagnostic de l’adolescent n’est généralement pas révélé à la famille élargie, préservant ainsi leur intégration au sein de la famille en les protégeant du rejet, de la trahison et du jugement. EXPOSÉ : Les fonctions du silence et du secret occupent une place stabilisatrice importante au sein de la famille. Toutefois, elles contribuent à isoler les adolescents d’une forme de soutien affectif dont ils ont pourtant besoin. Des pistes d’intervention sont suggérées. PMID:22851894

  9. Ce que l’on fait dire au silence : posture, ethos, image d’auteur How to make silence talk… Posture, ethos, author’s image

    Directory of Open Access Journals (Sweden)

    Jérôme Meizoz

    2009-10-01

    Full Text Available Après la parution de Postures littéraires (2007 cet article revient sur la visée méthodologique de la notion de « posture », en la confrontant à deux notions voisines, celles d’« ethos » et d’« image d’auteur ». Il propose de hiérarchiser ces trois notions dans un ensemble conceptuel. Une brève analyse du Silence de la mer (1942 de Vercors illustre cette réflexion.After the publication of Literary postures (2007, this article revisits the methodological approach based on the notion of “posture” by comparing it with two related notions, “ethos” and “author’s image”. It shows how these three notions can be organized into a hierarchy inside an integrated conceptual whole. A brief analysis of Vercors’ TheSilence of the Sea (1942 illustrates this proposition.

  10. Plasmodium falciparum var Gene Silencing Is Determined by cis DNA Elements That Form Stable and Heritable Interactions ▿

    Science.gov (United States)

    Swamy, Lakshmi; Amulic, Borko; Deitsch, Kirk W.

    2011-01-01

    Antigenic variation in the human malaria parasite Plasmodium falciparum depends on the transcriptional regulation of the var gene family. In each individual parasite, mRNA is expressed exclusively from 1 var gene out of ∼60, while the rest of the genes are transcriptionally silenced. Both modifications to chromatin structure and DNA regulatory elements associated with each var gene have been implicated in the organization and maintenance of the silent state. Whether silencing is established at the level of entire chromosomal regions via heterochromatin spreading or at the level of individual var promoters through the action of a silencing element within each var intron has been debated. Here, we consider both possibilities, using clonal parasite lines carrying chromosomally integrated transgenes. We confirm a previous finding that the loss of an adjacent var intron results in var promoter activation and further show that transcriptional activation of a var promoter within a cluster does not affect the transcriptional activity of neighboring var promoters. Our results provide more evidence for the hypothesis that var genes are primarily silenced at the level of an individual gene, rather than by heterochromatin spreading. We also tested the intrinsic directionality of an intron's silencing effect on upstream or downstream var promoters. We found that an intron is capable of silencing in either direction and that, once established, a var promoter-intron pair is stably maintained through many generations, suggesting a possible role in epigenetic memory. This study provides insights into the regulation of endogenous var gene clusters. PMID:21317310

  11. Concurrent epigenetic silencing of wnt/β-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia

    International Nuclear Information System (INIS)

    Moskalev, Evgeny A; Pötz, Oliver; Joos, Thomas O; Hoheisel, Jörg D; Luckert, Katrin; Vorobjev, Ivan A; Mastitsky, Sergey E; Gladkikh, Aleena A; Stephan, Achim; Schrenk, Marita; Kaplanov, Kamil D; Kalashnikova, Olga B

    2012-01-01

    The Wnt/β-catenin signalling is aberrantly activated in primary B cell chronic lymphocytic leukaemia (CLL). Epigenetic silencing of pathway inhibitor genes may be a mechanism for its activation. In this study, we investigated systematically and quantitatively the methylation status of 12 Wnt/β-catenin pathway inhibitor genes – CDH1, DACT1, DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1 – in the cell lines EHEB and MEC-1 as well as patient samples. Quantification of DNA methylation was performed by means of bisulphite pyrosequencing and confirmed by bisulphite Sanger sequencing. Gene expression was analysed by qPCR using GAPDH as internal control. E-cadherin and β-catenin protein quantification was carried out by microsphere-based immunoassays. Methylation differences observed between the patient and control groups were tested using generalised least squares models. For 10 genes, a higher methylation level was observed in tumour material. Only DKK4 exhibited similarly high methylation levels in both tumour and normal specimens, while DACT1 was always essentially unmethylated. However, also for these inhibitors, treatment of cells with the demethylating agent 5-aza-2´-deoxycytidine resulted in an induction of their expression, as shown by quantitative PCR, suggesting an indirect epigenetic control of activity. While the degree of demethylation and its transcriptional consequences differed between the genes, there was an overall high correlation of demethylation and increased activity. Protein expression studies revealed that no constitutive Wnt/β-catenin signalling occurred in the cell lines, which is in discrepancy with results from primary CLL. However, treatment with 5-aza-2´-deoxycytidine caused accumulation of β-catenin. Simultaneously, E-cadherin expression was strongly induced, leading to the formation of a complex with β-catenin and thus demonstrating its epigenetically regulated inhibition effect. The results suggest an

  12. Isonicotinamide Enhances Sir2 Protein-mediated Silencing and Longevity in Yeast by Raising Intracellular NAD+ Concentration*

    Science.gov (United States)

    McClure, Julie M.; Wierman, Margaret B.; Maqani, Nazif; Smith, Jeffrey S.

    2012-01-01

    Sirtuins are an evolutionarily conserved family of NAD+-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD+ concentration through the combined action of NAD+ biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD+ precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD+ salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD+ concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD+. The INAM-induced increase in NAD+ was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD+ salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD+. We also provide evidence suggesting that INAM influences the expression of multiple NAD+ biosynthesis and salvage pathways to promote homeostasis during stationary phase. PMID:22539348

  13. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.

    Science.gov (United States)

    McClure, Julie M; Wierman, Margaret B; Maqani, Nazif; Smith, Jeffrey S

    2012-06-15

    Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.

  14. flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes.

    Science.gov (United States)

    Atkinson, Louise E; Stevenson, Michael; McCoy, Ciaran J; Marks, Nikki J; Fleming, Colin; Zamanian, Mostafa; Day, Tim A; Kimber, Michael J; Maule, Aaron G; Mousley, Angela

    2013-02-01

    Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.

  15. flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Louise E Atkinson

    2013-02-01

    Full Text Available Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii migration rate increases in Gp-flp-32-silenced worms; (iv the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v a novel putative Gp-flp-32 receptor (Gp-flp-32R is expressed in G. pallida; and, (vi Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R. This is the first functional characterisation of a parasitic nematode FLP-GPCR.

  16. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  17. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching.

    Directory of Open Access Journals (Sweden)

    Johann Lavaud

    Full Text Available Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC dependent non-photochemical chlorophyll fluorescence quenching (NPQ is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD into diatoxanthin (DT by the violaxanthin de-epoxidase (VDE, also called DD de-epoxidase (DDE. To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp or long (523 bp antisense (AS fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR. The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms.

  18. Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Science.gov (United States)

    Vugrinec, Sascha; Kroth, Peter G.

    2012-01-01

    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms. PMID:22629333

  19. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    Li Xiao Hui

    2015-09-01

    Full Text Available S-adenosylhomocysteine hydrolase (SAHH, catalyzing the reversible hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine, is a key enzyme that maintain the cellular methylation potential in all organisms. We report here the biological functions of tomato SlSAHHs in stress response. The tomato genome contains three SlSAHH genes that encode SlSAHH proteins with high level of sequence identity. qRT-PCR analysis revealed that SlSAHHs responded with distinct expression induction patterns to Pseudomonas syringae pv. tomato (Pst DC3000 and Botrytis cinerea as well as to defense signaling hormones such as salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-based knockdown of individual SlSAHH gene did not affect the growth performance and the response to Pst DC3000. However, co-silencing of three SlSAHH genes using a conserved sequence led to significant inhibition of vegetable growth. The SlSAHH-co-silenced plants displayed increased resistance to Pst DC3000 but did not alter the resistance to B. cinerea. Co-silencing of SlSAHHs resulted in constitutively activated defense responses including elevated SA level, upregulated expression of defense-related and PAMP-triggered immunity marker genes and increased callose deposition and H2O2 accumulation. Furthermore, the SlSAHH-co-silenced plants also exhibited enhanced drought stress tolerance although they had relatively small roots. These data demonstrate that, in addition to the functions in growth and development, SAHHs also play important roles in regulating biotic and abiotic stress responses in plants.

  20. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  1. Paul Leni’s Waxworks: Writing Images from Silence, through Media and Philosophy

    Directory of Open Access Journals (Sweden)

    Marcondes Ciro Inácio

    2016-12-01

    Full Text Available The so-called German Weimar Cinema encompasses a profusion of films that used frame narratives. In the case of Paul Leni’s Waxworks (Das Wachsfigurenkabinett, 1924, as the framing stems from a literary act (the stories are framed by the act of narration, the film proposes the mise-en-abyme technique as a sort of immersion into the intermedial when it deals with notions like speaking, writing, silence, image and cinema. In the case of silent cinema, and especially in Waxworks, the presence of a perverse relation with the medium of writing becomes noticeable (producing a fantasy of writing, since every effort to represent the literary act on film results in an infinite production of silent images, creating a parody effect and even postulating an act of aggression against writing. This confrontational relation between the writing code and the code of the mute image in silent cinema allows us to suggest that there is an inherent inflexibility in the language of silent cinema which does not allow the coexistence of written and spoken word as complementary codes. On the contrary, in silent cinema, the image and the silence of the film seem to work against the word, the spoken word being set forth against silence, and the written word against images.

  2. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    Science.gov (United States)

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  3. An empirical analysis on influencing factors on organizational silence and its relationship with employee’s organizational commitment

    Directory of Open Access Journals (Sweden)

    Belal Panahi

    2012-04-01

    Full Text Available Today, there is no doubt that in many organizations, many employees refuse to provide their opinions and comments about the organizational problems. In fact, in many organizations there is a created climate, which often makes employees feel their opinion is not valued. This phenomenon is examined as an organizational silence that by identifying the factors affecting on it we can effectively take steps to eliminate barriers to commenting staff in organizations. In this regard, this paper presents an empirical work conducted on data obtained from 260 employees Payame Noor University of East Azerbaijan Province. These data are analyzed by SPSS software and regression and path analysis tests. The results showed that there is a significant relationship between silence climate dimensions and employee organizational commitment with silence behavior employee. In addition, there is a positive correlation between higher management attitudes and supervisor’s attitudes with workers silent behavior. We have also observed that there is a negative correlation between communication opportunities and organizational commitment with employee silence behavior of employees.

