WorldWideScience

Sample records for significantly stimulated mpl-i

  1. Consecutive Acupuncture Stimulations Lead to Significantly Decreased Neural Responses

    NARCIS (Netherlands)

    Yeo, S.; Choe, I.H.; Noort, M.W.M.L. van den; Bosch, M.P.C.; Lim, S.

    2010-01-01

    Objective: Functional magnetic resonance imaging (fMRI), in combination with block design paradigms with consecutive acupuncture stimulations, has often been used to investigate the neural responses to acupuncture. In this study, we investigated whether previous acupuncture stimulations can affect

  2. Stimulating Sustainability in Multinational Companies: the Significance of Regional Headquarters

    Directory of Open Access Journals (Sweden)

    Andreas G. M. NACHBAGAUER

    2016-06-01

    Full Text Available Recently, regional headquarters have gained practical importance and theoretical attention. Traditionally considered a mere transmission facility to manage complex organisations, advanced approaches, however, locate regional headquarters in a field of tension between hierarchical integration and strategic independence. Given the growing concern for global responsibility, stimulating sustainability also and particularly addresses regional headquarters. This conceptual article combines the call for sustainability with the upcoming importance of regional headquarters: which contributions can the regional headquarters of a multinational company deliver to stimulate the development of sustainable corporate strategy and operations? The main topics are the effects different versions of embedding regional headquarters into the corporate context have on opportunities to implement sustainability policies: Are there different chances for successful implementation depending on the strategic setup of the company? Does the distribution of competences matter? Which types of interaction between headquarters and branch are suitable to introduce sustainability sustainably? Is the mix of national contexts of headquarters and branch of importance? First results show that depending on the companywide strategy, and especially on the structure and distribution of competences, regional headquarters can play a significant role as trigger of sustainability. The literature favours strong involvement and large autonomy of both branches as well as regional headquarters for the development and management of sustainability. The parts of the company involved in a critical environment often are the starting point of sustainability policies.

  3. Stimulating Sustainability in Multinational Companies: the Significance of Regional Headquarters

    OpenAIRE

    Andreas G. M. NACHBAGAUER

    2016-01-01

    Recently, regional headquarters have gained practical importance and theoretical attention. Traditionally considered a mere transmission facility to manage complex organisations, advanced approaches, however, locate regional headquarters in a field of tension between hierarchical integration and strategic independence. Given the growing concern for global responsibility, stimulating sustainability also and particularly addresses regional headquarters. This conceptual article combines the call...

  4. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  5. Simultaneous bilateral stereotactic procedure for deep brain stimulation implants: a significant step for reducing operation time.

    Science.gov (United States)

    Fonoff, Erich Talamoni; Azevedo, Angelo; Angelos, Jairo Silva Dos; Martinez, Raquel Chacon Ruiz; Navarro, Jessie; Reis, Paul Rodrigo; Sepulveda, Miguel Ernesto San Martin; Cury, Rubens Gisbert; Ghilardi, Maria Gabriela Dos Santos; Teixeira, Manoel Jacobsen; Lopez, William Omar Contreras

    2016-07-01

    OBJECT Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads. METHODS Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson's disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared. RESULTS Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time. CONCLUSIONS A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional

  6. Deep Brain Stimulation Target Selection in an Advanced Parkinson's Disease Patient with Significant Tremor and Comorbid Depression

    Directory of Open Access Journals (Sweden)

    Amar S. Patel

    2017-04-01

    Full Text Available Clinical Vignette: A 67-year-old female with advanced Parkinson's disease (PD, medically refractory tremor, and a history of significant depression presents for evaluation of deep brain stimulation (DBS candidacy.  Clinical Dilemma: Traditionally, stimulation of the subthalamic nucleus (STN has been the preferred target for patients with significant PD tremor. However, STN stimulation is avoided in patients with a significant pre-surgical history of mood disorder.  Clinical Solution: Bilateral DBS of the globus pallidus interna led to significant short term improvement in PD motor symptoms, including significant tremor reduction.  Gap in Knowledge: There is insufficient evidence to support or refute clinicians' traditional preference for STN stimulation in treating refractory PD tremor. Similarly, the available evidence for risk of worsening depression and/or suicidality after STN DBS is mixed. Both questions require further clarification to guide patient and clinician decision-making.

  7. Significant plant growth stimulation by composted as opposed to untreated Biochar

    Science.gov (United States)

    Kammann, Claudia; Messerschmidt, Nicole; Müller, Christoph; Steffens, Diedrich; Schmidt, Hans-Peter; Koyro, Hans-Werner

    2013-04-01

    The application of production-fresh, untreated biochar does not always result in yield improvements, in particular in temperate or boreal soils. Therefore the use of biochar for soil C sequestration, although desirable from a global change mitigation point of view, may never be implemented without proven and economically feasible pathways for biochar effects in agriculture. To investigate earlier reports of the beneficial effects of composting biochar (e.g. Fischer & Glaser, 2012) we conducted a fully replicated (n=3, +/- biochar) large-scale composting study at the Delinat Institute in Arbaz, Switzerland. The materials were manures (bovine, horse and chicken), straw, stone meal and composting was performed with our without +20 vol.% of a woody biochar (German Charcoal GmbH). Interestingly, the rotting temperature was significantly higher in the biochar-compost while C and N were retained to a certain extent. To investigate the effect of composting ("ageing") on biochar effects, a completely randomized full-factorial pot study was carried out in the greenhouse using the pseudo-cereal Chenopodium quinoa. The three factors used in the study were (I) type of biochar addition ("aged", "fresh", or zero BC), (II) addition of compost and (III) low and high application rates of a full NPK-fertilizer (equivalent to 28 and 140 kg N ha-1, NPK + micronutrients) in several doses. The growth medium was a poor loamy sand. Biochars and compost were all added at a rate of 2% (w/w) to the soil. From the start there was a considerable difference between the growth of Quinoa with the fresh compared to the aged biochar. The fresh biochar produced the well-known reduction in plant growth compared to the unamended control. This reduction was alleviated to a certain extent by the addition of either compost and/or increased fertilization. In contrast the co-composted biochar always resulted in a highly significant stimulation of the Quinoa yield (roots, shoots, inflorescences). This

  8. G-quadruplexes Significantly Stimulate Pif1 Helicase-catalyzed Duplex DNA Unwinding*

    Science.gov (United States)

    Duan, Xiao-Lei; Liu, Na-Nv; Yang, Yan-Tao; Li, Hai-Hong; Li, Ming; Dou, Shuo-Xing; Xi, Xu-Guang

    2015-01-01

    The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation. PMID:25627683

  9. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein.

    Science.gov (United States)

    Du, Z Q; Wang, J Y

    2015-10-27

    Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.

  10. No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols.

    Science.gov (United States)

    Horvath, Jared Cooney; Carter, Olivia; Forte, Jason D

    2016-10-01

    Research exploring the behavioral impact of transcranial direct current stimulation (tDCS) over M1 has produced homogenous results. The most common explanations to address this homogeneity concerns the differential impact of varied tDCS parameters (such as stimulation intensity or electrode montage). To explore this, we systematically examined the effects of 15 different tDCS protocols on a well-elucidated neurobehavioral system: simple visual motor reaction time (smRT). For the initial phase of this study, 150 healthy participants were randomly assigned to one of 5 experimental groups (2mA anodal, 2mA cathodal, 1mA anodal, 1mA cathodal, or sham) across 3 different conditions (orbitofrontal, bilateral, or extracephalic reference electrode location). The active electrode was always placed over M1 and tDCS lasted for 20min. Starting ~5min prior to stimulation and running continuously for ~30min, participants were repeatedly presented with a visual cue centered on a computer monitor and asked to press a response button as quickly as possible at stimulus onset (stimuli number: 100 pre-, 400 during-, and 100-post stimulation - interstimulus interval: 1-3s). Ex-gaussian distribution curves, miss, and error rates were determined for each normalized batch of 100 RTs and compared using a two-way ANOVA. As the largest group differences were seen with 2mA anodal (compared to sham) stimulation using an orbitofrontal montage, an additional 60 healthy participants were recruited to further test for significance in this condition. No significant impact of tDCS was seen on any parameter of smRT distribution, error rate, or miss rate, regardless of polarity, stimulation intensity, electrode montage, or stimulation-to-task relationship. Our results suggest that tDCS over M1 might not have a predictable or reliable effect on short duration smRT. Our results raise interesting questions regarding the mechanisms by which tDCS might modulate more complex motor behaviors. Additional

  11. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice.

    Science.gov (United States)

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Stucchi, Claudio; Cleris, Loredana; Formelli, Franca; Gianni, Massimo A

    2002-11-01

    Defibrotide is a polydeoxyribonucleotide, which significantly reduces the expression of adhesion molecules on endothelial cells. We investigated the activity of Defibrotide alone or in combination with recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize peripheral blood progenitor cells (PBPCs) in BALB/c mice. A 5-day treatment with Defibrotide alone (1-15 mg/mouse/day) had no effect on WBC counts, frequencies and absolute numbers of total circulating colony-forming cells (CFCs), i.e., granulocyte-macrophage colony-forming units, erythroid burst-forming units, and multilineage colony-forming units. As compared with mock-injected mice, administration of rhG-CSF alone (5 micro g/mouse/day) for 5 days significantly (P Defibrotide (15 mg/mouse/day) and rhG-CSF significantly (P Defibrotide plus rhG-CSF resulted in a significant increase (P Defibrotide/rhG-CSF-mobilized mononuclear cells rescued 43% and 71% of recipient mice, respectively. Experiments of CFC homing performed in lethally irradiated or nonirradiated recipients showed that marrow homing of transplanted PBPCs was reduced by 3-fold in Defibrotide-treated animals as compared with mock-injected mice (P Defibrotide might be because of an effect on PBPC trafficking. In conclusion, our data demonstrate that Defibrotide synergizes with rhG-CSF and significantly increases the mobilization of a broad spectrum of PBPCs, including primitive and committed progenitor cells. These data might have relevant implications for autologous and allogeneic anticancer therapy in humans.

  12. Multicolumn spinal cord stimulation for significant low back pain in failed back surgery syndrome: design of a national, multicentre, randomized, controlled health economics trial (ESTIMET Study).

    Science.gov (United States)

    Roulaud, M; Durand-Zaleski, I; Ingrand, P; Serrie, A; Diallo, B; Peruzzi, P; Hieu, P D; Voirin, J; Raoul, S; Page, P; Fontaine, D; Lantéri-Minet, M; Blond, S; Buisset, N; Cuny, E; Cadenne, M; Caire, F; Ranoux, D; Mertens, P; Naous, H; Simon, E; Emery, E; Gadan, B; Regis, J; Sol, J-C; Béraud, G; Debiais, F; Durand, G; Guetarni Ging, F; Prévost, A; Brandet, C; Monlezun, O; Delmotte, A; d'Houtaud, S; Bataille, B; Rigoard, P

    2015-03-01

    Many studies have demonstrated the efficacy of spinal cord stimulation (SCS) for chronic neuropathic radicular pain over recent decades, but despite global favourable outcomes in failed back surgery syndrome (FBSS) with leg pain, the back pain component remains poorly controlled by neurostimulation. Technological and scientific progress has led to the development of new SCS leads, comprising a multicolumn design and a greater number of contacts. The efficacy of multicolumn SCS lead configurations for the treatment of the back pain component of FBSS has recently been suggested by pilot studies. However, a randomized controlled trial must be conducted to confirm the efficacy of new generation multicolumn SCS. Évaluation médico-économique de la STImulation MEdullaire mulTi-colonnes (ESTIMET) is a multicentre, randomized study designed to compare the clinical efficacy and health economics aspects of mono- vs. multicolumn SCS lead programming in FBSS patients with radicular pain and significant back pain. FBSS patients with a radicular pain VAS score≥50mm, associated with a significant back pain component were recruited in 14 centres in France and implanted with multicolumn SCS. Before the lead implantation procedure, they were 1:1 randomized to monocolumn SCS (group 1) or multicolumn SCS (group 2). Programming was performed using only one column for group 1 and full use of the 3 columns for group 2. Outcome assessment was performed at baseline (pre-implantation), and 1, 3, 6 and 12months post-implantation. The primary outcome measure was a reduction of the severity of low back pain (bVAS reduction≥50%) at the 6-month visit. Additional outcome measures were changes in global pain, leg pain, paraesthesia coverage mapping, functional capacities, quality of life, neuropsychological aspects, patient satisfaction and healthcare resource consumption. Trial recruitment started in May 2012. As of September 2013, all 14 study centres have been initiated and 112

  13. Serum Inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: significance of adequate reference values from proven fertile men

    DEFF Research Database (Denmark)

    Andersson, A.-M.; Petersen, Jørgen Holm; Jørgensen, N.

