WorldWideScience

Sample records for silane-treated silica filter

  1. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  2. Structural and Chemical Characterization of Silica Spheres before and after Modification by Silanization for Trypsin Immobilization

    Directory of Open Access Journals (Sweden)

    Eduardo F. Barbosa

    2017-01-01

    Full Text Available In the last decades, silica particles of a variety of sizes and shapes have been characterized and chemically modified for several applications, from chromatographic separation to dental supplies. The present study proposes the use of aminopropyl triethoxysilane (APTS silanized silica particles to immobilize the proteolytic enzyme trypsin for the development of a bioreactor. The major advantage of the process is that it enables the polypeptides hydrolysis interruption simply by removing the silica particles from the reaction bottle. Silanized silica surfaces showed significant morphological changes at micro- and nanoscale level. Chemical characterization showed changes in elemental composition, chemical environment, and thermal degradation. Their application as supports for trypsin immobilization showed high immobilization efficiency at reduced immobilization times, combined with more acidic conditions. Indirect immobilization quantification by reversed-phase ultrafast high performance liquid chromatography proved to be a suitable approach due to its high linearity and sensitivity. Immobilized trypsin activities on nonmodified and silanized silica showed promising features (e.g., selective hydrolysis for applications in proteins/peptides primary structure elucidation for proteomics. Silanized silica system produced some preferential targeting peptides, probably due to the hydrophobicity of the nanoenvironment conditioned by silanization.

  3. Silane grafted natural rubber and its compatibilization effect on silica-reinforced rubber tire compounds

    Directory of Open Access Journals (Sweden)

    K. Sengloyluan

    2017-12-01

    Full Text Available Natural Rubber (NR grafted with 3-octanoylthio-1-propyltriethoxysilane (NXT was prepared by melt mixing using 1,1′-di(tert-butylperoxy-3,3,5-trimethylcyclohexane as initiator at 140 °C with NXT contents of 10 and 20 parts per hundred rubber [phr] and initiator 0.1 phr. The silane grafted on NR molecules was confirmed by Fourier transform infrared (FTIR, proton nuclear magnetic resonance (1H-NMR and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX. Based on 1H-NMR, the use of 10 and 20 phr (parts per hundred resin of silane resulted in grafted NXT onto NR of 0.66 and 1.32 mol%, respectively, or a grafting efficiency of approx. 38%. The use of NXT-grafted NR as compatibilizer in silica-filled NR compounds, to give a total amount of NXT in both grafted and non-grafted forms in the range of 0.8–6.1 wt% relative to the silica, decreases the Mooney viscosity and Payne effect of the compounds, improves filler-rubber interaction, and significantly increases the tensile properties of the silica-filled NR-compounds compared to the non-compatibilized one. At the same silane-content, the use of silane-grafted NR gives slightly better properties than the straight use of the same silane. With sulfur compensation, the use of NXT-grafted-NR with about 6 wt% NXT relative to the silica gives technical properties that reach the levels obtained for straight use of bis-(3-triethoxysilyl-propyltetrasulfide (TESPT at 8.6 wt% relative to the silica.

  4. The Effect of Aging and Silanization on the Mechanical Properties of Fumed Silica-based Dental Composite

    Directory of Open Access Journals (Sweden)

    Khaje S

    2015-12-01

    Full Text Available Statement of Problem: Mechanical strength and durability of dental composites are the main topics studied in this field of science today. This study examined fumed silica-based composite as a strong and durable restorative material through flexural and cycling test methods. Objectives: The purpose of this study was to evaluate the effect of silanization, ageing, cycling and hybridizing on mechanical properties of fumed silica-based resin composite. Materials and Methods: Composites were made of light-cured copolymer based on Bisphenol A glycolmethacrylate (Bis-GMA and Triethylene glycoldimethacrylate (TEGDMA at proportion of 50:50 which reinforced by fumed silica filler. For each composite sample, 5 specimen bars were made using Teflon mould (2 x 2 x 25 mm3. The samples with 12 wt% fumed silica (FS were considered as a base line group. The samples were exposed to cyclic cold water (FS-CCW and hot water (FS-CHW. The effect of silanization and adding more filler was studied together with samples containing 12 wt% (FS-S (12, 16 wt% (FS-S (16 and 20 wt% (FS-S (20 fumed silica filler. The filler was silanized with (γ-MPS. The degree of conversion was assessed with Fourier Transform Infra-Red spectroscopy. Flexural properties were evaluated with the Three-Point Bending test. Flexural data were analyzed with Excel software. Hardness was measured with an Atomic Force Microscope (AFM. Results: The degree of conversion of the resin reached 74% within 24 hrs. Salinization allowed more filler to be wetted by resin. Addition of silanized particles from sample FS-S (12 to sample FS-S (20 improved the mechanical strength. Hybridizing fumed silica with nano-silica (FS-N had no significant effect on the strength, but nano-hardness improved greatly. Ageing and cycling had adverse effects on the strength of the sample FS. The flexural strength of FS-CHW was 72% less than FS sample. Conclusions: Sample FS-N with low diluent and filler percentage complied with the

  5. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  6. Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica.

    Science.gov (United States)

    Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold

    2011-03-01

    Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.

  7. Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study

    International Nuclear Information System (INIS)

    Phaner-Goutorbe, Magali; Dugas, Vincent; Chevolot, Yann; Souteyrand, Eliane

    2011-01-01

    Surface immobilization of oligonucleotide probes (oligoprobes) is a key issue in the development of DNA-chips. The immobilization protocol should guarantee good availability of the probes, low non-specific adsorption and reproducibility. We have previously reported a silanization protocol with tert-butyl-11-(dimethylamino)silylundecanoate performed by impregnation (Impregnation Protocol, IP) of silica substrates from dilute silane solutions, leading to surfaces bearing carboxylic groups. In this paper, the Impregnation protocol is compared with a Gas phase Protocol (GP) which is more suited to industrial requirements such as reliable and robust processing, cost efficiency, etc.... The morphology of the oligoprobe films at the nanoscale (characterized by Atomic Force Microscopy) and the reproducibility of subsequent oligoprobes immobilization steps have been investigated for the two protocols on thermal silica (Si/SiO 2 ) and glass slide substrates. IP leads to smooth surfaces whereas GP induces the formation of islands features suggesting a non-continuous silane layer. The reproducibility of the overall surface layer (18.75 mm 2 ) has been evaluated through the covalent immobilization of a fluorescent oligoprobes. Average fluorescent signals of 6 (a.u.) and 4 (a.u.) were observed for IP and GP, respectively, with a standard deviation of 1 for both protocols. Thus, despite a morphological difference of the silane layer at the nanometer scale, the density of the immobilized probes remained similar.

  8. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    Science.gov (United States)

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  9. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Directory of Open Access Journals (Sweden)

    Emilia Adriane Silva

    2013-07-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20: Gc, no treatment (control; Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s. Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC (TC. The specimens were submitted to the shear bond strength (SBS test using a universal testing machine (1 mm/min. Failure mode was assessed using optical and scanning electron microscopy (SEM, together with the surface roughness (Ra of the resin cement in the bracket using interference microscopy (IM. 2-way ANOVA and the Tukey test were used to compare the data (p>0.05. RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0, but thermocycling did not (p=0.6974. Considering the SBS results (MPa, Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9 and Gt-TC showed the lowest (8.45±6.7. For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157 but the surface treatments did not (p=0.458. For the thermocycled and non-thermocycled groups, Ra (µm was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.

  10. Silanes for Energy Efficient Elastomers

    NARCIS (Netherlands)

    Blume, Anke; Klockmann, O.; Moser, R.; Karasewitsch, E.; Herrmann, W.; Sostmann, S.

    2015-01-01

    The most mechanical rubber goods are based on carbon black filled compounds. Rubber compounds which have to withstand dynamic-mechanical forces are investigated in detail. Different silica / silane systems were introduced. Epoxysilanes show an outstanding performance in different rubber compounds. A

  11. Silica coating of nanoparticles by the sonogel process.

    Science.gov (United States)

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  12. Formation of Silver Nanoplates Layer on Amino Group Grafted Silica Coatings

    Directory of Open Access Journals (Sweden)

    Jurgis PILIPAVICIUS

    2016-05-01

    Full Text Available In this study the self-arrangement of Ag nanoplates on (3-Aminopropyltriethoxysilane (APTES silanized silica coatings was investigated. Silica coatings were made by sol-gel method and silanized in two different ways. The first one includes silanization in acidic 2-propanol solution, the other one – in dry toluene. Coatings were silanized by using different amounts of APTES in case of silanization in 2-propanol. Silver nanoplates layer of functionalized silica coatings was obtained via self-assembly. Coatings were investigated by atomic force microscopy (AFM, water contact angle measurements (CA, FT-IR analysis, and scanning electron microscopy (SEM. Research showed that dense Ag nanoplates arrangement occurs when there is a high amount of amino groups on the surface.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8405

  13. Method of high purity silane preparation

    Science.gov (United States)

    Tsuo, Y. Simon; Belov, Eugene P.; Gerlivanov, Vadim G.; Zadde, Vitali V.; Kleschevnikova, Solomonida I.; Korneev, Nikolai N.; Lebedev, Eugene N.; Pinov, Akhsarbek B.; Ryabenko, Eugene A.; Strebkov, Dmitry S.; Chernyshev, Eugene A.

    2000-01-01

    A process for the preparation of high purity silane, suitable for forming thin layer silicon structures in various semiconductor devices and high purity poly- and single crystal silicon for a variety of applications, is provided. Synthesis of high-purity silane starts with a temperature assisted reaction of metallurgical silicon with alcohol in the presence of a catalyst. Alcoxysilanes formed in the silicon-alcohol reaction are separated from other products and purified. Simultaneous reduction and oxidation of alcoxysilanes produces gaseous silane and liquid secondary products, including, active part of a catalyst, tetra-alcoxysilanes, and impurity compounds having silicon-hydrogen bonds. Silane is purified by an impurity adsorption technique. Unreacted alcohol is extracted and returned to the reaction with silicon. Concentrated mixture of alcoxysilanes undergoes simultaneous oxidation and reduction in the presence of a catalyst at the temperature -20.degree. C. to +40.degree. C. during 1 to 50 hours. Tetra-alcoxysilane extracted from liquid products of simultaneous oxidation and reduction reaction is directed to a complete hydrolysis. Complete hydrolysis of tetra-alcoxysilane results in formation of industrial silica sol and alcohol. Alcohol is dehydrated by tetra-alcoxysilane and returned to the reaction with silicon.

  14. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  15. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    Science.gov (United States)

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  16. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets

    Science.gov (United States)

    Parhizkar, Nafise; Ramezanzadeh, Bahram; Shahrabi, Taghi

    2018-05-01

    This research has focused on the effect of graphene oxide (GO) nano-fillers embedded in the sol-gel based silane coating on the corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by silane coatings. For this purpose, a mixture of Methyltriethoxysilane (MTES) and Tetraethylorthosilicate (TEOS) silane precursors was used for preparation of composite matrix and the GO nanosheets, which are covalently functionalized with 3-(Triethoxysilyl)propyl isocyanate (TEPI, IGO nano-fillers) and 3-aminopropyltriethoxysilane (APTES, AGO nano-fillers), were used as filler. The GO, AGO and IGO nanosheets were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible analysis and field emission-scanning electron microscopy techniques. The performance of the silane/epoxy coatings was investigated by pull-off adhesion, cathodic delamination, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results revealed that AGO and IGO nano-fillers significantly improved the corrosion resistance and adhesion properties of the top epoxy coating due to better compatibility with silane matrix, excellent barrier properties and the formation of covalent bonds with the top epoxy coating.

  17. Silane coupling agent for enhanced epoxy-iron oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Hamdy M. Naguib

    2018-01-01

    Full Text Available In this study, silane-treated Fe2O3 nanoparticles were successfully prepared using (3-aminopropyl triethoxysilane (APTES. The chemical structure and morphology of the obtained nanoparticles were investigated by several analysis techniques including FTIR, XRD, TEM and DLS. Both of untreated Fe2O3 (IO and silane-treated Fe2O3 (SIO nanoparticles were used in the preparation of epoxy nanocomposites with 5% by weight fraction. FTIR and XRD approved that SIO was successfully prepared with highly crystalline structure. TEM and DLS indicated the good dispersion of treated nanoparticles in the nanocomposite matrix, also the average particle size of nanofiller decreased to ∼200 nm after silane treatment. The dynamic properties for the prepared nanocomposites were studied using DMA and confirmed by nanoindentation technique. The results indicated that silane-treated nanoparticles can improve the hardness and Tg by 87.5% and 5 °C respectively at 5% weight fraction.

  18. An Atomic Force Microscopy Study of the Interactions Involving Polymers and Silane Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo L. Oréfice

    1998-12-01

    Full Text Available ABSTRACT: Silane coupling agents have been frequently used as interfacial agents in polymer composites to improve interfacial strength and resistance to fluid migration. Although the capability of these agents in improving properties and performance of composites has been reported, there are still many uncertainties regarding the processing-structure-property relationships and the mechanisms of coupling developed by silane agents. In this work, an Atomic Force Microscope (AFM was used to measure interactions between polymers and silica substrates, where silane networks with a series of different structures were processed. The influence of the structure of silane networks on the interactions with polymers was studied and used to determine the mechanisms involved in the coupling phenomenon. The AFM results showed that phenomena such as chain penetration, entanglements, intersegment bonding, chain conformation in the vicinities of rigid surfaces were identified as being relevant for the overall processes of adhesion and adsorption of polymeric chains within a silane network. AFM adhesion curves showed that penetration of polymeric chains through a more open silane network can lead to higher levels of interactions between polymer and silane agents.

  19. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  20. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.

    Science.gov (United States)

    Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J

    2003-06-01

    Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.

  1. Functionalization of magnetic nanoparticles with 3-aminopropyl silane

    International Nuclear Information System (INIS)

    Campelj, Stanislav; Makovec, Darko; Drofenik, Miha

    2009-01-01

    Superparamagnetic maghemite nanoparticles were functionalized with 3-aminopropyl triethoxy silane (APS). The influence of the different experimental parameters (temperature, pH, and reactant concentration) on the efficiency of the APS bonding directly to the maghemite nanoparticles or after their coating with a thin layer of silica was systematically studied. The functionalization was followed with measurements of the ζ-potential and direct measurements of the surface APS concentration on the nanoparticles. The surface concentration of the APS was much higher in the case when the APS was bonded to the silica-coated nanoparticles compared to bonding directly to the surfaces of the iron-oxide nanoparticles.

  2. Particulate silica test agents for hepa filters

    International Nuclear Information System (INIS)

    Bauman, A.J.

    1987-01-01

    The authors developed a solid test aerosol (Dri-Test) and a versatile portable delivery system for it. The aerosol is based on thermal silica, modified chemically to make it surface-hydrophobic and fluorescent under UV illumination. The fluorescent tag enables one to identify tested filters. Primary particles are 7 nm in diameter, spherical, and of density 2.20 gm-cm/sup -3/ bulk aerosol powder has a density of 0.048 gm-cm/sup -3/. Tests by means of laser particle counters, TSI Nucleation counters and California Measurements Quartz Microbalance mass analyzer show that the delivered aerosol has a bimodal size distribution with peaks near 80 and 100 nm. An estimated 40-50% of the aerosol has a size below the limits of detectability by laser (Las-X) counters, i.e. 50 nm. The surfachydrophobic aerosol is unaffected by ambient humidity and unlike hydrophilic silicas is innocuous to health

  3. Functionalization of Fe3O4 NPs by Silanization: Use of Amine (APTES and Thiol (MPTMS Silanes and Their Physical Characterization

    Directory of Open Access Journals (Sweden)

    Silvia Villa

    2016-10-01

    Full Text Available In this paper the results concerning the synthesis of magnetite (Fe3O4 nanoparticles (NPs, their functionalization using silane derivatives, such as (3-Aminopropyltriethoxysilane (APTES and (3-mercaptopropyltrimethoxysilane (MPTMS, and their exhaustive morphological and physical characterization by field emission scanning electron microscopy (FE-SEM with energy dispersion X-ray spectrometer (EDX analysis, AC magnetic susceptibility, UV-VIS and IR spectroscopy, and thermogravimetric (TGA analyses are reported. Two different paths were adopted to achieve the desired functionalization: (1 the direct reaction between the functionalized organo-silane molecule and the surface of the magnetite nanoparticle; and (2 the use of an intermediate silica coating. Finally, the occurrence of both the functionalization with amino and thiol groups has been demonstrated by the reaction with ninhydrin and the capture of Au NPs, respectively.

  4. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Deposition Uniformity of Coal Dust on Filters and Its Effect on the Accuracy of FTIR Analyses for Silica.

    Science.gov (United States)

    Miller, Arthur L; Drake, Pamela L; Murphy, Nathaniel C; Cauda, Emanuele G; LeBouf, Ryan F; Markevicius, Gediminas

    Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures. This study investigates a field-portable Fourier transform infrared (FTIR) method for end-of-shift (EOS) measurement of silica on filter samples. Since the method entails localized analyses, spatial uniformity of dust deposition can affect accuracy and repeatability. The study, therefore, assesses the influence of radial deposition uniformity on the accuracy of the method. Using laboratory-generated Minusil and coal dusts and three different types of sampling systems, multiple sets of filter samples were prepared. All samples were collected in pairs to create parallel sets for training and validation. Silica was measured by FTIR at nine locations across the face of each filter and the data analyzed using a multiple regression analysis technique that compared various models for predicting silica mass on the filters using different numbers of "analysis shots." It was shown that deposition uniformity is independent of particle type (kaolin vs. silica), which suggests the role of aerodynamic separation is negligible. Results also reflected the correlation between the location and number of shots versus the predictive accuracy of the models. The coefficient of variation (CV) for the models when predicting mass of validation samples was 4%-51% depending on the number of points analyzed and the type of sampler used, which affected the uniformity of radial deposition on the filters. It was shown that using a single shot at the center of the filter yielded predictivity adequate for a field method, (93% return, CV approximately 15%) for samples collected with 3-piece cassettes.

  6. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust.

    Science.gov (United States)

    Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2012-11-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.

  7. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  8. Extracting silica from rice husk treated with potassium permanganate

    International Nuclear Information System (INIS)

    Javed, S.H.; Naveed, S.

    2008-01-01

    As an agro-waste material the rice husk is abundantly available is rice growing areas. In many areas rice husk after burning involves disposal problems because of higher quantities of silica present in it. Rice husk contains about 20 per cent silica, which is present in hydrated amorphous form. On thermal treatment the silica converts into crystobalite, which is a crystalline form of silica. However amorphous silica can be produced under controlled conditions ensuring high reactivity and large surface area. Leaching the rice husk with organic acids and alkalies removes the metallic impurities from its surface. How a dilute solution of potassium permanganate affects the rice husk is the subject of this research paper. The rice husk was treated with the dilute solution of potassium permanganate at room temperature and then analyzed by SEM, TGA and the ash by analytical treatment after burning under controlled temperature. The SEM results revealed that the protuberances of the rice husk were eaten away by the solution of potassium permanganate. Pyrolysis of rice husks showed that the thermal degradation of the treated rice husk was faster than the untreated rice husk where as analytical results confirmed the presence of more amorphous silica than untreated rice husk. (author)

  9. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  10. Silane pre-treatments on copper and aluminium

    International Nuclear Information System (INIS)

    Deflorian, F.; Rossi, S.; Fedrizzi, L.

    2006-01-01

    A large part of aluminium products are coated with an organic layer in order to improve the corrosion resistance. Copper surfaces are also sometimes protected with an organic coating to improve the durability or the aesthetic properties. Examples of industrial applications are household appliances and heat exchanger components. For these applications it is not rare to have the industrial need to treat at the same time components made of aluminium and copper. In order to extend the service life of the organic coated copper a specific surface pre-treatment is often required. Nevertheless, probably because of the limited market of this application, no specific pre-treatments for copper are industrially developed, with the exception of cleaning procedures, but simply extensions of existing pre-treatments optimised for other metals (aluminium, zinc) are used. The application of silane pre-treatments as adhesion promoters for organic coated metals is remarkably increasing in the last decade, because silanes offer very good performance together with high environmental compatibility. The idea is therefore to try to develop a specific silane based pre-treatment for copper. The starting point is the existing silane products for aluminium, optimising the composition and the application conditions (concentration, temperature, pH of the bath, etc.) in order to develop a high performance copper alloy pre-treatment increasing the protective properties and the adhesion of a successively applied organic coating. Moreover these pre-treatments could be used for aluminium alloys too and therefore could be suggested for multi-metals components. The deposits were analysed using FTIR spectroscopy and optical and electron microscopic observations. A careful electrochemical characterisation, mainly by electrochemical impedance spectroscopy measurements (EIS) was carried out to highlight the presence of silane and to evaluate the performance of the different deposits. In order to study an

  11. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  12. Preparation and Physicochemical Properties of Functionalized Silica/Octamethacryl-Silsesquioxane Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Karolina Szwarc-Rzepka

    2013-01-01

    Full Text Available Alkoxysilane-grafted silica/polyhedral oligomeric silsesquioxane with methacryl substituents (SiO2/silane/POSS hybrid material was synthesized according to hydrolyzation and condensation reactions in the so-called “bifunctionalization process.” It is a new attractive system because of its physicochemical, especially thermal and structural, properties. This innovative method of preparation as well as specific physicochemical and useful properties determine the potential applications of such products in many industries. The structure and physicochemical parameters of obtained hybrid systems were characterized using infrared spectroscopy (FTIR, 13C and 29Si solid-state nuclear magnetic resonance (CP MAS NMR, and thermal analysis. The mechanism of bifunctionalization reaction was proposed. The chemical immobilization of silane coupling agent and Methacryl POSS onto silica support surface was noted during the study. Those changes caused a significant increase in the hydrophobic character of fillers obtained. Moreover, changes in thermal stability of SiO2/silane/POSS hybrid systems in comparison to pure POSS modifier were also observed.

  13. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  14. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-05-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated. By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it

  15. Thermogravimetric Analysis (TGA) Profile of Modified Sba-15 at Different Amount of Alkoxy silane Group

    International Nuclear Information System (INIS)

    Norhasyimi Rahmat; Nur Fathilah Mohd Yusof; Ezani Hafiza

    2014-01-01

    This study focused on meso porous silica SBA-15 modified with alkoxy silane functional group; phenyltriethoxysilane (PTES) and vinyltriethoxysilane (VTES) using direct synthesis and post-grafting methods. By direct synthesis method, SBA-15 template by triblock copolymer (P123) and functionalized with alkoxy silane groups at different amount of loadings were co-condensed with tetraethyl orthosilicate (TEOS) under acidic conditions. As for post-grafting method, different loadings of alkoxy silane groups were added after co-condensation of TEOS with P123 template. Both synthesis methods used calcination process to remove surfactant template at 550 degree Celsius for 5 hours. The derivatized SBA-15 was characterized by thermogravimetric analysis to evaluate the profile at different loadings of alkoxy silane groups with different synthesis method. At temperature range of 300-800 degree Celsius, post-grafting method displayed the highest weight loss of phenyl and vinyl groups. However, there was no significant difference of weight loss for different amount of organo silane groups. In this study, TGA has shown to be significant characterization means to determine the effects of different method used in synthesizing modified SBA-15. It was shown that different loading of phenyl and vinyl groups did not affect the efficiency of surfactant removal. (author)

  16. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    José de Jesús Figueroa-Lara

    2017-09-01

    Full Text Available This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA with silica (SiO2 nanoparticles plus zirconia (ZrO2 nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS. The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM, and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR.

  17. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    International Nuclear Information System (INIS)

    Wang Hua; Zhu Meifang; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO 2 were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N 2 adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  18. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    Directory of Open Access Journals (Sweden)

    Mónika Sándor

    2016-01-01

    Full Text Available A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS, using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES, added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA, through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES, trimethylethoxysilane (Me3ES, diethoxydimethylsilane (Me2DES and 1,2-bis(triethoxysilylethane (BETES onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  19. Hydrogen plasma treatment of silicon dioxide for improved silane deposition.

    Science.gov (United States)

    Gupta, Vipul; Madaan, Nitesh; Jensen, David S; Kunzler, Shawn C; Linford, Matthew R

    2013-03-19

    We describe a method for plasma cleaning silicon surfaces in a commercial tool that removes adventitious organic contamination and enhances silane deposition. As shown by wetting, ellipsometry, and XPS, hydrogen, oxygen, and argon plasmas effectively clean Si/SiO2 surfaces. However, only hydrogen plasmas appear to enhance subsequent low-pressure chemical vapor deposition of silanes. Chemical differences between the surfaces were confirmed via (i) deposition of two different silanes: octyldimethylmethoxysilane and butyldimethylmethoxysilane, as evidenced by spectroscopic ellipsometry and wetting, and (ii) a principal components analysis (PCA) of TOF-SIMS data taken from the different plasma-treated surfaces. AFM shows no increase in surface roughness after H2 or O2 plasma treatment of Si/SiO2. The effects of surface treatment with H2/O2 plasmas in different gas ratios, which should allow greater control of surface chemistry, and the duration of the H2 plasma (complete surface treatment appeared to take place quickly) are also presented. We believe that this work is significant because of the importance of silanes as surface functionalization reagents, and in particular because of the increasing importance of gas phase silane deposition.

  20. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization

    Science.gov (United States)

    Xu, Lihui; Zhuang, Wei; Xu, Bi; Cai, Zaisheng

    2011-04-01

    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.

  1. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yahong; Fang, Ying; Huang, Xiaojun; Zhu, Yinhui; Li, Wensheng [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yuan, Jianmin [College of Materials Engineering, Hunan University, Changsha, 410082 (China); Tan, Ligang [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 (China); Wang, Shuangyin [State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhenjun, E-mail: wooawt@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • A new silane coupling agent was synthesized based on KH570. • Basalt surface was modified using the new silane coupling agent. • Chemical bond between basalt and the new silane coupling agent was formed. • Asphalt mixture which used modified basalt show superior water stability. - Abstract: A new silane coupling agent was synthesized based on γ-(methacryloyloxy) propyltrimethoxysilane (KH570). The surface of basalt rocks was modified by KH570 and the new silane coupling agent (NSCA), and the interfacial interaction between silane coupling agent and basalt was also studied. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the silane coupling agent molecule bound strongly with basalt rocks. Scanning electronic microscopy (SEM) observation showed that a thin layer of coupling agent was formed on the surface of modified basalt. The boiling test and immersion Marshall test confirmed that the moisture sensitivity of basalt modified with the new silane coupling agent increased more significantly than that untreated and treated with KH570. The Retained Marshall Strength of basalt modified with the new coupling agent increased from 71.74% to 87.79% compared with untreated basalt. The results indicated that the new silane coupling agent played an important role in improving the interfacial performance between basalt and asphalt.

  2. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua; Zhu Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li Yaogang [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Zhang Qinghong, E-mail: zhangqh@dhu.edu.cn [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Wang Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China)

    2011-04-08

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO{sub 2} were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N{sub 2} adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  3. Shear bond strength of a self‑etched resin cement to an indirect ...

    African Journals Online (AJOL)

    2014-11-15

    Nov 15, 2014 ... 3M ESPE, St. Paul, MN, USA Silane treated glass powder, substituted dimethacrylate 1‑benzyl‑5‑phenyl‑barbic‑acid, calcium salt, silane treated silica, sodium p‑toluenesulfinate, 1,12‑dodecane dimethycrylate calcium hydroxide methacrylated aliphatic amine methacrylated aliphatic amine titanium dioxide.

  4. Silane grafted natural rubber and its compatibilization effect on silica-reinforced rubber tire compounds

    NARCIS (Netherlands)

    Sengloyluan, K.; Sahakaro, K.; Dierkes, W. K.; Noordermeer, J. W.M.

    2017-01-01

    Natural Rubber (NR) grafted with 3-octanoylthio-1-propyltriethoxysilane (NXT) was prepared by melt mixing using 1,1′-di(tert-butylperoxy)-3,3,5-trimethylcyclohexane as initiator at 140 °C with NXT contents of 10 and 20 parts per hundred rubber [phr] and initiator 0.1 phr. The silane grafted on NR

  5. Modified silica sol coatings for surface enhancement of leather.

    Science.gov (United States)

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  6. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei; Hsu, Chin-Chi; Lee, Pei-Shan; Lin, Chao-Sung

    2011-01-01

    -coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements

  7. Biofunctionalized anti-corrosive silane coatings for magnesium alloys.

    Science.gov (United States)

    Liu, Xiao; Yue, Zhilian; Romeo, Tony; Weber, Jan; Scheuermann, Torsten; Moulton, Simon; Wallace, Gordon

    2013-11-01

    Biodegradable magnesium alloys are advantageous in various implant applications, as they reduce the risks associated with permanent metallic implants. However, a rapid corrosion rate is usually a hindrance in biomedical applications. Here we report a facile two step procedure to introduce multifunctional, anti-corrosive coatings on Mg alloys, such as AZ31. The first step involves treating the NaOH-activated Mg with bistriethoxysilylethane to immobilize a layer of densely crosslinked silane coating with good corrosion resistance; the second step is to impart amine functionality to the surface by treating the modified Mg with 3-amino-propyltrimethoxysilane. We characterized the two-layer anticorrosive coating of Mg alloy AZ31 by Fourier transform infrared spectroscopy, static contact angle measurement and optical profilometry, potentiodynamic polarization and AC impedance measurements. Furthermore, heparin was covalently conjugated onto the silane-treated AZ31 to render the coating haemocompatible, as demonstrated by reduced platelet adhesion on the heparinized surface. The method reported here is also applicable to the preparation of other types of biofunctional, anti-corrosive coatings and thus of significant interest in biodegradable implant applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Rational interface design of epoxy-organoclay nanocomposites: role of structure-property relationship for silane modifiers.

    Science.gov (United States)

    Bruce, Alex N; Lieber, Danielle; Hua, Inez; Howarter, John A

    2014-04-01

    Montmorillonite was modified by three silane surfactants with different functionalities to investigate the role of surfactant structure on the properties of a final epoxy-organoclay nanocomposite. N-aminopropyldimethylethoxysilane (APDMES), an aminated monofunctional silane, was chosen as a promising surfactant for several reasons: (1) it will bond to silica in montmorillonite, (2) it will bond to epoxide groups, and (3) to overcome difficulties found with trifunctional aminosilane bonding clay layers together and preventing exfoliation. A trifunctional and non-aminated version of APDMES, 3-aminopropyltriethoxysilane (APTES) and n-propyldimethylmethoxysilane (PDMMS), respectively, was also studied to provide comparison to this rationally chosen surfactant. APDMES and APTES were grafted onto montmorillonite in the same amount, while PDMMS was barely grafted (nanocomposite gallery spacing was not dependent on the surfactant used. Different concentrations of APDMES modified montmorillonite yielded different properties, as concentration decreased glass transition temperature increased, thermal stability increased, and the storage modulus decreased. Storage modulus, glass transition temperature, and thermal stability were more similar for epoxy-organoclay composites modified with the same concentration of silane surfactant, neat epoxy, and epoxy-montmorillonite nanocomposite. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris

    Science.gov (United States)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    Using the University of California Berkeley Infrared Spatial Interferometer with a radio frequency (RF) filter bank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH3) and silane (SiH4) with very high spectral resolution (λ/Δλ~105) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~20R*), while the silane is produced in a region of relatively smooth gas flow much farther from the star (>~80R*). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40R*).

  10. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  11. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  12. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  13. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (pzirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  15. Spectroscopic diagnostics and modelling of silane microwave plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    1998-01-01

    Low-pressure silane plasmas (2-20 Pa) diluted with the noble gases helium and argon as well as hydrogen were generated by microwave excitation in order to determine plasma parameters and absolute particle number densities. Specific silane radicals (SiH, Si, H 2 , H) were measured by means of optical emission spectroscopy, whereas particle densities of silane, disilane and molecular hydrogen were measured with mass spectroscopy. Experimental results confirm model calculations, which were carried out to determine number densities of all silane radicals and of higher silanes as well as electron temperature. The electron temperature varies from 1.5 to 4 eV depending on pressure and gas mixture. The temperature of heavy particles is 450 K and the electron number density is 9x10 16 m -3 . The rotational temperatures of SiH are between room temperature and 2000 K due to increasing dissociative excitation. In the plasma the number density of silane is reduced, whereas the number density of molecular hydrogen is close to the silane density, which is fed in. Particle densities of SiH 3 , disilane and atomic hydrogen are in the range of a few per cent of the silane number density. At low pressure the SiH 2 density is similar to SiH 3 and decreases with increasing pressure due to heavy particle collisions with silane producing higher silanes. Particle densities of SiH and Si are only in the range of some 10 -3 of the silane density decreasing with increasing collisions of heavy particles with silane and molecular hydrogen. In mixtures with argon Penning reactions increase the silane dissociation. (author)

  16. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials

    Energy Technology Data Exchange (ETDEWEB)

    Manatunga, Danushika Charyangi [Sri Lanka Institute of Nanotechnology, Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Silva, Rohini M. de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Nalin de Silva, K.M., E-mail: nalinds@slintec.lk [Sri Lanka Institute of Nanotechnology, Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka)

    2016-01-01

    Graphical abstract: - Highlights: • Superhydrophobicity using nonfluorinated agents on cotton roughened with nanosilica. • Sol–gel method to hydrophobize with HDTMS, SA, OTES, and HDTMS/SA HDTMS/OTES hybrids. • WCA of 150° or greater with the treatment. • Increased hydrophobicity and soil repellency obtained when a hybrid mixture is used. • Combinational treatment is effective when compared with the fluorosilane treatment. - Abstract: Creation of differential superhydrophobicity by applying different non-fluorinated hydrophobization agents on a cotton fabric roughened with silica nanoparticles was studied. Cotton fabric surface has been functionalized with silica nanoparticles and further hydrophobized with different hydrophobic agents such as hexadecyltrimethoxy silane (HDTMS), stearic acid (SA), triethoxyoctyl silane (OTES) and hybrid mixtures of HDTMS/SA and HDTMS/OTES. The cotton fabrics before and after the treatment were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The wetting behavior of cotton samples was investigated by water contact angle (WCA) measurement, water uptake, water repellency and soil repellency testing. The treated fabrics exhibited excellent water repellency and high water contact angles (WCA). When the mixture of two hydrophobization agents such as HDTMS/OTES and HDTMS/SA is used, the water contact angle has increased (145°–160°) compared to systems containing HDTMS, OTES, SA alone (130°–140°). It was also noted that this fabricated double layer (silica + hydrophobization agent) was robust even after applying harsh washing conditions and there is an excellent anti-soiling effect observed over different stains. Therefore superhydrophobic cotton surfaces with high WCA and soil repellency could be obtained with silica and mixture of hydrophobization agents which are cost effective and environmentally friendly when compared with the fluorosilane

  17. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    International Nuclear Information System (INIS)

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  18. Amorphous silica in ultra-high performance concrete: First hour of hydration

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Hutter, Frank [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Chair for Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Sextl, Gerhard [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  19. Performance of soft clay stabilized with sand columns treated by silica fume

    Directory of Open Access Journals (Sweden)

    Samueel Zeena

    2018-01-01

    Full Text Available In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7% and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%. All sand columns models were constructed at (R.D= 60%. Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04 and the settlement reduction ratio (0.09 after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.

  20. Corrosion protection of galvanized steels by silane-based treatments

    Science.gov (United States)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that

  1. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  2. Characterization of amorphous silica obtained from KMnO/sub 4/ treated rice husk

    International Nuclear Information System (INIS)

    Javed, S.H.; Naveed, S.; Ramzan, N.

    2010-01-01

    Rice husk (RH) is available in large quantities in many rice producing areas of Pakistan. The use of rice husk as a fuel in heat generating systems adds to environmental pollution. Rice husk contains approximately 20 % silica which exists in hydrated form. This silica can be retrieved as amorphous silica under proper oxidizing conditions. In present study rice husk was treated with various dosages of potassium permanganate before subjecting to thermal treatment. Potassium permanganate acts as oxidizing agent during combustion process. Various ash samples were prepared by varying the potassium permanganate concentrations and the burning temperatures over long periods. Ash produced was characterized by XRD, FTIR and other analytical methods. It has been observed that low dosages of KMnO/sub 4/ favors the formation of amorphous silica along with low carbon contents. (author)

  3. Characterization of transparent silica films deposited on polymeric materials

    International Nuclear Information System (INIS)

    Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O.