  4. Silencing of OSBP-related protein 8 (ORP8) modifies the macrophage transcriptome, nucleoporin p62 distribution, and migration capacity

    Energy Technology Data Exchange (ETDEWEB)

    Beaslas, Olivier; Vihervaara, Terhi [Minerva Foundation Institute for Medical Research, FI-00290 Helsinki (Finland); Li, Jiwei [Department of Biology, Jinan University, Guangzhou 510632 (China); Laurila, Pirkka-Pekka [FIMM, Institute for Molecular Medicine Finland, FI-00290 Helsinki (Finland); National Institute for Health and Welfare, Public Health Genomics Unit, FI-00290 Helsinki (Finland); Yan, Daoguang [Department of Biology, Jinan University, Guangzhou 510632 (China); Olkkonen, Vesa M., E-mail: vesa.olkkonen@helsinki.fi [Minerva Foundation Institute for Medical Research, FI-00290 Helsinki (Finland); Institute of Biomedicine, Anatomy, University of Helsinki, FI-00014 (Finland)

    2012-09-10

    ORP8 is an oxysterol/cholesterol binding protein anchored to the endoplasmic reticulum and the nuclear envelope, and is abundantly expressed in the macrophage. We created and characterized mouse RAW264.7 macrophages with ORP8 stably silenced using shRNA lentiviruses. A microarray transcriptome and gene ontology pathway analysis revealed significant alterations in several nuclear pathways and ones associated with centrosome and microtubule organization. ORP8 knockdown resulted in increased expression and altered subcellular distribution of an interaction partner of ORP8, nucleoporin NUP62, with an intranuclear localization aspect and association with cytoplasmic vesicular structures and lamellipodial edges of the cells. Moreover, ORP8 silenced cells displayed enhanced migration, and a more pronounced microtubule cytoskeleton than controls expressing a non-targeting shRNA. ORP8 was shown to compete with Exo70 for interaction with NUP62, and NUP62 knockdown abolished the migration enhancement of ORP8-silenced cells, suggesting that the endogenous ORP8 suppresses migration via binding to NUP62. As a conclusion, the present study reveals new, unexpected aspects of ORP8 function in macrophages not directly involving lipid metabolism, but rather associated with nuclear functions, microtubule organization, and migration capacity. -- Highlights: Black-Right-Pointing-Pointer The phenotype of Raw264.7 macrophage with ORP8 silenced is characterized. Black-Right-Pointing-Pointer ORP8 silencing alters mRNA levels of nuclear and microtubule/centrosome pathways. Black-Right-Pointing-Pointer ORP8 silencing results in increased expression and altered distribution of NUP62. Black-Right-Pointing-Pointer ORP8 silenced macrophages show enhanced migration and altered microtubule cytoskeleton. Black-Right-Pointing-Pointer ORP8 competes in vitro with Exo70 for binding to NUP62.

  5. E(y)2/Sus1 is required for blocking PRE silencing by the Wari insulator in Drosophila melanogaster.

    Science.gov (United States)

    Erokhin, Maksim; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2010-06-01

    Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers to the spread of repressive chromatin. Recently, we have found an insulator, named Wari, located on the 3' side of the white gene. Here, we show that the previously identified 368-bp core of this insulator is sufficient for blocking Polycomb response element-mediated silencing. Although Wari does not contain binding sites for known insulator proteins, the E(y)2 and CP190 proteins bind to Wari as well as to the Su(Hw)-containing insulators in vivo. It may well be that these proteins are recruited to the insulator by as yet unidentified DNA-binding protein. Partial inactivation of E(y)2 in a weak e(y)2 ( u1 ) mutation impairs only the anti-silencing but not the enhancer-blocking activity of the Wari insulator. Thus, the E(y)2 protein in different Drosophila insulators serves to protect gene expression from silencing.

  6. An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells

    Directory of Open Access Journals (Sweden)

    Amanda Ackley

    2013-01-01

    Full Text Available Small noncoding antisense RNAs (sasRNAs guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.

  7. Methylation and silencing of the retinoic acid receptor-β2 gene in cervical cancer

    International Nuclear Information System (INIS)

    Ivanova, Tatyana; Petrenko, Anatolii; Gritsko, Tatyana; Vinokourova, Svetlana; Eshilev, Ernest; Kobzeva, Vera; Kisseljov, Fjodor; Kisseljova, Natalia

    2002-01-01

    Expression of the retinoic acid receptor β2 (RAR-β2), a putative tumor suppressor gene, is reduced in various human cancers, including squamous cell carcinomas (SCC) of the uterine cervix. The mechanism of the inhibition of RAR-β2 expression remains obscure. We examined whether methylation of RAR-β2 gene could be responsible for this silencing in cervical SCC. Expression of RAR-β2 mRNA and methylation status of the 5' region of RAR-β2 gene were examined in 20 matched specimens from patients with cervical SCC and in three cervical cancer cell lines by Northern blot analysis and methylation-specific PCR (MSP) assay or Southern blot analysis respectively. In 8 out 20 cervical SCC (40%) the levels of RAR-β2 mRNA were decreased or undetectable in comparison with non-neoplastic cervix tissues. All 8 tumors with reduced levels of RAR-β2 mRNA expression showed methylation of the promoter and the first exon expressed in the RAR-β2 transcript. The RAR-β2 gene from non-neoplastic cervical tissues was mostly unmethylated and expressed, but methylated alleles of the gene were found in three samples of the morphologically normal tissues adjacent to the tumors. Three cervical cancer cell lines with extremely low level of RAR-β2 mRNA expression, SiHA, HeLA and CaSki, also showed methylation of this region of the RAR-β2 gene. These findings suggest that methylation of the 5' region of RAR-β2 gene may contribute to gene silencing and that methylation of this region may be an important and early event in cervical carcinogenesis. These findings may be useful to make retinoids more effective as preventive and therapeutic agents in combination with inhibitors of DNA methylation

  8. Shame and Silence | Janz | South African Journal of Philosophy

    African Journals Online (AJOL)

    Samantha Vice's proposal on how to live in 'this strange place' of contemporary South Africa, includes an appeal to the concepts of shame and silence. In this paper, I use Emmanuel Levinas and Giorgio Agamben to move the discussion of shame from a moral to an existential question. The issue is not about how one ...

  9. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing.

    Science.gov (United States)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A

    2016-06-28

    Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region

    DEFF Research Database (Denmark)

    Nielsen, Inga Sig; Nielsen, Olaf; Murray, Johanne M

    2002-01-01

    Genes transcribed by RNA polymerase II are silenced when introduced near the mat2 or mat3 mating-type loci of the fission yeast Schizosaccharomyces pombe. Silencing is mediated by a number of gene products and cis-acting elements. We report here the finding of novel trans-acting factors identified...... was not suppressed by a mutation in the 26S proteasome, suggesting that loss of silencing is not due to an increased degradation of silencing factors but rather to the posttranslational modification of proteins by ubiquitination. We discuss the implications of these results for the possible modes of action of UbcP3...

  11. Emotion processes in normal and abnormal development and preventive intervention.

    Science.gov (United States)

    Izard, Carroll E; Fine, Sarah; Mostow, Allison; Trentacosta, Christopher; Campbell, Jan

    2002-01-01

    We present an analysis of the role of emotions in normal and abnormal development and preventive intervention. The conceptual framework stems from three tenets of differential emotions theory (DET). These principles concern the constructs of emotion utilization; intersystem connections among modular emotion systems, cognition, and action; and the organizational and motivational functions of discrete emotions. Particular emotions and patterns of emotions function differentially in different periods of development and in influencing the cognition and behavior associated with different forms of psychopathology. Established prevention programs have not emphasized the concept of emotion as motivation. It is even more critical that they have generally neglected the idea of modulating emotions, not simply to achieve self-regulation, but also to utilize their inherently adaptive functions as a means of facilitating the development of social competence and preventing psychopathology. The paper includes a brief description of a theory-based prevention program and suggestions for complementary targeted interventions to address specific externalizing and internalizing problems. In the final section, we describe ways in which emotion-centered preventions can provide excellent opportunities for research on the development of normal and abnormal behavior.

  12. The effects of thinking in silence on creativity and innovation

    NARCIS (Netherlands)

    de Vet, A.J.

    2007-01-01

    This dissertation consists of three empirical studies on the effects of thinking in silence on creativity and innovation. In these studies I use a social psychology and cognitive psychology lens to study creativity and innovation at the individual and at the team level of analysis, using randomized

  13. Normal development and growth of the human neurocranium and cranial base.

    Science.gov (United States)

    Friede, H

    1981-01-01

    The literature on normal development and growth of certain areas of the human head is reviewed, starting with the early induction of the desmal neurocranium. the development of the brain capsule with its dural reinforcement bands and their connection with the basicranium is discussed, as is the primordial chondrocranium, including its bone replacement. Growth of the calvaria and the three cranial fossae is also analysed. Special interest is focused on the anterior fossa, as knowledge of the growth in this area is very important for an understanding of pathogenesis and possibilities of treating premature craniosynostosis. Finally it is stressed that close observation of the effects of treatment on this pathology may increase our knowledge of normal growth.

  14. Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity.

    Science.gov (United States)

    Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi

    2014-01-01

    We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system.

  15. DISTURBANCE OF NORMAL MOTOR DEVELOPMENT IN THE FIRST YEAR OF LIFE

    Directory of Open Access Journals (Sweden)

    Lidija Dimitrijević

    2005-07-01

    Full Text Available The adoption of the basic motor skills in the first year of life (postural head control, lateral transfers into a lying position, sitting, standing, walking, crawling, grasping... goes on quite spontaneously. A child learns all the motor actions by itself and that is why it is not necessary to “teach” a child to seat, grasp, stand, walk... Teaching a child the basic motor skills stands for a rough, unnecessary and undesirable involvement into spontaneous motor development, and, due to this, the normal adoption of motor skills is slowed down. For the normal motor development, children do not need helping devices (baby buggy, baby jump.... Helping devices suppress in children their natural urge to walk, complicate its development and may have harmful effects like equinus feet, deformed feet and spine and so on.