    2004-01-01

    Inhibin B and FSH levels in 289 idiopathic infertile men were compared with reference materials consisting of 303 proven fertile men (reference group 1) and 307 healthy men from the general population with unknown fertility status (reference group 2). The diagnostic power of these two serum markers...... of spermatogenesis was evaluated by the use of receiver operating characteristic plot analysis, and an example of how both markers can be used simultaneously in a bivariate reference chart is presented. Inhibin B levels were significantly lower and FSH levels were significantly higher in the infertile men, compared...

  14. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation.

    Science.gov (United States)

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Chen, Wen-Yih; Ruaan, Ruoh-Chyu; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-06-01

    Urothelial carcinoma (UC) is the most common histologic subtype of bladder cancer. The administration of mitomycin C (MMC) into the bladder after transurethral resection of the bladder tumor (TURBT) is a common treatment strategy for preventing recurrence after surgery. We previously applied hydrostatic pressure combined with MMC in UC cells and found that hydrostatic pressure synergistically enhanced MMC-induced UC cell apoptosis through the Fas/FasL pathways. To understand the alteration of gene expressions in UC cells caused by hydrostatic pressure and MMC, oligonucleotide microarray was used to explore all the differentially expressed genes. After bioinformatics analysis and gene annotation, Toll-like receptor 6 (TLR6) and connective tissue growth factor (CTGF) showed significant upregulation among altered genes, and their gene and protein expressions with each treatment of UC cells were validated by quantitative real-time PCR and immunoblotting. Under treatment with MMC and hydrostatic pressure, UC cells showed increasing apoptosis using extrinsic pathways through upregulation of TLR6 and CTGF.

  15. growth stimulant

    African Journals Online (AJOL)

    Effects of timing and duration of supplementation of LIVFIT VET ® (growth stimulant) as substitute for fish meal on the growth performance, haematology and clinical enzymes concentration of growing pigs.

  16. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  17. Comparing the force ripple during asynchronous and conventional stimulation.

    Science.gov (United States)

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  18. Spinal cord stimulation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007560.htm Spinal cord stimulation To use the sharing features on this page, please enable JavaScript. Spinal cord stimulation is a treatment for pain that uses ...

  19. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  20. Growth hormone stimulation test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003377.htm Growth hormone stimulation test To use the sharing features on this page, please enable JavaScript. The growth hormone (GH) stimulation test measures the ability of ...

  1. Effects and significance of electrical stimulation Of the vagus nerve on plasma levels of nitric oxide and endothelin in severe acute pancreatitis in rats%电刺激迷走神经对大鼠重症急性胰腺炎血浆内皮素和一氧化氮水平的影响及意义

    Institute of Scientific and Technical Information of China (English)

    金鑫; 冯利; 胡永毅; 陶坤; 赵国海

    2013-01-01

    the left cervical vagus nerve trunk proximal part for 20 min after VNC induction. Groups of rats were sacrificed atlh,3h,6h. Endothelin and nitric oxide leavels were measured in blood of each group rats and histological changes of the pancreas were observed. Results Compared with rats in Sham group, ET and NO levels,the value of ET/NO and pancreatic histopathological score were significantly higher in rats of the SAP group and VNC group ( P < 0. 05 ). In VNC group, NO level was not increased obviously, the value of ET/NO and pancreatic histopathological score upgraded dramatically compared to SAP group (P <0. 05). In VNS group, the value of ET/NO and pancreatic histopathological score were obviously depressed, and NO level was significantly arised compared to SAP group and VNC group (P <0. 05). Conclusion Electrical stimulation of vagus nerves can relief injury degree of severe acute pancreatitis in rats by increaseing NO produce and release and lessening the disequilibrium of N0/ET ratio to improve microcirculation disorder.

  2. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  3. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  4. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  5. Prescription stimulant use is associated with earlier onset of psychosis.

    Science.gov (United States)

    Moran, Lauren V; Masters, Grace A; Pingali, Samira; Cohen, Bruce M; Liebson, Elizabeth; Rajarethinam, R P; Ongur, Dost

    2015-12-01

    A childhood history of attention deficit hyperactivity disorder (ADHD) is common in psychotic disorders, yet prescription stimulants may interact adversely with the physiology of these disorders. Specifically, exposure to stimulants leads to long-term increases in dopamine release. We therefore hypothesized that individuals with psychotic disorders previously exposed to prescription stimulants will have an earlier onset of psychosis. Age of onset of psychosis (AOP) was compared in individuals with and without prior exposure to prescription stimulants while controlling for potential confounding factors. In a sample of 205 patients recruited from an inpatient psychiatric unit, 40% (n = 82) reported use of stimulants prior to the onset of psychosis. Most participants were prescribed stimulants during childhood or adolescence for a diagnosis of ADHD. AOP was significantly earlier in those exposed to stimulants (20.5 vs. 24.6 years stimulants vs. no stimulants, p drugs of abuse, and family history of a first-degree relative with psychosis, the association between stimulant exposure and earlier AOP remained significant. There was a significant gender × stimulant interaction with a greater reduction in AOP for females, whereas the smaller effect of stimulant use on AOP in males did not reach statistical significance. In conclusion, individuals with psychotic disorders exposed to prescription stimulants had an earlier onset of psychosis, and this relationship did not appear to be mediated by IQ or cannabis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optimal number of stimulation contacts for coordinated reset neuromodulation

    Science.gov (United States)

    Lysyansky, Borys; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    In this computational study we investigate coordinated reset (CR) neuromodulation designed for an effective control of synchronization by multi-site stimulation of neuronal target populations. This method was suggested to effectively counteract pathological neuronal synchrony characteristic for several neurological disorders. We study how many stimulation sites are required for optimal CR-induced desynchronization. We found that a moderate increase of the number of stimulation sites may significantly prolong the post-stimulation desynchronized transient after the stimulation is completely switched off. This can, in turn, reduce the amount of the administered stimulation current for the intermittent ON–OFF CR stimulation protocol, where time intervals with stimulation ON are recurrently followed by time intervals with stimulation OFF. In addition, we found that the optimal number of stimulation sites essentially depends on how strongly the administered current decays within the neuronal tissue with increasing distance from the stimulation site. In particular, for a broad spatial stimulation profile, i.e., for a weak spatial decay rate of the stimulation current, CR stimulation can optimally be delivered via a small number of stimulation sites. Our findings may contribute to an optimization of therapeutic applications of CR neuromodulation. PMID:23885239

  7. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  8. [Transcranial magnetic stimulation].

    Science.gov (United States)

    Tormos, J M; Catalá, M D; Pascual-Leone, A

    Transcranial magnetic stimulation (TMS) permits stimulation of the cerebral cortex in humans without requiring open access to the brain and is one of the newest tools available in neuroscience. There are two main types of application: single-pulse TMS and repetitive TMS. The magnetic stimulator is composed of a series of capacitors that store the voltage necessary to generate a stimulus of the sufficient intensity of generate an electric field in the stimulation coil. The safety of TMS is supported by the considerable experience derived from studies involving electrical stimulation of the cortex in animals and humans, and also specific studies on the safety of TMS in humans. In this article we review historical and technical aspects of TMS, describe its adverse effects and how to avoid them, summarize the applications of TMS in the investigation of different cerebral functions, and discuss the possibility of using TMS for the treatment of neuropsychiatric disorders.

  9. Addictive drugs and brain stimulation reward.

    Science.gov (United States)

    Wise, R A

    1996-01-01

    Direct electrical or chemical stimulation of specific brain regions can establish response habits similar to those established by natural rewards such as food or sexual contact. Cocaine, mu and delta opiates, nicotine, phencyclidine, and cannabis each have actions that summate with rewarding electrical stimulation of the medial forebrain bundle (MFB). The reward-potentiating effects of amphetamine and opiates are associated with central sites of action where these drugs also have their direct rewarding effects, suggesting common mechanisms for drug reward per se and for drug potentiation of brain stimulation reward. The central sites at which these and perhaps other drugs of abuse potentiate brain stimulation reward and are rewarding in their own right are consistent with the hypothesis that the laboratory reward of brain stimulation and the pharmacological rewards of addictive drugs are habit forming because they act in the brain circuits that subserve more natural and biologically significant rewards.

  10. [Electrical acupoint stimulation increases athletes' rapid strength].

    Science.gov (United States)

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  11. Music acupuncture stimulation method.

    Science.gov (United States)

    Brătilă, F; Moldovan, C

    2007-01-01

    Harmonic Medicine is the model using the theory that the body rhythms synchronize to an outer rhythm applied for therapeutic purpose, can restores the energy balance in acupuncture channels and organs and the condition of well-being. The purpose of this scientific work was to demonstrate the role played by harmonic sounds in the stimulation of the Lung (LU) Meridian (Shoutaiyin Feijing) and of the Kidney (KI) Meridian (Zushaoyin Shenjing). It was used an original method that included: measurement and electronic sound stimulation of the Meridian Entry Point, measurement of Meridian Exit Point, computer data processing, bio feed-back adjustment of the music stimulation parameters. After data processing, it was found that the sound stimulation of the Lung Meridian Frequency is optimal between 122 Hz and 128 Hz, with an average of 124 Hz (87% of the subjects) and for Kidney Meridian from 118 Hz to 121 Hz, with an average of 120 Hz (67% of the subjects). The acupuncture stimulation was more intense for female subjects (> 7%) than for the male ones. We preliminarily consider that an informational resonance phenomenon can be developed between the acupuncture music stimulation frequency and the cellular dipole frequency, being a really "resonant frequency signature" of an acupoint. The harmonic generation and the electronic excitation or low-excitation status of an acupuncture point may be considered as a resonance mechanism. By this kind of acupunctural stimulation, a symphony may act and play a healer role.

  12. Effect of electrical stimulation on consumer acceptance of mutton ...

    African Journals Online (AJOL)

    MarianaD

    -voltage electrical stimulation, HVES – high-voltage electrical stimulation, ... Electrical stimulation varied between 21 V – 1100 V. The drop in pH was significantly faster in the .... Table 2 Gender and age distribution of consumer panel (n=229).

  13. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  14. Criminality Among Rural Stimulant Users in the United States

    OpenAIRE

    Oser, Carrie; Leukefeld, Carl; Staton-Tindall, Michele; Duvall, Jamieson; Garrity, Thomas; Stoops, William; Falck, Russel; Wang, Jichuan; Carlson, Robert; Sexton, Rocky; Wright, Patricia; Booth, Brenda

    2011-01-01

    Despite the increase in media attention on “meth cooking” in rural areas of the United States, little is known about rural stimulant use, particularly the criminality associated with stimulant use. Data were collected from community stimulant users in rural Ohio, Arkansas, and Kentucky (N=709). Findings from three logistic regression models indicate that younger stimulant users (x =32.55, SD = 10.35), those with more convictions, and those who used crack frequently were significantly more lik...

  15. Detecting Novelty and Significance

    Science.gov (United States)

    Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.

    2013-01-01

    Studies of cognition often use an “oddball” paradigm to study effects of stimulus novelty and significance on information processing. However, an oddball tends to be perceptually more novel than the standard, repeated stimulus as well as more relevant to the ongoing task, making it difficult to disentangle effects due to perceptual novelty and stimulus significance. In the current study, effects of perceptual novelty and significance on ERPs were assessed in a passive viewing context by presenting repeated and novel pictures (natural scenes) that either signaled significant information regarding the current context or not. A fronto-central N2 component was primarily affected by perceptual novelty, whereas a centro-parietal P3 component was modulated by both stimulus significance and novelty. The data support an interpretation that the N2 reflects perceptual fluency and is attenuated when a current stimulus matches an active memory representation and that the amplitude of the P3 reflects stimulus meaning and significance. PMID:19400680

  16. Significant NRC Enforcement Actions

    Data.gov (United States)

    Nuclear Regulatory Commission — This dataset provides a list of Nuclear Regulartory Commission (NRC) issued significant enforcement actions. These actions, referred to as "escalated", are issued by...

  17. Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation.