    2002-01-01

    Silica films were synthesized by capacitively coupled RF PECVD using mixtures of organo-silane and oxygen as a source. The chemical bonding states and compositions of the films deposited were evaluated with FTIR and XPS. Film surfaces and cross-sections were observed by SEM. Oxygen transmission rates (OTR) of the films coated on polyethylene terephthalate (PET) substrates were measured by an isopiestic method. (Authors)

  4. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  5. Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Loch, Cheryl L; Ahn, Dongchan; Chen, Zhan

    2004-02-04

    In this paper, the feasibility of monitoring molecular structures at a moving polymer/liquid interface by sum frequency generation (SFG) vibrational spectroscopy has been demonstrated. N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATM, NH2(CH2)2NH(CH2)3Si(OCH3)3) has been brought into contact with a deuterated poly(methyl methacrylate) (d-PMMA) film, and the interfacial silane structure has been monitored using SFG. Upon initial contact, the SFG spectra can be detected, but as time progresses, the spectral intensity changes and finally disappears. Additional experiments indicate that these silane molecules can diffuse into the polymer film and the detected SFG signals are actually from the moving polymer/silane interface. Our results show that the molecular order of the polymer/silane interface exists during the entire diffusion process and is lost when the silane molecules traverse through the thickness of the d-PMMA film. The loss of the SFG signal is due to the formation of a new disordered substrate/silane interface, which contributes no detectable SFG signal. The kinetics of the diffusion of the silane into the polymer have been deduced from the time-dependent SFG signals detected from the AATM molecules as they diffuse through polymer films of different thickness.

  6. Methods for attaching polymerizable ceragenins to water treatment membranes using silane linkages

    Science.gov (United States)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  7. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation.

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    Full Text Available In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4% for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery.

  8. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    International Nuclear Information System (INIS)

    Dong Jie; Xu Zhenghe; Wang Feng

    2008-01-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2 /g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective

  9. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    Science.gov (United States)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  10. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering.

    Science.gov (United States)

    Wilson, Kristen S; Allen, Andrew J; Washburn, Newell R; Antonucci, Joseph M

    2007-04-01

    Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding, and n-octyltrimethoxysilane (OTMS), a silane that interacts through weak dispersion forces. Interphases with high OTMS mass fractions were found to be fractally rough with fractal dimensions, D(s), between 2.19 and 2.49. This roughness was associated with poor interfacial adhesion and inferior mechanical properties. Mean interparticle distances calculated for composites containing 10 mass % and 25 mass % silica suggest that the nanoparticles treated with more MPTMS than OTMS may be better dispersed than OTMS-rich nanoparticles. The results indicate that the covalent bonding and H-bonding of MPTMS-rich nanoparticles with the matrix are necessary for preparing well-dispersed nanocomposites. In addition, interphases containing equal masses of MPTMS and OTMS may yield composites with overall optimal properties. Finally, the combined SANS/USANS data could distinguish the differences, as a function of silane chemistry, in the nanoparticle/silane and silane/matrix interfaces that affect the overall mechanical properties of the composites. (c) 2006 Wiley Periodicals, Inc.

  11. Influence of Silane modified nano silica on the corrosion protection of zinc rich coating

    International Nuclear Information System (INIS)

    Nguyen Thuy Duong; To Thi Xuan Hang; Trinh Anh Truc; Pham Gia Vu; Bui Van Truoc; Thai Hoang

    2015-01-01

    Zinc rich coatings are the best effective primers for corrosion protection of carbon steel in aggressive conditions. For traditional zinc rich primer the zinc content is very high, more than 90 wt.%. The coating adhesion is decreased with the increase of zinc content, so that it is necessary to decrease the zinc content by using additives. In this study the nano silica modified by N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane was prepared and incorporated in zinc rich epoxy coatings containing 85 wt.% zinc powder. The corrosion protection performance of coatings was evaluated by electrochemical impedance spectroscopy. The results obtained show that the presence of nano silica improved corrosion protection of zinc rich epoxy coating and the best protection was obtained with 3 wt.% nano silica. (author)

  12. Tailored sPP/Silica Nano composite for Eco friendly Insulation of Extruded HVDC Cable

    International Nuclear Information System (INIS)

    Dang, B.; He, J.; Hu, J.; Zhou, Y.

    2015-01-01

    Cross-linked polyethylene (XLPE) is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP)/silica as an eco friendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5-3% nano silica. We found that the silica/sPP nano composite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nano silica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nano silica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nano composite reported here shows great potential as a candidate insulation material for future eco friendly extruded HVDC cables.

  13. High pH mobile phase effects on silica-based reversed-phase high-performance liquid chromatographic columns

    NARCIS (Netherlands)

    Kirkland, J.J.; Straten, van M.A.; Claessens, H.A.

    1995-01-01

    Aqueous mobile phases above pH 8 often cause premature column failure, limiting the utility of silica-based columns for applications requiring high pH. Previous studies suggest that covalently bound silane ligands are hydrolyzed and removed by high-pH mobile phases. However, we found that the

  14. Role of metastable atoms in argon-diluted silane Rf plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J.L.; Kroll, U.

    1994-01-01

    The evolution of the argon metastable density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastables in excitation to the argon 2P 2 state has been determined in comparison with production from the ground state. In silane plasmas, emission from SiH* is due essentially to electron impact dissociation of silane, whereas in 4% silane-in-argon plasmas, emission from SiH* seems to be due to electron impact excitation of the SiH ground state. These studies demonstrate that argon is not simply a buffer gas but has an influence on the dissociation rate in the plasma-assisted deposition of amorphous silicon using argon-diluted silane plasmas. (author) 7 figs., 30 refs

  15. [Effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker].

    Science.gov (United States)

    Zhu, Ming-yi; Zhang, Xiu-yin

    2015-06-01

    To evaluate the effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker (ABW). ABW was surface-treated with 0%, 1%, 2%, 3% and 4% silan coupling agent (γ-MPS), and mixed with resin matrix to synthesize 5 groups of composite resins. After heat-cured at 120 degrees centigrade for 1 h, specimens were tested in three-point flexure to measure strength according to ISO-4049. One specimen was selected randomly from each group and observed under scanning electron microscope (SEM). The data was analyzed with SAS 9.2 software package. The flexural strength (117.93±11.9 Mpa) of the group treated with 2% silane coupling agent was the highest, and significantly different from that of the other 4 groups (α=0.01). The amount of silane coupling agent has impact on the flexural strength of dental composite resins reinforced with whiskers; The flexual strength will be reduced whenever the amount is higher or lower than the threshold. Supported by Research Fund of Science and Technology Committee of Shanghai Municipality (08DZ2271100).

  16. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Tridib Kumar; Yoon, Diana [University of Maryland, Department of Chemical and Biomolecular Engineering (United States); Patel, Minal; Fisher, John [University of Maryland, Fischell Department of Bioengineering (United States); Ehrman, Sheryl, E-mail: sehrman@umd.ed [University of Maryland, Department of Chemical and Biomolecular Engineering (United States)

    2010-10-15

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m{sup 2}/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  17. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Science.gov (United States)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  18. Comparison with adsorption of Re (VII) by two different γ-radiation synthesized silica-grafting of vinylimidazole/4-vinylpyridine adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Pu [Beijing Key Laboratory for Solid Waste Utilization and Management, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871,China (China); Han, Dong; Zhai, Maolin [Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871,China (China); Li, Huibo, E-mail: hb0012@sina.com [China Institute of Atomic Energy, P.O. Box 275-26, Beijing 102413 (China)

    2017-02-15

    Highlights: • Two Re adsorbents were synthesized by grafting of vinylimidazole and vinylpyridine onto silanized silica gel via γ-radiation. • The Re adsorption capacities of SS-MPTS-VIMH and SS-MPTS-VPQ were 145.99 mg g{sup −1} and 71.08 mg g{sup −1}, respectively. • Both the adsorbents had fast adsorption kinetics, and could be used for column adsorption. • SS-MPTS-VPQ had good anti-interference abilities, and might be used for the disposal of Tc in the future. - Abstract: Two silica gel based adsorbents for Re (VII), i.e. SS-MPTS-VIMH and SS-MPTS-VPQ, were synthesised. Silica gel was used as the matrix for γ-radiation grafting, and the monomer of 1-vinyl imidazole (VIM) and 4-vinylpyridine (4-VP) was grafted onto the silica silanized by methacryloxy propyl trimethoxyl silane, respectively. A VIM concentration of 2 mol L{sup −1} and an absorbed dose of 30 kGy were the optimal grafting conditions for adsorbent SS-MPTS-VIM, and a 4-VP concentration of 4 mol L{sup −1} and an absorbed dose of 40 kGy were the optimal grafting conditions for adsorbent SS-MPTS-VP. At the certain condition, the grafting yield of SS-MPTS-VIM was 30.1% and that of SS-MPTS-VP was 21.0%. The adsorption capacity of adsorbent SS-MPTS-VIMH was 145.99 mg g{sup −1} and that of SS-MPTS-VPQ was 71.08 mg g{sup −1} according to the Langmuir model. The adsorbent SS-MPTS-VPQ had better adsorption properties of acid resistance and anti-interference than SS-MPTS-VIMH. Dynamic column experiments showed that protonated adsorbent SS-MTPS-VIMH could be recycled with good performance while quaternized adsorbent SS-MPTS-VPQ could not. The adsorbent SS-MPTS-VIMH belongs to weak anion exchange adsorbent and SS-MPTS-VPQ belongs to strong anion exchange adsorbent. This study paves a way to the synthesis and application of a novel silica base adsorbents for Re (VII).

  19. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  20. Mesoporous silica/polyacrylamide composite: Preparation by UV-graft photopolymerization, characterization and use as Hg(II) adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Ali, E-mail: ali.saad8803@gmail.com [Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said road, B.P. 51, 2070 La Marsa (Tunisia); Faculté des Sciences de Tunis, Université El Manar, PO Box 248, El Manar II, 2092 Tunis (Tunisia); Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Bakas, Idriss [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Laboratoire AQUAMAR, Equipe Matériaux Photocatalyse et Environnement, Faculté des Sciences, Université Ibn Zohr, B.P. 8106, Cité Dakhla, Agadir (Morocco); Piquemal, Jean-Yves; Nowak, Sophie [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Abderrabba, Manef, E-mail: abderrabbamanef@gmail.com [Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said road, B.P. 51, 2070 La Marsa (Tunisia); Chehimi, Mohamed M., E-mail: chehimi@icmpe.cnrs.fr [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Université Paris Est, ICMPE (UMR7182), CNRS, UPEC, F-94320 Thiais (France)

    2016-03-30

    Graphical abstract: - Highlights: • Mesoporous silica/polyacrylamide nanocomposite adsorbent was prepared by UV-graft polymerization. • Polyacrylamide was successfully grafted onto the silanized mesoporous silica. • The Hg(II) adsorption capacity of the nanocomposite was as high as 177 mg g{sup −1} after 1 h at RT. • Adsorption process was found to fit pseudo second order kinetics and exothermic. - Abstract: MCM-41 ordered mesoporous silica was prepared, aminosilanized and grafted with polyacrylamide (PAAM) through in situ radical photopolymerization process. The resulting composite, denoted PAAM-NH{sub 2}-MCM-41, the calcined and silanized reference MCM-41s were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} physisorption at 77 K. These complementary techniques brought strong supporting evidence for the silanization process followed by PAAM grafting. The surface composition was found to be PAAM-rich as judged by XPS. The composite was then employed for the uptake of Hg(II) from aqueous solutions. Adsorption was monitored versus pH, time, and temperature. The maximum adsorption capacity at 25 °C and pH 5.2 was 177 mg g{sup −1}. Kinetically, the equilibrium was reached within 60 min for a 100 mg L{sup −1} mercury solution. The adsorption of Hg(II) on PAAM-NH{sub 2}-MCM-41 composites followed second order kinetics. Thermodynamic parameters suggested that the favorable adsorption process is exothermic in nature and the adsorption is ascribed to a decrease in the degree of freedom of adsorbed ions which results in the entropy change. This work conclusively shows that mesoporous silica–polymer hybrid metal ion adsorbents (with robust silica–polymer interface) can be prepared in a simple way by in situ radical photopolymerization in the presence of

  1. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  2. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Kennedy, Ian M

    2009-01-01

    A facile one-pot microemulsion method has been developed for the synthesis of spherical silver core-silica shell (Ag-SiO 2 ) nanoparticles with europium chelates doped in the shell through a silane agent. The method is significantly more straightforward than other extant methods. Measurements of the luminescent emissions from the Ag-SiO 2 nanoparticles, in comparison with control silica nanoparticles without silver cores, showed that the presence of the silver cores can increase the fluorescence intensity approximately 24-fold and decrease the luminescence lifetime. This enhancement offers a potential increase in overall particle detectability with increased fluorophore photostability.

  3. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  4. The influence of silica functionalized with silanes on migration of heavy metals in soil

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr

    2016-03-01

    Full Text Available 3-Mercaptopropyl-trimethoxysilane and [3-(2-aminoethylaminopropyl]trimethoxysilane were used to functionalize the surface of silica from Piotrowice in Poland to stabilize heavy metals (HMs and arsenic in soil. The soil for the study was sampled from the impact zone of Głogów Copper Smelter and Refinery. The soil samples were exposed to five-step Tessier sequential extraction. The speciation studies were limited to five sequentially defined fractions in which metal content was determined. The addition of unmodified silica did not affect significantly the concentration of metals in individual fractions. Significant changes were noted upon introduction of functionalized silica in the soil. The hybrid formulations obtained significantly reduce the release of heavy metals and arsenic from soil sorption complex. The results indicate the potential use of functional formulations for reduction of metal migration in soil in the areas of exceeded concentration of heavy metals and arsenic in the soil, caused by industrial activity.

  5. Narrow line-width Tm3+ doped double-clad silica fiber laser based on in-line cascade biconical tapers filter

    International Nuclear Information System (INIS)

    Tian, Y; Zhao, J Q; Wang, W; Wang, Y Z; Gao, W

    2010-01-01

    Narrow line-width 793 nm laser diode cladding pumped Tm 3+ doped double cladding silica fiber laser with in-line four concatenated tapers filter was reported for the first time to our knowledge. These cascade tapers located 3.6 cm from the output end of the fiber laser was fabricated by heating and stretching method. The taper's transmitted power response as a function of wavelength was described by using local mode coupling theory and successive tapers filter model. The wavelength filter function of the in-line cascade tapers in a linear cavity fiber laser was demonstrated, and the experimental result agreed with these theories. The maximum output laser power was 736 mW, corresponding to single peak of laser spectrum with narrow line-width of ∼ 60 pm

  6. Magnesium silicide production and silane synthesis on its basis

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Mukashev, F.A.; Manakov, S.M.; Francev, U.V.; Kalblanbekov, B.M.; Akhter, P.; Abbas, M.; Hussain, A.

    2003-01-01

    We had developed an alternative method of production of magnesium silicide with use of ferroalloys of silicon. Magnesium silicide is raw material for silane synthesis. The essence of the method consist of sintering FS -75 (ferrosilicium with 75 % of silicon and 25 % of iron, made by ferroalloy factories) with metal magnesium at temperature of 650 deg. C. The X-ray analysis has shown formation of magnesium silicide. That is further used for synthesis of silane. The output of silane is 60 % in respect of the contents of silicon. After removing the water vapors the mass-spectrometer analysis has estimated the purity of silane as 99.95 % with no detection of phosphine and diborane. (author)

  7. Silane surface modification for improved bioadhesion of esophageal stents

    Science.gov (United States)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  8. Synthesis and characterization of multifunctional silica core-shell nanocomposites with magnetic and fluorescent functionalities

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Nichkova, Mikaela; Dumas, Randy K.; Gee, Shirley J.; Hammock, Bruce D.; Liu Kai; Kennedy, Ian M.

    2009-01-01

    Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb 3+ ) complex by a modified Stoeber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.

  9. Catalytic silica particles via template-directed molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P.

    2000-02-22

    The surfaces of silica particle were molecularly imprinted with an {alpha}-chymotrypsin transition-state analogue (TSA) by utilizing the technique of template-directed synthesis of mineralized materials. The resulting catalytic particles hydrolyzed amides in an enantioselective manner. A mixture of a nonionic surfactant and the acylated chymotrysin TSA, with the TSA acting as the headgroup at the surfactant-water interface, was used to form a microemulsion for silica particle formation. Incorporation of amine-, dihydroimidazole-, and carboxylate-terminated trialkoxysilanes into the particles during imprinting resulted in enhancement of the rates of amide hydrolysis. Acylated imprint molecules formed more effective imprints in the presence of the functionalized silanes than nonacylated imprint molecules. Particles surface-imprinted with the chymotrypsin TSA were selective for the trypsin substrate, and particles surface-imprinted with the L-isomer of the enzyme TSA were enantioselective for the D-isomer of the substrate.

  10. Surface functionalization of microwave plasma-synthesized silica nanoparticles for enhancing the stability of dispersions

    Science.gov (United States)

    Sehlleier, Yee Hwa; Abdali, Ali; Schnurre, Sophie Marie; Wiggers, Hartmut; Schulz, Christof

    2014-08-01

    Gas phase-synthesized silica nanoparticles were functionalized with three different silane coupling agents (SCAs) including amine, amine/phosphonate and octyltriethoxy functional groups and the stability of dispersions in polar and non-polar dispersing media such as water, ethanol, methanol, chloroform, benzene, and toluene was studied. Fourier transform infrared spectroscopy showed that all three SCAs are chemically attached to the surface of silica nanoparticles. Amine-functionalized particles using steric dispersion stabilization alone showed limited stability. Thus, an additional SCA with sufficiently long hydrocarbon chains and strong positively charged phosphonate groups was introduced in order to achieve electrosteric stabilization. Steric stabilization was successful with hydrophobic octyltriethoxy-functionalized silica nanoparticles in non-polar solvents. The results from dynamic light scattering measurements showed that in dispersions of amine/phosphonate- and octyltriethoxy-functionalized silica particles are dispersed on a primary particle level. Stable dispersions were successfully prepared from initially agglomerated nanoparticles synthesized in a microwave plasma reactor by designing the surface functionalization.

  11. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    Science.gov (United States)

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  12. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    International Nuclear Information System (INIS)

    Vibin, Muthunayagam; Vinayakan, Ramachandran; John, Annie; Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie

    2011-01-01

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  13. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Vibin, Muthunayagam [University of Kerala, Department of Biochemistry (India); Vinayakan, Ramachandran [National Institute for Interdisciplinary Science and Technology (CSIR), Photosciences and Photonics (India); John, Annie [Sree Chitra Tirunal Institute of Medical Sciences and Technology, Biomedical Technology Wing (India); Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie, E-mail: annieab2@yahoo.co.in [University of Kerala, Department of Biochemistry (India)

    2011-06-15

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0-72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  14. Application of peat filters for treating milkhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fahie, C.R.; Gagnon, G.A. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, Nova Scotia (Canada); Gordon, R.J. [Nova Scotia Agricultural College, Dept. of Engineering, Bible Hill, Nova Scotia (Canada)

    2002-06-15

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm{sup -3} . Parameters that were monitored include BOD, pH, NO{sub 3}-N, SO{sub 4}, TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD{sub 5} of approximately 1500 mg L{sup -1} , an average TSS concentration of 510 mg L{sup -1} and an average SRP concentration of 100 mg L{sup -1} . Removal efficiencies of BOD{sub 5} and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  15. Application of peat filters for treating milkhouse wastewater

    International Nuclear Information System (INIS)

    Fahie, C.R.; Gagnon, G.A.; Gordon, R.J.

    2002-01-01

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm -3 . Parameters that were monitored include BOD, pH, NO 3 -N, SO 4 , TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD 5 of approximately 1500 mg L -1 , an average TSS concentration of 510 mg L -1 and an average SRP concentration of 100 mg L -1 . Removal efficiencies of BOD 5 and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  16. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties

    International Nuclear Information System (INIS)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2014-01-01

    Highlights: • Superhydrophobic silica film was prepared by sol–gel process. • The surfaces exhibited superhydrophobicity with water contact angle greater than 150°. • AFM images showed the roughness increases with increasing the percentage of silylation agent. • Before and after modification, the particle size of silica was lower than 50 nm. - Graphical abstract: Schematic illustration of the surface modification of the silica nanoparticle by iso-OTMS on the glass substrate. - Abstract: In this paper, we study the two-step dip coating via a sol–gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H 2 O) was kept constant at 1:36:6.6 respectively, with 6 M NH 4 OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO 2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG–DTA analysis

  17. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  18. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Science.gov (United States)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  19. Tailored sPP/Silica Nanocomposite for Ecofriendly Insulation of Extruded HVDC Cable

    Directory of Open Access Journals (Sweden)

    Bin Dang

    2015-01-01

    Full Text Available Cross-linked polyethylene (XLPE is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP/silica as an ecofriendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5–3% nanosilica. We found that the silica/sPP nanocomposite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nanosilica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nanosilica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nanocomposite reported here shows great potential as a candidate insulation material for future ecofriendly extruded HVDC cables.

  20. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    Science.gov (United States)

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  1. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Damage and fracture in large aperture, fused silica, vacuum spatial filter lenses

    International Nuclear Information System (INIS)

    Campbell, J.H.; Edwards, G.J.; Marion, J.E.

    1995-01-01

    Optical damage that results in large scale fracture has been observed in the large, high-fluence, fused-silica, spatial filter lenses on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lenses and because the vacuum side of the lens is under tensile stress this damage can lead to catastrophic crack growth if the flaw (damage) size exceeds the critical flaw size for SiO 2 . The damaged 52 cm Nova lenses fracture into two and sometimes three large pieces. Although under full vacuum load at the time they fracture, the Nova lenses do not implode. Rather the authors have observed that the pieces lock together and air slowly leaks into the vacuum spatial filter housing through the lens cracks. The Beamlet lenses have a larger aspect ratio and peak tensile stress than Nova. The peak tensile stress at the center of the output surface of the Beamlet lens is 1,490 psi versus 810 psi for Nova. During a recent Beamlet high energy shot, a damage spot on the lens grew to the critical flaw size and the lens imploded. Post shot data indicate the lens probably fractured into 5 to 7 pieces, however, unlike Nova, these pieces did not lock together. Analysis shows that the likely source of damage is contamination from pinhole blow-off or out-gassing of volatile materials within the spatial filter. Contamination degrades the antireflection properties of the sol-gel coating and reduces its damage threshold. By changing the design of the Beamlet lens it may be possible to insure that it fails safe by locking up in much that same manner as the Nova lens

  3. Synthesis of Macroporous Silica Particles by Continuous Generation of Droplets for Insulating Materials.

    Science.gov (United States)

    Cho, Young-Sang; Lee, Dokyoung

    2018-09-01

    We report on the synthesis of porous silica particles by self-assembly routes in a continuous manner for application to thermal insulators. A continuous process was employed to produce tiny droplets containing precursor materials such as silica and organic templates for self-organization to fabricate particles with well defined pores. A rotating cylinder system or a spray drying process was adopted to form emulsions or aerosol droplets as micro-reactors for self-assembly, and the physical properties including the thermal conductivity of the resulting porous particles were compared between the two methods. The porous particles could be coated as a thick film by solution dripping, and the fluorination treatment using a silane coupling agent was performed to produce superhydrophobic surfaces of insulating layers by a lotus effect.

  4. The Effect of Silane Coupling Agents on a Composite Polyamide-6/Talc

    Directory of Open Access Journals (Sweden)

    H. Wiebeck

    1998-12-01

    Full Text Available This paper evaluates the effect of the addition of silane agents on the mechanical properties (tensile strength, hardness and flexibility of the composite polyamide-6/talc. For this purpose, 30% and 40% of a talc with and without the addition of silane agents were incorporated into polyamide-6. Three kinds of silane agents were used, resulting in nine formulations. Comparing the experimental results, it is concluded that the silane agents improve the mechanical properties of the composite material.

  5. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  6. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    Science.gov (United States)

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking.

  7. Dispersion and deagglomerat1on of nano-SiO2 particles with a silane modification reagent in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Stojanović Dušica B.

    2007-01-01

    Full Text Available The supercritical CO2 method was used in order to perform deagglomeration and improve the dispersion of nano-SiO2 particles. γ-Met-hacryloxypropyltrimethoxysilane was used as the surface modification reagent. The conventional method for coating nano-SiO2 particles was used as the comparison method. Considerable improvement of the dispersion and deagglomeration was found using supercritical CO2. Analysis of the TEM micrographs and DLS results showed the reduction of the average size of the agglomerates with the silane coupling reagent. Thermogravimetric analysis (TGA showed that the particles treated in super­critical CO2 were more thermally stable than particles treated by conventional method. Encapsulation of several particles coated with the silane coupling reagent was observed in certain parts of the primary particles. A chemical reaction takes place between the modification reagent, MEMO silane, and active hydroxyl groups on the surface of the nano-SiO2 particles. A larger quantity of MEMO silane reacted using the con­ventional method instead of the supercritical method. On the other hand, the reacted silane molecules were better arranged around the particle surface in the supercritical method because of the formation of covalent or self-assembled structures. Polycondensed structures were preferentially obtained in the conventional method. This was achieved by using supercritical CO2, which has a high solvating power such as organic solvents and physical properties (low viscosity, low surface tension and high diffusion coefficient similar to gases on the other side. These properties enable the sufficient and uniform wettability of nano-SiO2 particle surfaces. These results are important for obtaining nanofillers with improved dispersion and polymer wettability. Such nanofillers can be used to obtain composite materials with considerably improved mechanical characteristics.

  8. Silane@TiO2 nanoparticles-driven expeditious synthesis of ...

    Indian Academy of Sciences (India)

    of substituted benzo[4,5]imidazo[1,2-a]chromeno[4,3-d]pyrimidin-6-one by a reaction of ..... mal decomposition of the grafted vinyltriethoxy silane on the TiO2 .... using silane@TiO2 nanoparticles.a. Entry. Ar. Product Time (h) Yield (%)c. M.p. (.

  9. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  10. Nucleation of polystyrene latex particles in the presence of gamma-methacryloxypropyltrimethoxysilane: functionalized silica particles.

    Science.gov (United States)

    Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne

    2006-02-01

    Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.

  11. Development of the silane process for the production of low-cost polysilicon

    Science.gov (United States)

    Iya, S. K.

    1986-01-01

    It was recognized that the traditional hot rod type deposition process for decomposing silane is energy intensive, and a different approach for converting silane to silicon was chosen. A 1200 metric tons/year capacity commercial plant was constructed in Moses Lake, Washington. A fluidized bed processor was chosen as the most promising technology and several encouraging test runs were conducted. This technology continues to be very promising in producing low cost polysilicon. The Union Carbide silane process and the research development on the fluidized bed silane decomposition are discussed.

  12. Photooxidation of ethylene over Cu-modified and unmodified silica

    OpenAIRE

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  13. Changes in wetting properties of silica surface treated with DPPC in the presence of phospholipase A{sub 2} enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Wiacek, Agnieszka Ewa, E-mail: a.wiacek@poczta.umcs.lublin.pl [Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin (Poland)

    2010-10-01

    Wetting properties of silica plates contacted with dipalmitoylphosphatidylcholine (DPPC) or DPPC/enzyme (phospholipase PLA{sub 2}) in NaCl solution were determined by thin layer wicking and with a help of Washburn equation. The wicking experiments were performed both for bare plates and the silica plates precontacted overnight with the probe liquid saturated vapors the silica plates, as well as untreated and DPPC (or DPPC/enzyme) treated. Adsorption of DPPC on original silica plates increases a bit hydrophobic character of silica surface in such a way that hydrocarbon chains are directed outwards and the polar part towards the silica surface. However, after the enzyme action the products of DPPC hydrolysis by PLA{sub 2} (palmitic acid and lysophosphatidylcholine) increase again hydrophilic character of silica surface (an increase in acid-base interactions, {gamma}{sub s}{sup AB}). The changes of silica surface wettability are evidently dependent on the time of enzyme contacting with DPPC in NaCl solution. Although, the changes of total surface free energy of silica after treatment with DPPC/enzyme solution are minor about 2-6 mJ/m{sup 2}, the changes of the electron-donor ({gamma}{sub s}{sup -}) and Lifshitz-van der Waals ({gamma}{sub s}{sup LW}) component of the surface free energy are noticeable. Despite, these results are somehow preliminary, it seems that thin layer wicking method is an interesting tool for investigation of the effect of adsorbed DPPC on hydrophobicity/hydrophilicity of silica surface and influence of enzyme PLA{sub 2} action.

  14. Influence of silane films in the zinc coating post-treatment

    International Nuclear Information System (INIS)

    Costa, Marlla Vallerius da; Menezes, Tiago Lemos; Malfatti, Celia de Fraga; Muller, Iduvirges Lourdes; Oliveira, Claudia Trindade; Bonino, Jean-Pierre

    2009-01-01

    The sol-gel process based on silanes precursors appeared in recent years as a strong alternative for post-treatment to provide an optimization of the protective efficacy of zinc. Moreover, this process has been used to replace chemical chromating conversion based on hexavalent chromium. The silane films are hybrid compounds that provide characteristics of both polymeric materials, such as flexibility and functional compatibility, and ceramic materials, such as high strength and durability. The present work aimed to evaluate the influence of silane films obtained by dip-coating, on the characteristics of electrodeposited zinc coatings. The xerogel films showed a homogeneous surface and a better performance on the corrosion resistance than zinc coating without post-treatment, what can be confirmed by the electrochemical impedance results. These tests showed that application of the silane film promotes the occurrence of one more time constant compared to pure zinc system, hindering the corrosion process. (author)

  15. Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters.

    Science.gov (United States)

    Dembele, Fatimata; Tasso, Mariana; Trapiella-Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; Lequeux, Nicolas; Pons, Thomas

    2017-05-31

    Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test.

  16. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    Directory of Open Access Journals (Sweden)

    Agnieszka Witecka, Akiko Yamamoto, Henryk Dybiec and Wojciech Swieszkowski

    2012-01-01

    Full Text Available Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1, 3-aminopropyltriethoxysilane (S2, 3-isocyanatopyltriethoxysilane (S3, phenyltriethoxysilane (S4 and octadecyltriethoxysilane (S5. The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  17. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    Science.gov (United States)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  18. Effect of Surface Treatment, Silane, and Universal Adhesive on Microshear Bond Strength of Nanofilled Composite Repairs.

    Science.gov (United States)

    Fornazari, I A; Wille, I; Meda, E M; Brum, R T; Souza, E M

     The aim of this study was to evaluate the effect of surface treatment and universal adhesive on the microshear bond strength of nanoparticle composite repairs.  One hundred and forty-four specimens were built with a nanofilled composite (Filtek Supreme Ultra, 3M ESPE). The surfaces of all the specimens were polished with SiC paper and stored in distilled water at 37°C for 14 days. Half of the specimens were then air abraded with Al 2 O 3 particles and cleaned with phosphoric acid. Polished specimens (P) and polished and air-abraded specimens (A), respectively, were randomly divided into two sets of six groups (n=12) according to the following treatments: hydrophobic adhesive only (PH and AH, respectively), silane and hydrophobic adhesive (PCH, ACH), methacryloyloxydecyl dihydrogen phosphate (MDP)-containing silane and hydrophobic adhesive (PMH, AMH), universal adhesive only (PU, AU), silane and universal adhesive (PCU, ACU), and MDP-containing silane and universal adhesive (PMU, AMU). A cylinder with the same composite resin (1.1-mm diameter) was bonded to the treated surfaces to simulate the repair. After 48 hours, the specimens were subjected to microshear testing in a universal testing machine. The failure area was analyzed under an optical microscope at 50× magnification to identify the failure type, and the data were analyzed by three-way analysis of variance and the Games-Howell test (α=0.05).  The variables "surface treatment" and "adhesive" showed statistically significant differences for p<0.05. The highest mean shear bond strength was found in the ACU group but was not statistically different from the means for the other air-abraded groups except AH. All the polished groups except PU showed statistically significant differences compared with the air-abraded groups. The PU group had the highest mean among the polished groups. Cohesive failure was the most frequent failure mode in the air-abraded specimens, while mixed failure was the most common

  19. Organic coatings silane-based for AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Junying; Li Qing; Zhong Xiankang; Li Longqin; Zhang Liang

    2010-01-01

    Organic coatings silane-based containing electron withdrawing group or electron donating group have been synthesized and evaluated as prospective surface treatments for AZ91D magnesium alloy by hydrolysis and condensation reaction of the different silanes. Electrochemical tests were employed to confirm the corrosion resistance ability of the two kinds of organic coatings. The results showed that the coating with electron donating group had better corrosion protection performance. On the basis of the spatial configuration and the density of charge of those silanes molecules which was obtained through Gaussian 03 procedure based on B3LYP and density functional theory, combining experiment results, the rational explanation was provided.

  20. Hybrid membrane using polyethersulfone-modification of multiwalled carbon nanotubes with silane agent to enhance high performance oxygen separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-04-01

    Full Text Available Mixed matrix membrane comprising carbon nanotubes embedded in polymer matrix have become one of the emerging technologies. This study was investigated in order to study the effect of silane agent modification towards carbon nanotubes (CNT surface at different concentration on oxygen enrichment performances of asymmetric mixed matrix membrane. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The gas separation performance of the asymmetric flat sheet mixed matrix membranes with modified CNT were relatively higher compared to the unmodified CNT. Hence, coated hollow fiber mixed matrix membrane with chemical modification on CNT surface using (3-aminopropyl-triethoxy methyl silane agent can potentially enhance the gas separation performance of O2 and N2.

  1. Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic.

    Science.gov (United States)

    Spohr, Ana Maria; Sobrinho, Lourenço Correr; Consani, Simonides; Sinhoreti, Mario Alexandre Coelho; Knowles, Jonathan C

    2003-01-01

    The aim of this study was to evaluate the effect of different ceramic surface treatments on the tensile bond strength between IPS Empress 2 ceramic framework and Rely X adhesive resin cement, with or without the application of a silane coupling agent. One hundred twenty disks were made, embedded in resin, and randomly divided into six groups: group 1 = sandblasting (100 microm), no silanation; group 2 = sandblasting (100 microm), silane treatment; group 3 = sandblasting (50 microm), no silanation; group 4 = sandblasting (50 microm), silane treatment; group 5 = hydrofluoric acid etching, no silanation; and group 6 = hydrofluoric acid etching, silane treatment. The disks were bonded into pairs with adhesive resin cement. All samples were stored in distilled water at 37 degrees C for 24 hours and then thermocycled. The samples were submitted to tensile testing. The use of silane improved the bond strength in relation to the groups in which silane was not applied (P Empress 2 ceramic framework and resin agent.

  2. Enhancement of thermal stability of multiwalled carbon nanotubes via different silanization routes

    International Nuclear Information System (INIS)

    Scheibe, B.; Borowiak-Palen, E.; Kalenczuk, R.J.

    2010-01-01

    This work presents an effect of two different silanization procedures on thermal and structural properties of oxidized and oxidized followed by sodium borohydrate (NaBH 4 ) reduction of multiwalled carbon nanotubes (MWCNTs). Purified sample was oxidized in a mixture of nitric and sulfuric acids in a reflux. An oxidized material was divided into two batches. The first batch underwent a silanization procedure directly, while the second batch was reduced by NaBH 4 treatment prior to the silanization. The silanization experiments were performed: (A) with γ-aminopropyltriethoxysilane (APTES) at room temperature in acetone (pH ∼7) and (B) with condensated γ-aminopropyltriethoxysilane at 40 o C in water (pH 4). The extent of the functionalization of the samples after each procedure was examined by Raman spectroscopy. The vibrational properties of the materials were studied via Fourier transform infrared spectroscopy. Boehms titration technique was applied to quantify the amount of the functional groups on MWCNTs. The morphology of the pristine and functionalized carbon nanotubes was exposed to high-resolution transmission electron microscopy analysis. The energy dispersive X-ray (EDX) analysis was used to characterize the elemental composition of each sample. The effect of the silanization process on the thermal properties of MWCNTs was investigated by thermogravimetry analysis. Interestingly, the significant increase of the thermal stability of silanized MWCNTs samples in respect to the pristine MWCNTs was observed.