  16. Expressive vocabulary of children with normal and deviant phonological development.

    Science.gov (United States)

    Athayde, Marcia de Lima; Mota, Helena Bolli; Mezzomo, Carolina Lisbôa

    2010-01-01

    expressive vocabulary of children with normal and deviant phonological development. to determine whether alterations presented by children with phonological disorders occur only at the phonological level or if there are any impacts on lexical acquisition; to compare the vocabulary performance of children with phonological disorders to reference values presented by the used test. participants of the study were 36 children of both genders, 14 with phonological disorders (Study group) and 22 with typical language development (Control Group). The ABFW - Vocabulary Test (Befi-Lopes, 2000) was used for assessing the expressive vocabulary of children and later to compare the performance of both groups. the performance of children with phonological disorder in the expressive vocabulary test is similar to that of children with normal phonological development. Most of the children of both groups reached the benchmarks proposed by the test for the different semantic fields. The semantic field Places demonstrated to be the most complex for both groups. the alterations presented by children with phonological disorder area limited to the phonological level, having no impact on the lexical aspect of language.

  17. Inhibition of platelet activation by lachrymatory factor synthase (LFS)-silenced (tearless) onion juice.

    Science.gov (United States)

    Thomson, Susan J; Rippon, Paula; Butts, Chrissie; Olsen, Sarah; Shaw, Martin; Joyce, Nigel I; Eady, Colin C

    2013-11-06

    Onion and garlic are renowned for their roles as functional foods. The health benefits of garlic are attributed to di-2-propenyl thiosulfinate (allicin), a sulfur compound found in disrupted garlic but not found in disrupted onion. Recently, onions have been grown with repressed lachrymatory factor synthase (LFS) activity, which causes these onions to produce increased amounts of di-1-propenyl thiosulfinate, an isomer of allicin. This investigation into the key health attributes of LFS-silenced (tearless) onions demonstrates that they have some attributes more similar to garlic and that this is likely due to the production of novel thiosulfinate or metabolites. The key finding was that collagen-induced in vitro platelet aggregation was significantly reduced by tearless onion extract over normal onion extract. Thiosulfinate or derived compounds were shown not to be responsible for the observed changes in the inflammatory response of AGS (stomach adenocarcinoma) cells to tumor necrosis factor alpha (TNFα) when pretreated with model onion juices. A preliminary rat feeding trial indicated that the tearless onions may also play a key role in reducing weight gain.

  18. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells.

    Science.gov (United States)

    Liu, Xiaoxia; Sun, Guiling; Sun, Xiuju

    2016-01-01

    This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte-macrophage colony-stimulating factor and E-cadherin was significantly increased (Pmatrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular matrix organization signaling pathway.

  19. Speaking to the Hollow: Silence and Memory in the Last Argentine Dictatorship

    Directory of Open Access Journals (Sweden)

    Martínez Cabrera, Erika

    2012-01-01

    Full Text Available This article is an analysis of the last Argentinean dictatorship discourse and its articulation through the instances of silence and memory. To elucidate them, we deal with the technologies of violence and its discursive consequences: the exhaustion of the collective ability to tell stories, the denial of collective aberration and the perversion of language. From there, we study the discursive axes through which the fiction of the Process was built on: messianism, manichaeism and organicism. Finally we evaluate the development of new symbolic discourses in response to dogmatism, the creation of partial, fragmented and provisional fictions that challenged the official story.

  20. siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model.

    Science.gov (United States)

    Imamura, Osamu; Okada, Hiroaki; Takashima, Yuuki; Zhang, Danqing; Kobayashi, Toshiyuki; Hino, Okio

    2008-09-18

    Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice.

  1. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  2. Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-κB signaling.

    Science.gov (United States)

    Xu, Hongying; Xiao, Qian; Fan, Yu; Xiang, Tingxiu; Li, Chen; Li, Chunhong; Li, Shuman; Hui, Tianli; Zhang, Lu; Li, Hongzhong; Li, Lili; Ren, Guosheng

    2017-06-01

    ADAMTS18 dysregulation plays an important role in many disease processes including cancer. We previously found ADAMTS18 as frequently methylated tumor suppressor gene (TSG) for multiple carcinomas, however, its biological functions and underlying molecular mechanisms in breast carcinogenesis remain unknown. Here, we found that ADAMTS18 was silenced or downregulated in breast cancer cell lines. ADAMTS18 was reduced in primary breast tumor tissues as compared with their adjacent noncancer tissues. ADAMTS18 promoter methylation was detected in 70.8% of tumor tissues by methylation-specific PCR, but none of the normal tissues. Demethylation treatment restored ADAMTS18 expression in silenced breast cell lines. Ectopic expression of ADAMTS18 in breast tumor cells resulted in inhibition of cell migration and invasion. Nude mouse model further confirmed that ADAMTS18 suppressed breast cancer metastasis in vivo. Further mechanistic studies showed that ADAMTS18 suppressed epithelial-mesenchymal transition (EMT), further inhibited migration and invasion of breast cancer cells. ADAMT18 deregulated AKT and NF-κB signaling, through inhibiting phosphorylation levels of AKT and p65. Thus, ADAMTS18 as an antimetastatic tumor suppressor antagonizes AKT and NF-κB signaling in breast tumorigenesis. Its methylation could be a potential tumor biomarker for breast cancer. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. RNA interference silencing of CHS greatly alters the growth pattern of apple (Malus x domestica).

    Science.gov (United States)

    Dare, Andrew P; Hellens, Roger P

    2013-08-01

    Plants produce a vast array of phenolic compounds which are essential for their survival on land. One major class of polyphenols are the flavonoids and their formation is dependent on the enzyme chalcone synthase (CHS). In a recent study we silenced the CHS genes of apple (Malus × domestica Borkh.) and observed a loss of pigmentation in the fruit skin, flowers and stems. More surprisingly, highly silenced lines were significantly reduced in size, with small leaves and shortened internode lengths. Chemical analysis also revealed that the transgenic shoots contained greatly reduced concentrations of flavonoids which are known to modulate auxin flow. An auxin transport study verified this, with an increased auxin transport in the CHS-silenced lines. Overall, these findings suggest that auxin transport in apple has adapted to take place in the presence of high endogenous concentrations of flavonoids. Removal of these compounds therefore results in abnormal auxin movement and a highly disrupted growth pattern.

  4. The Improved Adaptive Silence Period Algorithm over Time-Variant Channels in the Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2018-01-01

    Full Text Available In the field of cognitive radio spectrum sensing, the adaptive silence period management mechanism (ASPM has improved the problem of the low time-resource utilization rate of the traditional silence period management mechanism (TSPM. However, in the case of the low signal-to-noise ratio (SNR, the ASPM algorithm will increase the probability of missed detection for the primary user (PU. Focusing on this problem, this paper proposes an improved adaptive silence period management (IA-SPM algorithm which can adaptively adjust the sensing parameters of the current period in combination with the feedback information from the data communication with the sensing results of the previous period. The feedback information in the channel is achieved with frequency resources rather than time resources in order to adapt to the parameter change in the time-varying channel. The Monte Carlo simulation results show that the detection probability of the IA-SPM is 10–15% higher than that of the ASPM under low SNR conditions.

  5. Development of in-situ rock shear test under low compressive to tensile normal stress

    International Nuclear Information System (INIS)

    Nozaki, Takashi; Shin, Koichi

    2003-01-01

    The purpose of this study is to develop an in-situ rock shear testing method to evaluate the shear strength under low normal stress condition including tensile stress, which is usually ignored in the assessment of safety factor of the foundations for nuclear power plants against sliding. The results are as follows. (1) A new in-situ rock shear testing method is devised, in which tensile normal stress can be applied on the shear plane of a specimen by directly pulling up a steel box bonded to the specimen. By applying the counter shear load to cancel the moment induced by the main shear load, it can obtain shear strength under low normal stress. (2) Some model tests on Oya tuff and diatomaceous mudstone have been performed using the developed test method. The shear strength changed smoothly from low values at tensile normal stresses to higher values at compressive normal stresses. The failure criterion has been found to be bi-linear on the shear stress vs normal stress plane. (author)

  6. Overweight and obese infants present lower cognitive and motor development scores than normal-weight peers.

    Science.gov (United States)

    Camargos, Ana Cristina Resende; Mendonça, Vanessa Amaral; Andrade, Camila Alves de; Oliveira, Katherine Simone Caires; Lacerda, Ana Cristina Rodrigues

    2016-12-01

    Compare the cognitive and motor development in overweight/obese infants versus normal-weight peers and investigate the correlation of body weight, body length and body mass index with cognitive and motor development. We conducted a cross-sectional study with 28 overweight/obese infants and 28 normal-weight peers between 6 and 24 months of age. Both groups were evaluated with cognitive and motor scales of the Bayley-III infant development test. The t-test for independent samples was performed to compare the groups, and the Spearman correlation was used to verify the association between variables. Overweight/obese infants showed lower cognitive and motor composite scores than their normal-weight peers. A significant negative association was found of body weight and body length with cognitive development and of body mass index with motor development. This is the first study that found an effect on both cognitive and motor development in overweight/obese infants when compared with normal-weight peers between 6 and 24 months of age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of tracheal occlusion with retinoic acid administration on normal lung development.