    Science.gov (United States)

    Kar, Kohitij; Duijnhouwer, Jacob; Krekelberg, Bart

    2017-03-01

    We previously showed that brief application of 2 mA (peak-to-peak) transcranial currents alternating at 10 Hz significantly reduces motion adaptation in humans. This is but one of many behavioral studies showing that weak currents applied to the scalp modulate neural processing. Transcranial stimulation has been shown to improve perception, learning, and a range of clinical symptoms. Few studies, however, have measured the neural consequences of transcranial current stimulation. We capitalized on the strong link between motion perception and neural activity in the middle temporal (MT) area of the macaque monkey to study the neural mechanisms that underlie the behavioral consequences of transcranial alternating current stimulation. First, we observed that 2 mA currents generated substantial intracranial fields, which were much stronger in the stimulated hemisphere (0.12 V/m) than on the opposite side of the brain (0.03 V/m). Second, we found that brief application of transcranial alternating current stimulation at 10 Hz reduced spike-frequency adaptation of MT neurons and led to a broadband increase in the power spectrum of local field potentials. Together, these findings provide a direct demonstration that weak electric fields applied to the scalp significantly affect neural processing in the primate brain and that this includes a hitherto unknown mechanism that attenuates sensory adaptation. SIGNIFICANCE STATEMENT Transcranial stimulation has been claimed to improve perception, learning, and a range of clinical symptoms. Little is known, however, how transcranial current stimulation generates such effects, and the search for better stimulation protocols proceeds largely by trial and error. We investigated, for the first time, the neural consequences of stimulation in the monkey brain. We found that even brief application of alternating current stimulation reduced the effects of adaptation on single-neuron firing rates and local field potentials; this mechanistic

  18. Stimulating at the right time: phase-specific deep brain stimulation.

    Science.gov (United States)

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Science.gov (United States)

    Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes

    2015-01-01

    This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  20. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    Full Text Available This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW. Here the perilymph stimulation with a K-piston through a stapes footplate (SFP fenestration (N = 10 as well as stimulation of the stapes head (SH with a Bell prosthesis (N = 9, SFP stimulation with an Omega/Aerial prosthesis (N = 8 and reverse RW stimulation (N = 10 were performed in cadaveric human temporal bones (TBs. Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL, being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL and RW stimulation (108.3-128.2 eq. dB SPL. Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  1. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  2. A wireless wearable surface functional electrical stimulator

    Science.gov (United States)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  3. A fully implantable rodent neural stimulator

    Science.gov (United States)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  4. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  5. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites 4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  6. IDEA: Stimulating Oral Production.

    Science.gov (United States)

    Easley, Jacob J.

    1995-01-01

    Presents daily activities that facilitate complete sentence response, promote oral production, and aid the learning of vocabulary in foreign-language classes. Because speech is the primary form of communication in the foreign-language classroom, it is important to stimulate students to converse as soon as possible. (Author/CK)

  7. stimulated BV2 Microglial

    African Journals Online (AJOL)

    2012-03-26

    Mar 26, 2012 ... 2), in LPS-stimulated BV2 microglial cells. The level of NO production was analyzed using Griess reaction. The release of PGE2 was determined using sandwich enzyme-linked immunosorbent assay. The DNA-binding activity of nuclear factor-κB (NF-κB) was measured by electrophoretic mobility shift assay ...

  8. Brain stimulation in migraine.

    Science.gov (United States)

    Brighina, Filippo; Cosentino, Giuseppe; Fierro, Brigida

    2013-01-01

    Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application. © 2013 Elsevier B.V. All rights reserved.

  9. Significant Tsunami Events

    Science.gov (United States)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  10. Brain stimulation methods to treat tobacco addiction.

    Science.gov (United States)

    Wing, Victoria C; Barr, Mera S; Wass, Caroline E; Lipsman, Nir; Lozano, Andres M; Daskalakis, Zafiris J; George, Tony P

    2013-05-01

    Tobacco smoking is the leading cause of preventable deaths worldwide, but many smokers are simply unable to quit. Psychosocial and pharmaceutical treatments have shown modest results on smoking cessation rates, but there is an urgent need to develop treatments with greater efficacy. Brain stimulation methods are gaining increasing interest as possible addiction therapeutics. The purpose of this paper is to review the studies that have evaluated brain stimulation techniques on tobacco addiction, and discuss future directions for research in this novel area of addiction interventions. Electronic and manual literature searches identified fifteen studies that administered repetitive transcranial magnetic stimulation (rTMS), cranial electrostimulation (CES), transcranial direct current stimulation (tDCS) or deep brain stimulation (DBS). rTMS was found to be the most well studied method with respect to tobacco addiction. Results indicate that rTMS and tDCS targeted to the dorsolateral prefrontal cortex (DLPFC) were the most efficacious in reducing tobacco cravings, an effect that may be mediated through the brain reward system involved in tobacco addiction. While rTMS was shown to reduce consumption of cigarettes, as yet no brain stimulation technique has been shown to significantly increase abstinence rates. It is possible that the therapeutic effects of rTMS and tDCS may be improved by optimization of stimulation parameters and increasing the duration of treatment. Although further studies are needed to confirm the ability of brain stimulation methods to treat tobacco addiction, this review indicates that rTMS and tDCS both represent potentially novel treatment modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Testing Significance Testing

    Directory of Open Access Journals (Sweden)

    Joachim I. Krueger

    2018-04-01

    Full Text Available The practice of Significance Testing (ST remains widespread in psychological science despite continual criticism of its flaws and abuses. Using simulation experiments, we address four concerns about ST and for two of these we compare ST’s performance with prominent alternatives. We find the following: First, the 'p' values delivered by ST predict the posterior probability of the tested hypothesis well under many research conditions. Second, low 'p' values support inductive inferences because they are most likely to occur when the tested hypothesis is false. Third, 'p' values track likelihood ratios without raising the uncertainties of relative inference. Fourth, 'p' values predict the replicability of research findings better than confidence intervals do. Given these results, we conclude that 'p' values may be used judiciously as a heuristic tool for inductive inference. Yet, 'p' values cannot bear the full burden of inference. We encourage researchers to be flexible in their selection and use of statistical methods.

  12. Safety significance evaluation system

    International Nuclear Information System (INIS)

    Lew, B.S.; Yee, D.; Brewer, W.K.; Quattro, P.J.; Kirby, K.D.

    1991-01-01

    This paper reports that the Pacific Gas and Electric Company (PG and E), in cooperation with ABZ, Incorporated and Science Applications International Corporation (SAIC), investigated the use of artificial intelligence-based programming techniques to assist utility personnel in regulatory compliance problems. The result of this investigation is that artificial intelligence-based programming techniques can successfully be applied to this problem. To demonstrate this, a general methodology was developed and several prototype systems based on this methodology were developed. The prototypes address U.S. Nuclear Regulatory Commission (NRC) event reportability requirements, technical specification compliance based on plant equipment status, and quality assurance assistance. This collection of prototype modules is named the safety significance evaluation system

  13. Predicting significant torso trauma.

    Science.gov (United States)

    Nirula, Ram; Talmor, Daniel; Brasel, Karen

    2005-07-01

    Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.

  14. Gas revenue increasingly significant

    International Nuclear Information System (INIS)

    Megill, R.E.

    1991-01-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities

  15. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    Science.gov (United States)

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  16. Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia.

    Science.gov (United States)

    Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S

    2017-09-01

    Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford

  17. Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats.

    Science.gov (United States)

    Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-07-01

    The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.

  18. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  19. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  20. Tumor significant dose

    International Nuclear Information System (INIS)

    Supe, S.J.; Nagalaxmi, K.V.; Meenakshi, L.

    1983-01-01

    In the practice of radiotherapy, various concepts like NSD, CRE, TDF, and BIR are being used to evaluate the biological effectiveness of the treatment schedules on the normal tissues. This has been accepted as the tolerance of the normal tissue is the limiting factor in the treatment of cancers. At present when various schedules are tried, attention is therefore paid to the biological damage of the normal tissues only and it is expected that the damage to the cancerous tissues would be extensive enough to control the cancer. Attempt is made in the present work to evaluate the concent of tumor significant dose (TSD) which will represent the damage to the cancerous tissue. Strandquist in the analysis of a large number of cases of squamous cell carcinoma found that for the 5 fraction/week treatment, the total dose required to bring about the same damage for the cancerous tissue is proportional to T/sup -0.22/, where T is the overall time over which the dose is delivered. Using this finding the TSD was defined as DxN/sup -p/xT/sup -q/, where D is the total dose, N the number of fractions, T the overall time p and q are the exponents to be suitably chosen. The values of p and q are adjusted such that p+q< or =0.24, and p varies from 0.0 to 0.24 and q varies from 0.0 to 0.22. Cases of cancer of cervix uteri treated between 1978 and 1980 in the V. N. Cancer Centre, Kuppuswamy Naidu Memorial Hospital, Coimbatore, India were analyzed on the basis of these formulations. These data, coupled with the clinical experience, were used for choice of a formula for the TSD. Further, the dose schedules used in the British Institute of Radiology fraction- ation studies were also used to propose that the tumor significant dose is represented by DxN/sup -0.18/xT/sup -0.06/

  1. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  2. Optimal number of stimulation contacts for coordinated reset neuromodulation

    Directory of Open Access Journals (Sweden)

    Borys eLysyansky

    2013-07-01

    Full Text Available In this computational study we investigatecoordinated reset (CR neuromodulation designed for an effective controlof synchronization by multi-site stimulation of neuronal target populations. This method was suggested to effectively counteract pathological neuronal synchronycharacteristic for several neurological disorders. We studyhow many stimulation sites are required for optimal CR-induced desynchronization. We found that a moderate increase of the number of stimulation sitesmay significantly prolong the post-stimulation desynchronized transientafter the stimulation is completely switched off. This can, in turn,reduce the amount of the administered stimulation current for theintermittent ON-OFF CR stimulation protocol, where time intervalswith stimulation ON are recurrently followed by time intervals withstimulation OFF. In addition, we found that the optimal number ofstimulation sites essentially depends on how strongly the administeredcurrent decays within the neuronal tissue with increasing distancefrom the stimulation site. In particular, for a broad spatial stimulationprofile, i.e., for a weak spatial decay rate of the stimulation current,CR stimulation can optimally be delivered via a small number of stimulationsites. Our findings may contribute to an optimization of therapeutic applications of CR neuromodulation.

  3. Uranium chemistry: significant advances

    International Nuclear Information System (INIS)

    Mazzanti, M.

    2011-01-01

    The author reviews recent progress in uranium chemistry achieved in CEA laboratories. Like its neighbors in the Mendeleev chart uranium undergoes hydrolysis, oxidation and disproportionation reactions which make the chemistry of these species in water highly complex. The study of the chemistry of uranium in an anhydrous medium has led to correlate the structural and electronic differences observed in the interaction of uranium(III) and the lanthanides(III) with nitrogen or sulfur molecules and the effectiveness of these molecules in An(III)/Ln(III) separation via liquid-liquid extraction. Recent work on the redox reactivity of trivalent uranium U(III) in an organic medium with molecules such as water or an azide ion (N 3 - ) in stoichiometric quantities, led to extremely interesting uranium aggregates particular those involved in actinide migration in the environment or in aggregation problems in the fuel processing cycle. Another significant advance was the discovery of a compound containing the uranyl ion with a degree of oxidation (V) UO 2 + , obtained by oxidation of uranium(III). Recently chemists have succeeded in blocking the disproportionation reaction of uranyl(V) and in stabilizing polymetallic complexes of uranyl(V), opening the way to to a systematic study of the reactivity and the electronic and magnetic properties of uranyl(V) compounds. (A.C.)

  4. Meaning and significance of

    Directory of Open Access Journals (Sweden)

    Ph D Student Roman Mihaela

    2011-05-01

    Full Text Available The concept of "public accountability" is a challenge for political science as a new concept in this area in full debate and developement ,both in theory and practice. This paper is a theoretical approach of displaying some definitions, relevant meanings and significance odf the concept in political science. The importance of this concept is that although originally it was used as a tool to improve effectiveness and eficiency of public governance, it has gradually become a purpose it itself. "Accountability" has become an image of good governance first in the United States of America then in the European Union.Nevertheless,the concept is vaguely defined and provides ambiguous images of good governance.This paper begins with the presentation of some general meanings of the concept as they emerge from specialized dictionaries and ancyclopaedies and continues with the meanings developed in political science. The concept of "public accontability" is rooted in economics and management literature,becoming increasingly relevant in today's political science both in theory and discourse as well as in practice in formulating and evaluating public policies. A first conclusin that emerges from, the analysis of the evolution of this term is that it requires a conceptual clarification in political science. A clear definition will then enable an appropriate model of proving the system of public accountability in formulating and assessing public policies, in order to implement a system of assessment and monitoring thereof.