  3. Key factors influencing the stability of silane solution during long-term surface treatment on carbon steel

    International Nuclear Information System (INIS)

    Xian, Xiaochao; Chen, Minglu; Li, Lixin; Lin, Zhen; Xiang, Jun; Zhao, Shuo

    2013-01-01

    Highlights: •The corrosion-resistance time of silane films decreases with increasing cycle numbers. •The morphology of silane films prepared from aged solution is inhomogeneous. •Introduction of contamination ions is one reason for the poor property of aged solution. •Consumption of silane is the other reason for the poor property of aged solution. •Fe 3+ accumulated is the key factor influencing the property of silane solution. -- Abstract: The mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane were used for surface treatment of carbon steel, aiming to investigate the factors influencing the stability of silane solution during long-term experiment from two aspects. One is the concentrations of contamination ions, and the other is mass of silane consumed per cycle which is calculated according to concentration of Si measured by silicon molybdenum blue photometry. The results indicate that the accumulation of contamination ions, especially Fe 3+ , is the main factor leading to the condensation between the Si–OH groups in silane solution, which is responsible for the downward stability of silane solution

  4. Chemical modification of organoclay cloisite ®30B with silane 3-aminopropyltriethoxysilane

    International Nuclear Information System (INIS)

    Bertuoli, P.T.; Frizzo, V.P.; Zattera, A.J.; Scienza, L.C.

    2014-01-01

    The montmorillonite (MMT) is the inorganic phase more used in obtaining polymer nanocomposites. To improve the compatibility and dispersion of MMT in the polymer resin, many researchers have performed the process of functionalization of the clay with silane. This study was performed with the objective of modifying the Cloisite®30B clay with 3-aminopropyltriethoxysilane (APS). The modification was carried out by ion-exchange method using 10 g of clay Cloisite®30B (MMT-30B), 500 mL of hydroalcoholic solution (75/25 v/v) and 10 g of silane. The clay modified with silane (S-MMT_3_0_B) was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR). Through the XRD was observed an increase in the basal spacing d_0_0_1 of 1.82 to 2.2 nm. With the analysis of TGA was observed that S-MMT_3_0_B showed greater weight loss than MMT-30B due to decomposition of the silane. The presence of band at 1562 cm-1 in the FTIR spectrum of S-MMT_3_0_B confirmed the presence of silane in the structure of the modified clay. (author)

  5. Low cost silicon solar array project: Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon

    Science.gov (United States)

    Breneman, W. C.

    1978-01-01

    Silicon epitaxy analysis of silane produced in the Process Development Unit operating in a completely integrated mode consuming only hydrogen and metallurgical silicon resulted in film resistivities of up to 120 ohms cm N type. Preliminary kinetic studies of dichlorosilane disproportionation in the liquid phase have shown that 11.59% SiH4 is formed at equilibrium after 12 minutes contact time at 56 C. The fluid-bed reactor was operated continuously for 48 hours with a mixture of one percent silane in helium as the fluidizing gas. A high silane pyrolysis efficiency was obtained without the generation of excessive fines. Gas flow conditions near the base of the reactor were unfavorable for maintaining a bubbling bed with good heat transfer characteristics. Consequently, a porous agglomerate formed in the lower portion of the reactor. Dense coherent plating was obtained on the silicon seed particles which had remained fluidizied throughout the experiment.

  6. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification

    Science.gov (United States)

    Taghvaei-Ganjali, Saeed; Zadmard, Reza; Saber-Tehrani, Mandana

    2012-06-01

    For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N2 adsorption-desorption, thermal gravimetric analysis (TGA), 29Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H+ determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.

  7. Effects of silane application on the shear bond strength of ceramic orthodontic brackets to enamel surface

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2016-12-01

    Full Text Available Background: Fixed orthodontic appliances with ceramic brackets are used frequently to fulfill the aesthetic demand of patient through orthodontic treatment. Ceramic brackets have some weaknesses such as bond strength and enamel surface damage. In high bond strength the risk of damage in enamel surfaces increases after debonding. Purpose: This study aimed to determine the effect of silane on base of bracket and adhesive to shear bond strength and enamel structure of ceramic bracket. Method: Sixteen extracted upper premolars were randomly divided into four groups based on silane or no silane on the bracket base and on the adhesive surface. Design of the base on ceramic bracket in this research was microcrystalline to manage the influence of mechanical interlocking. Samples were tested in shear mode on a universal testing machine after attachment. Following it, adhesive remnant index (ARI scores were used to assess bond failure site. Statistical analysis was performed using a two-way Anova and the Mann-Whitney test. A scanning electron microscope (SEM with a magnification of 2000x was used to observe enamel structure after debonding. Result: Shear bond strength was increased between group without silane and group with silane on the base of bracket (p<0,05. There was no significance different between group without silane and group with silane on adhesive (p<0,05. Conclusion: Application of silane on base of bracket increases shear bond strength, however, application of silane on adhesive site does not increase shear bond strength of ceramic bracket. Most bonding failure occurred at the enamel adhesive interface and damage occurred on enamel structure in group contains silane of ceramic bracket.

  8. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  9. Mesoporous silica as carrier of antioxidant for food packaging materials

    Science.gov (United States)

    Buonocore, Giovanna Giuliana; Gargiulo, Nicola; Verdolotti, Letizia; Liguori, Barbara; Lavorgna, Marino; Caputo, Domenico

    2014-05-01

    Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packaging.

  10. Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE composites

    Directory of Open Access Journals (Sweden)

    Yang Tong

    2018-04-01

    Full Text Available Influence of the coupling agent on microstructure and dielectric properties of ceramic–polymer composites is systematically studied using CaCu3Ti4O12 (CCTO as the filler, trichloro-(1H,1H,2H,2H-perfluorooctyl-silane (Cl3-silane as coupling agent, and P(VDF-CTFE 88/12mol.% copolymer as the matrix. It is demonstrated that Cl3-silane molecules can be attached onto CCTO surface using a simple process. The experimental results show that coating CCTO with Cl3-silane can improve the microstructure uniformity of the composites due to the good wettability between Cl3-silane and P(VDF-CTFE, which also significantly improves the electric breakdown field of the composites. It is found that the composites using CCTO coated with 1.0wt.% Cl3-silane exhibit a higher dielectric constant with a higher electric breakdown field. For the composites with 15vol.% CCTO that is coated with 1.0wt.% Cl3-silane, an electric breakdown field of more than 240MV/m is obtained with an energy density of more than 4.5J/cm3. It is also experimentally found that the dielectric constant can be used to easily identify the optimized content of coupling agent.

  11. Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE) composites

    Science.gov (United States)

    Tong, Yang; Zhang, Lin; Bass, Patrick; Rolin, Terry D.; Cheng, Z.-Y.

    Influence of the coupling agent on microstructure and dielectric properties of ceramic-polymer composites is systematically studied using CaCu3Ti4O12 (CCTO) as the filler, trichloro-(1H,1H,2H,2H-perfluorooctyl)-silane (Cl3-silane) as coupling agent, and P(VDF-CTFE) 88/12mol.% copolymer as the matrix. It is demonstrated that Cl3-silane molecules can be attached onto CCTO surface using a simple process. The experimental results show that coating CCTO with Cl3-silane can improve the microstructure uniformity of the composites due to the good wettability between Cl3-silane and P(VDF-CTFE), which also significantly improves the electric breakdown field of the composites. It is found that the composites using CCTO coated with 1.0wt.% Cl3-silane exhibit a higher dielectric constant with a higher electric breakdown field. For the composites with 15vol.% CCTO that is coated with 1.0wt.% Cl3-silane, an electric breakdown field of more than 240MV/m is obtained with an energy density of more than 4.5J/cm3. It is also experimentally found that the dielectric constant can be used to easily identify the optimized content of coupling agent.

  12. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    International Nuclear Information System (INIS)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I.; Veranes-Pantoja, Yaymarilis; Cauich-Rodríguez, Juan V.; Cervantes-Uc, José M.

    2014-01-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results

  13. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Veranes-Pantoja, Yaymarilis [Centro de Biomateriales, Universidad de la Habana, Avenida Universidad, s/n, e/G y Ronda, C.P. 10600 C. de La Habana (Cuba); Cauich-Rodríguez, Juan V. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Cervantes-Uc, José M., E-mail: manceruc@cicy.mx [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico)

    2014-07-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results.

  14. Superhydrophobic, Superoleophobic and Antimicrobial Coatings for the Protection of Silk Textiles

    Directory of Open Access Journals (Sweden)

    Dimitra Aslanidou

    2018-03-01

    Full Text Available A method to produce multifunctional coatings for the protection of silk is developed. Aqueous dispersion, free of any organic solvent, containing alkoxy silanes, organic fluoropolymer, silane quaternary ammonium salt, and silica nanoparticles (7 nm in mean diameter is sprayed onto silk which obtains (i superhydrophobic and superoleophobic properties, as evidenced by the high contact angles (>150° of water and oil drops and (ii antimicrobial properties. Potato dextrose agar is used as culture medium for the growth of microorganisms. The protective coating hinders the microbial growth on coated silk which remains almost free of contamination after extensive exposure to the microorganisms. Furthermore, the multifunctional coating induces a moderate reduction in vapor permeability of the treated silk, it shows very good durability against abrasion and has a minor visual effect on the aesthetic appearance of silk. The distinctive roles of the silica nanoparticles and the antimicrobial agent on the aforementioned properties of the coating are investigated. Silica nanoparticles induce surface structures at the micro/nano-meter scale and are therefore responsible for the achieved extreme wetting properties that promote the antimicrobial activity. The latter is further enhanced by adding the silane quaternary ammonium salt in the composition of the protective coating.

  15. Interpretation of Mechanical and Thermal Properties of Heavy Duty Epoxy Based Floor Coating Doped by Nanosilica

    Science.gov (United States)

    Nikje, M. M. Alavi; Khanmohammadi, M.; Garmarudi, A. Bagheri

    Epoxy-nano silica composites were prepared using Bisphenol-A epoxy resin (Araldite® GY 6010) resin obtained from in situ polymerization or blending method. SiO2 nanoparticles were pretreated by a silan based coupling agent. Surface treated nano silica was dispersed excellently by mechanical and ultrasonic homogenizers. A dramatic increase in the interfacial area between fillers and polymer can significantly improve the properties of the epoxy coating product such as tensile, elongation, abrasion resistance, etc.

  16. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting

    International Nuclear Information System (INIS)

    Qiu Jingyi; Wang Ziyue; Li Huibo; Xu Ling; Peng Jing; Zhai Maolin; Yang Chao; Li Jiuqiang; Wei Genshuan

    2009-01-01

    Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5-5.0. Furthermore, even in strong acidic (4.0 mol/L HNO 3 ) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters.

  17. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  18. Distribution of silica species in cooling water system in nuclear power station

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Onozuka, Teruo; Shindo, Manabu.

    1995-01-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica (∼600 ppb) and ionic silica was found to be predominant (∼90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author)

  19. Distribution of silica species in cooling water system in nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Kenichi [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Onozuka, Teruo; Shindo, Manabu

    1995-12-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica ({approx}600 ppb) and ionic silica was found to be predominant ({approx}90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author).

  20. Phosphoryl functionalized mesoporous silica for uranium adsorption

    International Nuclear Information System (INIS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  1. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  2. Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    Thi Tuyet Mai Phan

    2016-03-01

    Full Text Available The surface modification of synthesized nano-BaTiO3 particles was carried out using γ-aminopropyl trimethoxy silane (γ-APS in an ethanol/water solution. The modified particles were characterized by FTIR, TGA, surface charge analysis, and by dielectric constant measurement. The silane molecules were attached to the surface of BaTiO3 particles through SiOBaTiO3 bonds. The γ-APS grafted on BaTiO3 made the dielectric constant of the particles increase at frequencies ≥0.3 kHz in a wide range of temperature (25 °C–140 °C, due to the presence of NH2 groups. The dependence of the polarization vs. electrical field was measured in order to elucidate the dielectric behavior of the silane treated BaTiO3 in comparison to untreated BaTiO3. The nanocomposite based on epoxy resin containing BaTiO3 nanoparticles untreated and treated with γ-APS was also prepared and characterized. The results indicated that the γ-APS-modified BaTiO3 surfaces significantly enhanced the dielectric property of the nanocomposite.

  3. Comparison of detailed and reduced kinetics mechanisms of silane oxidation in the basis of detonation wave structure problem

    Science.gov (United States)

    Fedorov, A. V.; Tropin, D. A.; Fomin, P. A.

    2018-03-01

    The paper deals with the problem of the structure of detonation waves in the silane-air mixture within the framework of mathematical model of a nonequilibrium gas dynamics. Detailed kinetic scheme of silane oxidation as well as the newly developed reduced kinetic model of detonation combustion of silane are used. On its basis the detonation wave (DW) structure in stoichiometric silane - air mixture and dependences of Chapman-Jouguet parameters of mixture on stoichiometric ratio between the fuel (silane) and an oxidizer (air) were obtained.

  4. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres

    International Nuclear Information System (INIS)

    Cao Ruijian; Zhang Xiongfei; Wu Hong; Wang Jingtao; Liu Xiaofei; Jiang Zhongyi

    2011-01-01

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag + via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag + /SiO 2 -PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the π-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m 2 h) and an enrichment factor of 4.3 at the doping content of 5%.

  5. Enhanced Stormwater Contaminant Removal Using Tree Filters And Modified Sorbents

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V. K.; Boving, T. B.; Oyanedel-Craver, V.

    2012-12-01

    Stormwater runoff, particularly in urban areas, contains several groups of contaminants that negatively impact surface- and groundwater quality if left untreated. Contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat runoff before discharging it. Many BMPs, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff; but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, three materials (red cedar wood chips, expanded shale, and crushed concrete) were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that of the three materials investigated, wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAHs by sorption processes. In case of AgNP amendments to wood, less uptake and more desorption from the wood matrix was observed. Relative to wood, expanded shale and crushed concrete exhibited less affinity for QAS (results for AgNPs are pending). Currently, batch isotherm and unsaturated flow column studies are under way to determine the performance of the amended materials with regard to removal of bacteria, nutrients, heavy metals, and PAH from artificially contaminated runoff. In this presentation, the contaminant removal efficiency of all modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  6. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei-Ganjali, Saeed, E-mail: S-taghvaei@IAU-tnb.ac.ir [Chemistry Department, Islamic Azad University, North Tehran Branch, Postal Code: 1913674711, Tehran (Iran, Islamic Republic of); Zadmard, Reza [Chemistry and Chemical Engineering Research Center of Iran, Postal Code: 1496813151, Tehran (Iran, Islamic Republic of); Saber-Tehrani, Mandana [Chemistry Department, Islamic Azad University, North Tehran Branch, Postal Code: 1913674711, Tehran (Iran, Islamic Republic of)

    2012-06-01

    For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N{sub 2} adsorption-desorption, thermal gravimetric analysis (TGA), {sup 29}Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H{sup +} determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.

  7. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  8. Effect of Surface Modification of Nanosilica on the Viscoelastic Properties of Its Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Mortezaei

    2008-12-01

    Full Text Available The preparation and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. Also the surface tension of polystyrene, native (hydrophilic silica and silane-modified (hydrophobic silica were determined. Two kinds of polystyrene/silica (treated and non-treated nanocomposites were prepared with different filler loadings by solution method. Their viscoelastic properties were studied by dynamic stress controlled rotary shear rheometer. Solid-like response of polystyrene/native silica nanocomposites were observed in the terminal zone. Solid inclusionsincrease the storage modulus more than the loss modulus, hence decrease the material damping. By increasing filler volume fraction, the particles tend to agglomerate and build clusters. The presence of clusters increases the viscosity, the moduli and the viscoelastic non-linearity of the composites.Treating the filler surface reduces its tendency to agglomerate as well as the adhesion between the particles and the polystyrene, leading to lower viscosity and interfacial slippage. Also the loss modulus peak is affected significantly by the particle surface area and its surface property in silica-filled polystyrene, which corresponds to its glass transition.

  9. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  10. IR spectroscopy study of SBA-15 silicas functionalized with the ethylthiocarbamidepropyl groups and their interactions with Ag(I) and Hg(II) ions

    Science.gov (United States)

    Melnyk, Inna V.; Nazarchuk, Galyna I.; Václavíková, Miroslava; Zub, Yuriy L.

    2018-04-01

    Mesoporous structure of silica is determined by the type of template, but the introduction of functional groups during the synthesis has additional influence. The structure of SBA-15 may be violated by the introduction of long functions, such as ≡Si(CH2)3NHC(=S)NHC2H5. These ethylthiocarbamidepropyl groups can form complexes with metal ions in thiol or thione tautomeric forms. We determined that the 2D hexagonal p6 mm structure is preserved for SBA-15 with thiourea groups at maximal TEOS:trifunctional silane ratio (mol) = 10:2, which was confirmed by TEM and by the presence of an intense reflex in the small-angle region of diffractograms of the final product. It was shown that the obtained sorbents possess high kinetic characteristics. The experimental data fit pseudo-second-order kinetic equation, but the rate constants depend on the content of functional groups in the surface layer. Template Pluronic P-123 defines the porosity of functional mesoporous silica materials even at increasing content of trifunctional silane in the initial solution. Infrared spectroscopy analysis showed that thione form of thiourea ligand is prevalent on the surface of pores of mesoporous samples. However, during the sorption of silver(I) ions, there are both thione and thiol forms on the surface. Thione form is transformed into thiol with increasing concentration of mercury(II) ions in the sorption solution. Adsorption experiments showed that the SBA-15 silicas functionalized with ethylthiocarbamidepropyl groups had high selectivity for silver(I) ions and could concentrate Ag(I) ions from metal ions mixture at pH 2.

  11. Stability and activity of lactate dehydrogenase on biofunctional layers deposited by activated vapor silanization (AVS) and immersion silanization (IS)

    Science.gov (United States)

    Calvo, Jorge Nieto-Márquez; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José; Arroyo-Hernández, María

    2017-09-01

    The interaction between surfaces and biological elements, in particular, proteins is critical for the performance of biomaterials and biosensors. This interaction can be controlled by modifying the surface in a process known as biofunctionalization. In this work, the enzyme lactate dehydrogenase (LDH) is used to study the stability of the interaction between a functional protein and amine-functionalized surfaces. Two different functionalization procedures were compared: Activated Vapor Silanization (AVS) and Immersion Silanization (IS). Adsorption kinetics is shown to follow the Langmuir model for AVS-functionalized samples, while IS-functionalized samples show a certain instability if immersed in an aqueous medium for several hours. In turn, the enzymatic activity of LDH is preserved for longer times by using glutaraldehyde as crosslinker between the AVS biofunctional surface and the enzyme.

  12. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    Science.gov (United States)

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  13. Characteristic of Hybrid Cellulose-Amino Functionalized POSS-Silica Nanocomposite and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Sivalingam Ramesh

    2015-01-01

    Full Text Available Recently, cellulose has much attention as an emerging renewable nanomaterial which holds promising properties having unique piezoelectricity, insulating, and biodegradable nature for various applications. Also, the modified properties of cellulose by appropriate chemical modifications in various functional groups with outstanding properties or significantly improved physical, chemical, biological, and electronic properties will widen the way for it to be utilized in different usages. Therefore, in this paper, cellulose-functionalized polyhedral oligomeric silsesquioxanes (POSS based materials were considered an important class of high-performance hybrid nanocomposite materials. To functionalize the regenerated cellulose, amino functionalized POSS material was synthesized via sol-gel covalent crosslinking process in presence of amino coupling agent. In this reaction, tetraethoxsilane (TEOS and γ-aminopropyltriethoxy silane (γ-APTES as coupling agent for metal precursors were selected. The chemical structure of cellulose-amine functionalized bonding and covalent crosslinking hybrids was confirmed by FTIR and 1H NMR spectral analysis. From the TEM results, well-dispersed hybrid cellulose-functionalized POSS-silica composites are observed. The resulting cellulose-POSS-silica hybrid nanocomposites materials provided significantly improved the optical transparency, and thermal and morphological properties to compare the cellulose-silica hybrid materials. Further, antimicrobial test against pathogenic bacteria was carried out.

  14. Enhanced diode characteristics of organic solar cell with silanized fluorine doped tin oxide electrode

    Science.gov (United States)

    Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.

    2018-05-01

    To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.

  15. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    International Nuclear Information System (INIS)

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5. (paper)

  16. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  17. Spectroscopy of nanosized composites silicon-organic polymer/nanoporous silicas

    International Nuclear Information System (INIS)

    Ostapenko, N.; Kozlova, N.; Suto, S.; Watanabe, A.

    2006-01-01

    Fluorescence and excitation spectra (T=5-290 K) of nanosized silicon-organic polymers poly(di-n-hexylsilane) and poly(methyl(phenyl)silane) incorporated into porous silica materials MCM-41 and SBA-15 have been studied with varying pore diameter from 2.8 to 10 nm. The controlled variation of the pore diameter in a wide range (2.8-10 nm) permitted us, for the first time, to investigate the optical properties of the polymers on their transition from isolated macromolecules to a film. It is found that this transition depends on polymer type and occurs via the formation of new spatially independent structures of the polymers not observed in the spectra of the film, namely, via the formation of disordered and (or) ordered conformations of polymer chains and clusters

  18. Enhanced Stormwater Contaminant Removal and Improved Runoff Quality Using Modified Sorbents in Tree Filters

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V.; Boving, T. B.; Oyanedel-Craver, V.

    2013-12-01

    Stormwater runoff, particularly in urban areas, contains high concentrations of pathogens that are often cited as one of the main reasons for beach closings and other water quality issues in coastal areas. Commonly found contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat the runoff before discharging it. Many BMP, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff, but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, the contaminant retention of an alternative sorption material was compared to expanded shale that is usually used in tree filters. Red cedar wood chips were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that the wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAH by sorption processes. In the case of AgNP amendment to wood, less AgNP uptake and more desorption from the wood matrix was observed, making this amendment less favorable for bacteria deactivation. Batch experiments show that wood chips modified with QAS can remove up to 3 orders of magnitude of bacteria and retain up to 0.1 mg/g of PAH compared to shale, which has very limited bacteria deactivation (less than one order of magnitude) a PAH retention capacity of 0.04 mg/g. In this talk, the contaminant removal efficiency of the modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  19. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Treatment and re-use of urban sewage by means of aerated submerged biological filters and tertiary treatment; Depuracion y reutilizacion de las aguas residuales urbanas mediante filtros biologicos sumergidos aireados con tratamiento terciario

    Energy Technology Data Exchange (ETDEWEB)

    Mujal, F. J.

    2000-07-01

    The installations required for treating and re-using urban waste waters are reviewed. The treatment system put forward is called AERATED SURMERGED BIOLOGICAL FILTER AQUA PROCESS (S.B.F.). In this system, once that water has been clarified, it is treated biologically in an aerated reactor containing porous ceramic balls. After this it is filtered with silica+anthracite as a tertiary treatment. This technique minimize energy consumption and achieve optimum treatment performance at low running costs, as it requires little maintenance. Once the waste water has been treated in this way, the effluent is suitable for re-use to irrigate crops or infiltrate into underground aquifers. (Author)

  1. Tin-free enantioselective radical reactions using silanes.

    Science.gov (United States)

    Sibi, Mukund P; Yang, Yong-Hua; Lee, Sunggi

    2008-12-04

    Readily available hexyl silane is an excellent choice as a H-atom donor and a chain carrier in Lewis acid mediated enantioselective radical reactions. Conjugate radical additions to alpha,beta-unsaturated imides at room temperature proceed in good yields and excellent enantioselectivities.

  2. The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment

    Directory of Open Access Journals (Sweden)

    Muqin Li

    2014-10-01

    Full Text Available The surface silanization was carried out on ultrasonic micro-arc oxidation (UMAO coatings on pure magnesium using KH550 as silane coupling agent (SCA. The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope (SEM, Fourier transform infrared spectroscopy (FTIR and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing NaOH concentration. Compared with single UMAO treatment, the corrosion potentials (Ecorr of magnesium plates with UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA treatment increased by 29 mV, 53 mV and 75 mV, respectively, meanwhile the corrosion current density (Icorr reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.

  3. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  4. Fault-tolerant epoxy-silane coating for corrosion protection of magnesium alloy AZ31

    NARCIS (Netherlands)

    Lamaka, S.V.; Xue, H.B.; Meis, N.N.A.H.; Esteves, A.C.C.; Ferreira, M.G.S.

    2015-01-01

    In this work, a hybrid epoxy-silane coating was developed for corrosion protection of magnesium alloy AZ31. The average thickness of the film produced by dip-coating procedure was 14 µm. The adhesion strength of the epoxy-silane coating to the Mg substrate was evaluated by pull-off tests and was

  5. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    Science.gov (United States)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  6. Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements

    Science.gov (United States)

    Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah

    2018-01-01

    Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.

  7. Silane-based hybrid materials for biomedical applications

    NARCIS (Netherlands)

    Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    2002-01-01

    In this paper, the preparation of different hybrid silane materials is presented and their possible use in biomedical applications is discussed. The first example describes the development of biocompatible coatings based on sol-gel silicates, which can be used as a protective coating for implantable

  8. Research on the Ordered Mesoporous Silica for Tobacco Harm Reduction

    Science.gov (United States)

    Wang, Y.; Y Li, Z.; Ding, J. X.; Hu, Z. J.; Liu, Z.; Zhou, G.; Huang, T. H.

    2017-12-01

    For reducting tobacco harm, this paper prepared an ordered mesoporous silica by using triblock copolymer Pluronic P123 as template. The property of this material was characterized by the X-ray scattering spectrum(XRD), Transmission electron microscopy(TEM), Scanning electron microscopy (SEM) and Nitrogen adsorption/desorption. Then this ordered mesoporous silica was added into the cigarette filter in order to researching its effect of cigarette harm index. The result shows that the feature of SBA-15 was grain morphology, ordered arrangement, tubular porous 2-D hexagonal structure. The application of SBA-15 in cigarette filter can selectively reduce harmful components in cigarette smoke such as crotonaldehyde, hydrogen cyanide, benzo pyrene and tar. The synthesized SBA-15 could properly reduce cigarette harm index.

  9. Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Liu, Yue; Li, Yueming; Li, Xue-Mei; He, Tao

    2013-12-10

    Silanization of magnetic ironoxide nanoparticles with (3-aminopropyl)triethoxylsilane (APTES) is reported. The kinetics of silanization toward saturation was investigated using different solvents including water, water/ethanol (1/1), and toluene/methanol (1/1) at different reaction temperature with different APTES loading. The nanoparticles were characterized by Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermal gravimetric analysis (TGA). Grafting density data based on TGA were used for the kinetic modeling. It is shown that initial silanization takes place very fast but the progress toward saturation is very slow, and the mechanism may involve adsorption, chemical sorption, and chemical diffusion processes. The highest equilibrium grafting density of 301 mg/g was yielded when using toluene/methanol mixture as the solvent at a reaction temperature of 70 °C.

  10. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, F., E-mail: ffabiano@unime.it [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Celegato, F. [INRIM Electromagnetism Division, Torino (Italy); Giordano, A. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Borsellino, C. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Bonaccorsi, L.; Calabrese, L. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Tiberto, P. [INRIM Electromagnetism Division, Torino (Italy); Cordasco, G.; Matarese, G. [Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Fabiano, V. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy)

    2014-02-15

    Nd–Fe–B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd–Fe–B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  11. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    Science.gov (United States)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  12. Measurement and modelization of silica opal optical properties

    OpenAIRE

    Avoine , Amaury; Ngoc Hong , Phan; Frederich , Hugo; Aregahegn , Kifle; Bénalloul , Paul; Coolen , Laurent; Schwob , Catherine; Thu Nga , Pham; Gallas , Bruno; Maître , Agnès

    2014-01-01

    International audience; We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflect...

  13. EPR reversible signature of self-trapped holes in fictive temperature-treated silica glass

    Science.gov (United States)

    Lancry, Matthieu; Ollier, Nadège; Babu, B. H.; Herrero, Christian; Poumellec, Bertrand

    2018-03-01

    Post-mortem electron paramagnetic resonance spectroscopy experiments have been carried out between room temperature and 20 K to examine the radiation-induced defects in fictive temperature (Tf) treated Heraeus F300 silica (0.1 ppm OH, 1500 ppm Cl2). In particular, we focus our attention on Self-Trapped Hole (STH) centers detected in 1000 °C, 1100 °C, and 1200 °C Tf treated samples irradiated at room temperature by gamma rays at 6 kGy. By repeating annealing cycles between 77 and 300 K on the same samples, we observed that the EPR signal attributed to STH decreases as the temperature increases but in a reversible manner. We evidenced a deviation from the Curie law for T > 70 K and suggested an interpretation based on the decrease in the "strain-assisted TH" population by reversible excitation of the trapped hole to a delocalized state with an activation energy of 7.8 meV. This also means that the precursors of hole trapping sites (a local strain atomic configuration) remain stable until 300 K at least.

  14. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  15. Silica exposure and silicosis among Ontario hardrock miners: II. Exposure estimates.

    Science.gov (United States)

    Verma, D K; Sebestyen, A; Julian, J A; Muir, D C; Schmidt, H; Bernholz, C D; Shannon, H S

    1989-01-01

    An epidemiological investigation was carried out to determine the relationship between silicosis in hardrock miners in Ontario and cumulative exposure to silica (free crystalline silica--alpha quartz) dust. This second report describes a side-by-side air-sampling program used to derive a konimeter/gravimetric silica conversion curve. A total of 2,360 filter samples and 90,000 konimeter samples were taken over 2 years in two mines representing the ore types gold and uranium, both in existing conditions as well as in an experimental stope in which dry drilling was used to simulate the high dust conditions of the past. The method of calculating cumulative respirable silica exposure indices for each miner is reported.

  16. Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy

    International Nuclear Information System (INIS)

    Brusciotti, Fabiola; Snihirova, Darya V.; Xue, Huibin; Montemor, M. Fatima; Lamaka, Svetlana V.; Ferreira, Mario G.S.

    2013-01-01

    Highlights: ► Hybrid epoxy–silane coatings for corrosion protection of Mg alloy AZ31. ► Electrochemical impedance spectroscopy to study the corrosion behavior. ► Very good corrosion protection after 1 month immersion in 0.05 M NaCl. ► Surface and chemical characterization to understand corrosion processes. ► Influence of organic structure in coatings corrosion performance. - Abstract: New hybrid epoxy–silane coatings, with added functionalities for improved performance and durability, were designed to increase the corrosion protection of magnesium alloys. The corrosion behavior of the coated AZ31 was studied through electrochemical impedance spectroscopy (EIS) in 0.05 M NaCl. The morphology and surface chemistry of the samples were also investigated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) before and after immersion in the electrolyte. The new hybrid silane coatings showed a high resistance to corrosion that persisted throughout one-month immersion in a pH-neutral NaCl solution.

  17. Analysis of Gas Membrane Ultra-High Purification of Small Quantities of Mono-Isotopic Silane

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F [ORNL; Hart, Kevin J [ORNL

    2016-09-01

    A small quantity of high-value, crude, mono-isotopic silane is a prospective gas for a small-scale, high-recovery, ultra-high membrane purification process. This is an unusual application of gas membrane separation for which we provide a comprehensive analysis of a simple purification model. The goal is to develop direct analytic expressions for estimating the feasibility and efficiency of the method, and guide process design; this is only possible for binary mixtures of silane in the dilute limit which is a somewhat realistic case. Among the common impurities in crude silane, methane poses a special membrane separation challenge since it is chemically similar to silane. Other potential problematic surprises are: ethylene, diborane and ethane (in this order). Nevertheless, we demonstrate, theoretically, that a carefully designed membrane system may be able to purify mono-isotopic, crude silane to electronics-grade level in a reasonable amount of time and expenses. We advocate a combination of membrane materials that preferentially reject heavy impurities based on mobility selectivity, and light impurities based on solubility selectivity. We provide estimates for the purification of significant contaminants of interest. To improve the separation selectivity, it is advantageous to use a permeate chamber under vacuum, however this also requires greater control of in-leakage of impurities in the system. In this study, we suggest cellulose acetate and polydimethylsiloxane as examples of membrane materials on the basis of limited permeability data found in the open literature. We provide estimates on the membrane area needed and priming volume of the cell enclosure for fabrication purposes when using the suggested membrane materials. These estimates are largely theoretical in view of the absence of reliable experimental data for the permeability of silane. Last but not least, future extension of this work to the non-dilute limit may apply to the recovery of silane from

  18. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  19. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-01-01

    Full Text Available A highly performing natural rubber/silica (NR/SiO2 nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate, SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA. The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

  20. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells

    Directory of Open Access Journals (Sweden)

    Stefania Roberta Cicco

    2016-12-01

    Full Text Available In the past decade, mesoporous silica nanoparticles (MSNs with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS and 3-aminopropyl-triethoxysilane (APTES. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the –SH or –NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.

  1. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  2. Feasibility analysis of Triptolide's role in treating filtering bleb fibrosis after the filtration surgery of glaucoma

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2014-06-01

    Full Text Available At present, filtration surgery remains an important treatment of glaucoma, and filtering bleb fibrosis is the main cause for treatment failure. Filtering bleb fibrosis is a common fiber hyperplastic disease, and it relates to the activation and proliferation of fibroblasts and the excessive production of extracellular matrix(ECMsuch as collagen protein. The most frequently-used drugs for filtering bleb fibrosis in clinic are 5-fluoro-2,4(1h, 3hpyrimidinedione(5-Fuand mitomycin(MMC. Although they are effective in some degree, they also have some serious side effects which restrict their clinical use. Triptolide(TPLis a major active component of the medicinal plant, tripterygium wilfordii hook.f.(TWHF. TPL has multiple pharmacological activities including immunosuppressive, anti-inflammatory, anti-cancer and anti-fertility activity. Reviewing related literatures published in recent ten years, we confirmed that TPL seemed to possess a pharmacological activity in treating filtering bleb fibrosis. Since it has three major functions: 1. inhibit the activation and proliferation of fibroblasts and the excessive production of collagen protein; 2. alleviate the inflammatory reaction after surgical wound to suppress fibrous scar formation; 3.TPL has a protective effect on retinal ganglion cells(RGCs. We further find that TPL's anti-fibrosis activity mainly results from that it inhibits TGF-β/Smad,NF-κB and PI3K/AKT signal transduction pathway. This comprehensive analysis about the feasibility of Triptolide's role in treating filtering bleb fibrosis after the filtration surgery of glaucoma can help us develop new drugs for filtering bleb fibrosis and exploit TPL's clinical value on some level.

  3. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  4. Stable Failure-Inducing Micro-Silica Aqua Epoxy Bonding Material for Floating Concrete Module Connection

    Directory of Open Access Journals (Sweden)

    Jang-Ho Jay Kim

    2015-11-01

    Full Text Available Many recent studies in the development of floating concrete structures focused on a connection system made of modules. In the connection system, the modules are designed to be attached by pre-stressing (PS while floating on the water, which exposes them to loads on the surface of the water. Therefore, the development of a pre-connection material becomes critical to ensure successful bonding of floating concrete modules. Micro-silica mixed aqua-epoxy (MSAE was developed for this task. To find the proper MSAE mix proportion, 0% to 4% micro-silica was mixed in a standard mixture of aqua-epoxy for material testing. Also, the effect of micro-silica on the viscosity of the aqua epoxy was evaluated by controlling the epoxy silane at proportions of 0%, ±5%, and ±10%. After completion of the performance tests of the MSAE, we evaluated the effect of MSAE in a connected structure. The plain unreinforced concrete module joint specimens applied with MSAE at thicknesses of 5, 10, and 20 mm were prepared to be tested. Finally, we evaluated the performance of MSAE-applied reinforced concrete (RC module specimens connected by PS tendons, and these were compared with those of continuous RC and non-MSAE-applied beams. The results showed that the mix of micro-silica in the aqua-epoxy changed the performance of the aqua-epoxy and the mix ratio of 2% micro-silica gave a stable failure behavior. The flexural capacity of concrete blocks bonded with MSAE changed according to the bond thickness and was better than that of concrete blocks bonded with aqua-epoxy without micro-silica. Even though MSAE insignificantly increases the load-carrying capacity of the attached concrete module structure, the stress concentration reduction effect stabilized the failure of the structure.