    Science.gov (United States)

    Delabaere, Amélie; Marceau, Geoffroy; Coste, Karen; Blanchon, Loïc; Déchelotte, Pierre-Jean; Blanc, Pierre; Sapin, Vincent; Gallot, Denis

    2017-05-01

    Tracheal occlusion (TO) is an investigational therapy for severe congenital diaphragmatic hernia that decreases pulmonary hypoplasia, but sustained TO also induces deficient surfactant synthesis. Intramuscular maternal administration of retinoic acid (RA) in a surgical rabbit model of congenital diaphragmatic hernia showed a beneficial effect on lung maturation. We evaluated the potential of RA delivery into the trachea and studied the combined effects of TO and RA on normal lung development. Experiments were performed on normal rabbit fetuses. Liposomes and capric triglyceride (Miglyol ® ), alone and with RA, were administered in the trachea just before TO (d26). Lung morphology and surfactant production were studied at term (d30). Tracheal occlusion increased lung weight and enhanced alveolar development but increased apoptotic activity and decreased surfactant expression. Tracheal injection of RA improved surfactant production to levels of normal controls. We established the potential of liposome and Miglyol as RA vehicle for delivering this bioactive molecule in the fetal airways. Tracheal RA injection seems to oppose the effects of TO in fetuses with normal lungs. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  8. Effect of silencing of ATM expression by siRNA on radiosensitivity of human lung adenocarcinoma A549 cells

    International Nuclear Information System (INIS)

    Liu Xiaoqun; Qiao Tiankui

    2014-01-01

    Objective: To investigate the effect of silencing of ataxia-telangiectasia mutated (ATM) expression by plasmid-mediated RNA interference on the radiosensitivity of human lung adenocarcinoma A 549 cells. Methods: Eukaryotic expression plasmid containing ATM small interfering RNA (siRNA) (pSilencer2.1-ATM), as well as pSilencer2.1-nonspecific, was constructed.Lung adenocarcinoma A 549 cells were divided into positive group, negative group,and control group to be transfected with pSilencer2.1-ATM, pSilencer2.1-nonspecific, and no plasmid, respectively. The mRNA and protein expression of ATM was measured by RT-PCR and Western blot, respectively. The change in cell radiosensitivity was observed by colony-forming assay. Cell cycle and cell apoptosis were analyzed by flow cytometry. Results: The eukaryotic expression plasmid containing ATM siRNA was successfully constructed. The RT-PCR and Western blot demonstrated that the expression of ATM was down-regulated in the positive group. The sensitization enhancement ratios (D 0 ratios) for the positive group and negative group were 1.50 and 1.01, respectively. The flow cytometry revealed that the proportions of A 549 cells in G 1 and G 2 /M phases were significantly lower in the positive group than in the control group (51.27% vs 61.85%, P = 0.012; 6.34% vs 10.91%, P = 0.008) and that the apoptosis rate was significantly higher in the positive group than in the control group and negative group (49.31% vs 13.58%, P = 0.000; 49.31% vs 13.17%, P = 0.000). Conclusions: Silencing of ATM expression may increase the radiosensitivity of human lung adenocarcinoma A 549 cells, probably by affecting the cell cycle and promoting cell apoptosis. (authors)

  9. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    Science.gov (United States)

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  10. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development.

    Directory of Open Access Journals (Sweden)

    Allison Jones

    2013-11-01

    Full Text Available Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64 and control samples (n = 23 revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A. Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop

  11. Development of an imaging VUV monochromator in normal incidence region

    Energy Technology Data Exchange (ETDEWEB)

    Koog, Joong-San

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit ({approx}30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of (1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, (2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, (3) the plasma light source (TPD-S) for the test experiments, (4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and (5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  12. Development of an imaging VUV monochromator in normal incidence region

    International Nuclear Information System (INIS)

    Koog, Joong-San.

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit (∼30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of 1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, 2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, 3) the plasma light source (TPD-S) for the test experiments, 4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and 5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  13. The Aspergillus flavus Spermidine Synthase (spds Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels

    Directory of Open Access Journals (Sweden)

    Rajtilak Majumdar

    2018-03-01

    Full Text Available Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs known as aflatoxins. Polyamines (PAs are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis. Biosynthesis of spermidine (Spd is critical for cell growth as it is required for hypusination-mediated activation of eukaryotic translation initiation factor 5A (eIF5A, and other biochemical functions. The tri-amine Spd is synthesized from the diamine putrescine (Put by the enzyme spermidine synthase (Spds. Inactivation of spds resulted in a total loss of growth and sporulation in vitro which could be partially restored by addition of exogenous Spd. Complementation of the Δspds mutant with a wild type (WT A. flavus spds gene restored the WT phenotype. In WT A. flavus, exogenous supply of Spd (in vitro significantly increased the production of sclerotia and SMs. Infection of maize kernels with the Δspds mutant resulted in a significant reduction in fungal growth, sporulation, and aflatoxin production compared to controls. Quantitative PCR of Δspds mutant infected seeds showed down-regulation of aflatoxin biosynthetic genes in the mutant compared to WT A. flavus infected seeds. Expression analyses of PA metabolism/transport genes during A. flavus-maize interaction showed significant increase in the expression of arginine decarboxylase (Adc and S-adenosylmethionine decarboxylase (Samdc genes in the maize host and PA uptake transporters in the fungus. The results presented here demonstrate that Spd biosynthesis is critical for normal development and pathogenesis of A. flavus and pre-treatment of a Δspds mutant with Spd or Spd uptake from the

  14. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera.

    Science.gov (United States)

    Saini, Ravi Prakash; Raman, Venkat; Dhandapani, Gurusamy; Malhotra, Era Vaidya; Sreevathsa, Rohini; Kumar, Polumetla Ananda; Sharma, Tilak R; Pattanayak, Debasis

    2018-01-01

    The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.

  15. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Identification of a maize chlorotic dwarf virus silencing suppressor protein

    Science.gov (United States)

    Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389 kDa proteolytically processed polyprotein. We show that an N-terminal 78kDa polyprotein (R78) has silencing suppressor activity, that it is cleaved by the viral...

  17. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators.

    Science.gov (United States)

    Anthony, Kim; More, Abhijit; Zhang, Xiaoliu

    2014-01-01

    Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.

  18. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging

    Directory of Open Access Journals (Sweden)

    Francis Kevin P

    2011-08-01

    Full Text Available Abstract Background Transient expression of proteins in plants has become a favoured method over the production of stably transformed plants because, in addition to enabling high protein yields, it is both fast and easy to apply. An enhancement of transient protein expression can be achieved by plant virus-encoded RNA silencing suppressor proteins. Since viral suppressor proteins differ in their efficiency to enhance transient protein expression in plants, we developed a whole-leaf green fluorescent protein (GFP-based imaging assay to quantitatively assess suppressor protein activity. Results In a transient GFP-expression assay using wild-type and GFP-transgenic N. benthamiana, addition of the plant viral suppressors Beet mild yellowing virus (BMYV-IPP P0 or Plum pox virus (PPV HC-Pro was shown to increase fluorescent protein expression 3-4-fold, 7 days post inoculation (dpi when compared to control plants. In contrast, in agroinfiltrated patches without suppressor activity, near complete silencing of the GFP transgene was observed in the transgenic N. benthamiana at 21 dpi. Both co-infiltrated suppressors significantly enhanced GFP expression over time, with HC-Pro co-infiltrations leading to higher short term GFP fluorescence (at 7 dpi and P0 giving higher long term GFP fluorescence (at 21 dpi. Additionally, in contrast to HC-Pro co-infiltrations, an area of complete GFP silencing was observed at the edge of P0 co-infiltrated areas. Conclusions Fluorescence imaging of whole intact leaves proved to be an easy and effective method for spatially and quantitatively observing viral suppressor efficiency in plants. This suppressor assay demonstrates that plant viral suppressors greatly enhanced transient GFP expression, with P0 showing a more prolonged suppressor activity over time than HC-Pro. Both suppressors could prove to be ideal candidates for enhancing target protein expression in plants.

  20. Kinematic differentiation of prosodic categories in normal and disordered language development.

    Science.gov (United States)

    Goffman, Lisa

    2004-10-01

    Prosody is complex and hierarchically organized but is realized as rhythmic movement sequences. Thus, observations of the development of rhythmic aspects of movement can provide insight into links between motor and language processes, specifically whether prosodic distinctions (e.g., feet and prosodic words) are instantiated in rhythmic movement output. This experiment examined 4-7-year-old children's (both normally developing and specifically language impaired) and adults' productions of prosodic sequences that were controlled for phonetic content but differed in morphosyntactic structure (i.e., content vs. function words). Primary analyses included kinematic measures of rhythmic structure (i.e., amplitude and duration of movements in weak vs. strong syllables) across content and function contexts. Findings showed that at the level of articulatory movement, adults produced distinct rhythmic categories across content and function word contexts, whereas children did not. Children with specific language impairment differed from normally developing peers only in their ability to produce well-organized and stable rhythmic movements, not in the differentiation of prosodic categories.

  1. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    Science.gov (United States)

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  2. Silence about encounters with dying among healthcare professionals in a society that ‘de-tabooises’ death

    Directory of Open Access Journals (Sweden)

    Ellen Ramvi

    2017-09-01

    Full Text Available Background: Empirical studies on healthcare personnel indicate that professionals’ experiences with dying and death become silenced and unutterable within the healthcare service. Aim: To explore and interpret silence about encounters with death and dying among healthcare professionals in Norway. Method: The method used was theoretical exploration, using a psychosocial approach. Findings: This analysis reveals complex interrelations and two-way dynamics between subject-worlds, sociocultural and societal worlds when it comes to dealing with death and dying at work. A performance culture saturates these worlds, and may be implicated in silencing death within the healthcare institutions of the Norwegian welfare state. Conclusions: This article suggests that silence about death and dying among healthcare professionals is indicative of crucial emerging and unresolved tensions in the neoliberal episteme, accompanied and reinforced by the ineluctable basic conditions of life and intrapsychic defence against threats towards the self. Implications for practice: Silence about death and dying presents a serious challenge for dying patients and next of kin. Healthcare professionals should be enabled to acknowledge their thoughts and emotions about death in order to be able to support and contain patients and next of kin Learning activities such as peer support and supervision can help the processing of difficult psychological content and allow for emotional aspects of professionals’ work to be acknowledged and thought about in a way that encourages reflective and sound practice Clinical managers should address whether performance pressures induce shameful feelings in staff, who may believe that by providing appropriate levels of care they are compromising productivity. Shame in turn, may undermine professionals’ emotional wellbeing and ability to continue to provide attuned and adequate care for dying patients Creative approaches to facilitate

  3. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  4. Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions

    International Nuclear Information System (INIS)

    Altman, J.; Bayer, S.