  5. Significant Radionuclides Determination

    Energy Technology Data Exchange (ETDEWEB)

    Jo A. Ziegler

    2001-07-31

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  6. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...

  7. What if there were no significance tests?

    CERN Document Server

    Harlow, Lisa L; Steiger, James H

    2013-01-01

    This book is the result of a spirited debate stimulated by a recent meeting of the Society of Multivariate Experimental Psychology. Although the viewpoints span a range of perspectives, the overriding theme that emerges states that significance testing may still be useful if supplemented with some or all of the following -- Bayesian logic, caution, confidence intervals, effect sizes and power, other goodness of approximation measures, replication and meta-analysis, sound reasoning, and theory appraisal and corroboration. The book is organized into five general areas. The first presents an overview of significance testing issues that sythesizes the highlights of the remainder of the book. The next discusses the debate in which significance testing should be rejected or retained. The third outlines various methods that may supplement current significance testing procedures. The fourth discusses Bayesian approaches and methods and the use of confidence intervals versus significance tests. The last presents the p...

  8. A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation.

    Science.gov (United States)

    Dong, Xiaoxi; Liu, Tianjun; Wang, Han; Yang, Jichun; Chen, Zhuying; Hu, Yong; Li, Yingxin

    2017-07-01

    This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50-55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50-55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order

  9. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...... pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  10. Stimulation of protein synthesis by internalized insulin

    International Nuclear Information System (INIS)

    Miller, D.S.; Sykes, D.B.

    1991-01-01

    Previous studies showed that microinjected insulin stimulates transcription and translation in Stage 4 Xenopus oocytes by acting at nuclear and cytoplasmic sites. The present report is concerned with the question of whether hormone, internalized from an external medium, can act on those sites to alter cell function. Both intracellular accumulation of undegraded 125I-insulin and insulin-stimulated 35S-methionine incorporation into oocyte protein were measured. Anti-insulin antiserum and purified anti-insulin antibody were microinjected into the cytoplasm of insulin-exposed cells to determine if insulin derived from the medium acted through internal sites. In cells exposed for 2 h to 7 or 70 nM external insulin, methionine incorporation was stimulated, but intracellular hormone accumulation was minimal and microinjected antibody was without effect. In cells exposed for 24 h, methionine incorporation again increased, but now accumulation of undegraded, intracellular hormone was substantial (2.6 and 25.3 fmol with 7 and 70 nM, respectively), and microinjected anti-insulin antibody significantly reduced the insulin-stimulated component of incorporation; basal incorporation was not affected. For cells exposed to 70 nM insulin for 24 h, inhibition of the insulin-stimulated component was maximal at 39%. Thus under those conditions, about 40% of insulin's effects were mediated by the internal sites. Together, the data show that inhibition of insulin-stimulated protein synthesis by microinjected antibody was associated with the intracellular accumulation of insulin. They indicate that when oocytes are exposed to external insulin, hormone eventually gains access to intracellular sites of action and through these stimulates translation. Control of translation appears to be shared between the internal sites and the surface receptor

  11. Low dose stimulation in foeniculum vulgare

    International Nuclear Information System (INIS)

    Jahagirdar, H.A.; Khalatkar, A.W.; Dnyansagar, V.R.

    1974-01-01

    Genetically pure seeds with a moisture content of 12.5% were irradiated in a 60 Co γ-source at a dose rate of 1.1 KR/min, the radiation dose varying between 2 and 14 KR. Four days after irradiation the seeds were sown into the open field. Stimulation was determined on the basis of a lot of parameters e.g. height. The results indicated a significant stimulation after 10 KR as far as seed yield is concerned. (MG) [de

  12. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  13. Palatoglossus coupling in selective upper airway stimulation.

    Science.gov (United States)

    Heiser, Clemens; Edenharter, Günther; Bas, Murat; Wirth, Markus; Hofauer, Benedikt

    2017-10-01

    Selective upper airway stimulation (sUAS) of the hypoglossal nerve is a useful therapy to treat patients with obstructive sleep apnea. Is it known that multiple obstructions can be solved by this stimulation technique, even at the retropalatal region. The aim of this study was to verify the palatoglossus coupling at the soft palate during stimulation. Single-center, prospective clinical trail. Twenty patients who received an sUAS implant from April 2015 to April 2016 were included. A drug-induced sedated endoscopy (DISE) was performed before surgery. Six to 12 months after activation of the system, patients' tongue motions were recorded, an awake transnasal endoscopy was performed with stimulation turned on, and a DISE with stimulation off and on was done. Patients with a bilateral protrusion of the tongue base showed a significantly increased opening at the retropalatal level compared to ipsilateral protrusions. Furthermore, patients with a clear activation of the geniohyoid muscle showed a better reduction in apnea-hypopnea index. A bilateral protrusion of the tongue base during sUAS seems to be accompanied with a better opening of the soft palate. This effect can be explained by the palatoglossal coupling, due to its linkage of the muscles within the soft palate to those of the lateral tongue body. 4 Laryngoscope, 127:E378-E383, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Spinal cord stimulation for neuropathic pain: current perspectives.

    Science.gov (United States)

    Wolter, Tilman

    2014-01-01

    Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation.

  15. Comparing the Efficacy of Excitatory Transcranial Stimulation Methods Measuring Motor Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Vera Moliadze

    2014-01-01

    Full Text Available The common aim of transcranial stimulation methods is the induction or alterations of cortical excitability in a controlled way. Significant effects of each individual stimulation method have been published; however, conclusive direct comparisons of many of these methods are rare. The aim of the present study was to compare the efficacy of three widely applied stimulation methods inducing excitability enhancement in the motor cortex: 1 mA anodal transcranial direct current stimulation (atDCS, intermittent theta burst stimulation (iTBS, and 1 mA transcranial random noise stimulation (tRNS within one subject group. The effect of each stimulation condition was quantified by evaluating motor-evoked-potential amplitudes (MEPs in a fixed time sequence after stimulation. The analyses confirmed a significant enhancement of the M1 excitability caused by all three types of active stimulations compared to sham stimulation. There was no significant difference between the types of active stimulations, although the time course of the excitatory effects slightly differed. Among the stimulation methods, tRNS resulted in the strongest and atDCS significantly longest MEP increase compared to sham. Different time courses of the applied stimulation methods suggest different underlying mechanisms of action. Better understanding may be useful for better targeting of different transcranial stimulation techniques.

  16. A distributed current stimulator ASIC for high density neural stimulation.

    Science.gov (United States)

    Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim

    2016-08-01

    This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.

  17. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Computationally Developed Sham Stimulation Protocol for Multichannel Desynchronizing Stimulation

    Directory of Open Access Journals (Sweden)

    Magteld Zeitler

    2018-05-01

    Full Text Available A characteristic pattern of abnormal brain activity is abnormally strong neuronal synchronization, as found in several brain disorders, such as tinnitus, Parkinson's disease, and epilepsy. As observed in several diseases, different therapeutic interventions may induce a placebo effect that may be strong and hinder reliable clinical evaluations. Hence, to distinguish between specific, neuromodulation-induced effects and unspecific, placebo effects, it is important to mimic the therapeutic procedure as precisely as possibly, thereby providing controls that actually lack specific effects. Coordinated Reset (CR stimulation has been developed to specifically counteract abnormally strong synchronization by desynchronization. CR is a spatio-temporally patterned multichannel stimulation which reduces the extent of coincident neuronal activity and aims at an anti-kindling, i.e., an unlearning of both synaptic connectivity and neuronal synchrony. Apart from acute desynchronizing effects, CR may cause sustained, long-lasting desynchronizing effects, as already demonstrated in pre-clinical and clinical proof of concept studies. In this computational study, we set out to computationally develop a sham stimulation protocol for multichannel desynchronizing stimulation. To this end, we compare acute effects and long-lasting effects of six different spatio-temporally patterned stimulation protocols, including three variants of CR, using a no-stimulation condition as additional control. This is to provide an inventory of different stimulation algorithms with similar fundamental stimulation parameters (e.g., mean stimulation rates but qualitatively different acute and/or long-lasting effects. Stimulation protocols sharing basic parameters, but inducing nevertheless completely different or even no acute effects and/or after-effects, might serve as controls to validate the specific effects of particular desynchronizing protocols such as CR. In particular, based on

  19. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  20. Engagement sensitive visual stimulation

    Directory of Open Access Journals (Sweden)

    Deepesh Kumar

    2016-06-01

    Full Text Available Stroke is one of leading cause of death and disability worldwide. Early detection during golden hour and treatment of individual neurological dysfunction in stroke using easy-to-access biomarkers based on a simple-to-use, cost-effective, clinically-valid screening tool can bring a paradigm shift in healthcare, both urban and rural. In our research we have designed a quantitative automatic home-based oculomotor assessment tool that can play an important complementary role in prognosis of neurological disorders like stroke for the neurologist. Once the patient has been screened for stroke, the next step is to design proper rehabilitation platform to alleviate the disability. In addition to the screening platform, in our research, we work in designing virtual reality based rehabilitation exercise platform that has the potential to deliver visual stimulation and in turn contribute to improving one’s performance.

  1. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  2. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  3. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead.

    Science.gov (United States)

    van Dijk, Kees J; Verhagen, Rens; Bour, Lo J; Heida, Ciska; Veltink, Peter H

    2017-10-15

    Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of this study is to assess the performances of a new eight channel steering-DBS lead and compare this with a conventional cylindrical contact (CC) lead. The two leads were evaluated in a finite element electric field model combined with multicompartment neuron and axon models, representing the internal capsule (IC) fibers and subthalamic nucleus (STN) cells. We defined the optimal stimulation setting as the configuration that activated the highest percentage of STN cells, without activating any IC fibers. With this criterion, we compared monopolar stimulation using a single contact of the steering-DBS lead and CC lead, on three locations and four orientations of the lead. In addition, we performed a current steering test case by dividing the current over two contacts with the steering-DBS lead in its worst-case orientation. In most cases, the steering-DBS lead is able to stimulate a significantly higher percentage of STN cells compared to the CC lead using single contact stimulation or using a two contact current steering protocol when there is approximately a 1 mm displacement of the CC lead. The results also show that correct placement and orientation of the lead in the target remains an important aspect in achieving the optimal stimulation outcome. Currently, clinical trials are set up in Europe with a similar design as the steering-DBS lead. Our results illustrate the importance of the orientation of the new steering-DBS lead in avoiding side effects induced by stimulation of IC fibers. Therefore, in clinical trials sufficient attention should be paid to implanting the steering DBS-lead in the most effective orientation. © 2017 International Neuromodulation Society.

  4. Ultrasound stimulation on bone healing. The optimization of stimulation time

    International Nuclear Information System (INIS)

    Rosim, R.C.; Paulin, J.B.P.; Goncalves, R.P.

    1990-01-01

    Previous works in ultrasonic simulation of bone healing dealt with parameters optimization. Albertin (1983) studied the stimulation time and found forty minutes as ideal. However, this stimulation time was the largest one employed and remained some doubt about the most appropriated value. 30, 40, 50 and 60 minutes of stimulation time were selected, while others parameters were held constant with: pulse width in 200 μs, repetition rate in 1000 pulses per second and amplitude in 30 V. Partial incomplete transverse osteotomies were done in the middle third of radio in the right forearm of rabbits. Twenty four animals divided in four subgroups, with 6 animals each were stimulated. The daily stimulation time for each subgroup was 30, 40, 50 and minutes respectively, during 15 consecutive days. The stimulation procedure started 24 hours after surgery. After the stimulation period, radiological, histological and morphometric evaluations were done and greater bone healing was found for the 50 minutes stimulation subgroup, in them new bone was also prominent. (author)

  5. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    -related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified......PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive...

  6. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    Science.gov (United States)

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  7. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.