  5. Influence of Etching Protocol and Silane Treatment with a Universal Adhesive on Lithium Disilicate Bond Strength.

    Science.gov (United States)

    Kalavacharla, V K; Lawson, N C; Ramp, L C; Burgess, J O

    2015-01-01

    To measure the effects of hydrofluoric acid (HF) etching and silane prior to the application of a universal adhesive on the bond strength between lithium disilicate and a resin. Sixty blocks of lithium disilicate (e.max CAD, Ivoclar Vivadent) were sectioned into coupons and polished. Specimens were divided into six groups (n=10) based on surface pretreatments, as follows: 1) no treatment (control); 2) 5% HF etch for 20 seconds (5HF); 3) 9.5% HF etch for 60 seconds (9.5HF); 4) silane with no HF (S); 5) 5% HF for 20 seconds + silane (5HFS); and 6) 9.5% HF for 60 seconds + silane (9.5HFS). All etching was followed by rinsing, and all silane was applied in one coat for 20 seconds and then dried. The universal adhesive (Scotchbond Universal, 3M ESPE) was applied onto the pretreated ceramic surface, air thinned, and light cured for 10 seconds. A 1.5-mm-diameter plastic tube filled with Z100 composite (3M ESPE) was applied over the bonded ceramic surface and light cured for 20 seconds on all four sides. The specimens were thermocycled for 10,000 cycles (5°C-50°C/15 s dwell time). Specimens were loaded until failure using a universal testing machine at a crosshead speed of 1 mm/min. The peak failure load was used to calculate the shear bond strength. Scanning electron microscopy images were taken of representative e.max specimens from each group. A two-way analysis of variance (ANOVA) determined that there were significant differences between HF etching, silane treatment, and the interaction between HF and silane treatment (puniversal adhesive.

  6. Evaluation of the Performance of Iodine-Treated Biocide Filters Challenged with Bacterial Spores and Viruses

    Science.gov (United States)

    2006-11-01

    the iodine-treated media. D. METHODOLOGY: The iodine-treated filter media were challenged by Bacillus subtilis spores and MS2 bacteriophage...reentrainment into the air [8]. Even though HVAC prevents the contamination of indoor air from environmental bacteria and spores entering from outdoors...of iodine with Bacillus metiens spores showed that the decrease of germicidal activity is due to increased iodine decomposition [39]. Studies on the

  7. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    Science.gov (United States)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  8. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane

  9. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  10. Characterisation of silica surfaces III: Characterisation of aerosil samples through ethanol adsorption and contact angle studies

    Directory of Open Access Journals (Sweden)

    M.S. Nadiye–Tabbiruka

    2009-12-01

    Full Text Available Aerosil samples, heat treated and then silylated with various silanes at various temperatures have been characterised by adsorption of ethanol at 293 K. Adsorption isotherms were plotted and the BET specific surface areas were determined. Contact angles were measured by the captive bubble method at the three phase contact line in ethanol, on glass slides similarly modified. Silylation was found to alter the ethanol adsorptive properties on aerosil and increase the contact angles on the glass slides to extents that depend on the silane used as well as the concentration of residual silanols and that of surface silyl groups.

  11. Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment

    International Nuclear Information System (INIS)

    Hashimoto, Masami; Takadama, Hiroaki; Mizuno, Mineo; Kokubo, Tadashi

    2006-01-01

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO 2 particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO 2 particles. The interfacial morphology and interaction between silanated TiO 2 and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO 2 was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO 2 particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure

  12. Treating malfunction filtering bleb with repeated needling combined with adjunctive 5-FU after glaucoma filtration surgery

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2013-07-01

    Full Text Available AIM: To evaluate the therapeutic efficacy of a repeated bleb needling technique combined with subconjunctival injection of 5-FU in eyes with previous glaucoma surgery that had malfunctional filtering blebs. METHODS: A retrospective review of 34 consecutive patients(34 eyesof repeated bleb needling combined with subconjunctival injection of 5-FU in eyes, which had malfunctional filtering blebs after previous glaucoma surgery in our hospital from March 2009 to February 2013 was performed. The intraocular pressures(IOP, shapes of filtering blebs and complications after surgery were analyzed. RESULTS: There was significant reduction of mean IOP from 35.51mmHg to 14.43mmHg(PCONCLUSION: Repeated needling with adjunctive 5-FU proved a highly effective, safe alternative to treat malfunctional filtering blebs after previous glaucoma surgery.

  13. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring.

    Science.gov (United States)

    Chen, Fang; Hableel, Ghanim; Zhao, Eric Ruike; Jokerst, Jesse V

    2018-07-01

    The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Science.gov (United States)

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  15. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  16. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Science.gov (United States)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  17. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    Science.gov (United States)

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  18. Root cause study on the high levels of reactor water silica and its measures for reduction in Taiwan BWRs

    International Nuclear Information System (INIS)

    Wen Tungjen; Shen Szechieh; Cheng Tingchin; Chu Charles Fang

    2009-01-01

    Water temperature in condenser hot well can change significantly with the seasons. It is not unusual for silica levels in reactor water to increase in the summer and to decrease during winter. Also it seems that silica levels in reactor water of domestic nuclear power plants increased slowly from 200 ppb to the high side above 500 ppb as condensate polishing resin non-regeneration throw away action has been adopted in recent seven years. Through both the on-line silica monitoring of condensate demineralizer and silica analysis of subsequent precoat test in reactor water clean up system, the result obtained from steam/liquid mass balance calculation indicated that an increase of reactor water silica was mainly caused by continuing equilibrium leakage from deep bed condensate demineralizers, where the ion exchange zone is periodically disturbed by resin backwashing-scrubbing operation. The fastest and effective way to reduce the silica inventory in reactor system is to operate by frequent backwashes and precoating of the reactor water clean up filter demineralizers to a lower effluent silica end point, perhaps as frequently as three or four days. Periodic replacement of the oldest and/or most heavily loaded resins could perform a radical cure to reduce silica content in reactor water. During summer season, increased filter demineralizer precoat frequency would get over the problem of system short-term silica equilibrium leakage. (author)

  19. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  20. Spectrophotometric determination of silica in water. Low range

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-07-01

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 μg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  1. Treatment of oil sands mature fine tailings with silica

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, R.H. [DuPont Canada Inc., Mississauga, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed a method of treating mature fine tailings (MFT) with silica. Rheology modifications with silica treatments were examined. Experimental studies demonstrated a significant slump at 30 minutes after mixing. Flow properties were studied at a 2 degree angle. The MFT thin lift evaporative drying procedure was used to determine the effects of the silica treatments. Methods of using pressure to dewater MFTs were reviewed. The results of a field test conducted to determine the flow behaviour of MFTs treated with low dose silica were presented. Drying characteristics and strength gains were also evaluated. Results of the study showed that the MFTs had a tendency to channel at discharge points. After a 15 day period that included a freeze-thaw the MFTs had cracks that continued to enlarge, full depth cracking, and fine cracking. The field tests demonstrated that in-situ polymerization of silica within the water phase of fluid fine tails provides significant modifications to rheological properties, and that the onset of rheological modification can be controlled over a range of conditions and times. tabs., figs.

  2. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration.

    Science.gov (United States)

    Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T

    2018-01-15

    Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.

  3. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    Science.gov (United States)

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  4. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Karynne Cristina de; Andrade, Gracielle Ferreira [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil); Vasconcelos, Ingrid; Oliveira Viana, Iara Maíra de; Fernandes, Christian [Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Martins Barros de Sousa, Edésia, E-mail: sousaem@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil)

    2014-07-01

    In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation–precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N{sub 2} adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices. - Highlights: • SBA-15/Fe{sub 3}O{sub 4} was synthesized and functionalized with octadecyltrimethoxysilane. • Magnetite nanoparticles were completely coated by well-ordered mesoporous silica. • The samples were used as sorbent for magnetic solid-phase extraction (MSPE). • The sorbent material was capable of extracting drugs from human plasma. • The extraction ability makes the material a candidate to be employed as MSPE.

  5. Thermal and Hydrothermal Treatment of Silica Gels as Solid Stationary Phases in Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available Silica gel was prepared and treated thermally and hydrothermally and was characterized as solid stationary phase in gas chromatography. The characteristics have been evaluated in terms of polarity, selectivity, and separation efficiencies. These parameters were used to assess the outer silica surface contributions and the degree of surface deactivation brought about by different treatment techniques. The parent silica elutes the paraffinic hydrocarbons with high efficiency of separation and elutes aromatic hydrocarbons with nearly good separation and has bad separation of alcohols. The calcined silica at 500°C and 1000°C has a pronounced effect on the separation of aromatic hydrocarbons compared with the parent silica and hydrothermal treatment of silica. With respect to alcohols separation, the obtained bad separations using treated and untreated silica reflect the little effect of the thermal and hydrothermal treatment on the silica surface deactivation.

  6. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. The influence of silane evaporation procedures on microtensile bond strength between a dental ceramic and a resin cement

    Directory of Open Access Journals (Sweden)

    Pereira Carolina

    2010-01-01

    Full Text Available Aim: To assess the influence of silane evaporation procedures on bond strength between a dental ceramic and a chemically activated resin cement. Materials and Methods: Eighteen blocks (6 mm Χ 14 mm Χ 14 mm of ceramic IPS Empress 2 were cemented (C and B to composite resin (InTen-S blocks using a chemical adhesive system (Lok. Six groups were analyzed, each with three blocks divided according to ceramic surface treatment: two control groups (no treatment, NT; 10% hydrofluoric acid plus silane Monobond-S dried at room temperature, HFS; the other four groups comprised different evaporation patterns (silane rinsed and dried at room temperature, SRT; silane rinsed in boiling water and dried as before, SBRT; silane rinsed with boiling water and heat dried at 50°C, SBH; silane dried at 50 ± 5°C, rinsed in boiling water and dried at room temperature, SHBRT. The cemented blocks were sectioned to obtain specimens for microtensile test 7 days after cementation and were stored in water for 30 days prior to testing. Fracture patterns were analyzed by optical and scanning electron microscopy. Statistics and Results: All blocks of NT debonded during sectioning. One way ANOVA tests showed higher bond strengths for HFS than for the other groups. SBRT and SBH were statistically similar, with higher bond strengths than SRT and SHBRT. Failures were 100% adhesive in SRT and SHBRT. Cohesive failures within the "adhesive zone" were detected in HFS (30%, SBRT (24% and SBH (40%. Conclusion: Silane treatment enhanced bond strength in all conditions evaluated, showing best results with HF etching.

  8. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  9. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  10. Extraction of gelatin from catfish bone using NaOH and its utilization as a template on mesoporous silica alumina

    Science.gov (United States)

    Nuryanto, R.; Trisunaryanti, W.; Falah, I. I.; Triyono

    2018-04-01

    Gelatin extraction from catfish bone using NaOH and its utilization as a template on a synthesis of mesoporous silica-alumina had been investigated. The extraction was prepared by immersing 25 g catfish bone in 125 mL of NaOH in concentration of 0.0; 0.05; 0.10; 0.15 and 0.20 M for 24 h, then washing with demineralized water until pH 7, followed by immersed the bone into 125 mL of 1 M HCl for 1 h, then washed using demineralized water into pH 5. To produce gelatin the bone was refluxed with 100 mL demineralized water at 70°C for 5 h then evaporated at 50°C. The dry gelatin was characterized using FTIR and electrophoresis (SDS-PAGE). The best performance of gelatin was produced by NaOH 0.10 M. The gelatin consists of amide A, B, I, II, III and molecular weight of 25-200kDa. Silica and Alumina material prepared from Lapindo mud extraction. Dry Lapindo mud crushed and filtered until pass 100 mesh, then reflux using 6 M HCl (1:4 w/V) at 90°C for 5h then filtered. The filtrate was consisting alumina solution adding with 6 M NaOH (2/3 V/V) them filtered. The filtrate then injected by CO2 gas for 30 minutes and filtered, the residue was calcined at 500°C for 5h. The residual of Lapindo mud dried and refluxed with 6 M NaOH (1:4 w/v) at 90 °C. After 5h filtered and the filtrate added by HCl to pH 8 and filtered, the residual then dried. The Si and Al were then analyzed by XRF and consist of silica and alumina for 99.1 and 87.73%, respectively. Silica-alumina was prepared using silica and alumina extracted from Lapindo mud. 6 g of SiO2 and 2 g of NaOH was immersed in 62 mL of demineralized water then added with alumina solution (0.204 g alumina in 30 mL demineralized water). The gelatin solution (5 g gelatin in 70 mL demineralized water) was dropped into the silica-alumina while stirring at 50°C for 4 h and aging for 24 h. The synthesized silica alumina was analysed using FTIR and surface area analyser. The FT-IR spectra indicated the TO4 (T=Si, Al) vibration at wave

  11. Heterogeneous Nitrification in a Full Scale Rapid Sand Filter Treating Groundwater

    DEFF Research Database (Denmark)

    Lopato, Laure; Röttgers, Nina; Binning, Philip John

    2013-01-01

    Experiments were conducted to determine ammonium removal kinetics in an operating biologically active sand filter at a waterworks treating anaerobic groundwater. The ammonium load varied between 0.7 and 3 g N/h/m2 (concentration ranged from 0.23 to 0.78 mg N/l) and the inlet water flux varied...... nitrification rate constant was closely related to the water pore velocity which implies that the rate is strongly determined by the resistance to mass transport in the diffusion boundary layer around the sand grains. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000653...

  12. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  13. GaN growth on silane exposed AlN seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Zepeda, F. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carret, Tijuana-Ensenada, C.P. 22860, Ensenada, B.C. (Mexico); Contreras, O. [Centro de Ciencias de la Materia Condesada, Universidad Nacional Autonoma de Mexico, Apdo. Postal 356, C.P. 22800, Ensenada, B.C. (Mexico); Dadgar, A.; Krost, A. [Otto-von-Guericke-Universitaet Magdeburg, FNW-IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2008-07-01

    The microstructure and surface morphology of GaN films grown on AlN seed layers exposed to silane flow has been studied by TEM and AFM. The epilayers were grown on silicon(111) substrates by MOCVD. The AlN seed layer surface was treated at different SiH{sub 4} exposure times prior to the growth of the GaN film. A reduction in the density of threading dislocations is observed in the GaN films and their surface roughness is minimized for an optimal SiH{sub 4} exposure time between 75-90 sec. At this optimal condition a step-flow growth mode of GaN film is predominant. The improvement of the surface and structure quality of the epilayers is observed to be related to an annihilation process of threading dislocations done by SiN{sub x} masking. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Fozia, E-mail: fozia@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Rahim, Abdur [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Airoldi, Claudio; Volpe, Pedro L.O. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2 m{sup 2} g{sup −1} and pore volume was reduced from 1.98 to 0.89 cm{sup 3} g{sup −1}, when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer–Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH 1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8 h, while comparatively high release rates were observed in simulated intestinal (pH 6.8) and simulated body fluids (pH 7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. - Highlights: • Modified SBA-15 silica with long hydrophobic chains was evaluated as drug carrier. • This silica showed improved loading capacity and controlled release of ibuprofen. • Compared to gastric pH high release rate of mesalamine was observed at colonic pH.

  15. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release

    International Nuclear Information System (INIS)

    Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L.O.

    2016-01-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2 m 2 g −1 and pore volume was reduced from 1.98 to 0.89 cm 3 g −1 , when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer–Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH 1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8 h, while comparatively high release rates were observed in simulated intestinal (pH 6.8) and simulated body fluids (pH 7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. - Highlights: • Modified SBA-15 silica with long hydrophobic chains was evaluated as drug carrier. • This silica showed improved loading capacity and controlled release of ibuprofen. • Compared to gastric pH high release rate of mesalamine was observed at colonic pH. • Modified silica

  16. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Caterina Fede

    2014-08-01

    Full Text Available Silica (SiO2 nanoparticles (NPs have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30 having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  17. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Paul M., E-mail: paul.dietrich@yahoo.de [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Glamsch, Stephan [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin (Germany); Ehlert, Christopher [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam (Germany); Lippitz, Andreas [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Kulak, Nora [Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin (Germany); Unger, Wolfgang E.S. [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-02-15

    Graphical abstract: - Highlights: • A synchrotron-based XPS method to analyze ultra-thin silane films is presented. • Specification and quantification of organic next to inorganic silicon is demonstrated. • Non-destructive chemical depth profiles of the silane monolayers were obtained. - Abstract: The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z{sub 95} of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) – inorganic (SiO{sub 2}/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS.

  19. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  20. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    International Nuclear Information System (INIS)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-01-01

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L"−"1 BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si−O−M chemical

  1. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  2. Filter bed systems treating domestic wastewater in the Nordic countries - Performance and reuse of filter media

    DEFF Research Database (Denmark)

    Jenssen, Petter D.; Krogstad, T.; Paruch, A.M.

    2010-01-01

    Nine filter beds have been constructed in the Nordic countries, Denmark, Finland, Norway and Sweden. Filter beds consist of a septic tank followed by an aerobic pre-treatment biofilter and a subsequent saturated flow grass-covered filter. Thus, filter beds are similar to subsurface flow construct...

  3. Rheology of Prepreg and Properties of Silica/bismaleimide Matrix Copper Clad Laminate

    Directory of Open Access Journals (Sweden)

    DAI Shankai

    2017-08-01

    Full Text Available The effects of the silica surface treated by coupling agents KH550, KH560 and KH570 on the rheological properties of bismaleimide (BMI resin system were investigated. The rigidity, coefficient of thermal expansion (CTE and thermal stability of the copper clad laminate (CCL were studied by DMA, TMA and TGA. The resin system containing silica surface treated by KH-560, comparing to KH550, KH570 and without surface treatment resin system has better rheological properties and low melt viscosity. The comprehensive properties of the copper clad laminate can be effectively improved by the introduction of silica in the resin system, exhibiting higher storage modulus and lower CTE compare to no silica in the CCL. When the silica mass fraction is 50%, the storage modulus is increased by 83% at 50℃, and the CTE below the glass transition temperature is decreased by 153%.

  4. Selective Oxidation of Cyclohexene, Toluene and Ethyl Benzene Catalyzed by Bis-(L-tyrosinatocopper(II, Immersed in a Magnetite-Infused Silica Matrix

    Directory of Open Access Journals (Sweden)

    Massomeh Ghorbanloo

    2016-01-01

    Full Text Available Bis-(L-tyrosinatocopper(II was reacted with 3-(chloropropyl-trimethoxysilane functionalized silica that has infused magnetite to yield a magnetically separable catalyst in which the copper carboxylate is covalently linked to the silica matrix through the silane linkage. The immobilized catalyst has been characterized by spectroscopic studies (such as FT-IR, EPR, Magnetic Measurement, SEM and chemical analyses. The immobilized catalytic system functions as an efficient heterogeneous catalyst for oxidation of cyclohexene, toluene and ethyl benzene in the presence of hydrogen peroxide (as an oxidant and sodium bicarbonate (a co-catalyst. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst. The immobilized catalyst could be readily recovered from the reaction mixture by using a simple magnet, and  reused up to five times without any loss of activity.

  5. Determination of a silane intermolecular force field potential model from an ab initio calculation

    International Nuclear Information System (INIS)

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-01-01

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  6. An Introduction to Silanes and Their Clinical Applications in Dentistry

    NARCIS (Netherlands)

    Matinlinna, Jukka P.; Lassila, Lippo V. J.; Özcan, Mutlu; Yli-Urpo, Antti; Pekka K. Vallittu, [No Value

    2002-01-01

    Purpose: This overview presents a description of organofunctional trialkoxysilane coupling agents (silanes), their chemistry, properties, use, and some of the main clinical experiences in dentistry. Materials and Methods: The main emphasis was on major dental journals that have been reviewed from

  7. An Introduction to Silanes and Their Clinical Applications in Dentistry

    NARCIS (Netherlands)

    Matinlinna, J.P.; Lassila, L.V.J.; Ozcan, M.; Yli-Urpo, A.; Vallittu, P.K.

    2004-01-01

    Purpose: This overview presents a description of organofunctional trialkoxysilane coupling agents (silanes), their chemistry, properties, use, and some of the main clinical experiences in dentistry. Materials and Methods: The main emphasis was on major dental journals that have been reviewed from

  8. Measurement and modelization of silica opal reflection properties: Optical determination of the silica index

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès

    2012-10-01

    Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.

  9. Evaluation of failure characteristics and bond strength after ceramic and polycarbonate bracket debonding : effect of bracket base silanization

    NARCIS (Netherlands)

    Ozcan, M.; Finnema, K.; Ybema, A.

    The objectives of this study were to evaluate the effect of silanization on the failure type and shear-peel bond strength (SBS) of ceramic and polycarbonate brackets, and to determine the type of failure when debonded with either a universal testing machine or orthodontic pliers. Silanized and

  10. High Purity Silica Production from Rice Husk Ash

    International Nuclear Information System (INIS)

    Yaminn Lwin; April Nwayy Nwayy Htett

    2010-12-01

    In this research, two types of raw material source, rice husk and rice husk ash, were used. Among the rice husk samples, taungpyan sample was chosen because it contains the maximum silica content and treated with (1,3,5) wt% sulphuric acid (96% concentration) and citric acid (99% concentration). These acid treated taungpyan samples and nonacid treated taungpyan sample were burned at 900C for 30 min. For rice husk ash samples, ash samples from fluidized combustor, fluidized gasifier and brick factory were collected. All of the rice husk ash samples were purified by alkaline extraction method with (2-3) N NaOH solution and followed by acid precipitation method with 5 N H2SO4 solution. According to the analysis and characterization, acid treated taungpyan sample (5 wt% citric acid) with the highest silica content (99.906 wt% and crystallization form) was obtained.

  11. Development of an environmentally benign anticorrosion coating for aluminum alloy using green pigments and organofunctional silanes

    Science.gov (United States)

    Yin, Zhangzhang

    Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Current protection measurement employs substantial use of chromate and high VOC organics, both of which are identified as environment and health hazards. The approach of this study is to utilize a combination of organofunctional silanes and a compatible inhibitor integrated into high-performance waterborne resins. First, an extensive pigment screening has been done to find replacements for chromates using the testing methodology for fast corrosion inhibition evaluation and pigment. Zinc phosphate and calcium zinc phosphomolybdate were found to have the best overall performance on Al alloys. Some new corrosion inhibitors were synthesized by chemical methods or modified by plasma polymerization for use in the coatings. Low-VOC, chromate-free primers (superprimer) were developed using these pigments with silane and acrylic-epoxy resins. The developed superprimer demonstrated good corrosion inhibition on aluminum substrates. The functions of inhibitor and silane in the coating were investigated. Both silane and inhibitor are critical for the performance of the superprimer. Silane was found to improve the adhesion of the coating to the substrate and also facilitate corrosion prevention. Addition of zinc phosphate to the coating improved the resistance of a scratched area against corrosion. The microstructure of the acrylic-epoxy superprimer coating was studied. SEM/EDAX revealed that the superprimer has a self-assembled stratified double-layer structure which accounts for the strong anti-corrosion performance of the zinc phosphate pigment. Zinc phosphate leaches out from the coating to actively protect the scratched area. The leaching of pigment was confirmed in the ICP-MS analysis and the leaching rate was measured. Coating-metal interface and the scribe of coated panels subjected to corrosion test was studied

  12. Influence of the type of solvent on the development of superhydrophobicity from silane-based solution containing nanoparticles

    Science.gov (United States)

    Pantoja, M.; Abenojar, J.; Martinez, M. A.

    2017-03-01

    Superhydrophobic surfaces are very appealing for numerous industrial applications due to their self-cleaning capacity. Although there are different methods to manufacture superhydrophobic surfaces, some of them do not keep the aesthetic appearance of the neat surface. Sol-gel processes are a valid alternative when transparent coatings are desired. The main goal of this research is to study the viability of this method by making superhydrophobic coatings from silane-based solution containing SiO2 nanoparticles. The effect of using different solvents is investigated, as well as the role played by the different components of the solution (silane, nanoparticles and solvent). Solutions of methyltrimethoxisilane (MTS) and tetraethoxysilane (TEOS) and 1% of SiO2 (%wt) were prepared with different solvents (ethanol, ethanol/water and white spirit). The hydrophobicity of the developed coatings is studied using contact angle measurements, while the aesthetic appearance is evaluated with gloss and color measurements. Also, infrared spectroscopy, dynamic light scattering (DSL), and surface tension measurements are used to study the silane solutions. The results show that the capacity of solvents to promote the dispersion of the nanoparticles is crucial to ensuring superhydrophobicity, since these agglomerates provide the micro- and nano- surface roughness required to get a hierarchical structure. However, the combined use of silanes and nanoparticles is key to make a superhydrophobic surface because physical (the surface roughness provided by nanoparticles) and chemical characteristics (hydrophobicity provided by silanes) are coupled.

  13. Spectrophotometric determination of silica in water with Hach equipment

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-06-01

    The method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters using the indicated technique in the operation manual of the Hach equipment with a DR/3 spectrophotometer is described. This method covers the determination of the silica element in the interval from 0 to 1.5 mg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  14. The effectiveness of silane and siloxane treatments on the superhydrophobicity and icephobicity of concrete surfaces

    Science.gov (United States)

    Rao, Sunil M.

    Icy roads lead to treacherous driving conditions in regions of the U.S., leading to over 450 fatalities per year. De-icing chemicals, such as road salt, leave much to be desired. In this report, commercially available silane, siloxane, and related materials were evaluated as solutions, simple emulsions, and complex emulsions with incorporated particulates, for their effectiveness as superhydrophobic treatments. Through the development and use of a basic impact test, the ease of ice removal (icephobicity) was examined as an application of the targeted superhydrophobicity. A general correlation was found between icephobicity and hydrophobicity, with the amount of ice removed on impact increasing with increasing contact angle. However, the correlation was poor in the high performance region (high contact angle and high ice removal.) Polymethylhydrogensiloxane was a top performer and was more effective when used as a "shell" type emulsion with silica fume particulates. An aqueous sodium methyl siliconate solution showed good performance for ice loss and contact angle, as did a commercial proprietary emulsion using a diethoxyoctylsilyl trimethylsilyl ester of silicic acid. These materials have sterically available functional groups that can react or associate with the concrete surface and are potentially film-forming. Materials with less reactive functional groups and a lower propensity to film-form did not perform as well.

  15. Durable flame retardant finish for silk fabric using boron hybrid silica sol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang-hua; Gu, Jiali; Chen, Guo-qiang [National Engineering Laboratory for Modern Silk, Soochow University (China); Xing, Tie-ling, E-mail: xingtieling@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University (China); Jiangsu HuaJia Group (China)

    2016-11-30

    Highlights: • Highly homogeneous boron hybrid silica sol flame retardant system was prepared through sol-gel method. • The silk samples treated and cross-linked by this hybrid sol and BTCA solution showed a higher limiting oxygen index (LOI) more than 31.0% and a better washing durability for more than 30 times washing. • The smoke suppression, combustion performance and thermal stability properties of the treated samples have a significant improvement. - Abstract: A hybrid silica sol was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor and boric acid (H{sub 3}BO{sub 3}) as flame retardant additive and then applied to silk fabric. In order to endow silk fabric with durable flame retardancy, 1,2,3,4-butanetetracarboxylic acid (BTCA) was used as cross-linking agent for the sake of strong linkage formation between the hybrid silica sol and silk fabric. The FT-IR and XPS analysis demonstrated the Si-O-B formation in the sol system, as well as the linkage between the sol and silk after the treatment. The limiting oxygen index (LOI) and smoke density test indicated good flame retardancy and smoke suppression of the treated silk fabrics. The micro calorimeter combustion (MCC) test and thermo gravimetric (TG) analysis showed that the treated samples had less weight loss in the high temperature and lower heat release rate when burning. The washing durability evaluation results indicated that there was a distinct improvement for the silk samples treated with BTCA even after 30 times washing. In addition, the influence of the processing order of BTCA and silica sol treatment on the limiting oxygen index (LOI) of the finished silk fabric was also investigated. And the results demonstrated that the sample treated with BTCA first and then with the silica sol exhibited better LOI value (32.3%) than that of the sample by the conversed treatment order. Moreover the tensile property of treated samples was nearly unchanged, but the handle of sol treated

  16. Aqueous Processing of Si3N4 Powder with Chem-Adsorbed Silanes

    National Research Council Canada - National Science Library

    Colic, Miroslav

    1996-01-01

    .... Addition of salt to dispersed silicon nitride slurries with particles coated with polyethyleneglycol-silane, caused the collapse of the 22 atoms long chains and residual electrical double layer...

  17. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  18. Protein attachment to silane-functionalized porous silicon: A comparison of electrostatic and covalent attachment.

    Science.gov (United States)

    Baranowska, Malgorzata; Slota, Agata J; Eravuchira, Pinkie J; Alba, Maria; Formentin, Pilar; Pallarès, Josep; Ferré-Borrull, Josep; Marsal, Lluís F

    2015-08-15

    Porous silicon (pSi) is a prosperous biomaterial, biocompatible, and biodegradable. Obtaining regularly functionalized pSi surfaces is required in many biotechnology applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is useful for single-molecule studies due to its ability to attach to only one biomolecule. We investigate the functionalization of pSi with silane-PEG-NHS and compare it with two common grafting agents: APTMS (3-aminopropylotrimethoxysilane) as electrostatic linker, and APTMS modified with glutaraldehyde as covalent spacer. We show the arrangement of two proteins (collagen and bovine serum albumin) as a function of the functionalization and of the pore size. FTIR is used to demonstrate correct functionalization while fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more uniform protein distribution. Reflection interference spectroscopy (RIfS) is used to estimate the attachment of linker and proteins. The results open a way to obtain homogenous chemical modified silicon supports with a great value in biosensing, drug delivery and cell biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Investigation on lithium migration for treating alkali-silica reaction affected concrete

    NARCIS (Netherlands)

    Silva De Souza, L.M.; Polder, R.B.; Copuroglu, O.

    2014-01-01

    Alkali-silica reaction (ASR) is one of the major deterioration mechanisms that affect numerous concrete structures worldwide. During the reaction, hydroxyl and alkali (sodium and potassium ) ions react with certain siliceous compounds in the aggregate, forming a hygroscopic gel. The gel absorbs

  20. Detecting plant silica fibres in animal tissue by confocal fluorescence microscopy.

    Science.gov (United States)

    Hodson, M J; Smith, R J; van Blaaderen, A; Crafton, T; O'Neill, C H

    1994-04-01

    Silica fibres from the inflorescence bracts of the grass Phalaris canariensis L. cause dermatitis, and have been implicated in the aetiology of oesophageal cancer in northeastern Iran. Here we describe a method for labelling these fibres so that they can be located in mammalian tissue. Fluorescein was covalently linked to isolated, purified fibres with the silane coupling agent 3-aminopropyl triethoxysilane. The labelled hairs were then rubbed into the backs of mice. These were later killed and their skin fixed, stained and sliced at a thickness of 250 microns. A confocal laser scanning microscope gave brilliant images of the fibres at any depth up to 100 microns or more beneath the surface of the slice. Fibres penetrated deeply into the dermis. Several cubic millimetres of tissue could be surveyed in 1 h. The number of fibres present was approximately 2 mm-3 initially, falling to 0.1 mm-3 after 7 days.

  1. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  2. Nanosilver-Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings.

    Science.gov (United States)

    Mosselhy, Dina A; Granbohm, Henrika; Hynönen, Ulla; Ge, Yanling; Palva, Airi; Nordström, Katrina; Hannula, Simo-Pekka

    2017-09-06

    Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO₂) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli ( E . coli ). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO₂ composite, showed higher antibacterial effects against MRSA and E . coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO₂ composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.

  3. Design and development of sustained-release glyburide-loaded

    Indian Academy of Sciences (India)

    The aim of this study was to develop sustained-release glyburide-loaded silica nanoparticles. Silica nanoparticles were synthesized by the sol–gel method using tetra-ethyl ortho-silane as a precursor. Glyburide was successfully entrapped in synthesized silica nanoparticles. To identify the effect of independent variables ...

  4. Corrosion Behaviour of a Silane Protective Coating for NdFeB Magnets in Dentistry

    Directory of Open Access Journals (Sweden)

    Luigi Calabrese

    2015-01-01

    Full Text Available The corrosion behavior of coated and uncoated Ni/Cu/Ni rare earth magnets was assessed at increasing steps with a multilayering silanization procedure. Magnets’ durability was analyzed in Fusayama synthetic saliva solution in order to evaluate their application in dental field. Corrosion performance was evaluated by using polarization and electrochemical impedance spectroscopy in synthetic saliva solution up to 72 hours of continuous immersion. The results show that the addition of silane layers significantly improved anticorrosion properties. The coating and aging effects, in synthetic saliva solution, on magnetic field were evaluated by means of cyclic force-displacement curves.

  5. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  7. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic.

    Science.gov (United States)

    Moro, André Fábio Vasconcelos; Ramos, Amanda Barreto; Rocha, Gustavo Miranda; Perez, Cesar Dos Reis

    2017-11-01

    Universal adhesives combine silane and various monomers in a single bottle to make them more versatile. Their adhesive performance is unclear. The purpose of this in vitro study was to assess the effects of an additional silane application before using a universal adhesive on the adhesion between a disilicate glass ceramic and a composite resin by using a microshear bond strength test (μSBS) and fracture analysis immediately and after thermocycling. One hundred lithium disilicate glass ceramic disks were divided into 10 groups for bond strength testing according to the following 3 surface treatments: silane application (built-in universal adhesive or with additional application), adhesive (Adper Single Bond Plus [SB, 3M ESPE], Scotchbond Universal Adhesive [U, 3M ESPE], and mixed U with Dual Cure Activator [DCA, 3M ESPE]); or thermocycling (half of the specimens were thermocycled 10000 times). After surface treatment, 5 resin cylinders were bonded to each disk and submitted to a μSBS test. The failure mode was analyzed under a stereomicroscope and evaluated by scanning electron microscope and energy-dispersive x-ray spectroscopy. Data from the μSBS test were analyzed by 3-way ANOVA followed by the Tukey HSD post hoc test (α=.05). An additional silane application resulted in a higher μSBS result for all adhesive groups (Padhesives, which may be improved with an additional silane application. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  9. Thrombolysis for treating deep venous thrombosis by high-dose urokinase: the usefulness of preventive placement of inferior vena cava filter

    International Nuclear Information System (INIS)

    Guo Jinhe; Teng Gaojun; He Shicheng; Qiu Haibo; Fang Wen; Zhu Guangyu; Deng Gang

    2002-01-01

    Objective: To investigate the feasibility and efficacy of high-dose urokinase thrombolysis for treating lower limb deep venous thrombosis (DVT) after inferior vena cava (IVC) filter placement. Methods: Thirteen patients of venographically proved DVT underwent preventive IVC filter placement for thrombolysis by high-dose urokinase. Antegrade infusion of high-dose urokinase was performed via the dorsalis pedis vein of the involved lower limb. The total dose of urokinase was 9 000 000 ∼ 16 000 000 units, and the procedure of thrombolysis was performed in ICU ward where the patients were closely monitored clinically and laboratorially. Results: A total of 13 IVC filters were successfully deployed without disposition and migration. The therapeutic effects were divided into four scales as follows: complete disappearance of the venous thrombosis and clinically asymptomatic (n = 2); remarkable recovery characterized by markedly improved clinical symptoms and venographically proved patent lumen in which the diameter was larger than 70% (n = 9); effective treatment indicating improved symptoms to some degrees and venographically proved patent lumen in which the diameter was smaller than 70% ( n = 2); and ineffective treatment (n = 0). No pulmonary embolism and hemorrhage occurred during the procedure of thrombolysis. Conclusion: High-dose urokinase for treating DVT is safe and effective after preventive placement of IVC filter

  10. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  11. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  12. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  13. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  14. The effectiveness of the use of filter on the tilapia growth performance, number of Nitrosomonas sp., and water quality in aquaponics systems

    OpenAIRE

    Yuli Andriani; , Zahidah; Yayat Dhahiyat; Ujang Subhan; Irfan Zidni; Rusky Intan Pratama; Nadia Purnamasari Gumay

    2018-01-01

    ABSTRACT This study aims to determine the most effective type of living filter media for the bacteria Nitrosomonas sp. in order to improve water quality in aquaponics systems. The method used in this study was completely randomized design, consisting of five treatments and each was repeated three times. The treatments were: A (without addition of filter media), B (addition of palm fibers, silica sand, and activated carbon), C (addition of palm fibers, silica sand, gravel, and activated carbon...

  15. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  16. Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma

    Science.gov (United States)

    Guo, Y. N.; Wei, D. Y.; Xiao, S. Q.; Huang, S. Y.; Zhou, H. P.; Xu, S.