    Studies on postnatal maturation of the dentate gyrus are reviewed. Some topics discussed are: normal development of the dentate gyrus, cytogenesis, morphogenesis, synaptogenesis, gleogenesis, myelogenesis, development of the gyrus under experimental conditions, and effects of x radiation on cytogenesis and morphogenesis

  5. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    Science.gov (United States)

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  6. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Directory of Open Access Journals (Sweden)

    Miguel A

    2017-01-01

    Full Text Available Antonio Miguel,1 Luis Sendra,1 Verónica Noé,2 Carles J Ciudad,2 Francisco Dasí,3,4 David Hervas,5 María José Herrero,1,6 Salvador F Aliño17 1Department of Pharmacology, Faculty of Medicine, University of Valencia, 2Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 3Research University Hospital of Valencia, INCLIVA Health Research Institute, 4Department of Physiology, Faculty of Medicine, University of Valencia Foundation, 5Biostatistics Unit, 6Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe, 7Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain Abstract: The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg, which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs and polypurine reverse Hoogsteen hairpins (PPRHs, were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following

  7. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection.

    Science.gov (United States)

    Maliogka, Varvara I; Calvo, María; Carbonell, Alberto; García, Juan Antonio; Valli, Adrian

    2012-07-01

    HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.

  8. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  9. Sustaining a "culture of silence" in the neonatal intensive care unit during nonemergency situations: a grounded theory on ensuring adherence to behavioral modification to reduce noise levels.

    Science.gov (United States)

    Swathi, S; Ramesh, A; Nagapoornima, M; Fernandes, Lavina M; Jisina, C; Rao, P N Suman; Swarnarekha, A

    2014-01-01

    The aim of this study was to generate a substantive theory explaining how the staff in a resource-limited neonatal intensive care unit (NICU) of a developing nation manage to ensure adherence to behavioral modification components of a noise reduction protocol (NsRP) during nonemergency situations. The study was conducted after implementation of an NsRP in a level III NICU of south India. The normal routine of the NICU is highly dynamic because of various categories of staff conducting clinical rounds followed by care-giving activities. This is unpredictably interspersed with very noisy emergency management of neonates who suddenly fall sick. In-depth interviews were conducted with 36 staff members of the NICU (20 staff nurses, six nursing aides, and 10 physicians). Group discussions were conducted with 20 staff nurses and six nursing aides. Data analysis was done in line with the reformulated grounded theory approach, which was based on inductive examination of textual information. The results of the analysis showed that the main concern was to ensure adherence to behavioral modification components of the NsRP. This was addressed by using strategies to "sustain a culture of silence in NICU during nonemergency situations" (core category). The main strategies employed were building awareness momentum, causing awareness percolation, developing a sense of ownership, expansion of caring practices, evolution of adherence, and displaying performance indicators. The "culture of silence" reconditions the existing staff and conditions new staff members joining the NICU. During emergency situations, a "noisy culture" prevailed because of pragmatic neglect of behavioral modification when life support overrode all other concerns. In addition to this, the process of operant conditioning should be formally conducted once every 18 months. The results of this study may be adapted to create similar strategies and establish context specific NsRPs in NICUs with resource constraints.

  10. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth.

    Science.gov (United States)

    Navarro Gallón, Sandra M; Elejalde-Palmett, Carolina; Daudu, Dimitri; Liesecke, Franziska; Jullien, Frédéric; Papon, Nicolas; Dugé de Bernonville, Thomas; Courdavault, Vincent; Lanoue, Arnaud; Oudin, Audrey; Glévarec, Gaëlle; Pichon, Olivier; Clastre, Marc; St-Pierre, Benoit; Atehortùa, Lucia; Yoshikawa, Nobuyuki; Giglioli-Guivarc'h, Nathalie; Besseau, Sébastien

    2017-07-01

    The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.

  11. Estrogen and progesterone signalling in the normal breast and its implications for cancer development.

    Science.gov (United States)

    Hilton, Heidi N; Clarke, Christine L; Graham, J Dinny

    2018-05-05

    The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue. There is evidence for a role for both ER and PR in driving breast cancer, and both are favourable prognostic markers with respect to outcome. In this review, we summarize current knowledge of the mechanisms of action of ER and PR in the normal breast, and implications for the development and management of breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number.

    Science.gov (United States)

    Khuong, Thi Thu Huong; Crété, Patrice; Robaglia, Christophe; Caffarri, Stefano

    2013-09-01

    An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions. Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.

  13. Hush… : The Dangers of Silence in Academic Libraries

    Directory of Open Access Journals (Sweden)

    Jessica Schomberg

    2017-04-01

    Full Text Available In Brief This article critiques the idea that civility rhetoric decreases workplace bullying or discrimination. We use Critical Discourse Analysis (CDA to do a rhetorical analysis of a campus-wide civility campaign in contrast with literature about civility in libraries. To combat discrimination and bullying, we need to be attentive to systemic power dynamics and to rhetoric designed to enforce compliance and conformity. We conclude with recommendations about how to raise our voices instead of silencing our peers.

  14. After Brown U.'s Report on Slavery, Silence (So Far)

    Science.gov (United States)

    Bartlett, Thomas

    2006-01-01

    This article, discusses Brown University's slavery report, a 106-page narrative examination of the early connections between Brown University and slavery, that has been greeted--so far--with silence. The report, done at the behest of Ruth J. Simmons, Brown's president and herself a descendant of slaves, is an unsparing look at a shameful side of…

  15. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    Science.gov (United States)

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  16. Epigenetic silencing of the DNA mismatch repair gene, MLH1, induced by hypoxic stress in a pathway dependent on the histone demethylase, LSD1

    Science.gov (United States)

    Lu, Yuhong; Wajapeyee, Narendra; Turker, Mitchell S.; Glazer, Peter M.

    2014-01-01

    SUMMARY Silencing of the MLH1 gene is frequently seen in sporadic cancers. We report that hypoxia causes decreased H3K4 methylation at the MLH1 promoter via the H3K4 demethylases, LSD1 and PLU-1, and promotes long-term silencing of the promoter in a pathway that requires LSD1. Knockdown of LSD1 or its co-repressor, CoREST, also prevents the re-silencing (and cytosine DNA methylation) of the endogenous MLH1 promoter in RKO colon cancer cells following transient reactivation by the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC). The results demonstrate that hypoxia is a critical driving force for silencing of MLH1 through chromatin modification and indicate that the LSD1/CoREST complex is essential for MLH1 silencing. PMID:25043185

  17. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    Science.gov (United States)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  18. Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A.

    Science.gov (United States)

    Watanabe, Mariko; Iwakawa, Hiro-Oki; Tadakuma, Hisashi; Tomari, Yukihide

    2017-10-13

    Viruses often encode viral silencing suppressors (VSSs) to counteract the hosts' RNA silencing activity. The cricket paralysis virus 1A protein (CrPV-1A) is a unique VSS that binds to a specific Argonaute protein (Ago)-the core of the RNA-induced silencing complex (RISC)-in insects to suppress its target cleavage reaction. However, the precise molecular mechanism of CrPV-1A action remains unclear. Here we utilized biochemical and single-molecule imaging approaches to analyze the effect of CrPV-1A during target recognition and cleavage by Drosophila Ago2-RISC. Our results suggest that CrPV-1A obstructs the initial target searching by Ago2-RISC via base pairing in the seed region. The combination of biochemistry and single-molecule imaging may help to pave the way for mechanistic understanding of VSSs with diverse functions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    Science.gov (United States)

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. Effects of neoliberal rationality in speeches on inclusion: the teacher’s silence

    Directory of Open Access Journals (Sweden)

    Leandra Boer Possa

    2013-06-01

    Full Text Available This text, which makes use of the National Policy on Special Education in the Perspective of Inclusive Education and the programs that embrace the training of teachers for diversity/ inclusion, puts the discursive effects of these documents in analytic sets. Without attempting at doing an exhaustive analysis, this study aims at problematizing the effect of teacher’s silence that the neoliberal policy has been producing on teachers who work in municipal and state education systems in Santa Maria area. The conceptual and methodological tool of governmentality is used in this enterprise in order to think that the discourses of inclusion have convinced and subjectivized teachers, because in the face of the irreducibility of this discursive network the silence is an effect of the production and consumption of the principle of inclusion and enterprise itself.

  1. Microstructure, length, and connection of limbic tracts in normal human brain development

    Directory of Open Access Journals (Sweden)

    Qiaowen eYu

    2014-08-01

    Full Text Available The cingulum and fornix play an important role in memory, attention, spatial orientation and feeling functions. Both microstructure and length of these limbic tracts can be affected by mental disorders such as Alzheimer’s disease, depression, autism, anxiety, and schizophrenia. To date, there has been little systematic characterization of their microstructure, length and functional connectivity in normally developing brains. In this study, diffusion tensor imaging (DTI and resting state functional MRI (rs-fMRI data from 65 normally developing right-handed subjects from birth to young adulthood was acquired. After cingulate gyrus part of the cingulum (cgc, hippocampal part of the cingulum (cgh and fornix (fx were traced with DTI tractography, absolute and normalized tract lengths and DTI-derived metrics including fractional anisotropy, mean, axial and radial diffusivity were measured for traced limbic tracts. Free water elimination (FWE algorithm was adopted to improve accuracy of the measurements of DTI-derived metrics. The role of these limbic tracts in the functional network at birth and adulthood was explored. We found a logarithmic age-dependent trajectory for FWE-corrected DTI metric changes with fast increase of microstructural integrity from birth to 2-year-old followed by a slow increase to 25-year-old. Normalized tract length of cgc increases with age, while no significant relationship with age was found for normalized tract lengths of cgh and fx. Stronger microstructural integrity on the left side compared to that of right side was found. With integrated DTI and rs-fMRI, the key connectional role of cgc and cgh in the default mode network (DMN was confirmed as early as birth. Systematic characterization of length and DTI metrics after FWE correction of limbic tracts offers insight into their morphological and microstructural developmental trajectories. These trajectories may serve as a normal reference for pediatric patients with

  2. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    Science.gov (United States)

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  3. Transcriptome and proteome analyses and the role of atypical calpain protein and autophagy in the spliced leader silencing pathway in Trypanosoma brucei.