  8. Effects of autonomic nerve stimulation on colorectal motility in rats

    Science.gov (United States)

    Tong, Wei Dong; Ridolfi, Timothy J.; Kosinski, Lauren; Ludwig, Kirk; Takahashi, Toku

    2010-01-01

    Background Several disease processes of the colon and rectum, including constipation and incontinence, have been associated with abnormalities of the autonomic nervous system. However, the autonomic innervation to the colon and rectum are not fully understood. The aims of this study were to investigate the effect of stimulation of vagus nerves, pelvic nerves (PN) and hypogastric nerves (HGN) on colorectal motility in rats. Methods Four strain gauge transducers were implanted on the proximal colon, mid colon, distal colon and rectum to record circular muscle contractions in rats. Electrical stimulation was administered to the efferent distal ends of the cervical vagus nerve, PN and HGN. Motility index (MI) was evaluated before and during stimulation. Key Results Electrical stimulation (5–20 Hz) of the cervical vagus elicited significant contractions in the mid colon and distal colon, whereas less pronounced contractions were observed in the proximal colon. PN stimulation elicited significant contractions in the rectum as well as the mid colon and distal colon. Atropine treatment almost completely abolished the contractions induced by vagus nerve and PN stimulation. HGN stimulation caused relaxations in the rectum, mid colon and distal colon. The relaxations in response to HGN stimulation were abolished by propranolol. Conclusions & Inferences Vagal innervation extends to the distal colon, while the PN has projections in the distribution of the rectum through the mid colon. This suggests a pattern of dual parasympathetic innervation in the left colon. Parasympathetic fibers regulate colorectal contractions via muscarinic receptors. The HGN mainly regulates colorectal relaxations via beta-adrenoceptors. PMID:20067587

  9. EOR by stimulated microflora

    Energy Technology Data Exchange (ETDEWEB)

    Svarovskaya, L.I.; Altunina, L.K.; Rozhenkova, Z.A.; Bulavin, V.D. [Institute of Petroleum Chemistry, Tomsk (Russian Federation)

    1995-12-31

    A combined microbiological and physico-chemical method for EOR has been developed for flooded West Siberia oil fields with formation temperature of 45{degrees}-95{degrees}C (318-365K). Formation water includes rich and various biocenoses numbering up to 2 x 10{sup 7} cells per ml. Representatives of genera, i.e, Pseudomonas, Bacillus, Actinomyces, Micrococcus, Mycobacterium, Sarcina, etc. were found to be the most widely distributed microorganisms. The method is based on injection of systems exhibiting high oil displacing capacity and at the same time being an additional nitrous nutrient for endemic populations of microorganisms. Their injection into formation water favors biomass growth by 4-6 orders and promotes syntheses of biosurfactants, biopolymers, acids, etc., and gaseous products. The features of residual oil displacement have been studied on laboratory models using a combined microbiological and physico-chemical method. A curve for the yield of residual oil is presented by two peaks. The first peak is stipulated by the washing action of oil displacement system, and the second one by the effect of metabolites produced at stimulation of biogenic processes. Oil displacement index increases by 15%-30%.

  10. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  11. Subliminal Stimulation: Hoax or Reality?

    Science.gov (United States)

    Trank, Douglas M.

    Subliminal stimulation is defined as that which is perceived by an individual below the threshold of awareness or cognizance. This article traces the history of research in subliminal stimulation to illustrate that under certain circumstances and conditions, this behavioral phenomenon does occur. Although subliminal stimuli do affect human…

  12. Stimulating Language: Insights from TMS

    Science.gov (United States)

    Devlin, Joseph T.; Watkins, Kate E.

    2007-01-01

    Fifteen years ago, Pascual-Leone and colleagues used transcranial magnetic stimulation (TMS) to investigate speech production in pre-surgical epilepsy patients and in doing so, introduced a novel tool into language research. TMS can be used to non-invasively stimulate a specific cortical region and transiently disrupt information processing. These…

  13. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  14. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  15. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  16. Targeted transtracheal stimulation for vocal fold closure.

    Science.gov (United States)

    Hadley, Aaron J; Thompson, Paul; Kolb, Ilya; Hahn, Elizabeth C; Tyler, Dustin J

    2014-06-01

    Paralysis of the structures in the head and neck due to stroke or other neurological disorder often causes dysphagia (difficulty in swallowing). Patients with dysphagia have a significantly higher incidence of aspiration pneumonia and death. The recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles that control the vocal folds, travels superiorly in parallel to the trachea in the tracheoesophageal groove. This study tests the hypothesis that functional electrical stimulation (FES) applied via transtracheal electrodes can produce controlled vocal fold adduction. Bipolar electrodes were placed at 15° intervals around the interior mucosal surface of the canine trachea, and current was applied to the tissue while electromyography (EMG) from the intrinsic laryngeal muscles and vocal fold movement visualization via laryngoscopy were recorded. The lowest EMG thresholds were found at an average location of 100° to the left of the ventral midsagittal line and 128° to the right. A rotatable pair of bipolar electrodes spaced 230° apart were able to stimulate bilaterally both RLNs in every subject. Laryngoscopy showed complete glottal closure with transtracheal stimulation in six of the eight subjects, and this closure was maintained under simultaneous FES-induced laryngeal elevation. Transtracheal stimulation is an effective tool for minimally invasive application of FES to induce vocal fold adduction, providing an alternative mechanism to study airway protection.

  17. Human transient response under local thermal stimulation

    Directory of Open Access Journals (Sweden)

    Wang Lijuan

    2017-01-01

    Full Text Available Human body can operate physiological thermoregulation system when it is exposed to cold or hot environment. Whether it can do the same work when a local part of body is stimulated by different temperatures? The objective of this paper is to prove it. Twelve subjects are recruited to participate in this experiment. After stabilizing in a comfort environment, their palms are stimulated by a pouch of 39, 36, 33, 30, and 27°C. Subject’s skin temperature, heart rate, heat flux of skin, and thermal sensation are recorded. The results indicate that when local part is suffering from harsh temperature, the whole body is doing physiological thermoregulation. Besides, when the local part is stimulated by high temperature and its thermal sensation is warm, the thermal sensation of whole body can be neutral. What is more, human body is more sensitive to cool stimulation than to warm one. The conclusions are significant to reveal and make full use of physiological thermoregulation.

  18. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study

    Science.gov (United States)

    Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.

    2017-08-01

    Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with

  19. A simple miniature device for wireless stimulation of neural circuits in small behaving animals.

    Science.gov (United States)

    Zhang, Yisi; Langford, Bruce; Kozhevnikov, Alexay

    2011-10-30

    The use of wireless neural stimulation devices offers significant advantages for neural stimulation experiments in behaving animals. We demonstrate a simple, low-cost and extremely lightweight wireless neural stimulation device which is made from off-the-shelf components. The device has low power consumption and does not require a high-power RF preamplifier. Neural stimulation can be carried out in either a voltage source mode or a current source mode. Using the device, we carry out wireless stimulation in the premotor brain area HVC of a songbird and demonstrate that such stimulation causes rapid perturbations of the acoustic structure of the song. Published by Elsevier B.V.

  20. Paired associative stimulation targeting the tibialis anterior muscle using either mono or biphasic transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas

    2017-01-01

    Paired associative stimulation (PAS) protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA) muscle using a biphasic transcranial magnetic stimulation (TMS) pulse form and, to determine whether...... a reduced intensity of this pulse would lead to significant changes as has been reported for hand muscles using a monophasic TMS pulse. Three interventions were investigated: (1) suprathreshold PAbi-PAS (n = 11); (2) suprathreshold PAmono-PAS (n = 11) where PAS was applied using a biphasic or monophasic......% for subthreshold PAbi-PAS. PAS using a biphasic pulse form at subthreshold intensities induces similar effects to conventional PAS....

  1. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load...... to elucidate also the signaling pathway by which this mechanical stimulation can causes an increase in protein expression. When mechanically stimulated via laminin receptors on cell surface, C(2)C(12) cells showed an increase in cell proliferation and differentiation. Populations undergoing mechanical...... stimulation through laminin receptors show an increase in expression of Myo-D, myogenin and an increase in ERK1/2 phosphorylation. Cells stimulated via fibronectin receptors show no significant increases in fusion competence. We conclude that load induced signalling through integrin containing laminin...

  2. Spinal cord stimulation for neuropathic pain: current perspectives

    Directory of Open Access Journals (Sweden)

    Wolter T

    2014-11-01

    Full Text Available Tilman Wolter Interdisciplinary Pain Centre, University Hospital Freiburg, Freiburg, Germany Abstract: Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation. Keywords: spinal cord stimulation, neuropathic pain, neurostimulation

  3. Claustral single cell reactions to tooth pulp stimulation in cats.

    Science.gov (United States)

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  4. Vagal nerve stimulation therapy: what is being stimulated?

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  5. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  6. Electrical stimulation in exercise training

    Science.gov (United States)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  7. The effect of Hegu acupoint stimulation in dental acupuncture analgesia

    Directory of Open Access Journals (Sweden)

    Fransiskus Andrianto

    2007-03-01

    Full Text Available In daily life, dental treatments are often related with oral pain sensation which needs anesthesia procedures. Sometimes local anesthetics can not be used because patients have hypersensitive reaction or systemic diseases which may lead to complications. Stimulating acupoint, such as Hegu activates hypothalamus and pituitary gland to release endogenous opioid peptide substances that reduce pain sensitivity. The aim of the study was to determine Hegu acupoint stimulation effect on the pain sensitivity reduction in maxillary central incisor gingiva. The laboratory experimental research was conducted on 12 healthy male Wistar rats (3 months old, weights 150–200 grams. All rat samples received the same treatments and adapted within 1 month. The research was done in pre and post test control group design. 40-Volt electro-stimulation was done once on the maxillary central incisor gingiva prior to the bilateral Hegu acupoint stimulation, then followed by 3 times electro-stimulation with 3 minutes intervals. The pain scores were obtained based on the samples’ contraction in each electro-stimulation. The responses were categorized into 5 pain scores and statistically analyzed using Wilcoxon Test. The results showed that Hegu acupoint stimulation lowered the pain scores significantly (p < 0.05. Hegu acupoint stimulation could reduce the pain sensitivity in maxillary central incisor gingiva. Therefore, the use of acupuncture analgesia in dental pain management can be considered in the future.

  8. Effect of low-level laser stimulation on EEG.

    Science.gov (United States)

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  9. Effect of Low-Level Laser Stimulation on EEG

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2012-01-01

    Full Text Available Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  10. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    Science.gov (United States)

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  11. Amount of prenatal visual stimulation alters incubation times and postnatal preferences in leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Sleigh, M J; Birchard, G F

    2001-09-01

    The authors exposed gecko (Eublepharis macularius) embryos to patterned visual stimulation beginning at either 1 week or 2 weeks prior to hatching. Embryos exposed to the substantially augmented amount of prenatal visual stimulation hatched significantly earlier than the embryos either exposed to the moderately augmented prenatal visual stimulation or not exposed to any prenatal visual stimulation (p geckos in all conditions failed to exhibit a preference for either stimulus.

  12. PI 3-kinase signalling in platelets: the significance of synergistic, autocrine stimulation.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    2000-03-01

    Phosphoinositide 3-kinases (PI 3Ks) play a key role in regulation of intracellular signalling and cellular function, including cell proliferation, apoptosis, chemotaxis, membrane trafficking and platelet activation. The PI 3Ks are grouped into three classes on the basis on their structure and in vitro substrate specificity. Class I are activated by a variety of agonists which mediate their effect through tyrosine kinase-linked or G-protein-linked receptors. In vivo class I PI 3Ks seem to preferentially phosphorylate the D3 hydroxyls of the inositol moiety of PtdIns(4,5)P2 to produce PtdIns(3,4,5)P3. However, class II PI 3Ks preferentially phosphorylate the D3 hydroxyl of PtdIns and PtdIns(4)P to produce PtdIns(3)P and PtdIns(3,4)P2, respectively. The late accumulation of PtdIns(3,4)P2 has been suggested to play an important role in irreversible platelet aggregation. In human platelets the class II PI 3K isoform HsC2-PI 3K is activated in an integrin alpha IIb beta 3 + fibrinogen-dependent manner. Class III PI 3Ks phosphorylate PtdIns to produce PtdIns(3)P, which play a crucial role in vesicular trafficking. Recent work has suggested that crosstalk between individual receptors and their downstream signal pathways play a central role in PI 3K signalling responses. In this review, we will concentrate on recent advances regarding the regulation of platelet PI 3Ks.