    2013-05-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by remote low frequency inductively coupled plasma (ICP) chemical vapor deposition system, and the effect of silane/hydrogen ratio on the microstructure and electrical properties of μc-Si:H films was systematically investigated. As silane/hydrogen ratio increases, the crystalline volume fraction Fc decreases and the ratio of the intensity of (220) peak to that of (111) peak drops as silane flow rate is increased. The FTIR result indicates that the μc-Si:H films prepared by remote ICP have a high optical response with a low hydrogen content, which is in favor of reducing light-induced degradation effect. Furthermore, the processing window of the phase transition region for remote ICP is much wider than that for typical ICP. The photosensitivity of μc-Si:H films can exceed 100 at the transition region and this ensures the possibility of the fabrication of microcrystalline silicon thin film solar cells with a open-circuit voltage of about 700 mV.

  17. Extraction of metal ions using chemically modified silica gel: a PIXE analysis.

    Science.gov (United States)

    Jal, P K; Dutta, R K; Sudarshan, M; Saha, A; Bhattacharyya, S N; Chintalapudi, S N; K Mishra, B

    2001-08-30

    Organic ligand with carboxyhydrazide functional group was immobilised on the surface of silica gel and the metal binding capacity of the ligand-embedded silica was investigated. The functional group was covalently bonded to the silica matrix through a spacer of methylene groups by sequential reactions of silica gel with dibromobutane, malonic ester and hydrazine in different media. Surface area value of the modified silica was determined. The changes in surface area were correlated with the structural change of the silica surface due to chemical modifications. A mixture solution of metal ions [K(I),Cr(III),Co(II),Ni(II),Cu(II),Zn(II),Hg(II) and U(VI)] was treated with the ligand-embedded silica in 10(-3) M aqueous solution. The measurement of metal extraction capacity of the silica based ligand was done by multielemental analysis of the metal complexes thus formed by using Proton Induced X-ray Emission (PIXE) technique.

  18. DETERMINATION AND EVALUATION OF FREE SILICA IN THE RESPIRATORY ZONE OF GLASSWORKERS WITH X-RAY DIFFRACTION METHOD

    OpenAIRE

    H.Dehghan Shahreza; N. Razavizadeh

    1999-01-01

    This research was conducted from July 1993 to June 1994 on the total population (711 workers) of a glass factory. The purpose of this study was to determine the quantitative free silica (quartz) in respiratory zone of workers in glass industry. Field samples including 50 samples total dust and 37 samples respirable dust and standard simplex were collected on membrane filters using SKC dust sampler (NIOSH method). To include effects of uneven dust thickness on the filters, standard filters wer...

  19. Aminopropyl-functionalised silica CO{sub 2} adsorbents via sonochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Gregory P. Knowles; Alan L. Chaffee [Monash University, Vic. (Australia). CRC for Greenhouse Gas Technologies

    2007-07-01

    Amine functionalized silicas are being investigated to provide high selectivity, high capacity sorbents for CO{sub 2} capture from flue gas. A series of aminopropyl-functionalised hexagonal mesoporous silica (HMS) products were prepared via sonication of mixtures of aminopropyltrimethoxysilane (APTS) and HMS dispersed in toluene at 55{sup o}C. Sonication times and curing methods were varied. The HMS substrate was also separately functionalised via a more conventional stirred reactor for comparison. Sonication was expected to improve the dispersion of the substrate in the solvent and, also, the diffusion of the silane throughout the mesoporous substrate, thus providing products with higher tether loadings and correspondingly higher CO{sub 2} sorption capacities. The CO{sub 2} adsorption/desorption properties of the products were determined together with structural properties as measured by x-ray diffraction, N{sub 2} adsorption/desorption (77K), helium pycnometry and elemental analysis. The tether loadings of the sonication products (up to 1.8 tethers.nm{sup -2}) were found to increase with sonication time and in each case were greater than the corresponding product prepared by the conventional approach. It was also found that the crude product cured just as effectively under N{sub 2} flow as it did under vacuum, that rinsing the crude product prior to curing was not essential and that the concentration of the reagent mixture did influence the extent of functionalisation. As expected, sonication products with higher tether loadings were also found to have higher CO{sub 2} sorption capacities and higher Hads(CO{sub 2}).

  20. Pretreatments of porous silica for improving the activity of a nickel-loaded catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Ikushima, Y.; Nishiyama, Y.

    1986-02-01

    Nickel catalysts supported on porous silicas treated with water, ethanol, and 1-butanol were found to be more active than that supported on untreated silica for ethane hydrogenolysis and furan hydrogenation. To elucidate the reason for the activation, some surface properties of the treated silicas were examined. The treatments decreased the surface area and increased the volume of the macropores, the surface density of hydroxyl groups, and the heat of immersion in water per unit surface area. The state of nickel on the support was examined by temperature programed desorption (TPD) of hydrogen, X-ray diffraction (XRD), and scanning electron microscopy/X-ray microanalysis. The dispersion measured by XRD was not appreciably altered by the treatments, but the TPD showed more hydrogen desorbed above 150/sup 0/C from nickel on the treated supports. The activation of nickel by pretreatment of the support was ascribed to the increase of those nickel atoms which dispersed finely over the support by the increased number of surface hydroxyl groups. This was based on the number of hydroxyl groups per unit surface area. The nickel catalyst supported on the pretreated silicas showed greater thermal stability. 16 references, 5 figures, 1 table.

  1. Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups

    International Nuclear Information System (INIS)

    Tao, Qi; He, Hongping; Li, Tian; Frost, Ray L.; Zhang, Dan; He, Zisen

    2014-01-01

    Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and 29 Si MAS nuclear magnetic resonance spectra ( 29 Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and 29 Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (S BET ) and total pore volumes (V p ) of the products. - Graphical abstract: The replacement of water by ethanol in the tactoids and aggregations of LDHs, and the polysiloxane oligomers formed during silylation process can dramatically increase the BET surface area (S BET ) and the total pore volume (V p ) of the silylated products. - Highlights: • Silanes with multifunctional groups were grafted onto LDH surface in C 2 H 5 OH medium. • The number of hydrolysable groups in silanes affects the structure of grafted LDH. • Replacement of H 2 O by C 2 H 5 OH in aggregations increases S BET and V p of grafted LDH. • Polysiloxane oligomers contribute to the increase of S BET and V p of grafted LDH

  2. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  3. Silver makes better electrical contacts to thiol-terminated silanes than gold

    Czech Academy of Sciences Publication Activity Database

    Li, H.; Su, T.A.; Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Henn, S.E.; Pokorný, Vladislav; Caniglia, C.D.; Inkpen, M.S.; Korytár, R.; Steigerwald, M.L.; Nuckolls, C.; Evers, F.; Venkataraman, L.

    2017-01-01

    Roč. 56, č. 45 (2017), s. 14145-14148 ISSN 1433-7851 Institutional support: RVO:68378271 Keywords : metal–molecule interactions * silanes * single-molecule electronics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 11.994, year: 2016

  4. C-STrap Sample Preparation Method--In-Situ Cysteinyl Peptide Capture for Bottom-Up Proteomics Analysis in the STrap Format.

    Directory of Open Access Journals (Sweden)

    Alexandre Zougman

    Full Text Available Recently we introduced the concept of Suspension Trapping (STrap for bottom-up proteomics sample processing that is based upon SDS-mediated protein extraction, swift detergent removal and rapid reactor-type protein digestion in a quartz depth filter trap. As the depth filter surface is made of silica, it is readily modifiable with various functional groups using the silane coupling chemistries. Thus, during the digest, peptides possessing specific features could be targeted for enrichment by the functionalized depth filter material while non-targeted peptides could be collected as an unbound distinct fraction after the digest. In the example presented here the quartz depth filter surface is functionalized with the pyridyldithiol group therefore enabling reversible in-situ capture of the cysteine-containing peptides generated during the STrap-based digest. The described C-STrap method retains all advantages of the original STrap methodology and provides robust foundation for the conception of the targeted in-situ peptide fractionation in the STrap format for bottom-up proteomics. The presented data support the method's use in qualitative and semi-quantitative proteomics experiments.

  5. C-STrap Sample Preparation Method--In-Situ Cysteinyl Peptide Capture for Bottom-Up Proteomics Analysis in the STrap Format.

    Science.gov (United States)

    Zougman, Alexandre; Banks, Rosamonde E

    2015-01-01

    Recently we introduced the concept of Suspension Trapping (STrap) for bottom-up proteomics sample processing that is based upon SDS-mediated protein extraction, swift detergent removal and rapid reactor-type protein digestion in a quartz depth filter trap. As the depth filter surface is made of silica, it is readily modifiable with various functional groups using the silane coupling chemistries. Thus, during the digest, peptides possessing specific features could be targeted for enrichment by the functionalized depth filter material while non-targeted peptides could be collected as an unbound distinct fraction after the digest. In the example presented here the quartz depth filter surface is functionalized with the pyridyldithiol group therefore enabling reversible in-situ capture of the cysteine-containing peptides generated during the STrap-based digest. The described C-STrap method retains all advantages of the original STrap methodology and provides robust foundation for the conception of the targeted in-situ peptide fractionation in the STrap format for bottom-up proteomics. The presented data support the method's use in qualitative and semi-quantitative proteomics experiments.

  6. Chemical modeling of a high-density inductively-coupled plasma reactor containing silane

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan

    We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy

  7. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Influence of Nano Silica on Alkyd Films

    DEFF Research Database (Denmark)

    Nikolic, Miroslav

    . The present work centers on the reinforcement of alkyd binders emulsified in water and used in exterior wood coatings with nano silica. Raman spectroscopy was used throughout the study to maintain the reproducibility of results as it was found that colloidal nano silica can increase or decrease the speed...... of alkyd curing affecting the tested mechanical properties. Hydrophilic, colloidal nano silica was seen to have limited effect in improving the mechanical properties due to problems in properly dispersing and attaining good surface interactions with the hydrophobic alkyd polymer. Efforts in increasing...... the interactions with the alkyd polymer while keeping the nano filler stable in the water phase did not show further improvements of mechanical properties. The best results in respect to mechanical properties, as measured under static and dynamic loading, were obtained with the use of hexamethyldisilazane treated...

  9. Spatio-temporal powder formation and trapping in RF silane plasmas using 2-D polarization-sensitive laser scattering

    International Nuclear Information System (INIS)

    Dorier, J.L.; Hollenstein, C.; Howling, A.A.

    1994-09-01

    Powder formation studies in deposition plasmas are motivated by the need to reduce contamination in the plasma and films. Models for the force acting upon particles in rf discharges suffer from a lack of quantitative experimental data for comparison in the case of silane-containing plasmas. In this work, a cross-section of the parallel-plate capacitor discharge is illuminated with a polarized beam-expanded laser and global spatio-temporal scattered light and extinction are recorded by CCD cameras. Spatially-regular periodic bright/dark zones due to constructive/destructive Mie interference are visible over large regions of the powder layers, which shows the uniform nature of particle growth in silane plasmas. For particles trapped in an argon plasma, as for steady-state conditions in silane, spatial size segregation is demonstrated by fringes which reverse according to the polarisation of scattered light. The method allow a self-consistent estimation of particle size and number density throughout the discharge volume from which strong particle Coulomb coupling (Γ>40) is suggested to influence powder dynamics. Correction must be made to the plasma emission profile for the extinction by powder. In conclusion, this global diagnostics improves understanding of particle growth and dynamics in silane rf discharges and provides experimental input for testing the validity of models. (author) 6 figs., 43 refs

  10. Silane decorated metallic nanorods for hydrophobic applications

    International Nuclear Information System (INIS)

    Kannarpady, Ganesh K.; Sharma, Rajesh; Liu Bo; Trigwell, Steve; Ryerson, Charles; Biris, Alexandru S.

    2010-01-01

    A novel technique to modify a metallic surface for anti-icing applications is presented. An oblique angle deposition (OAD) technique has been used to fabricate metallic nanorods of Aluminum and Tungsten on a glass substrate. A conformal coating of a silane has been applied using a molecular vapor deposition technique. The resulting surface has shown a static contact angle of 134 deg. with the water droplet. SEM, AFM and XPS have been used to study the surface modification. This is a highly promising approach for anti-icing applications due to its scalability at a very low cost.

  11. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.Tuğrul, E-mail: atseyhan@anadolu.edu.tr [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Composite Materials Manufacturing Science Laboratory (CMMSL), Research and Application Center of Civil Aviation (RACCA), Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Göncü, Yapıncak; Durukan, Oya; Akay, Atakan; Ay, Nuran [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey)

    2017-05-15

    Chemical exfoliation of boron nitride nanosheets (BNNSs) from large flakes of specially synthesized micro-sized hexagonal boron nitride (h-BN) ceramics was carried out through microfluidization. The surface of BNNSs obtained was then functionalized with vinyl-trimethoxy silane (VTS) coupling agent through microfluidization once again in an effort to make them compatible with organic materials, especially those including polymers. The morphology of BNNSs with and without silane treatment was then systematically characterized by conducting various different analytical techniques, including Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Bright field Transmission Electron Microscopy (BF-TEM), Contact angle analyzer (CAA), Particle size analyzer (PSA) and Fourier Transmission Infrared (FTIR) spectroscopy attached with attenuated total reflectance (ATR) module. As a result, the silane treatment was determined to be properly and successfully carried out and to give rise to the irregularity of large flakes of the BNNSs by folding back their free edges upon themselves, which in turn assists in inducing further exfoliation of the few-layered nanosheets. To gain more insight into the effectiveness of the surface functionalization, thermal conductivity of polypropylene (PP) nanocomposites containing different amounts (1 wt% and 5 wt%) of BNNSs with and without silane treatment was experimentally investigated. Regardless of the weight content, PP nanocomposites containing silanized BNNSs were found to exhibit high thermal conductivity compared to PP nanocomposites containing BNNSs without silane treatment. It was concluded that microfluidization possesses the robustness to provide a reliable product quality, whether in small or large quantities, in a very time effective manner, when it comes to first exfoliating two-dimensional inorganic materials into few layered sheets, and functionalizing the surface of these sheets afterwards

  12. Agricultural waste as a source for the production of silica nanoparticles.

    Science.gov (United States)

    Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana

    2015-03-15

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  14. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  15. Supercritical water-treated fused silica capillaries in analytical separations: Status review

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Planeta, Josef; Roth, Michal

    2018-01-01

    Roč. 1539, MAR (2018), s. 1-11 ISSN 0021-9673 R&D Projects: GA MV VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  16. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  17. High-volume samplers for the assessment of respirable silica content in metal mine dust via direct-on-filter analysis

    CSIR Research Space (South Africa)

    Cauda, EG

    2014-08-01

    Full Text Available -site silica quantification in the samples would allow the identification of high-risk tasks and appropriate dedicated control technologies. With the objective to find more timely silica monitoring solutions, the performance of five different samplers...

  18. Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.

    1997-10-01

    In situ Fourier transform infrared (FTIR) absorption spectroscopy has been used to determine the fractional depletion of silane in a radio-frequency (rf) glow discharge. The technique used a simple single pass arrangement and was implemented in a large area industrial reactor for deposition of amorphous silicon. Measurements were made on silane plasmas for a range of excitation frequencies. It was observed that at constant plasma power, the fractional depletion increased from 35% at 13.56 MHz to 70% at 70 MHz. With a simple model based on the density continuity equations in the gas phase, it was shown that this increase is due to a higher dissociation rate and is largely responsible for the observed increase in the deposition rate with the frequency. (author) 5 figs., 30 refs

  19. Volatility and leachability of heavy metals and radionuclides in thermally treated HEPA filter media generated from nuclear facilities

    International Nuclear Information System (INIS)

    Yoon, In-Ho; Choi, Wang-Kyu; Lee, Suk-Chol; Min, Byung-Youn; Yang, Hee-Chul; Lee, Kune-Woo

    2012-01-01

    Highlights: ► Thermally treated HEPA filter media was transformed into glassy bulk materials. ► Main radionuclide and heavy metal were Cs-137 and Zn. ► Cs and Zn were transformed into stable form without volatilization and leaching. ► The proposed technique is simple and energy efficient procedure. - Abstract: The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900 °C for 2 h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO 2 ) and pollucite (Cs 2 OAl 2 O 3 4SiO 2 ), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process.

  20. Electron impact spectroscopy of methane, silane, and germane

    International Nuclear Information System (INIS)

    Dillon, M.A.; Wang, R.G.; Spence, D.

    1985-01-01

    Electronic spectra of the group IV/sub a/ hydrides, i.e., methane (CH 4 ), silane (SiH 4 ), and germane (GeH 4 ) have been investigated by means of electron energy loss spectroscopy in an energy range that includes all single-electron excitation from the valence shell. Electron impact spectra of the three gases recorded using electrons of 200-eV incidence are presented. The conditions employed were chosen to favor the excitation of states by direct scattering and to exclude those transitions requiring an exchange mechanism

  1. Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites.

    Science.gov (United States)

    Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang

    2018-09-01

    In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

  2. Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites

    Science.gov (United States)

    Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi

    2017-07-01

    The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.

  3. Study of the Effect of Sol pH and Nanoclay Incorporation on the Corrosion Protection Performance of a Silane Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Najmeh Asadi

    2014-06-01

    Full Text Available This work is aimed to evaluate the role of nanoclay in the protective performance of an eco-friendly silane sol-gel layer applied on mild steel substrate in 0.1M sodium chloride solution. At the first step, the effect of pH of the silane solution, consisting of a mixture of γ-glycidoxypropiltrimethoxysilane and methyltriethoxysilane and tetraethoxysilane, on the coating performance was evaluated through electrochemical noise measurements. The values of characteristic charge as a parameter extracted from shot noise theory revealed that the sol pH determining the rate of hydrolysis can play an important role in the corrosion protection behavior of silane coatings. Then, the influence of clay nanoparticles on the corrosion protective performance of the hybrid silane film was studied through taking advantage of electrochemical techniques, including electrochemical impedance spectroscopy and polarization curves, as well as surface analysis methods. The obtained electrochemical data including the values of charge transfer resistance, coating resistance, low frequency impedance and corrosion current density showed that the silane sol gel film in the presence of clay nanoparticles can present an improved corrosion protection. The behavior was connected to an enhancement in the coating barrier properties. Moreover, FESEM and water contact angle confirmed the higher reticulation in case of the coating incorporating nanoclay.

  4. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    Science.gov (United States)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.

  5. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  6. Effect of silane dilution on intrinsic stress in glow discharge hydrogenated amorphous silicon films

    Science.gov (United States)

    Harbison, J. P.; Williams, A. J.; Lang, D. V.

    1984-02-01

    Measurements of the intrinsic stress in hydrogenated amorphous silicon (a-Si : H) films grown by rf glow discharge decomposition of silane diluted to varying degrees in argon are presented. Films are found to grow under exceedingly high compressive stress. Low values of macroscopic film density and low stress values are found to correlate with high growth rate. An abrupt drop in stress occurs between 2 and 3% silane at precisely the point where columnar growth morphology appears. No corresponding abrupt change is noted in density, growth rate, or plasma species concentrations as determined by optical emissioin spectroscopy. Finally a model of diffusive incorporation of hydrogen or some gaseous impurity during growth into the bulk of the film behind the growing interface is proposed to explain the results.

  7. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method.

    Science.gov (United States)

    Eliasson, Sigfus Thor; Dahl, Jon E

    2017-01-01

    Objectives: To evaluate the micro-tensile repair bond strength between aged and new composite, using silane and adhesives that were cured or left uncured when new composite was placed. Methods: Eighty Filtek Supreme XLT composite blocks and four control blocks were stored in water for two weeks and thermo-cycled. Sandpaper ground, etched and rinsed specimens were divided into two experimental groups: A, no further treatment and B, the surface was coated with bis-silane. Each group was divided into subgroups: (1) Adper Scotchbond Multi-Purpose, (2) Adper Scotchbond Multi-Purpose adhesive, (3) Adper Scotchbond Universal, (4) Clearfil SE Bond and (5) One Step Plus. For each adhesive group, the adhesive was (a) cured according to manufacturer's instructions or (b) not cured before repair. The substrate blocks were repaired with Filtek Supreme XLT. After aging, they were serially sectioned, producing 1.1 × 1.1 mm square test rods. The rods were prepared for tensile testing and tensile strength calculated at fracture. Type of fracture was examined under microscope. Results: Leaving the adhesive uncured prior to composite repair placement increased the mean tensile values statistically significant for all adhesives tested, with or without silane pretreatment. Silane surface treatment improved significantly ( p strength values for all adhesives, both for the cured and uncured groups. The mean strength of the control composite was higher than the strongest repair strength ( p strength. Not curing the adhesive before composite placement increased the tensile bond strength.

  8. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  9. Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon-silane low-pressure plasmas

    CERN Document Server

    Bhandarkar, U; Girshick, S L

    2003-01-01

    Particle nucleation in silane plasmas has attracted interest for the past decade, both due to the basic problems of plasma chemistry involved and the importance of silane plasmas for many applications. A better understanding of particle nucleation may facilitate the avoidance of undesirable particle contamination as well as enable the controlled production of nanoparticles for novel applications. While understanding of particle nucleation has significantly advanced over the past years, a number of questions have not been resolved. Among these is the delay of particle nucleation with an increasing gas temperature, which has been observed in experiments in argon-silane plasmas. We have developed a quasi-one-dimensional model to simulate particle nucleation and growth in silane containing plasmas. In this paper we present a comparative study of the various effects that have been proposed as explanations for the nucleation delay. Our results suggest that the temperature dependence of the Brownian diffusion coeffi...

  10. Development of antibacterial quaternary ammonium silane coatings on polyurethane catheters

    Czech Academy of Sciences Publication Activity Database

    Zanini, S.; Polissi, A.; Maccagni, E.A.; Dell'Orto, E.C.; Liberatore, Chiara; Riccardi, C.

    2015-01-01

    Roč. 451, Aug (2015), 78-84 ISSN 0021-9797 R&D Projects: GA MŠk EE2.3.20.0143 Grant - others:OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : plasma-induced graft-polymerization * acrylic acid * ATR/FTIR * AFM * quaternary ammonium silane * Escherichia coli Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.782, year: 2015

  11. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid

    International Nuclear Information System (INIS)

    Yang, Hao; Pi, Pihui; Yang, Zhuo-ru; Lu, Zhong; Chen, Rong

    2016-01-01

    Graphical abstract: - Highlights: • Cured fluoropolymer@silica hybrid was coated on stainless steel mesh. • The hybrid film showed superhydrophobicity and superoleophilicity by adjusting silica dosage. • The hybrid film exhibited good thermal stability and excellent oil/water separation efficiency. - Abstract: Recently, considerable efforts have been made on superhydrophobic–superoleophilic filter to satisfy the requirements of the applications to oil/water separation. In this work, we obtained a superhydrophobic and superoleophilic film by coating cured fluoropolymer@silica hybrid on stainless steel mesh. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric-differential scanning calorimetry (TG-DSC) were used to determine the chemical composition and thermal stability of the sample. The effect of silica nanoparticles (NPs) concentration on the surface property of the hybrid film was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle analyzer. The results indicate that silica NPs not only enhance the thermal stability, but also strengthen the hydrophobicity and oleophilicity of the film. When 20 wt% silica NPs was added into the thermosetting fluoropolymer, the hybrid film shows both superhydrophobicity and superoleophilicity owing to the large surface roughness factor (RMS) and porous structure. Moreover, the hybrid film could be used to separate water from different oils effectively. When the pore size of the mesh is less than 300 μm, the oil/water separation efficiency of the film reaches above 99%, which shows a great potential application to dehydrate fuel oils.

  12. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao [Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Street, Wuhan, 430073 (China); Pi, Pihui; Yang, Zhuo-ru [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 (China); Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Street, Wuhan, 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Street, Wuhan, 430073 (China)

    2016-12-01

    Graphical abstract: - Highlights: • Cured fluoropolymer@silica hybrid was coated on stainless steel mesh. • The hybrid film showed superhydrophobicity and superoleophilicity by adjusting silica dosage. • The hybrid film exhibited good thermal stability and excellent oil/water separation efficiency. - Abstract: Recently, considerable efforts have been made on superhydrophobic–superoleophilic filter to satisfy the requirements of the applications to oil/water separation. In this work, we obtained a superhydrophobic and superoleophilic film by coating cured fluoropolymer@silica hybrid on stainless steel mesh. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric-differential scanning calorimetry (TG-DSC) were used to determine the chemical composition and thermal stability of the sample. The effect of silica nanoparticles (NPs) concentration on the surface property of the hybrid film was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle analyzer. The results indicate that silica NPs not only enhance the thermal stability, but also strengthen the hydrophobicity and oleophilicity of the film. When 20 wt% silica NPs was added into the thermosetting fluoropolymer, the hybrid film shows both superhydrophobicity and superoleophilicity owing to the large surface roughness factor (RMS) and porous structure. Moreover, the hybrid film could be used to separate water from different oils effectively. When the pore size of the mesh is less than 300 μm, the oil/water separation efficiency of the film reaches above 99%, which shows a great potential application to dehydrate fuel oils.

  13. Synthesis and characterization of hybrid silicon based complexing materials: extraction of transuranic elements from high level liquid waste; Synthese et caracterisation de gels hybrides de silice a proprietes complexantes: applications a l'extraction des transuraniens des effluents aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Conocar, O

    1999-07-01

    Hybrid organic/inorganic silica compounds with extractive properties have been developed under an enhanced decontamination program for radioactive aqueous nitric acid waste in nuclear facilities. The materials were obtained by the sol-gel process through hydrolysis and poly-condensation of complexing organo-tri-alkoxy-silanes with the corresponding tetra-alkoxy-silane. Hybrid silica compounds were initially synthesized and characterized from mono- and bis-silyl precursors with malonamide or ethylenediamine patterns. Solids with different specific areas and pore diameters were obtained depending on the nature of the precursor, its functionality and its concentration in the tetra-alkoxy-silane. These compounds were then considered and assessed for use in plutonium and americium extraction. Excellent results-partitioning coefficients and capacities have been obtained with malonamide hybrid silica. The comparison with silica compounds impregnated or grafted with the same type of organic group is significant in this respect. Much of the improved performance obtained with hybrid silica may be attributed to the large quantity of complexing groups that can be incorporated in these materials. The effect of the solid texture on the extraction performance was also studied. Although the capacity increased with the specific area, little effect was observed on the distribution coefficients -notably for americium- indicating that the most favorable complexation sites are found on the outer surface. Macroporous malonamide hybrid silica compounds were synthesized to study the effects of the pore diameter, but the results have been inconclusive to date because of the unexpected molecular composition of the materials. (author)

  14. Physico-mechanical properties of silanized-montmorillonite reinforced chitosan-co-poly(maleic anhydride) composites

    Science.gov (United States)

    Saputra, O. A.; Fajrin, A.; Nauqinida, M.; Suryanti, V.; Pramono, E.

    2017-07-01

    To solve the problems of dependence on petroleum as starting material in the manufacturing of plastics in Indonesia, green plastic from biopolymer like chitosan to be one of promising options and alternative to replace the conventional plastics. However, to overcome the mechanical and physical properties of chitosan, the addition of reinforcement agent was introduced. In this study, silanized-montmorillonite (sMMt) has been prepared as a reinforcement agent in the chitosan-co-poly(maleic anhydride) (referred as Cs-MAH) matrix. Silanizing of montmorillonite is one of strategy to improve the interaction between montmorillonite and chitosan, consequently, the mechanical properties, tensile strength of composites contained 6 phr of sMMt improved 56.5% to chitosan. Moreover, the presence both MAH and sMMt on the comosites also reduced swelling degree and swelling area by 20.6% and 26.7%.

  15. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  16. Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Qi [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); He, Hongping, E-mail: hehp@gig.ac.cn [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Li, Tian [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese, Academy of Sciences, Beijing 100039 (China); Frost, Ray L. [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Zhang, Dan; He, Zisen [Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese, Academy of Sciences, Beijing 100039 (China)

    2014-05-01

    Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and {sup 29}Si MAS nuclear magnetic resonance spectra ({sup 29}Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and {sup 29}Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (S{sub BET}) and total pore volumes (V{sub p}) of the products. - Graphical abstract: The replacement of water by ethanol in the tactoids and aggregations of LDHs, and the polysiloxane oligomers formed during silylation process can dramatically increase the BET surface area (S{sub BET}) and the total pore volume (V{sub p}) of the silylated products. - Highlights: • Silanes with multifunctional groups were grafted onto LDH surface in C{sub 2}H{sub 5}OH medium. • The number of hydrolysable groups in silanes affects the structure of grafted LDH. • Replacement of H{sub 2}O by C{sub 2}H{sub 5}OH in aggregations increases S{sub BET} and V{sub p} of grafted LDH. • Polysiloxane oligomers contribute to the increase of S{sub BET} and V{sub p} of grafted LDH.

  17. Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging.

    Science.gov (United States)

    Foda, Mohamed F; Huang, Liang; Shao, Feng; Han, He-You

    2014-02-12

    Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/ZnS@SiO2 nanoparticles homogeneously comprised both single-core and multicore remarkable CuInS2/ZnS QDs, while the silica shell thickness could be controlled to within 5-10 nm and their overall size was 17-25 nm. Also, the functionalized CuInS2/ZnS QDs encapsulated in the silica spheres, expedited their bioconjugation with holo-Transferrin (Tf) for further cancer cell imaging. The CuInS2/ZnS@SiO2 nanoparticles not only showed a dominant NIR band-edge luminescence at 650-720 nm with a quantum yield (QY) between 30 and 50%, without a recognized photoluminescence (PL) red shift, but also exhibited excellent PL and colloidal stability in aqueous media. Impressively, the cytotoxicity studies revealed minor suppression on cell viability under both CuInS2/ZnS@SiO2 and CuInS2/ZnS@SiO2@Tf concentrations up to 1 mg/mL. The application in live-cell imaging revealed that the potential of CuInS2/ZnS QDs as biocompatible, robust, cadmium-free, and brilliant NIR emitters is considered promising for fluorescent labels.

  18. Silica-on-silicon optical couplers and coupler based optical filters

    DEFF Research Database (Denmark)

    Leick, Lasse

    2002-01-01

    is not an adequate description of the waveguides. A simple application for an optical couplers is as a 980/1550 nm mulitmplexer for erbium doped wavguide amplifiers. A numerical analysis shows that a directional coupler has acceptable specifications, whereas a mulit mode interference coupler does not. The wavelength......This work concerns modeling and chracterization of non ampligying silica-on-silicon optical components for wavelength division mulitplexed networks. Emphasis is placed on optical couplers and how they can be used as building blocks for devices with a larger complexity. It has been investigated how...... to construct wavelength flattened and process tolerant couplers. A thorough comparison between directional couplers, multi mode interference couplers and interferometer-based couplers has been performed. Numerically all these architectures have the ability to obtain similar wavelength-flatness, but the multi...

  19. Enhancing the soft tissue seal around intraosseous transcutaneous amputation prostheses using silanized fibronectin titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chimutengwende-Gordon, M; Pendegrass, C; Blunn, G, E-mail: mukai.cg@mac.com [Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Brockley Hill, Stanmore, HA7 4LP (United Kingdom)

    2011-04-15

    The success of intraosseous transcutaneous amputation prostheses (ITAP) relies on achieving a tight seal between the soft tissues and the implant in order to avoid infection. Fibronectin (Fn) may be silanized onto titanium alloy (Ti-6Al-4V) in order to promote soft-tissue attachment. The silanization process includes passivation with sulphuric acid, which alters surface characteristics. This study aimed to improve in vitro fibroblast adhesion to silanized fibronectin (SiFn) titanium alloy by omitting the passivation stage. Additionally, the study assessed the effects of SiFn on in vivo dermal attachment, comparing the results with adsorbed Fn, hydroxyapatite (HA), Fn adsorbed onto HA (HAFn) and uncoated controls. Surface topography was assessed using scanning electron microscopy, profilometry and contact angle measurement. Anti-vinculin antibodies were used to immunolocalize fibroblast adhesion sites. A histological assessment of soft-tissue attachment and cell alignment relative to implants in an in vivo ovine model was performed. Passivation resulted in rougher, more hydrophobic, microcracked surfaces and was associated with poorer fibroblast adhesion than unpassivated controls. SiFn and HAFn surfaces resulted in more favourable cell alignment in vivo, implying that dermal attachment was enhanced. These results suggest that SiFn and HAFn surfaces could be useful in optimizing the soft tissue seal around ITAP.

  20. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.

    Science.gov (United States)

    Poyraz, Bayram; Tozluoğlu, Ayhan; Candan, Zeki; Demir, Ahmet; Yavuz, Mustafa

    2017-11-01

    This study reports on the effects of organic polyvinyl alcohol (PVA) and inorganic silica polymer on properties of Celluclast-treated nanofibrillated cellulose composites. Nanofibrillated cellulose was isolated from Eucalyptus camaldulensis and prior to high-pressure homogenizing was pretreated with Celluclast enzyme in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose (CNF), nanocellulose-PVA (CNF-P) and nanocellulose-silica (CNF-Si). Chemical characterization, crystallization and thermal stability were determined using FT-IR and TGA. Morphological alterations were monitored with SEM. The Young's and storage moduli of the nanocomposites were determined via a universal testing machine and DTMA. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. The crystallinity values of the nanocomposites calculated from the FT-IR were in agreement with the TGA results, showing that the lowest crystallinity value was in the CNF-Si. The CNF-P displayed the highest tensile strength. At a high temperature interval, the storage modulus of the CNF-Si was greater than that of the CNF or CNF-P. The CNF-Si also exhibited a completed singular relaxation process, while the CNF and the CNF-P processes were uncompleted. Consequently, in terms of industrial applications, although the CNF-P composite had mechanical advantages, the CNF-Si composite displayed the best thermo-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A novel silanized CoFe{sub 2}O{sub 4}/fluorinated waterborne polyurethane pressure sensitive adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Heqing, E-mail: fuhq@scut.edu.cn; Wang, Yin; Chen, Weifeng; Zhou, Wei; Xiao, Jing

    2015-10-01

    Highlights: • The hydrophobicity, thermal stability, dynamic mechanical properties, as well as adhesive properties of silanized. • CoFe{sub 2}O{sub 4}/fluorinated waterborne polyurethane (SC/FWPU) were improved with the incorporation of silanized CoFe{sub 2}O{sub 4} into FWPU. • The higher the spreading-penetration parameter is, the faster the contact angle reaches equilibrium, and the faster the SC/FWPU pressure sensitive adhesive penetrates and spreads. - Abstract: A novel silanized CoFe{sub 2}O{sub 4}/fluorinated waterborne polyurethane (SC/FWPU) pressure sensitive adhesive was synthesized and characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and contact angle tester. The adhesive properties were measured in a test machine. Experimental results showed that the hydrophobicity, thermal stability, dynamic mechanical properties, as well as adhesive properties of SC/FWPU were improved with the incorporation of SC into FWPU. The dynamic hydrophobicity can be well described by the wetting kinetic model. The spreading-penetration parameter increased with an increase in SC content. The higher the spreading-penetration parameter is, the faster the contact angle reaches equilibrium, and the faster the SC/FWPU pressure sensitive adhesive penetrates and spreads.