    Science.gov (United States)

    Hope, Ronen; Egarmina, Katarina; Voloshin, Konstantin; Waldman Ben-Asher, Hiba; Carmi, Shai; Eliaz, Dror; Drori, Yaron; Michaeli, Shulamit

    2016-10-01

    Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD. © 2016 John Wiley & Sons Ltd.

  4. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  5. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  6. Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury

    DEFF Research Database (Denmark)

    Moreno, Pedro M.D.; Ferreira, Ana R.; Salvador, Daniela

    2018-01-01

    )-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration—RhoA and GSK3β. The fibrin-matrix-assisted AON delivery system......After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels...

  7. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  8. Development of a theory of implementation and integration: Normalization Process Theory

    Directory of Open Access Journals (Sweden)

    May Carl R

    2009-05-01

    Full Text Available Abstract Background Theories are important tools in the social and natural sciences. The methods by which they are derived are rarely described and discussed. Normalization Process Theory explains how new technologies, ways of acting, and ways of working become routinely embedded in everyday practice, and has applications in the study of implementation processes. This paper describes the process by which it was built. Methods Between 1998 and 2008, we developed a theory. We derived a set of empirical generalizations from analysis of data collected in qualitative studies of healthcare work and organization. We developed an applied theoretical model through analysis of empirical generalizations. Finally, we built a formal theory through a process of extension and implication analysis of the applied theoretical model. Results Each phase of theory development showed that the constructs of the theory did not conflict with each other, had explanatory power, and possessed sufficient robustness for formal testing. As the theory developed, its scope expanded from a set of observed regularities in data with procedural explanations, to an applied theoretical model, to a formal middle-range theory. Conclusion Normalization Process Theory has been developed through procedures that were properly sceptical and critical, and which were opened to review at each stage of development. The theory has been shown to merit formal testing.

  9. Polycystic ovarian morphology in normal women does not predict the development of polycystic ovary syndrome.

    Science.gov (United States)

    Murphy, M K; Hall, J E; Adams, J M; Lee, H; Welt, C K

    2006-10-01

    Polycystic ovarian morphology (PCOM) is present in 25% of normal women in the absence of polycystic ovary syndrome (PCOS); however, the natural history of PCOM is unknown. We hypothesized that the presence of PCOM predisposes the development of PCOS. The study was a longitudinal follow-up study over 8.2 +/- 5.2 yr (mean +/- sd; range 1.7-17.5 yr). The study took place in an outpatient setting. Women who took part in a previous study as a normal control and had an ultrasound examination (n = 40) participated. Subjects underwent an interval menstrual history, physical exam, blood sampling, and repeat ultrasound in the follicular phase. Development of PCOS was diagnosed by irregular menses and hyperandrogenism, in the absence of other disorders. Changes in ovarian morphology over time were evaluated. At the baseline visit, 23 women (57.5%) had PCOM and 17 (42.5%) had normal ovarian morphology. One subject with PCOM developed irregular menses and presumptive PCOS. Eleven subjects with PCOM no longer met the criteria for PCOM at follow-up. There was no factor that predicted the change to normal ovarian morphology at the follow-up visit. These data suggest that PCOM in women with regular ovulatory cycles does not commonly predispose the development of PCOS. Although it is unusual to develop PCOM if the ovaries are normal on first assessment, ovaries in women with PCOM no longer meet the criteria for PCOM in approximately half of cases over time.

  10. Strategic Silence as a Tool of Political Communication: A Reflection ...

    African Journals Online (AJOL)

    Politics is said to be a game of intrigues and part of that is the use of silence as a means of communication. This may sound strange as communication itself connotes the art of expression. However in politics, a political actor may chose to remain silent as a means of passing a message across to the public in a trouble ...

  11. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of Gold Nanoparticle towards Radioenhancement Therapy, Renal Clearance, siRNA Delivery and Light-Controlled Gene Silencing

    Science.gov (United States)

    Wang, Jianxin

    Gold nanoparticles (GNPs) have been widely studied and used in research for diagnostic, prophylactic or therapeutic purposes. However, they still face many technical challenges before they can be used to effectively address unmet biomedical needs. The theme of this dissertation is focused on addressing challenges of GNPs in clinical translation, and to improve their potential for application in radioenhancement therapy and siRNA delivery. We demonstrate the facile self-assembly of micellar gold nanocapsules using zwitterionic surfactants, with hydrodynamic diameters below 10 nm, which holds promise for good renal clearance to promote the excretion of GNPs in human body. We also prepared PEI- and PEG-coated GNPs and demonstrated their uptake into HeLa cells with exposure to soft X-rays (120 kVp), based on the consideration that the proximity of GNPs to nuclear DNA may be beneficial for enhancing low-energy ionizing radiotherapy. GNP-mediated siRNA delivery may be challenged by nonspecific siRNA desorption during circulation, which can cause off-target effects and immunogenicity. The use of gold nanorods (GNRs) for siRNA delivery also faces challenges like reduced dispersion stability during siRNA functionalization. We developed an effective way to load siRNA onto GNRs at high density, using oleylsulfobetaine (OSB) as an intermediate surfactant and dithiocarbamates (DTCs) as desorption-resistant anchors for siRNA. The GNR?siRNA complexes provided excellent control for laser-triggered gene silencing.

  14. The dentate nucleus in children: normal development and patterns of disease

    Energy Technology Data Exchange (ETDEWEB)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie [Children' s University Hospital, Radiology Department, Dublin (Ireland)

    2010-03-15

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  15. The dentate nucleus in children: normal development and patterns of disease

    International Nuclear Information System (INIS)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie

    2010-01-01

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  16. Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia.

    Science.gov (United States)

    Kasai, Megumi; Matsumura, Hideo; Yoshida, Kentaro; Terauchi, Ryohei; Taneda, Akito; Kanazawa, Akira

    2013-01-30

    Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs. We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved. The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the

  17. The Ebola virus VP35 protein is a suppressor of RNA silencing

    NARCIS (Netherlands)

    Haasnoot, J.; Vries, de W.; Geutjes, E.J.; Prins, M.W.; Haan, de P.; Berkhout, B.

    2007-01-01

    RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is

  18. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing

    NARCIS (Netherlands)

    Royo, Hélène; Prosser, Haydn; Ruzankina, Yaroslava; Mahadevaiah, Shantha K.; Cloutier, Jeffrey M.; Baumann, Marek; Fukuda, Tomoyuki; Höög, Christer; Tóth, Attila; de Rooij, Dirk G.; Bradley, Allan; Brown, Eric J.; Turner, James M. A.

    2013-01-01

    In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism.

  19. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Zheng, Zhimin

    2010-01-06

    RNA-directed DNA methylation (RdDM) is an important epigenetic mechanism for silencing transgenes and endogenous repetitive sequences such as transposons. The RD29A promoter-driven LUCIFERASE transgene and its corresponding endogenous RD29A gene are hypermethylated and silenced in the Arabidopsis DNA demethylase mutant ros1. By screening for second-site suppressors of ros1, we identified the RDM12 locus. The rdm12 mutation releases the silencing of the RD29A-LUC transgene and the endogenous RD29A gene by reducing the promoter DNA methylation. The rdm12 mutation also reduces DNA methylation at endogenous RdDM target loci, including transposons and other repetitive sequences. In addition, the rdm12 mutation affects the levels of small interfering RNAs (siRNAs) from some of the RdDM target loci. RDM12 encodes a protein with XS and coiled-coil domains, and is similar to SGS3, which is a partner protein of RDR6 and can bind to double-stranded RNAs with a 5′ overhang, and is required for several post-transcriptional gene silencing pathways. Our results show that RDM12 is a component of the RdDM pathway, and suggest that RdDM may involve double-stranded RNAs with a 5′ overhang and the partnering between RDM12 and RDR2. © 2010 Blackwell Publishing Ltd.

  20. Mild and severe cereal yellow dwarf viruses differ in silencing suppressor efficiency of the P0 protein.

    Science.gov (United States)

    Almasi, Reza; Miller, W Allen; Ziegler-Graff, Véronique

    2015-10-02

    Viral pathogenicity has often been correlated to the expression of the viral encoded-RNA silencing suppressor protein (SSP). The silencing suppressor activity of the P0 protein encoded by cereal yellow dwarf virus-RPV (CYDV-RPV) and -RPS (CYDV-RPS), two poleroviruses differing in their symptomatology was investigated. CYDV-RPV displays milder symptoms in oat and wheat whereas CYDV-RPS is responsible for more severe disease. We showed that both P0 proteins (P0(CY-RPV) and P0(CY-RPS)) were able to suppress local RNA silencing induced by either sense or inverted repeat transgenes in an Agrobacterium tumefaciens-mediated expression assay in Nicotiana benthamiana. P0(CY-RPS) displayed slightly higher activity. Systemic spread of the silencing signal was not impaired. Analysis of short-interfering RNA (siRNA) abundance revealed that accumulation of primary siRNA was not affected, but secondary siRNA levels were reduced by both CYDV P0 proteins, suggesting that they act downstream of siRNA production. Correlated with this finding we showed that both P0 proteins partially destabilized ARGONAUTE1. Finally both P0(CY-RPV) and P0(CY-RPS) interacted in yeast cells with ASK2, a component of an E3-ubiquitin ligase, with distinct affinities. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Silenced uses and moral ideals in the exchange of Danish blood and plasma

    DEFF Research Database (Denmark)

    Sheikh, Zainab Afshan; Deleuran, Ida; Hoeyer, Klaus

    2016-01-01

    This article explores the interplay between cultural discourses, moral reasoning and silenced uses in the international exchange of Danish blood plasma. Campaigns, policymakers, health professionals working in the blood banks – and even donors – consistently refer to ideals portraying blood....... However, we find that available cultural discourses poorly capture the moral reasoning among many donors. In fact, when informed about the existing forms of tender, plasma trade sounds like a good idea to most of them. Furthermore, they are not particularly interested in information. We argue...... that the silencing of trade is infusing the system with an unnecessary vulnerability that could easily be avoided with a different communication strategy towards donors. To arrive at new and better strategies, however, one must move beyond the immediate words and reactions of donors contemplating trade and seek...