  13. Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording

    Directory of Open Access Journals (Sweden)

    James eDowsett

    2016-03-01

    Full Text Available Transcranial alternating current stimulation (tACS has until now mostly been administered as an alternating sinusoidal wave. Despite modern tACS stimulators being able to deliver alternating current with any arbitrary shape there has been no systematic exploration into the relative benefits of different waveforms. As tACS is a relatively new technique there is a huge parameter space of unexplored possibilities which may prove superior or complimentary to the traditional sinusoidal waveform. Here we begin to address this with an investigation into the effects of sawtooth wave tACS on individual alpha power. Evidence from animal models suggests that the gradient and direction of an electric current should be important factors for the subsequent neural firing rate; we compared positive and negative ramp sawtooth waves to test this. An additional advantage of sawtooth waves is that the resulting artefact in the electroencephalogram (EEG recording is significantly simpler to remove than a sine wave; accordingly we were able to observe alpha oscillations both during and after stimulation.We found that positive ramp sawtooth, but not negative ramp sawtooth, significantly enhanced alpha power during stimulation relative to sham (p<0.01. In addition we tested for an after-effect of both sawtooth and sinusoidal stimulation on alpha power but in this case did not find any significant effect. This preliminary study paves the way for further investigations into the effect of the gradient and direction of the current in tACS which could significantly improve the usefulness of this technique.

  14. Multielectrode intrafascicular and extraneural stimulation

    NARCIS (Netherlands)

    Veltink, Petrus H.; van Alste, Jan A.; Boom, H.B.K.

    1989-01-01

    The relationship between nerve stimulation, pulse amplitude and isometric muscle force was measured to investigate recruitment of motor units. Force addition experiments were performed to obtain insight in the intersection of motor unit groups recruited by different electrodes. Intrafascicular and

  15. Noninvasive Stimulation of the Human Brain

    DEFF Research Database (Denmark)

    Di Lazzaro, Vincenzo; Rothwell, John; Capogna, Marco

    2017-01-01

    Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current...

  16. Fetal stimulation by pulsed diagnostic ultrasound.

    Science.gov (United States)

    Fatemi, M; Ogburn, P L; Greenleaf, J F

    2001-08-01

    To show that pulsed ultrasound from a clinical ultrasonic imaging system can stimulate the fetus. Stimulation is defined mainly as increased fetal gross body movements in response to excitation. Fetuses of a group of 9 volunteer women (mean gestational age, 33.37 weeks; range, 25-40 weeks) were evaluated for body movement under 3 different conditions: (1) control, with no ultrasound exposure; (2) ultrasound in continuous wave Doppler mode; and (3) pulsed ultrasound in pulsed Doppler and B modes. A conventional external fetal monitor, with negligible ultrasonic output, was used to monitor fetal gross body motions. After an initial rest period of 3 minutes with 1 or no fetal motion, fetuses were monitored for an additional 3 minutes under the exposure criterion defined for each condition. Resulting fetal motions under the 3 conditions were compared using the Wilcoxon signed rank test. The test showed that fetuses moved significantly more frequently under condition 3 (mean +/- SD, 3.43 +/- 1.93 movements per minute) than under condition 1 (0.40 +/- 7.33 movements per minute) or condition 2 (0.63 +/- 7.67 movements per minute); P = .004 and .016, respectively. Fetal movements under conditions 1 and 2 did not differ significantly. Diagnostic ultrasound may stimulate fetal body motion.

  17. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis.

    Science.gov (United States)

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-10-05

    This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were "transcranial magnetic stimulation", "TMS", "repetitive transcranial magnetic stimulation", and "hallucination". Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = -0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for

  18. Economics of nuclear gas stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G W [Austral Oil Company Incorporated, Houston, TX (United States); Coffer, H F; Luetkehans, G R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  19. Economics of nuclear gas stimulation

    International Nuclear Information System (INIS)

    Frank, G.W.; Coffer, H.F.; Luetkehans, G.R.

    1970-01-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  20. A twin study of the neuropsychological consequences of stimulant abuse.

    Science.gov (United States)

    Toomey, Rosemary; Lyons, Michael J; Eisen, Seth A; Xian, Hong; Chantarujikapong, Sunanta; Seidman, Larry J; Faraone, Stephen V; Tsuang, Ming T

    2003-03-01

    Previous studies document neuropsychological deficits associated with stimulant abuse, but findings are inconsistent. We identified 50 twin pairs in which only 1 member had heavy stimulant abuse (cocaine and/or amphetamines) ending at least 1 year before the evaluation. The co-twin control research design controls for familial vulnerability and makes it easier to identify neuropsychological deficits that are consequences of stimulant abuse. Subjects were administered an extensive neuropsychological test battery organized into the following 5 functions: attention, executive functioning, motor skills, intelligence, and memory. Multivariate tests showed that abusers performed significantly worse than nonabusers on functions of attention and motor skills. Within each of these functions, univariate tests showed that abusers performed significantly worse on certain tests of motor skills and attention. In contrast, abusers performed significantly better on one test of attention measuring visual vigilance. Within the abuser group, higher levels of stimulant use were largely uncorrelated with neuropsychological test scores, although a few significant correlations indicated better functioning with more stimulant use. With ideal controls, this study demonstrates that deficits in attention and motor skills persist after 1 year of abstinence from stimulant use and raises hypotheses regarding relative strengths on a vigilance task among abusers.

  1. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Kimberly B. Hoang

    2017-10-01

    Full Text Available The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs, and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs, and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.

  2. Comparison of early gestational development between natural and stimulated pregnancies

    International Nuclear Information System (INIS)

    Jun, Soon Ae; Ahn, M. O.; Yoon, T. K.; Cha, G. Y.

    1990-01-01

    In order to assess the difference in growth and development between the stimulated and natural pregnancies, we compared the sonographic measurement of early embryos from the fifth to seventh gestational week, in terms of mean size of gestational sac, crown rump length, fetal heart rate and yolk sac size between 26 ovulation stimulated pregnancies and 38 natural pre gnancies. The two groups were compared by multiple regression analysis, The data suggest that there is attend that embryos smaller in stimulated pregnancies though significant statistical differences was not proved

  3. THE AVAILABILITY AND PORTRAYAL OF STIMULANTS OVER THE INTERNET

    Science.gov (United States)

    Schepis, Ty S.; Marlowe, Douglas B.; Forman, Robert F.

    2008-01-01

    Purpose To quantify the online availability and portrayal of amphetamine-class prescription stimulants with a focus on those medications commonly prescribed to and abused by adolescents. Methods The Google™ search engine was used in searches to assess the frequency of websites offering to sell controlled stimulants (retail sites) or websites that directly linked to retail sites (portal sites). Also, separate searches evaluated the portrayal of controlled prescription stimulants by the initial 20 websites returned by Google™. Retail and portal website frequency was collected for each search. For searches measuring the portrayal of stimulants, webpages were categorized as pro-abuse, anti-abuse, neutral or other, based on set criteria. Results Sites offering to sell stimulants without a prescription were found for nearly all search terms. Across all searches, the Schedule III stimulants indicated for the treatment of obesity returned more sites offering to sell stimulants without a prescription than Schedule II stimulants indicated for the treatment of ADHD. Internet site portrayal of each stimulant varied. However, sites that contained “methamphetamine” often included anti-abuse information. Discussion The apparent availability of stimulants over the Internet without a prescription indicates the potential for a significant public health problem. The extent to which teens are obtaining these drugs via the Internet remains unclear, but clinicians must be aware of the potential for abuse, concomitant prescription use issues, illicit sources, and diversion of these highly addictive medications. Education of consumers and physicians as well as further governmental interventions is needed to limit the potential scope of this problem. PMID:18407040

  4. Vagus nerve stimulation magnet activation for seizures: a critical review.

    Science.gov (United States)

    Fisher, R S; Eggleston, K S; Wright, C W

    2015-01-01

    Some patients receiving VNS Therapy report benefit from manually activating the generator with a handheld magnet at the time of a seizure. A review of 20 studies comprising 859 subjects identified patients who reported on-demand magnet mode stimulation to be beneficial. Benefit was reported in a weighted average of 45% of patients (range 0-89%) using the magnet, with seizure cessation claimed in a weighted average of 28% (range 15-67%). In addition to seizure termination, patients sometimes reported decreased intensity or duration of seizures or the post-ictal period. One study reported an isolated instance of worsening with magnet stimulation (Arch Pediatr Adolesc Med, 157, 2003 and 560). All of the reviewed studies assessed adjunctive magnet use. No studies were designed to provide Level I evidence of efficacy of magnet-induced stimulation. Retrospective analysis of one pivotal randomized trial of VNS therapy showed significantly more seizures terminated or improved in the active stimulation group vs the control group. Prospective, controlled studies would be required to isolate the effect and benefit of magnet mode stimulation and to document that the magnet-induced stimulation is the proximate cause of seizure reduction. Manual application of the magnet to initiate stimulation is not always practical because many patients are immobilized or unaware of their seizures, asleep or not in reach of the magnet. Algorithms based on changes in heart rate at or near the onset of the seizure provide a methodology for automated responsive stimulation. Because literature indicates additional benefits from on-demand magnet mode stimulation, a potential role exists for automatic activation of stimulation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Testosterone Suppression of CRH-stimulated Cortisol in Men

    OpenAIRE

    Rubinow, David R.; Roca, Catherine A.; Schmidt, Peter J.; Danaceau, Merry A.; Putnam, Karen; Cizza, Giovanni; Chrousos, George; Nieman, Lynnette

    2005-01-01

    Despite observations of age-dependent sexual dimorphisms in hypothalamic-pituitary-adrenal (HPA) axis activity, the role of androgens in the regulation of HPA axis activity in men has not been examined. We assessed this role by performing CRH stimulation tests in ten men (ages 18–45) during gonadal suppression with leuprolide acetate and during testosterone addition to leuprolide. CRH-stimulated cortisol levels as well as peak cortisol and greatest cortisol excursion were significantly lower ...

  6. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  7. Psychophysical Evaluation of Subdermal Electrical Stimulation in Relation to Prosthesis Sensory Feedback.

    Science.gov (United States)

    Geng, Bo; Dong, Jian; Jensen, Winnie; Dosen, Strahinja; Farina, Dario; Kamavuako, Ernest Nlandu

    2018-03-01

    This paper evaluated the psychophysical properties of subdermal electrical stimulation to investigate its feasibility in providing sensory feedback for limb prostheses. The detection threshold (DT), pain threshold (PT), just noticeable difference (JND), as well as the elicited sensation quality, comfort, intensity, and location were assessed in 16 healthy volunteers during stimulation of the ventral and dorsal forearm with subdermal electrodes. Moreover, the results were compared with those obtained from transcutaneous electrical stimulation. Despite a lower DT and PT, subdermal stimulation attained a greater relative dynamic range (i.e., PT/DT) and significantly smaller JNDs for stimulation amplitude. Muscle twitches and movements were more commonly elicited by surface stimulation, especially at the higher stimulation frequencies, whereas the pinprick sensation was more often reported with subdermal stimulation. Less comfort was perceived in subdermal stimulation of the ventral forearm at the highest tested stimulation frequency of 100 Hz. In summary, subdermal electrical stimulation was demonstrated to be able to produce similar sensation quality as transcutaneous stimulation and outperformed the latter in terms of energy efficiency and sensitivity. These results suggest that stimulation through implantable subdermal electrodes may lead to an efficient and compact sensory feedback system for substituting the lost sense in amputees.

  8. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  9. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    Science.gov (United States)

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Sensory adaptation to electrical stimulation of the somatosensory nerves.

    Science.gov (United States)

    Graczyk, Emily Lauren; Delhaye, Benoit; Schiefer, Matthew A; Bensmaia, Sliman J; Tyler, Dustin J

    2018-03-19

    Sensory systems adapt their sensitivity to ambient stimulation levels to improve their responsiveness to changes in stimulation. The sense of touch is also subject to adaptation, as evidenced by the desensitization produced by prolonged vibratory stimulation of the skin. Electrical stimulation of nerves elicits tactile sensations that can convey feedback for bionic limbs. In this study, we investigate whether artificial touch is also subject to adaptation, despite the fact that the peripheral mechanotransducers are bypassed. Approach: Using well-established psychophysical paradigms, we characterize the time course and magnitude of sensory adaptation caused by extended electrical stimulation of the residual somatosensory nerves in three human amputees implanted with cuff electrodes. Main results: We find that electrical stimulation of the nerve also induces perceptual adaptation that recovers after cessation of the stimulus. The time course and magnitude of electrically-induced adaptation are equivalent to their mechanically-induced counterparts. Significance: We conclude that, in natural touch, the process of mechanotransduction is not required for adaptation, and artificial touch naturally experiences adaptation-induced adjustments of the dynamic range of sensations. Further, as it does for native hands, adaptation confers to bionic hands enhanced sensitivity to changes in stimulation and thus a more natural sensory experience. . Creative Commons Attribution license.