  2. Effect of Silver or Copper Nanoparticles-Dispersed Silane Coatings on Biofilm Formation in Cooling Water Systems

    Science.gov (United States)

    Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B.; Suzuki, Osamu; Tanaka, Toshihiro

    2016-01-01

    Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes. PMID:28773758

  3. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    Science.gov (United States)

    Ai, Jun (Inventor); Dimov, Fedor (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  4. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  5. Application of activated carbon fiber to a filter used for airborne radioiodine sampling

    International Nuclear Information System (INIS)

    Kato, Shohei; Murata, Mikio; Yoshikazu, Yoshida

    1988-01-01

    An airborne radioiodine sampling filter is required to have low pressure drop, mechanical strength enough to a practical use and high collection efficiency under high relative humidity(RH). To develop a filter to meet the requirements, the influences of impregnation amount of triethylenediamin(TEDA) on the collection efficiencies for methyl iodide and the reaction rates were investigated for several kinds of activated carbon fiber varied in specific surface area, pore diameter, etc. Silver silica gel(Sut Chemi, AC6120), silver zeolite(CTI Nuc., AgX Type III), silver alumina(Hitachi Co.) and granular activated charcoal were also examined for comparison. A new type filter made of activated carbon fiber (ACF filter) was developed based on the above experimental results. The ACF filter was examined for the pressure drop by the filter and collection efficiency for methyl iodide being compared with other types of filters such as an activated charcoal cartridge (ACC) and an activated charcoal filter paper (ACP)

  6. Apparatus for Removing Remaining Adhesives of Filter

    International Nuclear Information System (INIS)

    Kang, Il Sik; Kim, Tae Kuk; Hong, Dae Seok; Ji, Young Yong; Ryu, Woo Seog

    2010-01-01

    A Large amount of ventilation filter was used at radiation areas not only in nuclear power plants but also in nuclear facilities. These spent ventilation filters are generated as radioactive waste and composed of a steel frame, glass fiber media and aluminum separator. When treated, the spent filter is separated into filter media for air purification and frame. After separation, while the filter media is collected using steel drum for reducing internal exposure, the filter frame is treated further to remove adhesives for recycling the frame as many as possible in order to reduce waste and cost and improve working conditions. Usually, the adhesives are separated from the filter frame manually. As a result, a lot of time and labor is required. So, the objective of this study is to develop a motor-driven apparatus for removing adhesives efficiently

  7. Magnetic behavioural change of silane exposed graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg 1710 (South Africa); Mishra, D. K. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg 1710 (South Africa); Department of Physics, Institute of Technical Research and Education, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar 751030, Odisha (India); Strydom, A. M. [Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Papakonstantinou, P. [Nanotechnology and Integrated Bioengineering Center (NIBEC), School of Engineering, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB (United Kingdom)

    2015-09-21

    The electronic structures and magnetic properties of graphene nanoflakes (GNFs) exposed to an organo-silane precursor [tetra-methyl-silane, Si(CH{sub 3}){sub 4}] were studied using atomic force microscopy, electron field emission (EFE), x-ray photoelectron spectroscopy (XPS), and magnetization. The result of XPS indicates that silyl radical based strong covalent bonds were formed in GNFs, which induced local structural relaxations and enhanced sp{sup 3} hybridization. The EFE measurements show an increase in the turn-on electric field from 9.8 V/μm for pure GNFs to 26.3 V/μm for GNFs:Si having highest Si/(Si + C) ratio ( ≅ 0.35) that also suggests an enhancement of the non-metallic sp{sup 3} bonding in the GNFs matrix. Magnetic studies show that the saturation magnetization (Ms) is decreased from 172.53 × 10{sup −6} emu/g for pure GNFs to 13.00 × 10{sup −6} emu/g for GNFs:Si with the highest Si/(Si + C) ratio 0.35, but on the other side, the coercivity (Hc) increases from 66 to 149 Oe due to conversion of sp{sup 2} → sp{sup 3}-hybridization along with the formation of SiC and Si-O bonding in GNFs. The decrease in saturation magnetization and increase in coercivity (Hc) in GNFs on Si-functionalization are another routes to tailor the magnetic properties of graphene materials for magnetic device applications.

  8. Inhibiting and healing effects of potassium permanganate for silane films

    Energy Technology Data Exchange (ETDEWEB)

    She, Zuxin; Li, Qing, E-mail: liqingswu@yeah.net; Wang, Shaoyin; Luo, Fei; Chen, Funan; Li, Longqin

    2013-07-31

    In this study, the inhibiting and healing effects of potassium permanganate for silane films were investigated, and the optimal mole ratio of MnO{sub 4}{sup −}/Cl{sup −} was also obtained. The inhibiting process and healing mechanism were studied by electrochemical measurements and scanning electron microcopy coupled with energy dispersive spectroscopy. Results demonstrated that the introduction of potassium permanganate to electrolyte could stop the development of corrosion process and the optimal inhibiting mole ratio of MnO{sub 4}{sup −}/Cl{sup −} is 2 × 10{sup −1} with a protective efficiency about 99.24%. According to its high protective efficiency and the nice results of long-term immersion test, potassium permanganate as an inhibitor could prolong the lifetime of silane films and expand its scope of application. - Highlights: • Healing sol–gel film was obtained by adding KMnO{sub 4} into electrolyte. • An optimal inhibitor mole ratio of MnO{sub 4}{sup −}/Cl{sup −} for Si sol–gel was 2 × 10{sup −1}. • The best protective efficiency was approximately 99.24%. • The inhibiting effect may be due to production of insoluble manganese hydroxide/oxide.

  9. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility, and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.

  10. Some Durability Characteristics of Micro Silica and Nano Silica Contained Concrete

    Directory of Open Access Journals (Sweden)

    Mohammed Salah Nasr

    2016-12-01

    Full Text Available This paper aims to investigate the influence of replacement of cement with nano and micro silica admixtures on some durability properties of concrete such as water absorption, chloride content and pH tests. Three replacement ratios (5%,10%,15% of micro silica and four replacement proportions (0.5%,1.5%,3%,5% for nano silica were used in this study. Two exposure conditions were considered for chloride content test: wetting-drying and full immersing exposure in 6% of chloride ions solution, NaCl type. Results showed that mixes of %5 micro silica and 5% nano silica had lower content of chloride (about 0.19% and 0.18% for wetting-drying and full immersing exposure respectively. For water absorption test, all mixes incorporated micro and nano silica, except for %5 micro silica mix, showed lower absorption than control mixes. For pH test, results indicated that the adding of nano and micro silica didn’t affect adversely the alkalinity of concrete.

  11. Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites.

    Science.gov (United States)

    Elshereksi, Nidal W; Ghazali, Mariyam J; Muchtar, Andanastuti; Azhari, Che H

    2017-01-01

    This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied. Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated. NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (pPMMA composites. Thus, TCA seemed to be more effective than silane. Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thirteen treated of acute renal failure secondary to multiple myeloma with high cut off filters.

    Science.gov (United States)

    Berni Wennekers, Ana; Martín Azara, María Pilar; Dourdil Sahun, Victoria; Bergasa Liberal, Beatriz; Ruiz Laiglesia, José Esteban; Vernet Perna, Patricia; Alvarez Lipe, Rafael

    2016-01-01

    Multiple myeloma (MM) is a haematological tumour that is characterised by uncontrolled proliferation of plasma cells and a significant volume of serum free light chains (sFLCs), which can cause acute renal failure due to intratubular precipitation, resulting in cast nephropathy. Acute renal failure is a complication that can arise in more than 20% of patients with multiple myeloma, half of which will require dialysis. We report our experience with 13 patients who were treated with dialysis using high cut off filters (HCO) between July 2011 and February 2015. A total of 6 consecutive 6-hour sessions were performed using a 2.1 m(2) HCO filter (Theralite® by Gambro®). Afterwards, further 6-hour sessions were continued on alternate days. A total of 151 sessions were conducted, with an average of 11.6 sessions per patient (range 6-27). The treatment proved to be effective in removing both kappa and lambda sFLCs, resulting in a 93.7% fall in sFLCs by the end of treatment. The average reduction was 57.7% per dialysis session. 10 out of the 13 cases recovered sufficient renal function to become independent of dialysis. There were no major changes in albumin levels using an infusion protocol of 2 50-mL vials of 20% albumin at the end of the dialysis session. Combination treatment with chemotherapy and long dialysis with HCO filters was effective in reducing the sFLC levels and recovering sufficient renal function in 77% of cases. With HCO filters, significant cost savings are achieved, contrary to what was previously believed. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  13. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Lee S

    2013-01-01

    Full Text Available Soyoung Lee,1,* Mi-Sun Kim,1,* Dakeun Lee,2 Taeg Kyu Kwon,3 Dongwoo Khang,4 Hui-Suk Yun,5 Sang-Hyun Kim11CMRI, Laboratory of Immunotoxicology, Department of Pharmacology,School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 2Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 3Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea; 4School of Nano and Advanced Materials Science and Engineering, Gyeongsang National University, Jinju, Republic of Korea; 5Engineering Ceramics Department, Powder and Ceramics Division, Korea Institute of Materials Science, Changwon, Republic of Korea*These authors contributed equally to this workBackground: Mesoporous silica (MPS nanoparticles (NPs, which have a unique pore structure and extremely large surface area and pore volume, have received much attention because of their biomedical application potential. Using MPS NPs for biomedical devices requires the verification of their biocompatibility because the surface area of NPs is one of the most important determinants of toxicity, including the cellular uptake and immune response. We have previously reported that the cytotoxicity and inflammation potential of MPS NPs have been shown to be lower than those of general amorphous colloidal silica (Col NPs in macrophages, but the low cytotoxicity does not guarantee high biocompatibility in vivo. In this study, we compared the in vivo immunotoxicity of MPS and Col NPs in the mouse model to define the effects of pore structural conditions of silica NPs.Materials and methods: Both MPS and Col NPs (2, 20, and 50 mg/kg/day were intraperitoneally administered in female BALB/c mice for 4 weeks, and clinical toxicity, lymphocyte population, serum IgG/IgM levels, and histological changes were examined.Results: There was no overt sign of clinical toxicity in either MPS- or Col-treated mice. However, MPS NPs led to

  14. Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-08-05

    Aug 5, 2015 ... The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, ... traditional methods of treating industrial effluent, these ... Author(s) agree that this article remains permanently open access under the terms of the Creative ... sodium silicate solution (v/v) and 25 mL of distilled water. With.

  15. Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

    OpenAIRE

    Samper Madrigal, María Dolores; Petrucci, R.; Sánchez Nacher, Lourdes; Balart Gimeno, Rafael Antonio; Kenny, J. M.

    2015-01-01

    The fiber-matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3-aminopropyl)trimethoxysilane, [3-(2-aminoethylamino)propyl]-trimethoxysilane, trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and (3-glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength...

  16. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  17. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  18. Comprehensive Study of the Impact of Steam on Polyethyleneimine on Silica for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hammache, Sonia; Hoffman, James S.; Gray, McMahan L.; Fauth, Daniel J.; Howard, Bret H.; Pennline, Henry W.

    2013-11-21

    An amine sorbent, prepared by impregnation of polyethyleneimine on silica, was tested for steam stability. The stability of the sorbent was investigated in a fixed bed reactor using multiple steam cycles of 90 vol % H2O/He at 105 °C, and the gas effluent was monitored with a mass spectrometer. CO2 uptake of sorbent was found to decrease with repeated exposure to steam. Characterization of the spent sorbent using N2 physisorption, SEM, and thermogravimetric analysis (TGA) showed that the decrease in CO2 loading can possibly be attributed to a reagglomeration of the amine in the pores of the silica. No support effect was found in this study. The commercial SiO2 used, Cariact G10, was found to be stable under the conditions used. While it was found that subjecting the sorbent to several steam cycles decreased its CO2 uptake, a continuous exposure of the sorbent to steam did not have a significant performance impact. Finally, a silanated sorbent, consisting of a mixture of PEI and aminopropyl-triethoxysilane on SiO2 support, was also investigated for steam stability. Similarly to the nonsilanated sorbent, the CO2 loading of this sorbent decreased upon steam exposure, although a mechanism for this change has not been postulated at this time.

  19. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  20. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  1. Frequency effects in silane plasmas for PECVD

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.; Finger, F.; Kroll, U.

    1991-09-01

    It is generally recognised that the excitation frequency is an important parameter in rf plasma-assisted deposition. VHF silane plasmas (50-100 MHz) have been shown to produce high quality amorphous silicon films up to 20 A/s, and therefore the aim of this work is to compare the VHF range with the 13.56 MHz industrial frequency in the same reactor. The principal diagnostics used are electrical measurements and a CCD camera for spatially-resolved plasma-induced emission with Abel inversion of the plasma image. We present a comparative study of key discharge parameters such as deposition rates, plasma uniformity, ion impact energy, power transfer efficiency and powder formation for the rf range 13-70 MHz. (author) 5 figs., 19 refs

  2. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua; Zhan Zhongwei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of glycidoxypropyl-trimethoxy-silane (GTMS) on a titanium alloy was found fitting Temkin isotherm by XPS. Black-Right-Pointing-Pointer From an electrochemical point of view, the in situ adsorption process of GTMS molecules agreed with XPS results. Black-Right-Pointing-Pointer At 30 Degree-Sign C, the adsorption of GTMS molecules is spontaneous, and follows a chemisorption-based mechanism. - Abstract: The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 Degree-Sign C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (K{sub ads}) and free energy of adsorption process ({Delta}G{sub ads}) were calculated to elaborate the mechanism of GTMS adsorption.

  3. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  4. Decomposition of silane on tungsten or other materials

    Science.gov (United States)

    Wiesmann, H.J.

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, from a W or foil heated to a temperature of about 1400 to 1600/sup 0/C, in a vacuum of about 10-/sup 6/ to 10-/sup 4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate independent of and outside the source of thermal decomposition. Hydrogenated amorphous silicon is formed. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  5. Thermal stability of thiol and silane monolayers: A comparative study

    International Nuclear Information System (INIS)

    Chandekar, Amol; Sengupta, Sandip K.; Whitten, James E.

    2010-01-01

    The stability of self-assembled monolayers (SAMs) at elevated temperatures is of considerable technological importance. The thermal stability of 1-octadecanethiol (ODT), 16-mercaptohexadecanoic acid (MHDA) and 1H,1H,2H,2H-perfluorodecanethiol (PFDT) SAMs on gold surfaces, and of 4-aminobutyltriethoxysilane (ABTES) and 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDS) assembled on hydroxylated silicon surfaces, was studied by X-ray photoelectron spectroscopy (XPS). The samples were heated in ultrahigh vacuum to temperatures in excess of that required for SAM degradation. ODT monolayers were stable to ca. 110 deg. C, while MHDA and PFDT SAMs were stable to ca. 145 deg. C. ABTES SAMs were found to be indefinitely stable to 250 deg. C, while PFDS SAMs were stable to 350 deg. C. These studies demonstrate the advantages of using silane monolayers for moderate to high temperature applications and illustrate differences that arise due to the nature of the tail group. To demonstrate the feasibility of silanes for template-directed patterning, a hydroxylated silicon oxide surface containing microcontact-printed PFDS patterns was spin-coated with a mainly hydrophilic block copolymer. Annealing the surface at 90 deg. C for 2 h caused the block copolymer to dewet the hydrophobic PFDS-patterned regions and adsorb exclusively on the unpatterned regions of the surface.

  6. Influence of silane agent in magnetic properties of the type MFe2O4 (M = Co e NiZn)

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Araujo, P.M.A.G.; Costa, A.C.F.M.; Cornejo, D.R.

    2014-01-01

    This paper proposes to evaluate the influence of silane agent on the magnetic properties of ferrite is a MFe 2 O 4 (M = Co and NiZn). The ferrites were synthesized by combustion reaction, the surface modified with 3-aminopropyltrimethoxysilane agent silane (APTS) and characterized by XRD, FTIR, EDX and magnetic measurements. The results indicated that after modification of the surface of the spinel single phase was maintained. Surface modification was achieved with efficiency and Si-O confirmed by FTIR analysis. The surface modification kept the ferrimagnetic behavior of ferrites. (author)

  7. Preparation and characterization of rice hull silica products

    International Nuclear Information System (INIS)

    Quirit, Leni L.; Llaguno, Elma C.; Pagdanganan, Fernando C.; Hernandez, Karen N.

    2008-01-01

    Rice hull is an abundant agricultural waste material which could be a renewable energy source when combusted. The combustion residue (called rice hull ash or RHA) contains a significant amount (20% of the hull) of potentially high grade silica. Silica gels prepared from rice hull were found to have properties comparable to two commercial desiccant silica gels (Blue Merck and FNG-A) in terms of chemical and amorphous structure, surface area, desiccant characteristics, microstructure and heats of adsorption. These properties were determined from water vapor adsorption measurements, electron microscopy, and from infrared and x-ray diffraction spectra. The acid treated rice hull gels were found to have fewer elemental impurities detected by qualitative x-ray fluorescence, compared to the commercial gels. Thermogravimetric analysis (TGA) data showed that this technique can also be used to indirectly compare impurity levels in the samples, in terms of the amorphous to crystalline phase transition. Using an improved acid treatment method, a silica gel sample was prepared from rice hull and compared to three commercial chromatographic silica gels using quantitative elemental x-ray fluorescence analysis. Elemental levels in the rice hull gel were within the range of levels or close to the detection limits of corresponding elements in the chromatographic gels. Water vapor adsorption, x-ray diffraction, infrared spectroscopy and scanning electron microscopy showed that the rice hull gel was similar to the commercial chromatographic silica gel Davison 12. Zeolites are crystalline aluminosilicates used as molecular sieves for purification and catalytic purposes. Zeolites X and Y were synthesized from rice hull silica gel and aluminum hydroxide. For comparison, controls were synthesized from commercial silica gel. The samples and controls exhibited characteristics infrared peaks corresponding to the vibrations of the TO 4 (T=Si, Al) of the zeolite framework. The x

  8. Synthesis of AL-MCM-41 using gravel drilling the source of silica from wells drilling; Sintese do AL-MCM-41 usando como fonte de silica o cascalho de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, M.S.B.; Costa, C.C.; Melo, D.M.A.; Viana, L.M.; Viana, S.O.; Santos, L.M., E-mail: socorro.fontes@Yahoo.com.br [Universidade Federal do Rio grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    The aim of this study was to synthesize Al-MCM-41 using gravel drilling as alternative source of silica, aiming at sustainable production and low cost. For hydrothermal synthesis of Al-MCM-41 was used gravel and sodium silicate as source of silica and sodium, respectively. The structural driver used was cetyltrimethylammonium bromide (CTMABr) and solvent distilled water. The hydrothermal synthesis was conducted at 100 ° C in a Teflon autoclave 45 ml jacketed stainless steel for a period of 120 hours with daily correcting pH (range 9-10) using 30% acetic acid. The material obtained was filtered, washed, dried at 100 ° C for 3 hours and then calcined at 550 ° C for 2 hours. Then it was characterized by XRD, FTIR and TG. For the results of characterization has been observed that the use of the gravel drilling as a source of silica was promising alternative for producing a mesoporous material with a high degree of hexagonal ordering. (author)

  9. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  10. Spectrophotometric determination of silica in water. Low range; Determinacion espectrofotometrica de silicio en aguas. Rango bajo

    Energy Technology Data Exchange (ETDEWEB)

    Acosta L, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: eal@nuclear.inin.mx

    1992-07-15

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 {mu}g/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  11. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2014-02-01

    Full Text Available An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV, benchmarked against vacuum membrane distillation (VMD. Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation.

  12. Filters for radioactive liquid wastes

    International Nuclear Information System (INIS)

    Koshiba, Yukihiko; Kawashima, Akio

    1980-01-01

    In the crud generated in the reactor cooling water for nuclear power plants, iron oxides (hematite and magnetite) are contained as the main components, and also Co, Mn, Fe, Cr exist as radioactive nuclides. A new filter to separate these cruds, nuclepore membrane filter (NPMF), was investigated for its adaptability, and has been adopted as a practical filter for radioactive liquid wastes. The NPMF has such features as the possibility of complete automation of operation, no generation of secondary wastes, and easy maintenance, because the NPMF has uniform circular holes in poly-carbonate thin films, and shows the properties of stable filtering of particulates, capability of back washing, and others. The elements mounted in a practical system have such construction that the membrane is cut in the form of doughnut, and sandwiched with 100 mesh polyester nets (spacer); the obtained unit filter (cassette) is mounted on the stackable plate of the same size; and 80 pieces of this cassette are formed in a filter of 4 m 2 filtering area. The performance varies with the properties of suspended matters and the turbidity of wastes. For example, the filtered liquid of 0.1 ppm or less can be obtained when the 1 μm filter material is used to treat the liquid waste containing 1 to 100 ppm suspended matters. Usually back washed water is produced by about 1/100 of treated liquid wastes. The lifetime of the membrane is expected to be 1 or 2 years if crud is the main component. (Wakatsuki, Y.)

  13. A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis

    KAUST Repository

    Maity, Niladri

    2018-02-15

    A well-defined silica-supported monoalkylated tungsten dioxo complex [(Si-O-)W(=O)(CH-Bu)] was prepared by treatment of highly dehydroxylated silica (SiO: silica treated at 700 °C under high vacuum) with an ionic precursor complex [NEt][W(=O)(CH-Bu)]. The identity of the resulting neutral monoalkylated tungsten dioxo surface complex was established by means of elemental microanalysis and spectroscopic studies (IR, solid-state NMR, Raman, and X-ray absorption spectroscopies). The supported tungsten complex was found to act as a precatalyst for the self-metathesis of 1-octene in a batch reactor. The mechanistic implications of this reaction are discussed with the support of DFT calculations highlighting the potential occurrence of thus-far unexplored mechanistic pathways.

  14. A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis

    KAUST Repository

    Maity, Niladri; Barman, Samir; Minenkov, Yury; Ould-Chikh, Samy; Abou-Hamad, Edy; Ma, Tao; Qureshi, Ziyauddin; Cavallo, Luigi; D'Elia, Valerio; Gates, Bruce C.; Basset, Jean-Marie

    2018-01-01

    A well-defined silica-supported monoalkylated tungsten dioxo complex [(Si-O-)W(=O)(CH-Bu)] was prepared by treatment of highly dehydroxylated silica (SiO: silica treated at 700 °C under high vacuum) with an ionic precursor complex [NEt][W(=O)(CH-Bu)]. The identity of the resulting neutral monoalkylated tungsten dioxo surface complex was established by means of elemental microanalysis and spectroscopic studies (IR, solid-state NMR, Raman, and X-ray absorption spectroscopies). The supported tungsten complex was found to act as a precatalyst for the self-metathesis of 1-octene in a batch reactor. The mechanistic implications of this reaction are discussed with the support of DFT calculations highlighting the potential occurrence of thus-far unexplored mechanistic pathways.

  15. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    Science.gov (United States)

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  16. Low-cost Solar Array Project. Feasibility of the Silane Process for Producing Semiconductor-grade Silicon

    Science.gov (United States)

    1979-01-01

    The feasibility of Union Carbide's silane process for commercial application was established. An integrated process design for an experimental process system development unit and a commercial facility were developed. The corresponding commercial plant economic performance was then estimated.

  17. Generalized Selection Weighted Vector Filters

    Directory of Open Access Journals (Sweden)

    Rastislav Lukac

    2004-09-01

    Full Text Available This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03 in Grado, Italy.

  18. Growth, structure, and optical properties of carbon-reinforced silica fibers

    International Nuclear Information System (INIS)

    Zhang, Z. J.; Ajayan, P. M.; Ramanath, G.; Vacik, J.; Xu, Y. H.

    2001-01-01

    We report the synthesis of carbon-reinforced silica fibers by methane exposure of metallocene-treated oxidized-Si(001) substrates at 1100 degree C. The SiO 2 cap layer transforms into silica fibers reinforced by glassy carbon in the core during methane exposure. High-resolution electron microscopy and spatially resolved spectroscopy measurements of the fibers reveal an amorphous structure without a hollow, and domains of glassy carbon embedded at the fiber core. The carbon-reinforced fibers are optically transparent and have an optical band gap of ≅3.1 eV. These fibers are organized in radial patterns that vary for different metallocene species. On nickelocene-treated substrates, the fibers originate from the circumference of the circular templates and grow outwards, forming radial patterns. On ferrocene-treated substrates, randomly oriented fibers grow within as well as slightly outside the perimeter of the templates, forming wreath-like patterns. Aligned growth of such fibers could be useful for fabricating optoelectronics devices and reinforced composites. [copyright] 2001 American Institute of Physics

  19. A new determination of cross sections in methane and silane by using an exact method of solution ot the Boltzmann equation

    International Nuclear Information System (INIS)

    Segur, P.; Balaguer, J.P.

    1984-01-01

    We use a modified form of the SN method to solve the Boltzmann equation. We are then able to take into account the strong anisotropy of the distribution function which is known to occur in methane and silane. For a given set of cross-sections, the swarm parameters calculated with this method are very different from these published by previous authors (obtained with the standard two term Legendre expansion of the distribution function). The cross sections which we deduce by comparing experimental and calculated values for drift velocity and transversal diffusion coefficient are very different from these of Pollock or Duncan and Walker. With these two new sets of cross sections we make some calculations in mixtures of methane and silane, methane and argon, silane and argon. We note that our results for swarm parameters (at low E/N) are in good agreement with experimental values when they are available

  20. Reactivity of sulfide-containing silane toward boehmite and in situ modified rubber/boehmite composites by the silane

    Science.gov (United States)

    Lin, Tengfei; Zhu, Lixin; Chen, Weiwei; Wu, Siwu; Guo, Baochun; Jia, Demin

    2013-09-01

    The silanization reaction between boehmite (BM) nanoplatelets and bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (TESPT) was characterized in detail. Via such modification process, the grafted sulfide moieties on the BM endow reactivity toward rubber and substantially improved hydrophobicity for BM. Accordingly, TESPT was employed as in situ modifier for the nitrile rubber (NBR)/BM compounds to improve the mechanical properties of the reinforced vulcanizates. The effects of BM content and in situ modification on the mechanical properties, curing characteristics and morphology were investigated. BM was found to be effective in improving the mechanical performance of NBR vulcanizates. The NBR/BM composites could be further strengthened by the incorporation of TESPT. The interfacial adhesion of NBR/BM composites was obviously improved by the addition of TESPT. The substantially improved mechanical performance was correlated to the interfacial reaction and the improved dispersion of BM in rubber matrix.

  1. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    Energy Technology Data Exchange (ETDEWEB)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  2. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  3. The effectiveness of the use of filter on the tilapia growth performance, number of Nitrosomonas sp., and water quality in aquaponics systems

    Directory of Open Access Journals (Sweden)

    Yuli Andriani

    2018-01-01

    Full Text Available ABSTRACT This study aims to determine the most effective type of living filter media for the bacteria Nitrosomonas sp. in order to improve water quality in aquaponics systems. The method used in this study was completely randomized design, consisting of five treatments and each was repeated three times. The treatments were: A (without addition of filter media, B (addition of palm fibers, silica sand, and activated carbon, C (addition of palm fibers, silica sand, gravel, and activated carbon, D (addition of palm fibers, silica sand, rocks, and activated carbon, and E (addition of palm fibers, silica sand, bioball, and activated carbon. Parameters measured were: 1 the number of Nitrosomonas bacteria, 2 water quality (ammonia, nitrate, and phosphate; and, 3 productivity of fish and Chinese spinach. Data were analyzed using a descriptive method. The findings show that the highest number of bacteria was found in treatment E, 9.29×105 CFU/mL on the bioball filter media and 4.43×105 CFU/mL in rearing tanks. The best water quality was in treatment B, with a concentration of ammonia of 0.17 mg/L, nitrate of 0.33 mg/L, and phosphate of 0.54 mg/L. Plant productivity was the best in treatment B in which the average length and weight reach 48.1 cm and 11.1 grams of plant/week, respectively. The best fish growth was seen in treatment C with an absolute growth rate of 4.4 grams and a specific growth rate of 1.9%/day. The recommended filter was made of Arenga pinnata fibers, silica sand, gravels, and active carbon of about 2 cm thick each.The results showed that the type of filter on the aquaponic system had an effect on the amount of Nitrosomonas sp. in water, water quality, and the productivity of Chinese spinach.Keywords: aquaponics, filter, water quality, Nitrosomonas sp.ABSTRAKPenelitian ini bertujuan untuk menentukan jenis filter yang paling efektif sebagai media hidup bakteri Nitrosomonas sp. sehingga menghasilkan kualitas air yang baik dalam sistem

  4. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    Science.gov (United States)

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val

    Directory of Open Access Journals (Sweden)

    Ziaee Masumeh

    2016-07-01

    Full Text Available Bioassays were conducted to assess the effects of two silicon dioxide nanoparticles of Aerosil® and Nanosav against adults of Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Silica nanoparticles were applied at the rates of 50, 100, 200 and 300 mg · kg−1 on wheat and peeled barley. The mortality was counted after 1, 2, 3, and 7 days of exposure. Another experiment was carried out to evaluate the effect of food source on the survival of beetles after exposure to silica nanoparticles. Adults were exposed to silica nanoparticles at the rate of 0.2 mg · cm−2 for 1 and 2 days on filter paper inside plastic Petri dishes, respectively. After exposure, the initial mortality was counted and live individuals of both species were held for a week in empty glass vials or vials containing wheat and wheat flour, respectively. Silica nanoparticles have high toxicity on R. dominica and T. confusum adults. Rhyzopertha dominica was more susceptible than T. confusum. However, the mortality of both species increased with increasing concentrations and time exposed to each concentration. At low concentrations, Aerosil® was more effective than Nanosav. Silica nanoparticles were more effective in wheat grains than barley. Results indicated that the initial mortality was so high that the impact of food source on delay mortality was unclear in most cases. Silica nanoparticles were efficient against tested species and can be used effectively in a stored grain integrated pest management program.

  6. Synthesis of AL-MCM-41 using gravel drilling the source of silica from wells drilling

    International Nuclear Information System (INIS)

    Fontes, M.S.B.; Costa, C.C.; Melo, D.M.A.; Viana, L.M.; Viana, S.O.; Santos, L.M.

    2016-01-01

    The aim of this study was to synthesize Al-MCM-41 using gravel drilling as alternative source of silica, aiming at sustainable production and low cost. For hydrothermal synthesis of Al-MCM-41 was used gravel and sodium silicate as source of silica and sodium, respectively. The structural driver used was cetyltrimethylammonium bromide (CTMABr) and solvent distilled water. The hydrothermal synthesis was conducted at 100 ° C in a Teflon autoclave 45 ml jacketed stainless steel for a period of 120 hours with daily correcting pH (range 9-10) using 30% acetic acid. The material obtained was filtered, washed, dried at 100 ° C for 3 hours and then calcined at 550 ° C for 2 hours. Then it was characterized by XRD, FTIR and TG. For the results of characterization has been observed that the use of the gravel drilling as a source of silica was promising alternative for producing a mesoporous material with a high degree of hexagonal ordering. (author)

  7. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  8. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  10. Employment of the technique of radiotracers for analysis of industrial filters

    International Nuclear Information System (INIS)

    Ramos, Vitor Santos; Crispim, Verginia Reis

    2007-01-01

    The main aim of this work is to develop a methodology to evaluate the characteristics of porous media in filter using the radio-tracing technique. To do this, an experimental prototype filter made up of an acrylic cylinder, vertically mounted and supported on the lower side by a controlled leaking valve was developed. Two filters (spheres of acrylic and silica crystals) were used to check the movement of the water through the porous media using 123 I in its MIBG (iodine-123-meta-iodo benzyl-guanidine) form. Further up the filter an instantaneous injection of the substance makes it possible to see the passage of radioactive clouds through the two scintillatory detectors NaI (2x2) ' ' positioned before and immediately after the cylinder with the filtering element (porous media). The are caused by the detectors on the passage of the radioactive cloud are analyzed through statistical functions using the weighted moment method which makes it possible to calculate the Residence-Time (the amount of time the tracer takes to thoroughly pass through the filter) per the equation of dispersion in tubular flow and the one-directional flow of the radiotracer in the porous media. (author)

  11. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  12. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  13. Comparative investigation of the adhesion of Ce conversion layers and silane layers to a AA 2024-T3 substrate through mechanical and electrochemical tests

    Directory of Open Access Journals (Sweden)

    Luis Enrique Morales Palomino

    2007-12-01

    Full Text Available Cerium conversion layers and silane films are among the potential substitutes for the carcinogenic chromate conversion layers used to protect high-strength Al alloys. In the present work the adhesion of a cerium conversion layer and of a silane film to an aluminium alloy (AA 2024-T3 substrate was investigated using mechanical and electrochemical tests. Scanning electron microscopy (SEM- X ray energy dispersive spectroscopy (EDS, Fourier transform infrared spectroscopy (FT-IR and X ray photoelectron spectroscopy (XPS were used to characterize the layers prior and after the mechanical test consisting of ultrasonic rinse in deionized water during 30 minutes. Mechanically tested and untested layers were also submitted to electrochemical impedance spectroscopy (EIS and anodic polarization measurements in 0.1 M NaCl solution. The results of the characterization tests have pointed to a stronger adhesion of the Ce layer to the substrate in comparison with the silane film, which was confirmed by the electrochemical tests. The adhesion between the silane film and the Ce conversion layer was also tested, to evaluate the possibility of using the system as a protective bi-layer in accordance with the new trends being developed to substitute chromate conversion layers.

  14. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite

    Directory of Open Access Journals (Sweden)

    Reséndiz-Hernández, P. J.

    2014-10-01

    Full Text Available Silica aerogel and hybrid silica aerogel/pseudowollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS using also methanol (MeOH and pseudowollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF for 7 and 14 days. The hybrid silica aerogel/pseudowollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity.Se sintetizaron aerogel de sílice y aerogel híbrido de sílice/partículas de pseudowollastonita por hidrólisis controlada de tetraetoxisilano (TEOS usando metanol (MeOH y partículas de pseudowollastonita. Los geles obtenidos se secaron utilizando un novedoso proceso basado en una presión de secado ambiental. Hexano y hexametil-disilazano fueron los solventes usados para modificar químicamente la superficie. Para evaluar la bioactividad, los aerogeles con y sin partículas de pseudowollastonita se sumergieron en un fluido fisiológico simulado (SBF por 7 y 14 días. El aerogel híbrido de sílice/partículas de pseudowollastonita mostró más alta bioactividad que la observada por el aerogel solo. Sin embargo, en ambos casos, se

  15. Clearance of Free Silica in Rat Lungs by Spraying with Chinese Herbal Kombucha

    Directory of Open Access Journals (Sweden)

    Nai-fang Fu

    2013-01-01

    Full Text Available The effects of spraying with kombucha and Chinese herbal kombucha were compared with treatments with tetrandrine in a rat silicosis model. Silica dust (50 mg was injected into the lungs of rats, which were then treated with one of the experimental treatments for a month. The rats were then killed and the effects of the treatments were evaluated by examining the extent and severity of the histopathological lesions in the animals’ lungs, measuring their organ coefficients and lung collagen contents, determining the dry and wet weights of their lungs, and measuring the free silica content of the dried lungs. In addition, lavage was performed on whole lungs taken from selected rats, and the numbers and types of cells in the lavage fluid were counted. The most effective treatment in terms of the ability to reduce lung collagen content and minimize the formation of pulmonary histopathological lesions was tetrandrine treatment, followed by Chinese herbal kombucha and non-Chinese herbal kombucha. However, the lavage fluid cell counts indicated that tetrandrine treatment had severe adverse effects on macrophage viability. This effect was much less pronounced for the kombucha and Chinese herbal kombucha treatments. Moreover, the free silica levels in the lungs of animals treated with Chinese herbal kombucha were significantly lower than those for any other silica-exposed group. These preliminary results indicate that spraying with Chinese herbal kombucha preparations can effectively promote the discharge of silica dust from lung tissues. Chinese herbal kombucha inhalation may thus be a useful new treatment for silicosis and other pneumoconiosis diseases.

  16. Clearance of free silica in rat lungs by spraying with chinese herbal kombucha.

    Science.gov (United States)

    Fu, Nai-Fang; Luo, Chang-Hui; Wu, Jun-Cai; Zheng, Yan-Yan; Gan, Yong-Jin; Ling, Jian-An; Liang, Heng-Qiu; Liang, Dan-Yu; Xie, Jing; Chen, Xiao-Qin; Li, Xian-Jun; Pan, Rui-Hui; Chen, Zuo-Xing; Jiang, Sheng-Jun

    2013-01-01

    The effects of spraying with kombucha and Chinese herbal kombucha were compared with treatments with tetrandrine in a rat silicosis model. Silica dust (50 mg) was injected into the lungs of rats, which were then treated with one of the experimental treatments for a month. The rats were then killed and the effects of the treatments were evaluated by examining the extent and severity of the histopathological lesions in the animals' lungs, measuring their organ coefficients and lung collagen contents, determining the dry and wet weights of their lungs, and measuring the free silica content of the dried lungs. In addition, lavage was performed on whole lungs taken from selected rats, and the numbers and types of cells in the lavage fluid were counted. The most effective treatment in terms of the ability to reduce lung collagen content and minimize the formation of pulmonary histopathological lesions was tetrandrine treatment, followed by Chinese herbal kombucha and non-Chinese herbal kombucha. However, the lavage fluid cell counts indicated that tetrandrine treatment had severe adverse effects on macrophage viability. This effect was much less pronounced for the kombucha and Chinese herbal kombucha treatments. Moreover, the free silica levels in the lungs of animals treated with Chinese herbal kombucha were significantly lower than those for any other silica-exposed group. These preliminary results indicate that spraying with Chinese herbal kombucha preparations can effectively promote the discharge of silica dust from lung tissues. Chinese herbal kombucha inhalation may thus be a useful new treatment for silicosis and other pneumoconiosis diseases.