  2. CRISPR-Cas9-Mediated Silencing of CD44 in Human Highly Metastatic Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Tang Liu

    2018-04-01

    Full Text Available Background/Aims: Metastasis is the major cause of death in patients with osteosarcoma. There is an urgent need to identify molecular markers that promote metastasis. Cluster of differentiation 44 is a receptor for hyaluronic acid (HA and HA-binding has been proven to participate in various biological tumor activities, including tumor progression and metastasis. Methods: We performed a meta-analysis to investigate the relationship between CD44 expression, survival, and metastasis in patients with osteosarcoma. We then utilized the CRISPR-Cas9 system to specifically silence CD44 in highly metastatic human osteosarcoma cells (MNNG/HOS and 143B and further determined the functional effects of CD44 knockout in these cells. Results: The meta-analysis demonstrated that a high level of CD44 may predict poor survival and higher potential of metastasis in patients with osteosarcoma. The expression of CD44 in highly metastatic human osteosarcoma cell lines was efficiently blocked by CRISPR-Cas9. When CD44 was silenced, the proliferation and spheroid formation of these osteosarcoma cells was inhibited under 3-D culture conditions. Furthermore, the migratory and invasive functions were also impaired in these highly metastatic osteosarcoma cells. Conclusion: These results suggest that developing new strategies to target CD44 in osteosarcoma may prevent metastasis and improve the clinical outcome of osteosarcoma patients.

  3. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-04-01

    Full Text Available Xiaoxia Liu, Guiling Sun, Xiuju Sun Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China Abstract: This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP gene on renal cell cancer (RCC cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte–macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05. The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial

  4. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory

    OpenAIRE

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-01-01

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and...

  5. Excavating Silences and Tensions of Agency|Passivity in Science Education Reform

    Science.gov (United States)

    Rivera Maulucci, Maria S.

    2010-01-01

    I reflect on studies by Rodriguez and Carlone, Haun-Frank, and Kimmel to emphasize the ways in which they excavate silences in the science education literature related to linguistic and cultural diversity and situating the problem of reform in teachers rather than contextual factors, such as traditional schooling discourses and forces that serve…

  6. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  7. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    Science.gov (United States)

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  8. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  9. Selective memory retrieval in social groups: When silence is golden and when it is not.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2015-07-01

    Previous research has shown that the selective remembering of a speaker and the resulting silences can cause forgetting of related, but unmentioned information by a listener (Cuc, Koppel, & Hirst, 2007). Guided by more recent work that demonstrated both detrimental and beneficial effects of selective memory retrieval in individuals, the present research explored the effects of selective remembering in social groups when access to the encoding context at retrieval was maintained or impaired. In each of three experiments, selective retrieval by the speaker impaired recall of the listener when access to the encoding context was maintained, but it improved recall of the listener when context access was impaired. The results suggest the existence of two faces of selective memory retrieval in social groups, with a detrimental face when the encoding context is still active at retrieval and a beneficial face when it is not. The role of silence in social recall thus seems to be more complex than was indicated in prior work, and mnemonic silences on the part of a speaker can be "golden" for the memories of a listener under some circumstances, but not be "golden" under others. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  11. Role of CD56 in Normal Kidney Development and Wilms Tumorigenesis

    DEFF Research Database (Denmark)

    Yap, Li-Wei; Brok, Jesper; Pritchard-Jones, Kathy

    2017-01-01

    The cell-surface glycoprotein CD56 has three major isoforms that play important roles in cell adhesion and signaling, which may promote cell proliferation, differentiation, survival, or migration. It is an important molecule in normal kidney development and acts as a key marker in Wilms tumor stem...

  12. Persian competing word test: Development and preliminary results in normal children

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahim Mahdavi

    2008-12-01

    Full Text Available Background and Aim: Assessment of central auditory processing skills needs various behavioral tests in format of a test battery. There is a few Persian speech tests for documenting central auditory processing disorders. The purpose of this study was developing a dichotic test formed of one-syllabic words suitable for evaluation of central auditory processing in Persian language children and reporting its preliminary results in a group of normal children.Materials and Methods: Persian words in competing manner test was developed utilizing most frequent monosyllabic words in children storybooks reported in the previous researches. The test was performed at MCL on forty-five normal children (39 right-handed and 6 left-handed aged 5-11 years. The children did not show any obvious problem in hearing, speech, language and learning. Free (n=28 and directed listening (n=17 tasks were investigated.Results: The results show that in directed listening task, there is significant advantage for performance of pre-cued ear relative to opposite side. Right ear advantage is evident in free recall condition. Average performance of the children in directed recall is significantly better than free recall. Average row score of the test increases with the children age.Conclusion: Persian words in competing manner test as a dichotic test, can show major characteristics of dichotic listening and effect of maturation of central auditory system on it in normal children.

  13. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  14. [Effect of silencing Bmi-1 expression in reversing cisplatin resistance in lung cancer cells and its mechanism].

    Science.gov (United States)

    Mao, Nan; He, Guansheng; Rao, Jinjun; Lv, Lin

    2014-06-01

    To investigate the effect of silencing Bmi-1 expression in reversing cisplatin resistance in human lung cancer cells and explore the possible mechanisms. Cisplatin-resistant A549/DDP cells with small interference RNA (siRNA)-mediated Bmi-1 expression silencing were examined for cisplatin sensitivity using MTT assay and alterations in cell cycle distribution and apoptosis with flow cytometry, and the changes in cell senescence was assessed using β-galactosidase staining. The protein expressions of Bmi-1, P14(ARF), P16(INK4a), P53, P21, Rb and ubi-H2AK119 in the cells were determined with Western blotting. A549/DDP cells showed significantly higher Bmi-1 expression than A549 cells. After siRNA-mediated Bmi-1 silencing, A549/DDP cells showed significantly enhanced cisplatin sensitivity with an increased IC50 from 40.3±4.1 µmol/L to 18.3±2.8 µmol/L (Pcisplatin possibly by regulating INK4a/ARF/Rb senescence pathway.

  15. Silencing of a Germin-Like Gene in Nicotiana attenuata Improves Performance of Native Herbivores1[W

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2006-01-01

    Germins and germin-like proteins (GLPs) are known to function in pathogen resistance, but their involvement in defense against insect herbivores is poorly understood. In the native tobacco Nicotiana attenuata, attack from the specialist herbivore Manduca sexta or elicitation by adding larval oral secretions (OS) to wounds up-regulates transcripts of a GLP. To understand the function of this gene, which occurs as a single copy, we cloned the full-length NaGLP and silenced its expression in N. attenuata by expressing a 250-bp fragment in an antisense orientation with an Agrobacterium-based transformation system and by virus-induced gene silencing (VIGS). Homozygous lines harboring a single insert and VIGS plants had significantly reduced constitutive (measured in roots) and elicited NaGLP transcript levels (in leaves). Silencing NaGLP improved M. sexta larval performance and Tupiocoris notatus preference, two native herbivores of N. attenuata. Silencing NaGLP also attenuated the OS-induced hydrogen peroxide (H2O2), diterpene glycosides, and trypsin proteinase inhibitor responses, which may explain the observed susceptibility of antisense or VIGS plants to herbivore attack and increased nicotine contents, but did not influence the OS-elicited jasmonate and salicylate bursts, or the release of the volatile organic compounds (limonene, cis-α-bergamotene, and germacrene-A) that function as an indirect defense. This suggests that NaGLP is involved in H2O2 production and might also be related to ethylene production and/or perception, which in turn influences the defense responses of N. attenuata via H2O2 and ethylene-signaling pathways. PMID:16461381

  16. Mind the gap: In-session silences are associated with client attachment insecurity, therapeutic alliance, and treatment outcome

    DEFF Research Database (Denmark)

    Daniel, Sarah Ingrid Franksdatter; Folke, Sofie; Lunn, Susanne

    2018-01-01

    Objective: The association between in-session silences and client attachment, therapeutic alliance, and treatment outcome was investigated in two treatments for bulimia nervosa. Method: 69 women and one man were randomized to two years of psychoanalytic psychotherapy (PPT) or 20 sessions of cogni......Objective: The association between in-session silences and client attachment, therapeutic alliance, and treatment outcome was investigated in two treatments for bulimia nervosa. Method: 69 women and one man were randomized to two years of psychoanalytic psychotherapy (PPT) or 20 sessions...

  17. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation.

    Science.gov (United States)

    Chen, W; Gao, B; Hao, L; Zhu, G; Jules, J; MacDougall, M J; Wang, J; Han, X; Zhou, X; Li, Y-P

    2016-10-01

    Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens

    International Nuclear Information System (INIS)

    Pruss, Gail J.; Lawrence, Christopher B.; Bass, Troy; Li Qingshun Q.; Bowman, Lewis H.; Vance, Vicki

    2004-01-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms

  19. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens.

    Science.gov (United States)

    Pruss, Gail J; Lawrence, Christopher B; Bass, Troy; Li, Qingshun Q; Bowman, Lewis H; Vance, Vicki

    2004-03-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms.

  20. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  1. A Day of Silence, a Day of Truth, and a Lawsuit

    Science.gov (United States)

    Fusarelli, Bonnie C.; Eaton, Lucy E.

    2011-01-01

    This case study focuses on issues of freedom of speech and freedom of religion in public schools. It involves a rural, southern high school where a group of students participated in a Day of Silence. The school allowed the students to participate based on the principal's understanding of the students' First Amendment rights. However, the next day,…

  2. Breaking the culture of silence in checkmating HIV/AIDS as a ...

    African Journals Online (AJOL)

    In my investigation I set out to break the HIV/AIDS culture of silence and emphasize the role of the teacher as a researcher and critical change agent in an HIV/AIDS challenged society. My work demonstrates how teachers could play such a role by encouraging learners' participation in sport. The sport, I focussed on in my ...