  11. Deep brain stimulation for phantom limb pain.

    Science.gov (United States)

    Bittar, Richard G; Otero, Sofia; Carter, Helen; Aziz, Tipu Z

    2005-05-01

    Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.

  12. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    Science.gov (United States)

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5

  13. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    Science.gov (United States)

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers

  14. A Stimulating Experience

    Directory of Open Access Journals (Sweden)

    Namik Top

    2015-09-01

    Full Text Available The purpose of this study was to examine the views of international Science Olympiad participants on the benefits of the competition and the factors that affected their career aspirations. We also investigated how students’ choice of competition category varied with respect to gender. The sample included 273 International Sustainable World Energy, Engineering, and Environment Project (I-SWEEEP participants from 39 countries. Mixed-methods were used to analyze the data. Descriptive statistics and t-statistics were provided to answer the first question. As a means of addressing the second question, a chi-square test was utilized to examine how participants’ category selection differed by gender. Qualitative analysis was used to reveal the types of benefits students reaped from participation in the I-SWEEEP. Results indicated that students were most affected by their teachers, parents, and personal interests. Although the relationship between gender and competition category was not statistically significant, there nevertheless emerged a pattern showing that girls preferred environmental science projects (45.5% to engineering projects (24.4%. Qualitative analyses revealed six themes as benefits that students gained from participation in the I-SWEEEP. The relationship among the fundamental themes was also examined and revealed important findings. The results have educational implications for helping students accomplish to be science, technology, engineering, and mathematics (STEM professionals in the future.

  15. Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients.

    Science.gov (United States)

    Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen

    2017-08-01

    The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients.

  16. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    body sizes (30 and 60 kg) were exposed to thermal (CO(2) laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS: Small pigs exhibited...... animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore...

  17. Cellular Mechanisms of Transcranial Direct Current Stimulation

    Science.gov (United States)

    2016-07-14

    fEPSP responses are significantly (P < 0.05, *) facilitated with +8 V/m fields ( left ) and reduced with -8 V/m ( right ) in three pathways. In each...cortex results in a sustained modulation of synaptic efficacy. A) Schematic of anodal ( left ) and cathodal ( right ) DCS with current flow along the...current stimulation (tDCS) delivered 1day vs . 1week after cerebral ischemia in rats. Brain Res. Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG

  18. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  19. Historical Significant Volcanic Eruption Locations

    Data.gov (United States)

    Department of Homeland Security — A significant eruption is classified as one that meets at least one of the following criteriacaused fatalities, caused moderate damage (approximately $1 million or...

  20. Stimulating effects of ionizing radiation

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1995-01-01

    The influence of low doses on human organism is not definite known up to now. The worldwide discussion on this topic has been presented. A lot of analysed statistical data proved that the stimulating effect of low doses of ionizing radiation really exists and can have a beneficial influence on human health. 43 refs, 4 figs, 6 tabs

  1. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  2. Enteral feeding without pancreatic stimulation

    DEFF Research Database (Denmark)

    Kaushik, Neeraj; Pietraszewski, Marie; Holst, Jens Juul

    2005-01-01

    OBJECTIVE: All forms of commonly practiced enteral feeding techniques stimulate pancreatic secretion, and only intravenous feeding avoids it. In this study, we explored the possibility of more distal enteral infusions of tube feeds to see whether activation of the ileal brake mechanism can result...

  3. Transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Zaman, Rashid; Thind, Dilraj; Kocmur, Marga

    2008-11-01

    Transcranial magnetic stimulation (TMS) is a non-invasive and painless way of stimulating the neural tissue (cerebral cortex, spinal roots, and cranial and peripheral nerves). The first attempts at stimulating the neural tissue date back to 1896 by d'Arsonval; however, it was successfully carried out by Barker and colleagues in Sheffield, UK, in 1985. It soon became a useful tool in neuroscience for neurophysiologists and neurologists and psychiatrists. The original single-pulse TMS, largely used as an investigative tool, was further refined and developed in the early 1990s into what is known as repetitive TMS (rTMS), having a frequency range of 1-60 Hz. The stimulation by both TMS and rTMS of various cortical regions displayed alteration of movement, mood, and behavior, leading researchers to investigate a number of psychiatric and neuropsychiatric disorders, as well as to explore its therapeutic potential. There is now a large amount of literature on the use of TMS/rTMS in depression; however, its use in schizophrenia, both as an investigative and certainly as a therapeutic tool is relatively recent with a limited but increasing number of publications. In this article, we will outline the principles of TMS/rTMS and critically review their use in schizophrenia both as investigative and potential therapeutic tools.

  4. Aversive Stimulation -- Criteria for Application.

    Science.gov (United States)

    O'Donnell, Patrick A.; Ohlson, Glenn A.

    Criteria for applying aversive stimulation with severely handicapped children are examined, and practical and ethical issues are considered. Factors seen to influence punishment outcomes include timing, intensity, and schedule of reinforcement. Suggested is the need for further research on the comparative effectiveness of positive and negative…

  5. Thalamic stimulation in absence epilepsy

    NARCIS (Netherlands)

    Luttjohann, A.K.; Luijtelaar, E.L.J.M. van

    2013-01-01

    Purpose The site specific effects of two different types of electrical stimulation of the thalamus on electroencephalic epileptic activity as generated in the cortico-thalamo-cortical system were investigated in genetic epileptic WAG/Rij rats, a well characterized and validated absence

  6. Considering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation.

    Science.gov (United States)

    To, Wing Ting; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, there remain significant unknowns about the influence of a diverse number of tDCS parameters (e.g. polarity, size, position of electrodes & duration of stimulation) in inducing neurophysiological and behavioral effects. This article explores both techniques starting with the history of tDCS, to the differences between conventional tDCS and high-definition transcranial direct current stimulation, the underlying physiological mechanism, the (in)direct effects, the applications of tDCS with varying parameters, the efficacy, the safety issues and the opportunities for future research.

  7. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  8. Motor cortex stimulation suppresses cortical responses to noxious hindpaw stimulation after spinal cord lesion in rats.

    Science.gov (United States)

    Jiang, Li; Ji, Yadong; Voulalas, Pamela J; Keaser, Michael; Xu, Su; Gullapalli, Rao P; Greenspan, Joel; Masri, Radi

    2014-01-01

    Motor cortex stimulation (MCS) is a potentially effective treatment for chronic neuropathic pain. The neural mechanisms underlying the reduction of hyperalgesia and allodynia after MCS are not completely understood. To investigate the neural mechanisms responsible for analgesic effects after MCS. We test the hypothesis that MCS attenuates evoked blood oxygen-level dependent signals in cortical areas involved in nociceptive processing in an animal model of chronic neuropathic pain. We used adult female Sprague-Dawley rats (n = 10) that received unilateral electrolytic lesions of the right spinal cord at the level of C6 (SCL animals). In these animals, we performed magnetic resonance imaging (fMRI) experiments to study the analgesic effects of MCS. On the day of fMRI experiment, 14 days after spinal cord lesion, the animals were anesthetized and epidural bipolar platinum electrodes were placed above the left primary motor cortex. Two 10-min sessions of fMRI were performed before and after a session of MCS (50 μA, 50 Hz, 300 μs, for 30 min). During each fMRI session, the right hindpaw was electrically stimulated (noxious stimulation: 5 mA, 5 Hz, 3 ms) using a block design of 20 s stimulation off and 20 s stimulation on. A general linear model-based statistical parametric analysis was used to analyze whole brain activation maps. Region of interest (ROI) analysis and paired t-test were used to compare changes in activation before and after MCS in these ROI. MCS suppressed evoked blood oxygen dependent signals significantly (Family-wise error corrected P cortex and the prefrontal cortex. These findings suggest that, in animals with SCL, MCS attenuates hypersensitivity by suppressing activity in the primary somatosensory cortex and prefrontal cortex. Copyright © 2014. Published by Elsevier Inc.

  9. Evidence of nonvagal neural stimulation of canine gastric acid secretion.

    Science.gov (United States)

    Tansy, M F; Probst, S J; Martin, J S

    1975-06-01

    In this study, we confirmed our original findings that central vagus stimulation is significantly associated with a subsequent increase in gastric mucus secretion. Central vagus stimulation following phenoxybenzamine hydrochloride administration was associated significantly with protracted elevations in secretory volume and titratable acid. We were unable to conclude that phenoxybenzamine itself in several pharmacologic dosages was associated with an increase in titratable acid. The acid secretory responses could be abolished by transection of the splanchnic nerves. Electrical stimulation of the peripheral part of the splanchnic nerve following administration of phenoxybenzamine was also associated with significant increases in secretory volume and titrable acidity. These secretory responses were not blocked by atropine but were diminished by burimamide. It is concluded that, in the dog, a largely heretofore unsuspected second neural pathway exists which is capable of influencing gastric acid secretion.

  10. Stimulation of phagocytosis by sulforaphane

    International Nuclear Information System (INIS)

    Suganuma, Hiroyuki; Fahey, Jed W.; Bryan, Kelley E.; Healy, Zachary R.; Talalay, Paul

    2011-01-01

    Research highlights: → Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. → This effect does not require Nrf2-dependent induction of phase 2 genes. → Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2 -/- mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  11. Stimulation of phagocytosis by sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Fahey, Jed W., E-mail: jfahey@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Healy, Zachary R., E-mail: zhealy1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Talalay, Paul, E-mail: ptalalay@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  12. Stimulation of Suicidal Erythrocyte Death by Garcinol

    Directory of Open Access Journals (Sweden)

    Antonella Fazio

    2015-09-01

    Full Text Available Background/Aims: The benzophenone garcinol from dried fruit rind of Garcinia indica counteracts malignancy, an effect at least in part due to stimulation of apoptosis. The proapototic effect of garcinol is attributed in part to inhibition of histone acetyltransferases and thus modification of gene expression. Moreover, garcinol triggers mitochondrial depolarisation. Erythrocytes lack gene expression and mitochondria but are nevertheless able to enter apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, energy depletion and Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i. The present study explored, whether and how garcinol induces eryptosis. Methods: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and cytosolic ATP levels utilizing a luciferin-luciferase-based assay. Results: A 24 hours exposure of human erythrocytes to garcinol (2.5 or 5 µM significantly increased the percentage of annexin-V-binding cells. Garcinol decreased (at 1 µM and 2.5 µM or increased (at 5 µM forward scatter. Garcinol (5 µM further increased Fluo3-fluorescence, increased DCFDA fluorescence, and decreased cytosolic ATP levels. The effect of garcinol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Garcinol triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation, energy depletion and Ca2+ entry.

  13. Infraclavicular brachial plexus block: Comparison of posterior cord stimulation with lateral or medial cord stimulation, a prospective double blinded study

    Directory of Open Access Journals (Sweden)

    Dushyant Sharma

    2013-01-01

    Full Text Available Background: Infraclavicular approach to the brachial plexus sheath provides anesthesia for surgery on the distal arm, elbow, forearm, wrist, and hand. It has been found that evoked distal motor response or radial nerve-type motor response has influenced the success rate of single-injection infraclavicular brachial plexus block. Aim: We conducted this study to compare the extent and effectiveness of infraclavicular brachial plexus block achieved by injecting a local anesthetic drug after finding specific muscle action due to neural stimulator guided posterior cord stimulation and lateral cord/medial cord stimulation. Methods: After ethical committee approval, patients were randomly assigned to one of the two study groups of 30 patients each. In group 1, posterior cord stimulation was used and in group 2 lateral/medial cord stimulation was used for infraclavicular brachial plexus block. The extent of motor block and effectiveness of sensory block were assessed. Results: All four motor nerves that were selected for the extent of block were blocked in 23 cases (76.7% in group 1 and in 15 cases (50.0% in group 2 (P:0.032. The two groups did not differ significantly in the number of cases in which 0, 1, 2, and 3 nerves were blocked (P>0.05. In group 1, significantly lesser number of patients had pain on surgical manipulation compared with patients of group 2 (P:0.037. Conclusion: Stimulating the posterior cord guided by a nerve stimulator before local anesthetic injection is associated with greater extent of block (in the number of motor nerves blocked and effectiveness of block (in reporting no pain during the surgery than stimulation of either the lateral or medial cord.