  17. Aminopropyl-Functionalized Silica CO2 Adsorbents via Sonochemical Methods

    Directory of Open Access Journals (Sweden)

    Gregory P. Knowles

    2016-01-01

    Full Text Available Aminopropyl-functionalized hexagonal mesoporous silica (HMS products, as are of interest for CO2 capture applications, were separately prepared by mixing aminopropyltrimethoxysilane (APTS and HMS in toluene via a conventional stirred reactor and via sonication assisted methods, to investigate the potential of sonication to facilitate the preparation of products with higher tether loadings and correspondingly higher CO2 sorption capacities. Sonication was expected to improve both the dispersion of the substrate in the solvent and the diffusion of the silane throughout the mesoporous substrate. Structural properties of the products were determined by X-ray diffraction, N2 adsorption/desorption (77 K, helium pycnometry, and elemental analysis, and CO2 adsorption/desorption properties were determined via thermogravimetric and differential thermal analysis. The tether loadings of the sonication products (up to 1.8 tethers·nm−2 were found to increase with sonication time and in each case were greater than the corresponding product prepared by the conventional approach. It was also found that the concentration of the reagent mixture influenced the extent of functionalization, that the crude products cured effectively under N2 flow as under vacuum, and that rinsing the crude products prior to curing was not essential. Sonication products with higher tether loadings were found to exhibit higher CO2 sorption capacities as expected.

  18. Diatomite releases silica during spirit filtration

    OpenAIRE

    Gómez Benítez, Juan; Gil Montero, María Luisa Almoraima; De la Rosa Fox, Nicolas; Alguacil, Marcos

    2014-01-01

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer’s health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon cont...

  19. Mixed labelling in multitarget particle filtering

    NARCIS (Netherlands)

    Boers, Y.; Sviestins, Egils; Driessen, Hans

    2010-01-01

    The so-called mixed labelling problem inherent to a joint state multitarget particle filter implementation is treated. The mixed labelling problem would be prohibitive for track extraction from a joint state multitarget particle filter. It is shown, using the theory of Markov chains, that the mixed

  20. Discovery of methyl silane and confirmation of silyl cyanide in IRC +10216

    Science.gov (United States)

    Cernicharo, J.; Agúndez, M.; Velilla Prieto, L.; Guélin, M.; Pardo, J. R.; Kahane, C.; Marka, C.; Kramer, C.; Navarro, S.; Quintana-Lacaci, G.; Fonfría, J. P.; Marcelino, N.; Tercero, B.; Moreno, E.; Massalkhi, S.; Santander-García, M.; McCarthy, M. C.; Gottlieb, C. A.; Alonso, J. L.

    2017-10-01

    We report the discovery in space of methyl silane, CH3SiH3, from observations of ten rotational transitions between 80 and 350 GHz (Ju from 4 to 16) with the IRAM 30 m radio telescope. The molecule was observed in the envelope of the C-star IRC +10216. The observed profiles and our models for the expected emission of methyl silane suggest that the it is formed in the inner zones of the circumstellar envelope, 1-40 R∗, with an abundance of (0.5-1) × 10-8 relative to H2. We also observed several rotational transitions of silyl cyanide (SiH3CN), confirming its presence in IRC +10216 in particular, and in space in general. Our models indicate that silyl cyanide is also formed in the inner regions of the envelope, around 20 R∗, with an abundance relative to H2 of 6 × 10-10. The possible formation mechanisms of both species are discussed. We also searched for related chemical species but only upper limits could be obtained. This work was based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  1. Laboratory-scale integrated ARP filter test

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, and blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.

  2. Performance of drippers in two filtering systems using sewage treatment effluent

    Directory of Open Access Journals (Sweden)

    Alexandre B. Dalri

    Full Text Available ABSTRACT The objective of this study was to evaluate the performance of three models of drippers using treated sewage effluent, pure and diluted, and two types of filters, screen and disc. The treated sewage effluent used in the experiment was collected from the city’s treatment plant. The experiment included 12 lateral lines with three types of emitters to apply pure (100% and diluted (50% effluent filtered by screen and disc filters. The combination of those factors set the treatments: T1 (50% effluent diluted in fresh water filtered by a screen filter; T2 (50% effluent diluted in fresh water filtered by a disc filter; T3 (pure effluent filtered by a screen filter; T4 (pure effluent filtered by a disc filter. The results showed that the flat type emitter is less sensitive to clogging, the disc filter is the most suitable to prevent clogging and the use of pure or diluted sewage effluent increases the drippers’ flow rate coefficient of variation.

  3. [A treatment to serious esophageal cicatrices stenosi by metal and silica gel dilator].

    Science.gov (United States)

    Li, J; Chen, X; Sun, C; Liu, H

    1999-12-01

    To find an effective method of treating the esophageal cicatricial stenosis. Six cases with esophageal cicatricial stenosis were treated by mental and silica gel dilator. The effects in all six cases were satisfactory and no any complications were finded. The method is safe, effective and of no complications, the treatment time is shorter also.

  4. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  5. PERFORMANCE OF A SURFACE FLOW CONSTRUCTED WETLAND SYSTEM USED TO TREAT SECONDARY EFFLUENT AND FILTER BACKWASH WATER

    Directory of Open Access Journals (Sweden)

    Juan Antonio Vidales-Contreras

    2011-05-01

    The performance of a surface flow wetland system used to treat activated sludge effluent and filter backwash water from a tertiary treatment facility was evaluated. Samples were collected before and after vegetation removal from the system which consists of two densely vegetated settling basins (0.35 ha, an artificial stream, and a 3-ha surface flow wetland. Bulrush (Scripus spp. and cattail (Typha domingensis were the dominant plant species. The average inflow of chlorinated secondary effluent during the first two months of the actual study was 1.9  m3 min-1 while the inflow for backwash water treatment ranged from 0.21 to 0.42 m3 min-1. The system was able to reduce TSS and BOD5 to tertiary effluent standards; however, monitoring of chloride concentrations revealed that wetland evapotranspiration is probably enriching pollutant concentrations in the wetland outflow. Coliphage removal from the filter backwash was 97 and 35% during 1999 and 2000, respectively. However, when secondary effluent entered the system, coliphage removal averaged 65%. After vegetation removal, pH and coliphage density increased significantly (p

  6. Patterned Array of Poly(ethylene glycol Silane Monolayer for Label-Free Detection of Dengue

    Directory of Open Access Journals (Sweden)

    Nor Zida Rosly

    2016-08-01

    Full Text Available In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG silane monolayer to 254 nm ultraviolet (UV light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS, and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.

  7. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  8. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  9. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil

    Energy Technology Data Exchange (ETDEWEB)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [K. S. Rangasamy College of Technology, Centre for Nano Science and Technology (India); Kannan, N. [K. S. Rangasamy College of Arts and Science, Department of Biotechnology (India)

    2012-12-15

    The present study aims to explore the effect of high surface area (360.85 m{sup 2} g{sup -1}) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha{sup -1}) in comparison with bulk silica (15-20 kg ha{sup -1}). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha{sup -1} whereas at 20 kg ha{sup -1}, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha{sup -1} (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha{sup -1} compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha{sup -1} has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  10. Fabrication of silica hollow particles using yeast cells as a template

    Science.gov (United States)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  11. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    Science.gov (United States)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  12. Photochemical synthesis of ultrafine organosilicon particles from trimethyl(2-propynyloxy)silane and carbon disulfide

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Nozawa, R.; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2006-01-01

    Roč. 179, 1-2 (2006), s. 142-148 ISSN 1010-6030 Grant - others:MEXT(JP) 767/15085203 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : ultrafine particles * photo-polymerization * trimethyl(2-propynyloxy)silane * carbon disulfide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.098, year: 2006

  13. Visible photoluminescence from hydrogenated silicon particles suspended in a silane plasma

    International Nuclear Information System (INIS)

    Courteille, C.; Dorier, J.L.; Dutta, J.; Hollenstein, C.; Howling, A.A.; Stoto, T.

    1994-09-01

    Visible photoluminescence at room temperature has been observed in amorphous hydrogenated silicon particulates during their formation in a silane radio-frequency plasma. Oxygen injection along with mass spectrometry measurements demonstrate that oxygen has no influence on the photoluminescence. The appearance of visible photoluminescence coincides with a particle agglomeration phase as shown by laser light scattering experiments, and electron microscopy shows silicon nanocrystals within these particulates. These observations of visible photoluminescence are consistent with the model of quantum confinement in the silicon nanocrystals. (author) 5 figs., 45 refs

  14. Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters

    Science.gov (United States)

    Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.

  15. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    Science.gov (United States)

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  16. Grafting of polymer onto silica surface in the presence of γ-ray irradiated silica

    International Nuclear Information System (INIS)

    Tsuchida, A.; Yokoyama, R.; Takami, M.; Chen, J.; Ohta, M.; Tsubokawa, N.

    2002-01-01

    Complete text of publication follows. We have reported the graft polymerization of vinyl monomers initiated by surface radicals formed by the decomposition of azo and peroxide groups previously introduced onto the surface. In addition, the grafting of polymers onto carbon black has been reported by the reaction of polymer radicals with the surface. On the other hand, it is well known that the relatively stable radicals are generated on the surface by the γ-ray irradiation. In this paper, the grafting of polystyrene onto silica surface during the thermal polymerization of styrene in the presence of γ-ray irradiated silica, grafting mechanism and thermal stability of grafted polymer will be discussed. The grafting of polymers onto silica surface by irradiation of polymer-adsorbed silica was also investigated. Silica obtained from Mitsubishi Chemical Co., Japan was used after pulverization: the particle size was 0.037-0.088 mm. Irradiation was performed in Cs-137 source at room temperature. The silica was irradiated at 50 Gy with dose rate of 3.463 Gy/min. Into a polymerization tube, styrene and irradiated silica was charged and the polymerization was carried out under argon under stirring. The percentage of polystyrene grafting was determined from weight loss when polystyrene-grafted silica was heated at 600 deg C by a thermal analyzer. Untreated silica did not affect the thermal polymerization of styrene. On the contrary, the thermal polymerization of styrene was remarkably retarded in the presence of the irradiated silica at 60 deg C. Similar tendency was reported during the polymerization of vinyl monomers in the presence of carbon black. In the initial stage of the polymerization in the presence of the irradiated silica below 50 deg C, the polymerization was accelerated. During the polymerization in the presence of irradiated silica, polystyrene was grafted onto the surface: the percentage of grafting was 5-11%. The amount of polystyrene grafted onto silica

  17. Filterability and Sludge Concentration in Membrane Bioreactors

    NARCIS (Netherlands)

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of

  18. PM4 crystalline silica emission factors and ambient concentrations at aggregate-producing sources in California.

    Science.gov (United States)

    Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John

    2009-11-01

    The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3

  19. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  20. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method

    International Nuclear Information System (INIS)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-01-01

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone > nylon cyclone > IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage.

  1. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  2. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Science.gov (United States)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  3. Development of Short Range Repulsive Inter-Particle Forces in Aqueous Si3N4 Slurries with Chem-Adsorbed Silanes

    National Research Council Canada - National Science Library

    Colic, Miroslav

    1997-01-01

    .... Addition of salt to dispersed silicon nitride slurries with particles coated with polyethyleneglycol-silane, caused the collapse of the 22 atoms long chains and residual electrical double layer...

  4. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  5. Spectroscopic studies of Cu ions in sol–gel derived silica matrix

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The Cu2+ ion doped silica gel matrices in monolithic shape were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS). The absorption, transmittance and fluorescence spectra of the gel matrices heat treated at different temperatures were monitored. The loss of water and hydroxyl group from.

  6. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    Science.gov (United States)

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.

  7. Measurement of Fluorescence in a Rhodamine-123 Doped Self-Assembled “Giant” Mesostructured Silica Sphere Using a Smartphone as Optical Hardware

    Directory of Open Access Journals (Sweden)

    Ingemar Petermann

    2011-07-01

    Full Text Available The blue OLED emission from a mobile phone was characterised, revealing a sharp emission band centred at λ = 445 nm with a 3dB bandwidth Δλ ~ 20 nm. It was used to excite Rhodamine 123 doped within a “giant” mesostructured silica sphere during fabrication through evaporative self-assembly of silica nanoparticles. Fluorescence was able to be detected using a standard optical microscope fitted with a green transmission pass filter and cooled CCD and with 1 ms exposure time demonstrating the potential of mobile platforms as the basis for portable diagnostics in the field.

  8. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  9. The effect of different surface treatments on the shear bond strength of luting cements to titanium.

    Science.gov (United States)

    Abi-Rached, Filipe de Oliveira; Fonseca, Renata Garcia; Haneda, Isabella Gagliardi; de Almeida-Júnior, Antonio Alves; Adabo, Gelson Luis

    2012-12-01

    Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti). Two hundred and forty CP Ti cast disks (9.0 × 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 µm Al(2)O(3) particles; 2) 120 µm Al(2)O(3) particles; 3) 250 µm Al(2)O(3) particles; 4) 50 µm Al(2)O(3) particles + silane (RelyX Ceramic Primer); 5) 120 µm Al(2)O(3) particles + silane; 6) 250 µm Al(2)O(3) particles + silane; 7) 30 µm silica-modified Al(2)O(3) particles (Cojet Sand) + silane; and 8) 120 µm Al(2)O(3) particles, followed by 110 µm silica-modified Al(2)O(3) particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5°C to 55°C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (α=.05). Failure mode was determined with a stereomicroscope (×20). The surface treatments, cements, and their interaction significantly affected the SBS (Pbehavior for all surface treatments. For both cements, only the group abraded with 50 μm Al(2)O(3) particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 μm Al(2)O(3) particles resulted in significantly lower SBS than abrasion with 120 μm and 250 μm particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode. The adhesive capability of RelyX Luting 2 and RelyX U

  10. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    Science.gov (United States)

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2017-05-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in

  11. Spectrophotometric determination of silica in water with Hach equipment; Determinacion espectrofotometrica de silicio en aguas con equipo Hach

    Energy Technology Data Exchange (ETDEWEB)

    Acosta L, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: eal@nuclear.inin.mx

    1992-06-15

    The method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters using the indicated technique in the operation manual of the Hach equipment with a DR/3 spectrophotometer is described. This method covers the determination of the silica element in the interval from 0 to 1.5 mg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  12. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Li, Xiaoyu; Zhang, Lifang

    2014-01-01

    Highlights: • The carbonyl groups on PEEK surface were effectively reduced to hydroxyl groups using sodium borohydride. • Silanization layers technique was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on hydroxylation-pretreated PEEK sheet surface by covalent chemical attachment. • XPS, surface profiler and water contact angle measurements proved the presence of GRGD on PEEK surface. • Osteoblast-like cells (MC3T3-E1) attachment and proliferation were improved effectively on GRGD-modified PEEK surface. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation

  13. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-11-30

    Highlights: • The carbonyl groups on PEEK surface were effectively reduced to hydroxyl groups using sodium borohydride. • Silanization layers technique was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on hydroxylation-pretreated PEEK sheet surface by covalent chemical attachment. • XPS, surface profiler and water contact angle measurements proved the presence of GRGD on PEEK surface. • Osteoblast-like cells (MC3T3-E1) attachment and proliferation were improved effectively on GRGD-modified PEEK surface. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation

  14. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  15. Effects of silane on the interfacial fracture of a parylene film over a stainless steel substrate

    International Nuclear Information System (INIS)

    Tan, T.; Meng, J.; Rahbar, N.; Li, H.; Papandreou, G.; Maryanoff, C.A.; Soboyejo, W.O.

    2012-01-01

    Parylene can be coated on stainless steel substrates with and without γ-methacryloxypropyltrimethoxysilane (γ-MPS) as an adhesion promoter. In order to study the effects of silane (γ-MPS) on the adhesion and mixed-mode interfacial fracture performance between parylene C and 316L stainless steel, this paper presents the results of a combined experimental and theoretical approach. Atomic force microscopy (AFM) was used to obtain pull-off forces between parylene coated AFM tips with or without γ-MPS and 316L substrates. A combination of adhesion theories and fracture mechanics models was then used to obtain estimates of the fracture energy release rates over a wide range of mode mixities between pure mode I and pure mode II. The trends in the estimates were shown to be in good agreement with experimental measurements of interfacial fracture toughness obtained from Brazil nut tests coated with parylene C in the presence or absence of γ-MPS over the same range of mode mixities. The study determined that the contribution of silane to the adhesion of parylene C to 316L steel was modest. - Highlights: ► An integrated experimental and modeling approach was applied to characterize effects of silane on interfacial fracture behavior of a parylene film over a stainless steel substrate. ► AFM measurements were obtained for the adhesion of parylene over stainless steel in the presence and absence wiht γ-methacryloxypropyltrimethoxysilane(γ-MPS). ► Brazil nut test was also used to measure interfacial fracture energy release rates over a wide range of mode mixities. ► Good agreement was achieved between these measurements and predictions from both zone and row fracture mechanics models.

  16. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    International Nuclear Information System (INIS)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-01-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials. (paper)

  17. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    Science.gov (United States)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-07-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials.

  18. Development of membrane filters with nanostructured porous layer by coating of metal nanoparticles sintered onto a micro-filter

    International Nuclear Information System (INIS)

    Park, Seok Joo; Park, Young Ok; Lee, Dong Geun; Ryu, Jeong In

    2008-01-01

    The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 KPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%

  19. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    Directory of Open Access Journals (Sweden)

    Veeranarayanan S

    2012-07-01

    Full Text Available Srivani Veeranarayanan, Aby Cheruvathoor Poulose, M Sheikh Mohamed, Yutaka Nagaoka, Seiki Iwai, Yuya Nakagame, Shosaku Kashiwada, Yasuhiko Yoshida, Toru Maekawa, D Sakthi KumarBio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, JapanAbstract: This paper presents the synthesis of aqueous cadmium sulfide (CdS quantum dots (QDs and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such

  20. Synthesis of uniform carbon at silica nanocables and luminescent silica nanotubes with well controlled inner diameters

    International Nuclear Information System (INIS)

    Qian Haisheng; Yu Shuhong; Ren Lei; Yang Yipeng; Zhang Wei

    2006-01-01

    Uniform carbon at silica nanocables and silica nanotubes with well-controlled inner diameters can be synthesized in an easy way by a sacrificial templating method. This was performed using carbon nanofibres as hard templates that were synthesized previously by a hydrothermal carbonization process. Silica nanotubes with well-controlled inner diameters were synthesized from carbon at silica core-shell nanostructures by removal of the core carbon component. The inner diameters of the as-prepared silica nanotubes can be well controlled from several nanometres to hundreds of nanometres by adjusting the diameters of the carbon nanofibres. The silica nanotubes synthesized by this method display strong photoluminescence in ultraviolet at room temperature. Such uniform silica nanotubes might find potential applications in many fields such as encapsulation, catalysis, chemical/biological separation, and sensing

  1. Silica/Perfluoropolymer nanocomposites fabricated by direct melt-compounding: a novel method without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Hirose, Masaki; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko

    2007-07-01

    A novel method for the fabrication of silica/perfluoropolymer nanocomposites was investigated, whereby nano-sized silica particles without surface modification were dispersed uniformly through mechanical breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages. The first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, poly(tetrafluoroethyleneco-perfluoropropylvinylether), with the loose silica agglomerates prepared in the first stage. In the first stage, the packing structure and the fracture strength of the silica agglomerate were controlled by destabilizing an aqueous colloidal silica solution with a mean primary diameter of 190 nm via pH control and salt addition. In the next stage, the silica/perfluoropolymer nanocomposite was fabricated by breaking down the prepared loose silica agglomerates with low fracture strength by means of a shear force inside the polymer melt during melt-compounding.

  2. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  3. Supercritical carbon dioxide behavior in porous silica aerogel

    International Nuclear Information System (INIS)

    Ciccariello, Salvino; Melnichenko, Yuri B.; He, Lilin

    2011-01-01

    Analysis of the tails of the small-angle neutron scattering (SANS) intensities relevant to samples formed by porous silica and carbon dioxide at pressures ranging from 0 to 20 MPa and at temperatures of 308 and 353 K confirms that the CO2 fluid must be treated as a two-phase system. The first of these phases is formed by the fluid closer to the silica wall than a suitable distance (delta) and the second by the fluid external to this shell. The sample scattering-length densities and shell thicknesses are determined by the Porod invariants and the oscillations observed in the Porod plots of the SANS intensities. The resulting matter densities of the shell regions (thickness 15-35 (angstrom)) are approximately equal, while those of the outer regions increase with pressure and become equal to the bulk CO2 at the higher pressures only in the low-temperature case.

  4. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    Science.gov (United States)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  5. Occupational exposure to respirable crystalline silica in the Iranian Mazandaran province industry workers.

    Science.gov (United States)

    Mohammadyan, Mahmoud; Rokni, Mohammad; Yosefinejad, Razieh

    2013-01-01

    This study investigated occupational exposure to silica dust of 48 workers in stone cutting, glass making, ceramic, and sand blasting plants in the north of Iran. Samples were collected from the breathing zone using a personal sampling pump and a size-selective cyclone. Sample filters and blanks were analysed using infrared spectroscopy. The mean sampling period was 4.83 h. Mean exposure of workers to crystalline silica dust in glass making, ceramic, sand blasting, and stone cutting was 0.129 mg m-3, 0.169 mg m-3, 0.313 mg m-3 and 0.318 mg m-3, respectively. As exposure at each of the workplaces is three to 12 times higher than the current national and international thresholds, these workers run a greater risk of lung cancer and mortality. Our findings call for specific ventilation design and personal protection improvements in the four plants as well as stricter enforcement of the existing regulations by the authorities.

  6. Integrated reconfigurable photonic filters based on interferometric fractional Hilbert transforms.

    Science.gov (United States)

    Sima, C; Cai, B; Liu, B; Gao, Y; Yu, Y; Gates, J C; Zervas, M N; Smith, P G R; Liu, D

    2017-10-01

    In this paper, we present integrated reconfigurable photonic filters using fractional Hilbert transformers (FrHTs) and optical phase tuning structure within the silica-on-silicon platform. The proposed structure, including grating-based FrHTs, an X-coupler, and a pair of thermal tuning filaments, is fabricated through the direct UV grating writing technique. The thermal tuning effect is realized by the controllable microheaters located on the two arms of the X-coupler. We investigate the 200 GHz maximum bandwidth photonic FrHTs based on apodized planar Bragg gratings, and analyze the reflection spectrum responses. Through device integration and thermal modulation, the device could operate as photonic notch filters with 5 GHz linewidth and controllable single sideband suppression filters with measured 12 dB suppression ratio. A 50 GHz instantaneous frequency measuring system using this device is also schematically proposed and analyzed with potential 3 dB measurement improvement. The device could be configured with these multiple functions according to need. The reconfigurable structure has great potential in ultrafast all-optical signal processing fields.

  7. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    Science.gov (United States)

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (psand replacement, CFUs of Escherichia coli of sand filters regarding As removal, but indicate a potential risk for human health arising from the enrichment of coliform bacteria during filtration and from E. coli cells that are introduced by sand replacement. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Homogeneous deuteriodeiodination of iodinated tyrosine in angiotensin-I using synthesized triethyl[H-2]silane and Pd(0)

    DEFF Research Database (Denmark)

    Pedersen, Martin Holst Friborg; Martiny, Lars

    2011-01-01

    In our efforts to develop new reactions for the efficient labelling of peptides and proteins with tritium, we now report the use of silane hydrides together with homogenous Pd(0) catalysis for the protio- and deuteriodeiodination of an o-iodo-tyrosine containing peptide (angiotensin-I) performed...

  9. The structure and properties of eucalyptus fiber/phenolic foam composites under N-β(aminoethyl-γ-aminopropyl trimethoxy silane pretreatments

    Directory of Open Access Journals (Sweden)

    Ma Yufeng

    2017-12-01

    Full Text Available Eucalyptus fibers were modified with N-β(aminoethyl-γ-aminopropyl trimethoxy silane to research the fiber surface’s changes and the influence of the treatment on the mechanical properties, flame resistance, thermal conductivity and microstructure of eucalyptus fiber composite phenolic foams (EFCPFs. The results showed that the partial of hemicelluloses, waxes, lignin and impurities from the fiber surface were dissolved and removed. Compared with untreated EFCPFs, the mechanical properties of treated EFCPFs were increased dramatically; The size of cells was smaller and the distribution was more uniform; The thermal conductivities were basically reduced; Especially the ratio of mass loss decreased obviously. However limited oxygen indexs (LOIs reduced. And the mechanical properties and LOIs of EFCPFs were basically decreased with the increase of eucalyptus fibers. By comprehensive analysis, the results showed that the interfacial compatibility has been significantly improved between eucalyptus fibers and phenolic resin. And the suitable dosage of eucalyptus fibers was about 5%.

  10. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    Science.gov (United States)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  11. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  12. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  13. Submerged Pond Sand Filter-A Novel Approach to Rural Water Supply

    DEFF Research Database (Denmark)

    Øhlenschlæger, Mia; Christensen, Sarah Christine Boesgaard; Bregnhøj, Henrik

    2016-01-01

    This study describes the new design and function of a modified version of a traditional slow sand filter. The Submerged Pond Sand Filter is built inside a pond and has a vertical as well as a horizontal flow of water through a sloped filter opening. The filter provides treated drinking water...... to a rural Indian village. The filter has functioned with minimal maintenance for five years without being subject to the typical scraping off and changing of sand as needed in traditional slow sand filters every few months. This five-year study showed bacterial removal efficiency of 97% on average...... to 10 CFU/100 mL on average compared to shorter pumping intervals (5 min). Though the treated water did not comply with the World Health Organization standards of 0 CFU/100 mL, the filter significantly improved water quality and provided one of the best sources of drinkable water in a water...

  14. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  15. The application of expandable polystyrene pellets as filter media to controlled filter in a uranium mill

    International Nuclear Information System (INIS)

    Mao Ruiguo; Liu Mingde; Li Chunhua

    1987-11-01

    Expandable polystyrene pellets as filter media are used for controlled filter of uranium ore processing. Results from bench scale tests, pilot plant tests and full scale tests are satisfactory. The filter used in the full scale tests is 4 m in diameter, and the capacity is from 75 to 100 m 3 per hour. The soild content in the pregnant solution which overflowing the first thichener contains about 250 ppm of suspended solid can be reduced to 5 ∼ 10 ppm. The filter bed is backflushed with the feed liquors and the backflush returns to the countercurrent decantation circuit. The entrainment loss of the organic phase in the raffinate from solvnet extraction can be decreased by about 60% with treating the filtrated solution

  16. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    “Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  17. Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    Science.gov (United States)

    Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.

  18. The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges

    International Nuclear Information System (INIS)

    Schüngel, E; Mohr, S; Iwashita, S; Schulze, J; Czarnetzki, U

    2013-01-01

    In capacitive hydrogen diluted silane discharges the formation of dust affects plasma processes used, e.g. for thin film solar cell manufacturing. Thus, a basic understanding of the interaction between plasma and dust is required to optimize such processes. We investigate a highly diluted silane discharge experimentally using phase-resolved optical emission spectroscopy to study the electron dynamics, laser light scattering on the dust particles to relate the electron dynamics with the spatial distribution of dust, and current and voltage measurements to characterize the electrical symmetry of the discharge via the dc self-bias. The measurements are performed in single and dual frequency discharges. A mode transition from the α-mode to a bulk drift mode (Ω-mode) is found, if the amount of silane and, thereby, the amount of dust and negative ions is increased. By controlling the electrode temperatures, the dust can be distributed asymmetrically between the electrodes via the thermophoretic force. This affects both the electron heating and the discharge symmetry, i.e. a dc self-bias develops in a single frequency discharge. Using the Electrical Asymmetry Effect (EAE), the dc self-bias can be controlled in dual frequency discharges via the phase angle between the two applied frequencies. The Ω-mode is observed for all phase angles and is explained by a simple model of the electron power dissipation. The model shows that the mode transition is characterized by a phase shift between the applied voltage and the electron conduction current, and that the plasma density profile can be estimated using the measured phase shift. The control interval of the dc self-bias obtained using the EAE will be shifted, if an asymmetric dust distribution is present. However, the width of the interval remains unchanged, because the dust distribution is hardly affected by the phase angle. (paper)

  19. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    International Nuclear Information System (INIS)

    Fang, Weizhen; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-01-01

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and 1 H nuclear magnetic resonance spectrometry ( 1 H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization

  20. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weizhen; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-04-10

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and {sup 1}H nuclear magnetic resonance spectrometry ({sup 1}H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization.

  1. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  2. Tribology and Stability of Organic Monolayers on CrN: A Comparison among Silane, Phosphate, Alkene, and Alkyne Chemistries

    NARCIS (Netherlands)

    Pujari, S.P.; Li, F.; Regeling, R.; Zuilhof, H.

    2013-01-01

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were

  3. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    Science.gov (United States)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  4. COOH-functionalisation of silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Albrecht, Trent [Ian Wark Research Institute, University of South Australia, Adelaide (Australia); Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany)

    2011-09-01

    In this study COOH-functionalised silica is synthesised using phosphonateN-(phosphonomethyl)iminodiacetic acid (PMIDA) in an aqueous solution. The presence of PMIDA on the silica particles was verified using Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and titration. Experimentally, surface concentrations of COOH functional groups of up to about 3 mmol/g{sub silica} were achieved, whereas theoretical calculation of the maximum COOH functional group concentration gave about 1 mmol/g{sub silica}. The discrepancy may be caused by PMIDA multilayer formation on the particle.

  5. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    Science.gov (United States)

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.

  6. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  7. Evaluation of secondary crystallization effect in poly hydroxybutyrate and silanized coir dust composites

    International Nuclear Information System (INIS)

    Mello, Carolina C. de; Costa, Marysilvia F. da; Thire, Rossana M.S.M.

    2011-01-01

    Polyhydroxybutyrate is a natural and biodegradable polyester, susceptible to secondary crystallization when it is stored at environment temperature. Coir dust is an agroindustrial waste which has good prospects for use as filler in composites. In this context, PHB-coir dust composites were produced. The compatibilization was made by coir dust silanization. The secondary crystallization evolution on materials was evaluated by x-ray diffraction. Its effect was verified by tension tests which presented that elastic modulus increases when crystallinity increases. (author)

  8. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing; Sato, Riku [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2017-08-01

    Highlights: • We modify PA6 surface using silane coupling agent layer of APTMS to link HNBR. • APTMS greatly improved heat resistance of PA6 from 153 °C up to 325 °C. • A PA6/HNBR joined body was obtained, and it exhibits high adhesion strength with cohesive failure. • Chemical structures of the adhesion interfaces of PA6/HNBR were confirmed by Nano-IR. - Abstract: A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  9. The solubility of inorganic compounds in water and steam with particular reference to silica and iron oxides and its deposits in power plant cycles

    International Nuclear Information System (INIS)

    Heitmann, H.G.

    1975-01-01

    The presence of silica in the water-steam cycle can be extremely detrimental to the operation of a high pressure power station. The solubility diagram of silica in water and steam obtained from numerous measurements is presented. The solubility and deposition of corrosion products, particularly iron oxyde, were investigated together with the effect on heat transfer in heated steam generator tubes. The remove corrosion products from feedwater, electromagnetic filters may be employed and their installation in the primary circuits of the PWR type reactors leads to a considerable reduction of the corrosion products and activity levels

  10. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2018-05-01

    Full Text Available Osteoarthritis (OA is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrum, X-ray photoelectron spectrum, thermogravimetric analysis and dynamic light scattering techniques to confirm that the phospholipid layer was coated onto the surface of MSNs successfully. A series of tribological tests were performed under different experimental conditions, and the results showed that MSNs@lip with multi-layers of phospholipids greatly reduced the friction coefficient in comparison with MSNs. Additionally, MSNs@lip demonstrated sustained drug release behavior and were biocompatible based on CCK-8 assay using MC3T3-E1 cells. The MSNs@lip developed in the present study, acting as effective lubricating drug nanocarriers, may represent a promising strategy to treat early stage OA by lubrication enhancement and drug delivery therapy.

  11. A Kind of Nanofluid Consisting of Surface-Functionalized Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Xuefei

    2010-01-01

    Full Text Available Abstract A method of surface functionalization of silica nanoparticles was used to prepare a kind of stable nanofluid. The functionalization was achieved by grafting silanes directly to the surface of silica nanoparticles in silica solutions (both a commercial solution and a self-made silica solution were used. The functionalized nanoparticles were used to make nanofluids, in which well-dispersed nanoparticles can keep good stability. One of the unique characteristics of the nanofluids is that no deposition layer forms on the heated surface after a pool boiling process. The nanofluids have applicable prospect in thermal engineering fields with the phase-change heat transfer.

  12. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  13. Superhydrophobic silica wool—a facile route to separating oil and hydrophobic solvents from water

    Science.gov (United States)

    Crick, Colin R.; Bhachu, Davinder S.; Parkin, Ivan P.

    2014-12-01

    Silica microfiber wool was systematically functionalized in order to provide an extremely water repellent and oleophilic material. This was carried out using a two-step functionalization that was shown to be a highly effective method for generating an intense water repulsion and attraction for oil. A demonstration of the silica wools application is shown through the highly efficient separation of oils and hydrophobic solvents from water. Water is confined to the extremities of the material, while oil is absorbed into the voids within the wool. The effect of surface functionalization is monitored though observing the interaction of the material with both oils and water, in addition to scanning electron microscope images, x-ray photoelectron spectroscopy and energy dispersive x-ray analysis. The material can be readily utilized in many applications, including the cleaning of oil spills and filtering during industrial processes, as well as further water purification tasks—while not suffering the losses of efficiency observed in current leading polymeric materials.

  14. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  15. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko; Fujisawa, Toshiharu

    2009-01-01

    The authors have previously developed a novel method for the fabrication of silica/perfluoropolymer nanocomposites, wherein nano-sized silica particles without surface modification were dispersed uniformly through breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages; the first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, PFA (poly(tetrafluoroethylene-co-perfluoropropylvinylether)), with the loose silica agglomerates. By using this simple method without any lipophilic treatment of the silica surfaces, silica nanoparticles with a primary diameter of 190 nm could be dispersed uniformly into the PFA matrix. The main purpose of the present study is to evaluate the melt flow and tensile properties of silica/PFA nanocomposites fabricated by the above method. In order to elucidate the effects of the size of the dispersed silica in the PFA matrix on the properties of the composites, silica/PFA composite samples exhibiting the dispersion of larger-sized silica particle-clusters were fabricated as negative controls of the silica dispersion state. The results obtained under the present experimental conditions showed that the size of the dispersed silica in the PFA matrix exerts a strong influence on the ultimate tensile properties, such as tensile strength and elongation at break, and the melt flow rate (MFR) of the composite materials. The MFR of the silica/PFA nanocomposite became higher than that of the pure PFA without silica addition, although the MFR of the PFA composites containing larger silica particle-clusters became much lower than that of the pure PFA. Furthermore, uniform dispersion of isolated silica nanoparticles was found to improve not only the Young's modulus but also the ultimate tensile properties of the composite.

  16. Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements

    International Nuclear Information System (INIS)

    Park, Seung Chul; Hwang, Tae Won; Moon, Chan Kook

    2008-01-01

    Metal filter elements were newly introduced to the high temperature filter (HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  17. Quantitative estimation on delaying of onset of corrosion of rebar in surface treated concrete using sealers

    Directory of Open Access Journals (Sweden)

    A. Sivasankar

    2013-12-01

    Full Text Available Surface treatment on the concrete surface using sealers reduces the rate of permeability of chloride and moisture through the concrete. The delaying of onset of corrosion is evaluated for surface treated and untreated concrete using electrochemical techniques. After conducting rapid chloride permeability test (RCPT, using Nernst–Plank equation, the diffusion coefficient of chloride (Deff is calculated. Substituting threshold chloride concentration of rebar (Cth from cyclic polarization test in the ficks second law, the time to initiation of corrosion (Ti is arrived. From the results it is found that the treated concrete with alkyltrialkoxy silane sealer delays the onset of corrosion by four times than that of untreated concrete.