  3. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes

    Science.gov (United States)

    Devulapally, Rammohan; Paulmurugan, Ramasamy

    2013-01-01

    Advances in nanotechnology have provided powerful and efficient tools in development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles (NPs) have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA’s loading and delivery to treat different types of cancer. PMID:23996830

  4. Public privacy: Reciprocity and Silence

    Directory of Open Access Journals (Sweden)

    Jenny Kennedy

    2014-10-01

    Full Text Available In his 1958 poem 'Dedication to my Wife' TS Eliot proclaims "these are private words addressed to you in public". Simultaneously written for his wife, Valerie Fletcher, and to the implied you of a discourse network, Eliot's poem helps to illustrate the narrative voices and silences that are constitutive of an intimate public sphere. This paper situates reciprocity as a condition of possibility for public privacy. It shows how reciprocity is enabled by systems of code operating through material and symbolic registers. Code promises to control communication, to produce neutral, systemic forms of meaning. Yet such automation is challenged by uneven and fragmented patterns of reciprocity. Moreover, examining the media of public privacy reveals historical trajectories important for understanding contemporary socio­technical platforms of reciprocity. To explore the implicit requirement of reciprocity in publicly private practices, three sites of communication are investigated framed by a media archaeology perspective: postal networks, the mail­art project PostSecret and the anonymous zine 'You'.

  5. Towards a Poetry of Silence: Stéphane Mallarmé and Juan Ramón Jiménez

    Directory of Open Access Journals (Sweden)

    Mervyn Coke-Enguídanos

    1983-01-01

    Full Text Available In an era of apparent dissolution, "la Obra" of Juan Ramón Jiménez, like "l'Oeuvre" of Stéphane Mallarmé, has for its goal the attainment of timelessness. In both poets, the concept of absolute Time—the timelessness of eternal Time—is yoked with the ideal of silence. But this is no ordinary silence, and certainly not the kind that results from inadequacy of expression. It is the silence of perfection, the expression of the ineffable: pure Poetry. Since the poetic language is the silent language of thought, both Mallarmé and Juan Ramón seek to convey the pure idea. In so doing, both must stringently eliminate whatever is not essential in their poetry. The astonishing paradox, central to Mallarmé and Juan Ramón alike, is the urge to create an "unwritten" poetry.

  6. Effects of siRNA Silencing of TUG1 and LCAL6 Long Non-coding RNAs on Patient-derived Xenograft of Non-small Cell Lung Cancer.

    Science.gov (United States)

    Fang, Tian; Huang, Hairong; Li, Xiaoyou; Liao, Jing; Yang, Zhijian; Hoffman, Robert M; Cheng, X I; Liang, Lei; Hu, Wenjuan; Yun, Shifeng

    2018-01-01

    The aim of the present study was to establish a patient-derived xenograft (PDX) mouse model of non-small cell lung cancer (NSCLC) and investigate the anti-tumor efficacy of silencing of TUG1 and LCAL6 long non-coding RNA in the PDX model. PDXs were established by subcutaneously implanting NSCLC surgical tumor fragments into immunodeficient mice. PDX characterization was performed by histopathological, immunohistochemical and real-time polymerase chain reaction (RT-PCR) analyses for NSCLC subtype-specific markers and expression of LCAL6 and TUG1. Anti-tumor efficacy of siRNA silencing of TUG1 and LCAL6 was also investigated in the PDX model. The effect of TUG1 and LCAL6 silencing on protein expression of proliferation marker Ki67 and HOX-gene family HOXB7 in the tumors was assessed by immunohistochemical staining and Western blotting. Establishment of NSCLC PDX models resulted in 9 of 26 cases (34.6%). Lung squamous cell carcinomas (SCC) had a higher engraftment rate (58.3%) than lung adenocarcinomas (ADC) (18.2%) (pTUG1. The tumor volume and weight were significantly reduced in the TUG1-silenced group as compared to the control group (p0.05). Expression of both TUG1and LCAL6 was reduced by siRNA treatment. Expression of Ki67 and HOXB7 was significantly suppressed in both the TUG1- and LCAL6-silenced groups compared to the control group (pTUG1-silenced group showed more reduced Ki67 expression than the LCAL6-silenced group (pTUG1 and LCAL6. Silencing of TUG1 inhibited both tumor growth and expression of the proliferation marker Ki67 and HOX-gene family HOXB7 in the PDX model of NSCLC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016

  8. Balanced phono-amps an extension to the 'the sound of silence' editions

    CERN Document Server

    Vogel, Burkhard

    2016-01-01

    In 12 chapters (Part I) this extension to the two 'The Sound of Silence' editions covers the development, calculation, construction and measurement of the fully differential (= balanced) phono-amp solution 'RIAA Phono-Amp Engine II'. Additionally, the balanced measurement amplifiers & measurement tools, the discussion on BJT gain stages, the 1/f noise calculation methods for BJTs, the calculation of fully-differential amplifiers, the numerous Mathcad worksheets, and the presentation of test and calibration records fill a further 10 chapters of Part II with essential knowhow that will equip the reader to develop his/her own phono-amp solution in the most balanced way - and of course, as low-noise as possible. Engine II offers eight different amplifying paths from the Engine's input to its output - solid-state as well as valve driven. To expand the input possibilities via an additional external input, any kind of other linear input amplifiers can be connected. Further, a selection of six highly diverse exte...

  9. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  10. What Are Business Schools for? On Silence and Voice in Management Education.

    Science.gov (United States)

    Grey, Christopher

    2002-01-01

    The purpose of business schools seems not to be training effective managers but rather socializing them and legitimizing management, leading to silence about the reality of working conditions. Critical management education would expose students to problematic management issues related to gender, ethnicity, power, the environment, and others.…

  11. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    Science.gov (United States)

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  12. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    Science.gov (United States)

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase

    Directory of Open Access Journals (Sweden)

    Papacchioli Velia

    2006-06-01

    Full Text Available Abstract Background Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity. Results We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e, by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold. Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed. Conclusion The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.

  14. Understanding Emotions from Standardized Facial Expressions in Autism and Normal Development

    Science.gov (United States)

    Castelli, Fulvia

    2005-01-01

    The study investigated the recognition of standardized facial expressions of emotion (anger, fear, disgust, happiness, sadness, surprise) at a perceptual level (experiment 1) and at a semantic level (experiments 2 and 3) in children with autism (N= 20) and normally developing children (N= 20). Results revealed that children with autism were as…

  15. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    Science.gov (United States)

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Engineering nanoparticles to silence bacterial communication

    Directory of Open Access Journals (Sweden)

    Kristen Publicover Miller

    2015-03-01

    Full Text Available The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. Quorum sensing is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP were engineered to target the signaling molecules (i.e. acylhomoserine lactones (HSL used for quorum sensing in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with beta-cyclodextrin (beta-CD, then added to cultures of bacteria (Vibrio fischeri, whose luminous output depends upon HSL-mediated quorum sensing, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR analyses of luminescence genes. Binding of AHLs to Si-NPs was examined using nuclear magnetic resonance (NMR spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate quorum sensing, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to quorum sensing – a target that will reduce resistance pressures imposed by traditional antibiotics.

  17. Igf2/H19 Imprinting Control Region (ICR: An Insulator or a Position-Dependent Silencer?

    Directory of Open Access Journals (Sweden)

    Subhasis Banerjee

    2001-01-01

    Full Text Available The imprinting control region (ICR located far upstream of the H19 gene, in conjunction with enhancers, modulates the transcription of Igf2 and H19 genes in an allele-specific manner. On paternal inheritance, the methylated ICR silences the H19 gene and indirectly facilitates transcription from the distant Igf2 promoter, whereas on the maternal chromosome the unmethylated ICR, together with enhancers, activates transcription of the H19 gene and thereby contributes to the repression of Igf2. This repression of maternal Igf2 has recently been postulated to be due to a chromatin boundary or insulator function of the unmethylated ICR. Central to the insulator model is the site-specific binding of a ubiquitous nuclear factor CTCF which exhibits remarkable flexibility in functioning as transcriptional activator or silencer. We suggest that the ICR positioned close to the enhancers in an episomal context might function as a transcriptional silencer by virtue of interaction of CTCF with its modifiers such as SIN3A and histone deacetylases. Furthermore, a localised folded chromatin structure resulting from juxtaposition of two disparate regulatory sequences (enhancer ICR could be the mechanistic basis of ICR-mediated position-dependent (ICR-promoter transcriptional repression in transgenic Drosophila.

  18. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Zhang, Jin; Luo, Ting; Wang, Wanwan; Cao, Tiantian; Li, Ran; Lou, Yonggen

    2017-10-01

    DELLA proteins, negative regulators of the gibberellin (GA) pathway, play important roles in plant growth, development and pathogen resistance by regulating multiple phytohormone signals. Yet, whether and how they regulate plant herbivore resistance remain unknown. We found that the expression of the rice DELLA gene OsSLR1 was down-regulated by an infestation of female adults of the brown planthopper (BPH) Nilaparvata lugens. On one hand, OsSLR1 positively regulated BPH-induced levels of two mitogen-activated protein kinase and four WRKY transcripts, and of jasmonic acid, ethylene and H 2 O 2 . On the other hand, silencing OsSLR1 enhanced constitutive levels of defence-related compounds, phenolic acids, lignin and cellulose, as well as the resistance of rice to BPH in the laboratory and in the field. The increased resistance in rice with silencing of OsSLR1 is probably due to impaired JA and ethylene pathways, and, at least in part, to the increased lignin level and mechanical hardness of rice leaf sheaths. Our findings illustrate that OsSLR1, acting as an early negative regulator, plays an important role in regulating the resistance of rice to BPH by activating appropriate defence-related signalling pathways and compounds. Moreover, our data also provide new insights into relationships between plant growth and defence. © 2017 John Wiley & Sons Ltd.

  19. Silencing effect of shRNA expression vectors with stem length of 21 ...

    African Journals Online (AJOL)

    Then, the recombinant plasmids were transfected into mouse embryonic fibroblast with lipofection and injected into leg muscle of mouse. The mRNA expression level of the green fluorescent protein gene was checked by real-time quantitative polymerase chain reaction (RT-PCR). The silencing effect of the 29 bp shRNA ...

  20. The rde-1 gene, RNA interference, and transposon silencing in C. elegans.

    Science.gov (United States)

    Tabara, H; Sarkissian, M; Kelly, W G; Fleenor, J; Grishok, A; Timmons, L; Fire, A; Mello, C C

    1999-10-15

    Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.