  18. Photonic bandgap structure of 3-D fcc silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y. K.; Ha, N. Y.; Hwang, Ji Soo; Chang, H. J.; Wu, J. W. [Dept. of Physics, Ewha Womans University, Seoul (Korea, Republic of)

    2002-07-01

    Photonic crystal is an artificial optical material with a periodic dielectric potential, hence exhibiting a bandgap for a propagating electromagnetic wave. We fabricated crystal possessing 3-D fcc opal structure from silica nanospheres. The crystals are self-assembled on a flat glass by evaporating the solvent in the nanosphere suspension at the room temperature. The suspension consists of silica nanospheres with a diameter of 200 nm. The microscopic arrangement of nanospheres is identified by a scanning electron microscope, the resulting structure being fcc.Transmission spectrum of the fabricated photonic crystal in the visible and near-infrared regions is measured at different incident angles to find the distinct Bragg peaks, analysis of which further confirmed the fcc structure of the photonic crystal. From the optical microscopic image, we find that the opal domain varies from 30 μm to 125 μm in size. In order to relate the observed Bragg peaks with the microscopic arrangement of silica nanospheres, we introduced the scalar wave approximation, where the electric field in the medium is treated as a scalar rather than a vector quantity. It is found that the theoretical prediction of the position of bandgap is in a good agreement with the experimental measurement.

  19. Photonic bandgap structure of 3-D fcc silica nanospheres

    International Nuclear Information System (INIS)

    Woo, Y. K.; Ha, N. Y.; Hwang, Ji Soo; Chang, H. J.; Wu, J. W.

    2002-01-01

    Photonic crystal is an artificial optical material with a periodic dielectric potential, hence exhibiting a bandgap for a propagating electromagnetic wave. We fabricated crystal possessing 3-D fcc opal structure from silica nanospheres. The crystals are self-assembled on a flat glass by evaporating the solvent in the nanosphere suspension at the room temperature. The suspension consists of silica nanospheres with a diameter of 200 nm. The microscopic arrangement of nanospheres is identified by a scanning electron microscope, the resulting structure being fcc.Transmission spectrum of the fabricated photonic crystal in the visible and near-infrared regions is measured at different incident angles to find the distinct Bragg peaks, analysis of which further confirmed the fcc structure of the photonic crystal. From the optical microscopic image, we find that the opal domain varies from 30 μm to 125 μm in size. In order to relate the observed Bragg peaks with the microscopic arrangement of silica nanospheres, we introduced the scalar wave approximation, where the electric field in the medium is treated as a scalar rather than a vector quantity. It is found that the theoretical prediction of the position of bandgap is in a good agreement with the experimental measurement.

  20. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    Science.gov (United States)

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  1. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  2. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  3. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamonkhantikul K

    2017-03-01

    Full Text Available Krid Kamonkhantikul,1 Mansuang Arksornnukit,1 Hidekazu Takahashi2 1Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; 2Oral Biomaterials Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Background: Fungal infected denture, which is typically composed of polymethylmethacrylate (PMMA, is a common problem for a denture wearer, especially an elderly patient with limited manual dexterity. Therefore, increasing the antifungal effect of denture by incorporating surface modification nanoparticles into the PMMA, while retaining its mechanical properties, is of interest. Aim of the study: This study aimed to evaluate antifungal, optical, and mechanical properties of heat-cured PMMA incorporated with different amounts of zinc oxide nanoparticles (ZnOnps with or without methacryloxypropyltrimethoxysilane modification. Materials and methods: Specimens made from heat-cured PMMA containing 1.25, 2.5, and 5% (w/w nonsilanized (Nosi or silanized (Si ZnOnps were evaluated. Specimens without filler served as control. The fungal assay was performed placing a Candida albicans suspension on the PMMA surface for 2 h, then Sabouraud Dextrose Broth was added, and growth after 24 h was determined by counting colony forming units on agar plates. A spectrophotometer was used to measure the color in L* (brightness, a* (red-green, b* (yellow-blue and opacity of the experimental groups. Flexural strength and flexural modulus were determined using a three-point bending test on universal testing machine after 37°C water storage for 48 h and 1 month. Results: The antifungal, optical, and mechanical properties of the PMMA incorporated with ZnOnps changed depending on the amount. With the same amount of ZnOnps, the silanized groups demonstrated a greater reduction in C. albicans compared with the Nosi groups. The color difference (ΔE and opacity of the Nosi groups were

  4. Effect of different surface treatments and retainer designs on the retention of posterior Pd-Ag porcelain-fused-to-metal resin-bonded fixed partial dentures.

    Science.gov (United States)

    Chen, Xiwen; Zhang, Yixin; Zhou, Jinru; Chen, Chenfeng; Zhu, Zhimin; Li, Lei

    2018-02-01

    The aim of this study was to investigate the adhesive property of palladium-silver alloy (Pd-Ag) and the simulated clinical performance of Pd-Ag porcelain-fused-to-metal (PFM), resin-bonded, fixed partial dentures (RBFPDs). A total of 40 Pd-Ag discs (diameter=5 mm) were prepared and divided into the following four groups (n=10): a) No sandblasting, used as a control; and b, 50 µm; c, 110 µm; and d, 250 µm aluminum oxide (Al 2 O 3 ) particles, respectively. Another 50 discs were pre-sandblasted and divided into five groups (n=10) subjected to different treatments: e) Sandblasting, used as a control; f) silane; g) alloy primer; h) silica coating + silane and i) silica coating + alloy primer. All 90 discs were bonded to enamel with Panavia F 2.0 and then subjected to shear bond strength (SBS) testing. The fracture surfaces were examined by scanning electron microscopy. Next, 40 missing maxillary second premolar models were restored with one of the four following RBFPD designs (n=10): I) A premolar occlusal bar combined with molar double rests (MDR); II) both occlusal bars with a wing (OBB); III) a premolar occlusal bar combined with a molar dental band (MDB); and IV) two single rests adjacent to the edentulous space with a wing (SRB) used as a control. All specimens were aged with thermal cycling and mechanical loading. Subsequently, they were loaded until broken. The data were analyzed by one-way analysis of variance. Al 2 O 3 (250 µm) abrasion provided the highest SBS (P<0.05). The alloy primer and silica + silane exhibited increased SBS. Furthermore, fracture analysis revealed that the failure mode varied among the different treatments. Whereas MDB exhibited the highest retention (P<0.05), that of OBB was greater than that of MDR (P<0.05), and the control exhibited the lowest retention. Abrasion with Al 2 O 3 (250 µm) effectively increased the adhesive property of Pd-Ag. Additionally, treatment with the alloy primer and silica coating + silane was able to

  5. The Effect of Various Acids to the Gelation Process to the Silica Gel Characteristic Using Organic Silica

    Science.gov (United States)

    Rahman, NA; Widiyastuti, W.; Sigit, D.; Ajiza, M.; Sujana, W.

    2018-01-01

    Bagasse ash is solid waste of cane sugar industry which contain of silica more than 51%. Some previous study of silica gel from bagasse ash have been conducted often and been applied. This study concerns about the effect of various acid used in the process of gelation to the characteristic of silica gel produced. Then, this silica gel will be used as adsorbent. As that, the silica gel must fulfill the requirements of adsorbent, as have good pores characteristics, fit in mesoporous size so that adsorbent diffusion process is not disturbed. A fitted pores size of silica gel can be prepared by managing acid concentration used. The effect of acid, organic acid (tartaric acid) and inorganic acid (hydrochloric acid), is investigated in detail. The acid is added into sodium silicate solution in that the gel is formed, the pores structures can be investigated with BET, the crystal form is analyzed with XRD and the pore structure is analyzed visually with SEM. By managing the acid concentration added, it gets the effect of acid to the pore structure of silica gel. The bigger concentration is, the bigger the pore’s size of silica gel produced.

  6. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  7. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  8. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  9. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  10. Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization.

    Science.gov (United States)

    Nakajima, M; Watanabe, A; Jimbo, N; Nishizawa, K; Nakao, S

    1989-02-20

    A forced-flow enzyme membrane reactor system for sucrose inversion was investigated using three ceramic membranes having different pore sizes. Invertase was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-glutaraldehyde technique. With the cross-flow filtration of sucrose solution, the reaction rate was a function of the permeate flux, easily controlled by pressure. Using 0.5 microm support pore size of membrane, the volumetric productivity obtained was 10 times higher than that in a reported immobilized enzyme column reactor, with a short residence time of 5 s and 100% conversion of the sucrose inversion.

  11. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    Science.gov (United States)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  12. Characterization and surface treatment effects on topography of a glass-infiltrated alumina/zirconia-reinforced ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Donassollo, Tiago A; Demarco, Flávio F; Barrett, Allyson A; Mecholsky, John J

    2007-06-01

    Characterize the microstructure, composition and some physical properties of a glass-infiltrated alumina/zirconia-reinforced ceramic (IZ) and the effect of surface treatment on topography. IZ ceramic specimens were fabricated according to ISO6872 instructions and polished through 1 microm alumina abrasive. Quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), backscattered imaging (BSI), electron dispersive spectroscopy (EDS) and stereology. The elastic modulus (E) and Poisson's ratio (nu) were determined using ultrasonic waves, and the density (rho) using a helium pycnometer. The following ceramic surface treatments were used: AP-as-polished; HF-etching with 9.5% hydrofluoric acid for 90 s; SB-sandblasting with 25 microm aluminum oxide particles for 15s and SC-blasting with 30 microm aluminum oxide particles modified by silica (silica coating) for 15s. An optical profilometer was used to examine the surface roughness (Ra) and SEM-EDS were used to measure the amount of silica after all treatments. The IZ mean property values were as follows: rho=4.45+/-0.01 g/cm(3); nu=0.26 and E=245 GPa. Mean Ra values were similar for AP- and HF-treated IZ but significantly increased after either SC or SB treatment (pTreating IZ with either SB or SC produced greater Ra values and the SC showed a significant increase in the surface concentration of silica, which may enhance bonding to resin via silane coupling.

  13. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  14. Application of a Low Cost Ceramic Filter for Recycling Sand Filter Backwash Water

    Directory of Open Access Journals (Sweden)

    Md Shafiquzzaman

    2018-02-01

    Full Text Available The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW. The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum followed by continuous filtration usinga low cost ceramic filter at different trans-membrane pressures (TMPs. Jar test results showed that 20 mg/L of alum is the optimum dose for maximum removal of turbidity, Fe, and Mn from SFBW. The filter can be operated at a TMP between 0.6 and 3 kPa as well as a corresponding flux of 480–2000 L/m2/d without any flux declination. Significant removal, up to 99%, was observed forturbidity, iron (Fe, and manganese (Mn. The flux started to decline at 4.5 kPa TMP (corresponding flux 3280 L/m2/d, thus indicated fouling of the filter. The complete pore blocking model was found as the most appropriate model to explain the insight mechanism of flux decline. The optimum operating pressure and the permeate flux were found to be 3 kPa and 2000 L/m2/d, respectively. Treated SFBW by a low cost ceramic filter was found to be suitable to recycle back to the water treatment plant. The ceramic filtration process would be a low cost and efficient option to recycle the SFBW.

  15. Assessment of crushed-recycled glass as filter media for drinking water treatment

    International Nuclear Information System (INIS)

    Rutledge, S.O.; Fahie, C.; Gagnon, G.A.

    2002-01-01

    The objective of this project was to evaluate the performance of a pressure filter utilizing crushed glass as the filter media. The performance of the crushed glass filter was compared to that of a sand filter. The research was conducted in Orangedale, Nova Scotia, which is a small community of with a population of approximately 500. Orangedale is located on the south shore of Bras d'Or Lakes and feeds into Miller Pond, which serves as the source the of drinking water. The Orangedale treatment plant produces an average daily flow of 35 m3/d (6.4-gpm). The treatment plant consists of coagulation (sodium aluminate and polyaluminum chloride), flocculation, dissolved air flotation (DAF), disinfection with sodium hypochlorite and dual-media filtration with anthracite and sand. In general, the particle removal capabilities of the crushed glass filter were slightly poorer than that of a sand filter, as quantified in a field application in the community of Orangedale, Nova Scotia. It was found that the crushed glass used in this project had a higher angularity and slightly higher uniformity coefficient. During initial start-up the performance of the crushed glass filter was more variable and appeared to improve as the glass began to wear. After six-months of use the crushed glass filter was able to produce a very consistent filter effluent that was only slightly greater than the silica sand filter. After six-months of use, the sand filter achieved a 1.6 log-removal of particles with diameters greater than 2 μm; whereas the crushed glass filter achieved a 1.4 log removal for the similar particle size range. The observed removal performance was particularly encouraging given that the sand used had properties that were consistent with the standards set by the American Water Works Association. The crushed glass filter media was initially sieved and washed, but had no other pre-treatment preparation. Thus the application of crushed glass shows considerable promise as filter

  16. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  17. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  18. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  19. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  20. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  1. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity and transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.

  2. Microbial Activity and Silica Degradation in Rice Straw

    Science.gov (United States)

    Kim, Esther Jin-kyung

    increased. Silicase activity did not change across nitrogen treatments despite a shift in microbial community with varied nitrogen concentration. Samples treated with different nitrogen concentrations had similar levels of diversity, however the microbial community composition differed with added nitrogen. The results demonstrated that adding nitrogen to rice straw during thermophilic decomposition nurtured a more active microbial community and promoted enzyme secretion thus improving the ability to discover enzymes for rice straw deconstruction. These results can inform future experiments for cultivating a unique, thriving compost-derived microbial community that can successfully decompose rice straw. Understanding the silicase activity of microorganisms may alleviate the challenges associated with silica in various feedstocks.

  3. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    Science.gov (United States)

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  4. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    Directory of Open Access Journals (Sweden)

    Afrida Kurnia Putri

    2012-10-01

    Full Text Available A characterization of activated carbon (ACs prepared from rice husks (RHs under base treated condition as a new sorbent for solid-phase extraction (SPE to extract 4-nonylphenol isomers (4-NPs in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance interaction of non-polar sorbent with analyte in the water matrices. In this case, silanol groups from ash content may affect the extraction efficiency for 4-NPs. The ACs made from RHs were chemically impregnated with ZnCl2 and carbonized at 800oC. To investigate the role of silica, three types of ACs were prepared, i.e., untreated ACs (AC–Si, contain silica, base treated ACs (AC–B–Si, remain some silica inside, and ACs made by base treated RHs (AC–B, no silica, the surface area obtained from these treatments were 1352 m2/g, 1666 m2/g, and 1712m2/g respectively.  ACs made by base treatment has the highest surface area (related to BET, which indicat that silica removal process promotes the formation of open pore system on ACs and enhances the surface area of ACs. However, extraction efficiency measured by GC-MS in SPE process showed the reversal trends (i.e., AC–Si= 32.08%, AC–B–Si= 82.63%, AC–B=51.78%, among them the AC–B–Si sorbent reveal the best performance in SPE process. It is indicated that although silica usually exhibits low specific surface area, but control presence of silica as a polar functional group has a positive influence in the interaction between non-polar sorbent and 4-NPs.

  5. INFLUENCE OF SILANE HEAT TREATMENT ON THE TENSILE BOND STRENGTH BETWEEN EX-3 SYNTHETIC VENEERING PORCELAIN AND COMPOSITE RESIN USING FIVE DIFFERENT ACTIVATION TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Spartak Yanakiev

    2017-02-01

    Full Text Available Purpose: The purpose of the present study is to assess the effect of five different silane activation temperatures and eight activation methods on the tensile bond strength between one veneering porcelain and one composite resin material. Material and methods: A total of 81 ceramic rods were made of EX-3 veneering ceramic (Kuraray Noritake Dental, Japan. Sintered ceramic bars were grinded with diamond disks to size 10x2x2mm ± 0,05mm. The front part of each bar was polished. After ultrasonic cleaning in distilled water, the specimens were divided into nine groups. Silane was activated with air at room temperature, 38º С, 50º С, 100º С, 120º С using a custom made blow drier. In a silicone mold, a composite resin Z250 (3М ESPE, St. Paul, USA was condensed toward the bond ceramic surface. A total of 81 specimens approximately 2,0 cm long were prepared for tensile bond testing. One way ANOVA, followed by Bonferroni and Games-Howell tests were used for statistical analysis. Results: The lowest tensile bond strength was observed in the control group (3,51MPa. Group 2 yielded the highest bond strength among all groups (19,54MPa. Silane heat treatment enhanced the bond strength for all treatment methods. Within the polished specimens, the highest bond strength was yielded with warm air at 120ºС (11,31MPa. Conclusion: The most effective method for bonding Z250 composite resin to EX-3 veneering ceramic includes HF etching, silane, and adhesive resin. The most effective heat treatment method for bonding is hot air at 120ºС.

  6. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  7. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  8. Synthesis of Various Silica Nanoparticles for Foam Stability

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Yoon, Inho; Jung, Chonghun; Kim, Chorong; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    The synthesis of the non-porous silica nanoparticles with uniform sizes has been reported through the Sto ber method, the synthesis of meso porous silica nanoparticles with a specific morphology such as core-shell, rod-like, and hexagonal shapes is not so common. As a synthetic strategy for controlling the particle size, shape, and porosity, the synthesis of core-shell silicas with meso porous shells formed on silica particle cores through the self-assembly of silica precursor and organic templates or spherical meso porous silicas using modified Sto ber method was also reported. Recently, in an effort to reduce the amount of radioactive waste and enhance the decontamination efficiency during the decontamination process of nuclear facilities contaminated with radionuclides, a few research for the preparation of the decontamination foam containing solid nanoparticles has been reported. In this work, the silica nanoparticles with various sizes, shapes, and structures were synthesized based on the previous literatures. The resulting silica nanoparticles were used to investigate the effect of the nanoparticles on the foam stability. In a study on the foam stability using various silica nanoparticles, the results showed that the foam volume and liquid volume in foam was enhanced when using a smaller size and lower density of the silica nanoparticles. Silica nanoparticles with various sizes, shapes, and structures such as a non-porous, meso porous core-shell, and meso porous silica were synthesized to investigate the effect of the foam stability. The sizes and structural properties of the silica nanoparticles were easily controlled by varying the amount of silica precursor, surfactant, and ammonia solution as a basic catalyst. The foam prepared using various silica nanoparticles showed that foam the volume and liquid volume in the foam were enhanced when using a smaller size and lower density of the silica nanoparticles

  9. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  10. Site of Er ions in silica layers codoped with Si nanoclusters and Er

    International Nuclear Information System (INIS)

    Pellegrino, P.; Garrido, B.; Arbiol, J.; Garcia, C.; Lebour, Y.; Morante, J.R.

    2006-01-01

    Silica layers implanted with Si and Er ions to various doses and annealed at 950 deg. C have been investigated by means of energy-filtered transmission electron microscopy (EFTEM) and high annular angle dark field (HAADF). EFTEM analysis reveals Si nanoclusters (Si-nc) with an average size around 3 nm for high Si content (15 at. %) whereas no clusters can be imaged for the lowest Si excess (5 at. %). Raman scattering supports that amorphous Si precipitates are present in all the samples. Moreover, the filtered images show that Er ions appear preferentially located outside the Si-nc. HAADF analysis confirms that the Er atoms form agglomerations of 5-10 nm size when the Er concentration exceeds 1x10 20 cm -3 . This observation correlates well with the reduction of the Er population excitable by Si nanoclusters, in the best case corresponding to 10% of the total. A suitable tuning of the annealing drastically reduces this deleterious effect

  11. Environmentally friendly hybrid coatings for corrosion protection: silane based pre-treatments and nanostructured waterborne coatings

    OpenAIRE

    Fedel, Michele

    2009-01-01

    This thesis considers a nanotechnology approach based on the production of metals pre-treatments and organic coatings (a complete protection system at all) designed from the nanoscale. The final aim is to develop protection systems with improved corrosion protection properties and a low environmental impact. In particular, multifunctional silane hybrid molecules were used to design sol-gel pre-treatments for metals and to modify the inner structure of UV curable waterborne organic coatings...

  12. Synthesis of zeolite from coal fly ashes with different silica-alumina composition

    Energy Technology Data Exchange (ETDEWEB)

    Miki Inada; Yukari Eguchi; Naoya Enomoto; Junichi Hojo [Kyushu University, Fukuoka (Japan). Department of Chemistry and Biochemistry, Graduate School of Engineering

    2005-02-01

    Coal fly ashes can be converted into zeolites by hydrothermal alkaline treatment. This study focuses on the effect of Si/Al molar ratio of the fly ash source on the type of formed zeolite, which also is affected by the alkaline condition. The fly ashes were mixed with an aqueous NaOH solution and hydrothermally treated at about 100{degree}C. Zeolite Na-P1 and/or hydroxy-sodalite appeared after the treatment. Zeolite Na-P1 predominantly formed from silica-rich fly ash at a low-NaOH concentration. The cation exchange capacity of the product with a large content of zeolite Na-P1 reached a value of 300 meq/100 g. The type of the product was controlled by addition of aerosil silica or alumina. It was found that silica addition effectively enhances the formation of zeolite Na-P1, even at a high-NaOH concentration. These results were discussed on the basis of a formation mechanism of zeolite from coal fly ash through dissolution-precipitation process. 10 refs., 6 figs., 1 tab.

  13. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    Science.gov (United States)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  14. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber

    Science.gov (United States)

    Lin, Jing; Luo, Yuanfang; Zhong, Bangchao; Hu, Dechao; Jia, Zhixin; Jia, Demin

    2018-05-01

    A novel antioxidant (HS-s-RT) to improve the mechanical properties and anti-aging performance of styrene-butadiene (SBR) composites was prepared by antioxidant intermediate p-aminodiphenylamine (RT) grafting on the surface of halloysite nanotubes/silica hybrid (HS) via the linkage of silane coupling agent. The analysis of SEM and rubber processing analyzer (RPA) demonstrated HS-s-RT was uniformly dispersed in SBR, and stronger interfacial interaction between HS-s-RT and SBR was formed. Consequently, SBR/HS-s-RT composites have improving mechanical properties. Furthermore, the test of the retention of mechanical properties, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), and oxidation induction time (OIT) showed HS-s-RT can effectively improve the anti-aging effect of SBR composites than corresponding low molecular-weight antioxidant N-isopropyl-N‧-phenyl-4-phenylenediamin (4010NA). Then, the mechanism of thermo-oxidative aging of SBR/HS composites was also investigated, and the superior antioxidative efficiency is attributed to the uniform dispersion and excellent migration resistance of HS-s-RT. Hence, this novel antioxidant might open up new opportunities for the fabrication of high-performance rubber composites due to its superior anti-aging effect and reinforcement.

  15. Filter Effectiveness Evaluation

    Science.gov (United States)

    2013-08-01

    synthetic paraffinic kerosene (SPK), as well as Ultra Low Sulfur Diesel (ULSD) treated with mono-olein to simulate the effects of biodiesel . Results...fuel. Sufficient analysis and qualification of filter products is becoming increasingly crucial in ground transportation vehicles to promote the...well as a simulated biodiesel composed of ultra low sulfur diesel (ULSD) and mono-olein. As written in the scope of work, the alternative aviation

  16. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  17. Effect of temperature on physical and mechanical properties of concrete containing silica fume

    International Nuclear Information System (INIS)

    Saad, M.; Hanna, G.B.; Abo-El-Enein, S.A.; Kotkata, M.F.

    1996-01-01

    Heat-resistant materials are usually used for structural purposes. The need for such building materials is particularly important in the chemical and metallurgical industries and for the thermal shieldings of nuclear power plants. Thus the effect of high temperatures on physical and mechanical properties of concrete was investigated. In this study ordinary Portland cement has been partially replaced by ratios of silica fume. The heat treatment temperature varied from 100 to 600 C by increments of 100 C for three hours without any load. Concrete specimens were treated at each temperature level. The specimens were heated under the same condition for each temperature level. Comparison between physical and mechanical properties during heat treatment were investigated. All specimens were moist-cured for 28 days after casting. Tests were carried out on specimens cooled slowly to room temperature after heating. Results of this investigation indicated that the replacement of ordinary Portland cement by 10% silica fume by weight improved the compressive strength by about 64.6%, but replacement of ordinary Portland cement by silica fume by ratios 20 and 30% improved the compressive strength by only 28% at 600 C. This could be attributed to the additional tobermorite gel (CSH phase) which formed due to the reaction of silica fume with Ca(OH) 2

  18. Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.

    Science.gov (United States)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2017-08-30

    Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.

  19. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  20. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  1. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  2. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials

    International Nuclear Information System (INIS)

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-01-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14 days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C _1_8) functionalized with different amounts of the RGD peptide. - Highlights: • Non functionalized silica-quantum dots fluorescent nanoparticles uptake is observed. • Morphology studies of such cells could be done by confocal fluorescence microscopy. • Labelled chondrocytes are viable until at least 14 days. • RGD functionalized Hyaluronic Acid hydrogels are studied as cell scaffolds. • Chondrocyte are promptly attached on RGD-functionalized hydrogels.

  3. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Michele [Dip. Biomedico di Medicina Interna e Specialistica, Universitá degli Studi di Palermo, Piazza delle Cliniche, 2, 90127 Palermo (Italy); Dip. di Fisica e Chimica, Universitá degli Studi di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo (Italy); Fiorica, Calogero, E-mail: calogero.fiorica@unipa.it [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy); Palumbo, Fabio Salvatore [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy); Militello, Valeria; Leone, Maurizio [Dip. di Fisica e Chimica, Universitá degli Studi di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo (Italy); Dubertret, Benoit [Laboratoire de Physique et d’Etude des Matèriaux, ESPCI-ParisTech, PSL Research University, Sorbonne Universitè UPMC Univ. Paris 06, CNRS, 10 rue Vauquelin, 75005 Paris (France); Pitarresi, Giovanna; Giammona, Gaetano [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy)

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14 days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C {sub 18}) functionalized with different amounts of the RGD peptide. - Highlights: • Non functionalized silica-quantum dots fluorescent nanoparticles uptake is observed. • Morphology studies of such cells could be done by confocal fluorescence microscopy. • Labelled chondrocytes are viable until at least 14 days. • RGD functionalized Hyaluronic Acid hydrogels are studied as cell scaffolds. • Chondrocyte are promptly attached on RGD-functionalized hydrogels.

  4. New synthesis of photocurable silanes and polysiloxanes bearing heterocyclic or olefinic functions

    International Nuclear Information System (INIS)

    Youssef, B.; Lecamp, L.; Garin, S.; Bunel, C.

    1999-01-01

    In this work, we described the synthesis of silanes and polysiloxanes bearing cationic photopolymerizable groups. Two new methods were used. The first one is the reaction between 3-mercapto-propyl-1-triethoxysilane (1) and chloromethylated olefins by a phase transfer catalysis. The second one is the radical addition of (1) or poly(dimethylsiloxane-co-methylmercaptopropylsiloxane) (9) to allyl or vinyl substituted heterocyclic monomers. These methods led to the expected adducts with an excellent yield. The polysiloxanes bearing heterocyclic functional groups linked through thioether bonds were photocurable by cationic route. Under UV light intensity of 17.5 mW/cm 2 , these polymers harden after 15 or 20 s

  5. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching of the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.

  6. Molecular imprinting of caffeine on cellulose/silica composite and its characterization

    Science.gov (United States)

    Gill, Rajinder Singh

    This dissertation presents a study to prepare molecularly imprinted inorganic/organic hybrid composite which not only confirm the higher binding capabilities for the target molecule (template) but also discriminate its structural analogs. Molecularly imprinted Cellulose/Silica composite (MIP) was prepared by using caffeine as the template. Silica derived from TEOS by using sol-gel techniques was deposited on cheap, abundant organic matrix such as cellulose, which can provide a filtering medium while coffee brewing. Removal of the template from the precursor was verified by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Remarkably reduced intensity of -NH2 scissor like mode of caffeine and the presence of traces of "N" by elemental analysis, confirmed the complete removal of caffeine on washing with ethanol. Cellulose to TEOS mass ratio of 2:1 was found to be close to optimal during our analysis. Energy dispersive spectroscopy results leads to an important fact that the deposition of silica was stable even at 373 K. Focus was on the adsorption affinities of caffeine by MIP and was tested by performing relative adsorption of caffeine by MIP and blank (standard) using demountable path length cell in IR. It was observed that MIP showed almost 3-folds higher adsorption capabilities as compared to blank. The initial rate of adsorption of caffeine by MIP is much higher than blank which is one of the desirable feature according the its intended use. The higher adsorption of caffeine by MIP not only depends on the amount of silica deposited but also the available binding sites present on its surface. Selectivity of MIP was also verified by the competitive adsorption of caffeine and its structure analogs such as theophylline. Clearly, MIP showed greater and more rapid binding capabilities for caffeine than theophylline. At short contact times, the binding capability for caffeine is almost 1.8 times greater than the binding capabilities for theophylline.

  7. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  8. Evaluación de dos silanos en compuestos deetilenvinilacetato y harina TelinneMonspessulana//Evaluation of two silanes in ethylenevinylacetate and TelinneMonspessulana flour compounds

    Directory of Open Access Journals (Sweden)

    Oscar Buitrago-Suescun

    2015-09-01

    Full Text Available Se realizó un estudio comparativo del efecto que produce la adición de agentes de acoplamiento tipo silanovinyltrimethoxysilano y 3-aminopropiltrietoxisilano sobre la mezcla de etilenvinilacetato con harina de TelinneMonspessulana. La incorporación de agentes de acoplamiento se hizo de manera directa sobre la mezcla empleando harina sin tratar y mercerizada. También se hicieron ensayos mezclando etilenvinilacetatoy harina injertada previamente con cada uno de los silanos. Los compuestos fueron sometidos a ensayos de tensión con el fin de evaluar los agentes de acoplamiento. Se encontró que la adición delsilano amino durante el mezclado de los compuestos aumentó la resistencia a la tracción, siendo un importante resultado pues estos son materiales livianos aplicables en la industria de construcción y automotriz.Palabras claves: etilenvinilacetato, harina telinnemonspessulana, compuestos de plástico con madera, agente de acoplamiento silano, viniltrimetoxisilano, aminopropiltrietoxisilano._____________________________________________________________________________AbstractA comparative study the effect of the addition of silane coupling agents, vinyltrimethoxysilane and 3-aminopropyltriethoxysilane on ethylenevinylacetate and Telinnemonspessulana flour composites was performed. The silane coupling agents were added in the mixing stage of ethylene vinyl acetate and wood flour (untreated and mercerized. Tests were also made by mixing ethylenevinylacetate with previously grafted wood flour. Flour graft was performed with vinyltrimethoxysilane and 3-aminopropiltrietoxisilano. The compounds were tested for tensile testing to evaluate the coupling agents. It was found that the addition of amino-silane during mixing increased tensile strength, being this an important result since these are lightweight materials that can be used in the construction and automobile industry. Key words: ethylene-vinyl acetate, telinnemonspessulana flour, wood

  9. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  10. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  11. Structure and thermal properties of nanospheres obtained by ethoxy silanes copolymerization

    International Nuclear Information System (INIS)

    Pedroso, Marcos A.S.; Mothe, Cheila G.; Dias, Marcos L.

    2001-01-01

    Thermal and structural characterization of organophylic nano spherical copolymers of tetra ethoxysilane (TEOS) and methyltriethoxysilane (MTEOS) or dimethyldiethoxysilane (DMDEOS) obtained by sol-gel reaction terminated by trimethylchlorosilane are described. 29 Si NMR, wide angle X-ray scattering (WAXS) and thermal analysis (TG/DTG and DTA) were employed. Due to the high reactivity of TEOS, the copolymers are silica-silicon hybrids showing bilayer structure where silica constitutes a core and a alkyl-rich chemical structure constitutes the external layer. The copolymers present higher mass lost at high temperatures than TEOS homopolymer. (author)

  12. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    International Nuclear Information System (INIS)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-01-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs

  13. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  14. Tadalafil inclusion in microporous silica as effective dissolution enhancer: optimization of loading procedure and molecular state characterization.

    Science.gov (United States)

    Mehanna, Mohammed M; Motawaa, Adel M; Samaha, Magda W

    2011-05-01

    Tadalafil is an efficient drug used to treat erectile dysfunction characterized by poor water solubility, which has a negative influence on its bioavailability. Utilization of microporous silica represents an effective and facile technology to increase the dissolution rate of poorly soluble drugs. Our strategy involved directly introducing tadalafil as guest molecule into microporous silica as host material by incipient wetness impregnation method. To optimize tadalafil inclusion, response surface methodology (RSM) using 3(3) factorial design was utilized. Furthermore, to investigate the molecular state of tadalafil, Fourier-transform infrared spectroscopy, differential scanning calorimetery, thermal gravimetrical analysis, nitrogen adsorption, and powder X-ray diffraction (PXRD) were carried out. The results obtained pointed out that the quantity of microporous silica was the predominant factor that increased the loading efficiency. For the optimized formula, the loading efficiency was 42.50 wt %. Adsorption-desorption experiments indicated that tadalafil has been introduced into the micropores. Powder XRD and differential scanning calorimetry analyses revealed that tadalafil is arranged in amorphous form. In addition, the dissolution rate of tadalafil from the microporous silica was faster than that of free drug. Amorphous tadalafil occluded in microporous silica did not crystallize over 3 months. These findings contributed in opening a new strategy concerning the utilization of porous silica for the dissolution rate enhancement. Copyright © 2010 Wiley-Liss, Inc.

  15. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  16. Characterisation of silica surfaces III: Characterisation of aerosil ...

    African Journals Online (AJOL)

    Contact angles were measured by the captive bubble method at the three phase contact line in ethanol, on glass slides similarly modified. Silylation was found to alter the ethanol adsorptive properties on aerosil and increase the contact angles on the glass slides to extents that depend on the silane used as well as the ...

  17. Thermally induced structural modifications and O2 trapping in highly porous silica nanoparticles

    International Nuclear Information System (INIS)

    Alessi, A.; Agnello, S.; Iovino, G.; Buscarino, G.; Melodia, E.G.; Cannas, M.; Gelardi, F.M.

    2014-01-01

    In this work we investigate by Raman spectroscopy the effect of isochronal (2 h) thermal treatments in air in the temperature range 200–1000 °C of amorphous silicon dioxide porous nanoparticles with diameters ranging from 5 up to 15 nm and specific surface 590–690 m 2 /g. Our results indicate that the amorphous structure changes similarly to other porous systems previously investigated, in fact superficial SiOH groups are removed, Si–O–Si linkages are created and the ring statistic is modified, furthermore these data evidence that the three membered rings do not contribute significantly to the Raman signal detected at about 495 cm −1 . In addition, after annealing at 900 and 1000 °C we noted the appearance of the O 2 emission at 1272 nm, absent in the not treated samples. The measure of the O 2 emission has been combined with electron paramagnetic resonance measurements of the γ irradiation induced HO · 2 radicals to investigate the O 2 content per mass unit of thin layers of silica. Our data reveal that the porous nanoparticles have a much lower ability to trap O 2 molecules per mass units than nonporous silica supporting a model by which O 2 trapping inside a surface layer of about 1 nm of silica is always limited. - Highlights: • O 2 emission and HO · 2 electron paramagnetic resonance signals are investigated. • Silica surface ability to trap O 2 molecules is explored by thermal treatments. • Raman study of thermally induced structural changes in porous silica nanoparticles. • Raman signal attributable to the three membered rings in silica

  18. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.

    2009-01-01

    following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated...... into two distinct size subpopulations of 20 and 40 nm mean diameters with increased phagocytic uptake observed for the 40 nm size range in vitro. MRI detection revealed greater iron accumulation in murine tumors for 40 nm nanoparticles after intravenous injection. The enhanced MRI contrast of the larger...

  19. Quantum Monte Carlo Computations of Phase Stability, Equations of State, and Elasticity of High-Pressure Silica

    Science.gov (United States)

    Driver, K. P.; Cohen, R. E.; Wu, Z.; Militzer, B.; Ríos, P. L.; Towler, M. D.; Needs, R. J.; Wilkins, J. W.

    2011-12-01

    Silica (SiO2) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense α-PbO2 structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.

  20. Performance Comparison of Various Filters Media in

    Directory of Open Access Journals (Sweden)

    Lilyan Yaqup Matti

    2013-05-01

    Full Text Available   In this research, a bench-scale filter is designed and constructed in order to compare the performance of different media namely, sand, crushed marble stone and crushed red brick. The filters are operated under various operating conditions such as filter depth, raw water turbidity, pretreatment, effective size and uniformity coefficient.          These filters are operated under conventional and direct filtration modes with different doses of alum. Statistical methods had been used to determine the best media using  Duncan multiple range test.     The result showed the superiority of crushed red brick media in the  removal of turbidity and total bacteria. The results also indicated that filters operated under direct filtration mode show better performance than that operated under conventional filtration mode. The pH of treated water show slight increase for the two modes of filtration.