  14. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2018-03-01

    Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.

  15. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children.

    Science.gov (United States)

    Abikoff, H; Courtney, M E; Szeibel, P J; Koplewicz, H S

    1996-05-01

    This study evaluated the impact of extra-task stimulation on the academic task performance of children with attention-deficit/hyperactivity disorder (ADHD). Twenty boys with ADHD and 20 nondisabled boys worked on an arithmetic task during high stimulation (music), low stimulation (speech), and no stimulation (silence). The music "distractors" were individualized for each child, and the arithmetic problems were at each child's ability level. A significant Group x Condition interaction was found for number of correct answers. Specifically, the nondisabled youngsters performed similarly under all three auditory conditions. In contrast, the children with ADHD did significantly better under the music condition than speech or silence conditions. However, a significant Group x Order interaction indicated that arithmetic performance was enhanced only for those children with ADHD who received music as the first condition. The facilitative effects of salient auditory stimulation on the arithmetic performance of the children with ADHD provide some support for the underarousal/optimal stimulation theory of ADHD.

  16. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  17. Significant Lactic Acidosis from Albuterol

    Directory of Open Access Journals (Sweden)

    Deborah Diercks

    2018-03-01

    Full Text Available Lactic acidosis is a clinical entity that demands rapid assessment and treatment to prevent significant morbidity and mortality. With increased lactate use across many clinical scenarios, lactate values themselves cannot be interpreted apart from their appropriate clinical picture. The significance of Type B lactic acidosis is likely understated in the emergency department (ED. Given the mortality that sepsis confers, a serum lactate is an important screening study. That said, it is with extreme caution that we should interpret and react to the resultant elevated value. We report a patient with a significant lactic acidosis. Though he had a high lactate value, he did not require aggressive resuscitation. A different classification scheme for lactic acidosis that focuses on the bifurcation of the “dangerous” and “not dangerous” causes of lactic acidosis may be of benefit. In addition, this case is demonstrative of the potential overuse of lactates in the ED.

  18. New stimulation regimens: endogenous and exogenous progesterone use to block the LH surge during ovarian stimulation for IVF.

    Science.gov (United States)

    Massin, Nathalie

    2017-03-01

    , their medical and economic significance remains to be demonstrated. The use of luteal phase or follicular phase protocols with progestins could rapidly develop in the context of oocyte donation and fertility preservation not related to oncology. Their place could develop even more in the general population of patients in IVF programs. The strategy of total freezing continues to develop, thanks to technical improvements, in particular vitrification and PGS on blastocysts, and thanks to studies showing improvements in embryo implantation when the transfer take place far removed from the hormonal changes caused by ovarian stimulation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Cochlear Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation

    Science.gov (United States)

    Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian

    2011-01-01

    Sharp spatial selectivity is critical to auditory performance, particularly in pitch related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear implant performance. PMID:22138630

  20. Inhibition of food stimulated acid secretion by misoprostol, an orally active synthetic E1 analogue prostaglandin.

    OpenAIRE

    Ramage, J K; Denton, A; Williams, J G

    1985-01-01

    The effect of 200 micrograms misoprostol (a synthetic prostaglandin E1 analogue) on food stimulated intragastric acidity has been monitored over a 9 h period in 16 normal volunteers. Misoprostol caused a significant inhibition of intragastric acidity for 2 h post-dosing, but no significant effect was seen thereafter on either basal or food stimulated acidity.

  1. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  2. [Effect of cognitive stimulation in elderly community].

    Science.gov (United States)

    Apóstolo, João Luís Alves; Cardoso, Daniela Filipa Batista; Paúl, Constança; Rodrigues, Manuel Alves; Macedo, Marinha Sofia

    2016-01-01

    To demonstrate that the implementation of the Cognitive Stimulation (CS) program 'Making a Difference' (MD) improves cognition and depressive symptoms in retired community elders. This was a multicenter quasi-experimental study of 45 community dwelling elders (38 women and 7 men), with a mean age of 75.29, from 3 day-care centers in rural, semi-rural and urban environments in the central region of Portugal. Participants attended 14 sessions twice a week over seven weeks. The Montreal Cognitive Assessment (MoCA) and the Geriatric Depression Scale (GDS-15) were administered at the following three time points: baseline, post-test, and follow-up. From baseline to post-test, there is a statistically significant difference in depressive symptoms (F=7.494; P=.010) explaining 21% of the variance (partial eta squared [ηp(2)]=.21), power=.75, but there is no statistically significant difference in cognition. From post-test to follow-up, there is no difference in both cognition and depression outcomes. Our results showed improvement in elders' depressive symptoms after a seven weeks intervention program but it did not have a protective effect after the three months follow-up. No evidence was found for its efficacy in improving cognition. Cognitive stimulation may be a useful in preventing elder's depressive symptoms when included in their health promotion care plan. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  3. The historical significance of oak

    Science.gov (United States)

    J. V. Thirgood

    1971-01-01

    A brief history of the importance of oak in Europe, contrasting the methods used in France and Britain to propagate the species and manage the forests for continued productivity. The significance of oak as a strategic resource during the sailing-ship era is stressed, and mention is made of the early development of oak management in North America. The international...

  4. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michael L Waterston

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. CONCLUSIONS/SIGNIFICANCE: Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.

  5. Differential action of glycoprotein hormones: significance in cancer progression.

    Science.gov (United States)

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  6. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control

    Science.gov (United States)

    Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.

    2018-01-01

    Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications

  7. Spectral characteristics of light sources for S-cone stimulation.

    Science.gov (United States)

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Synthetic definition of biological significance

    International Nuclear Information System (INIS)

    Buffington, J.D.

    1975-01-01

    The central theme of the workshop is recounted and the views of the authors are summarized. Areas of broad agreement or disagreement, unifying principles, and research needs are identified. Authors' views are consolidated into concepts that have practical utility for the scientist making impact assessments. The need for decision-makers and managers to be cognizant of the recommendations made herein is discussed. Finally, bringing together the diverse views of the workshop participants, a conceptual definition of biological significance is synthesized

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Somato stimulation and acupuncture therapy.

    Science.gov (United States)

    Zhao, Jing-Jun; Rong, Pei-Jing; Shi, Li; Ben, Hui; Zhu, Bing

    2016-05-01

    Acupuncture is an oldest somato stimulus medical technique. As the most representative peripheral nerve stimulation therapy, it has a complete system of theory and application and is applicable to a large population. This paper expounds the bionic origins of acupuncture and analyzes the physiological mechanism by which acupuncture works. For living creatures, functionally sound viscera and effective endurance of pain are essential for survival. This paper discusses the way in which acupuncture increases the pain threshold of living creatures and the underlying mechanism from the perspective of bionics. Acupuncture can also help to adjust visceral functions and works most effectively in facilitating the process of digestion and restraining visceral pain. This paper makes an in-depth overview of peripheral nerve stimulation therapy represented by acupuncture. We look forward to the revival of acupuncture, a long-standing somato stimulus medicine, in the modern medical systems.

  12. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  13. Vagal stimulation in heart failure.

    Science.gov (United States)

    De Ferrari, Gaetano M

    2014-04-01

    Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.

  14. Tactile Stimulation and Consumer Response.

    OpenAIRE

    Hornik, Jacob

    1992-01-01

    Tactile behavior is a basic communication form as well as an expression of interpersonal involvement. This article presents three studies offering evidence for the positive role of casual interpersonal touch on consumer behavior. More specifically, it provides initial support for the view that tactile stimulation in various consumer behavior situations enhances the positive feeling for and evaluation of both the external stimuli and the touching source. Further, customers touched by a request...

  15. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  16. Transcranial Magnetic Stimulation in Children

    OpenAIRE

    Garvey, Marjorie A.; Mall, Volker

    2008-01-01

    Developmental disabilities (e.g. attention deficit disorder; cerebral palsy) are frequently associated with deviations of the typical pattern of motor skill maturation. Neurophysiologic tools, such as transcranial magnetic stimulation (TMS), which probe motor cortex function, can potentially provide insights into both typical neuromotor maturation and the mechanisms underlying the motor skill deficits in children with developmental disabilities. These insights may set the stage for finding ef...

  17. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  18. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    Science.gov (United States)

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Performance Enhancement by Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Parisa Gazerani

    2017-09-01

    Full Text Available Number of substances and strategies are available to increase performance in sport (Catlin and Murray, 1996. Since 2004, the World Anti-Doping Agency (WADA posts an updated list of substances and methods prohibited to athletes. Drugs (e.g., steroids, stimulants are a major part of this list; however, technologies and methods (e.g., gene doping are increasingly being identified and added (WADA, 2017. Among technologies and methods that might exert a potential effect on athletic performance, brain stimulation has recently been subjected to extensive discussion. Neuro-enhancement for doping purposes has been termed “neurodoping” in the literature (Davis, 2013; however, this concept needs further documentation before the term “neurodoping” can be used properly. Two major non-invasive techniques of brain stimulations are transcranial magnetic stimulation (TMS (Hallett, 2007; Rossi et al., 2009, and transcranial direct current stimulation (tDCS (Stagg and Nitsche, 2011. In TMS, an electric coil held over the head applies magnetic pulses to create currents in the brain. In tDCS, a low, continuous electrical current is delivered to the brain by using surface electrodes attached on the scalp. TMS and tDCS have been used in both research and clinic (Shin and Pelled, 2017 for example to examine alterations in cognitive function or motor skills or to assist in recovering motor function after a stroke (Gomez Palacio Schjetnan et al., 2013 or reducing fatigue in patients with multiple sclerosis (Saiote et al., 2014. In an opinion paper, it was proposed that use of emerging brain stimulation techniques might also enhance physical and mental performance in sports (Davis, 2013. The assumption was based on several reports. For example some studies have shown that TMS could shorten reaction times to visual, auditory and touch stimuli, reduce tremor, and enhance the acquisition of complex motor skills. Based on the current evidence, a recent review (Colzato

  20. Cortical stimulation and neuropathic pain

    Directory of Open Access Journals (Sweden)

    Cristiane Cagnoni Ramos

    2015-02-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n2p1 This paper is a review of physiological and behavioral data on motor cortex stimulation (MCS and its role in persistent neuropathic pain. MCS has been widely used in clinical medicine as a tool for the management of pain that does not respond satisfactorily to any kind of conventional analgesia. Some important mechanisms involved in nociceptive modulation still remains unclear. The aim of this study was to describe the mechanisms involved in neuropathic pain and introduce the effectiveness of electrical stimulation of the motor cortex used in the treatment of this disease. The ascending pain pathways are activated by peripheral receptors, in which there is the transduction of a chemical, physical or mechanical stimulus as a nerve impulse, where this impulse is transmitted to the dorsal horn of the spinal cord, which connects with second-order neurons and ascends to different locations in the central nervous system where the stimulus is perceived as pain. Because MCS has been proved to modulate this pathway in the motor cortex, it has been studied to mimic its effects in clinical practice and improve the treatments used for chronic pain. MCS has gained much attention in recent years due to its action in reversing chronic neuropathic pain, this being more effective than electrical stimulation at different locations and related pain nuclei.

  1. Cortical stimulation and neuropathic pain

    Directory of Open Access Journals (Sweden)

    Cristiane Cagnoni Ramos

    2015-05-01

    Full Text Available This paper is a review of physiological and behavioral data on motor cortex stimulation (MCS and its role in persistent neuropathic pain. MCS has been widely used in clinical medicine as a tool for the management of pain that does not respond satisfactorily to any kind of conventional analgesia. Some important mechanisms involved in nociceptive modulation still remains unclear. The aim of this study was to describe the mechanisms involved in neuropathic pain and introduce the effectiveness of electrical stimulation of the motor cortex used in the treatment of this disease. The ascending pain pathways are activated by peripheral receptors, in which there is the transduction of a chemical, physical or mechanical stimulus as a nerve impulse, where this impulse is transmitted to the dorsal horn of the spinal cord, which connects with second-order neurons and ascends to different locations in the central nervous system where the stimulus is perceived as pain. Because MCS has been proved to modulate this pathway in the motor cortex, it has been studied to mimic its effects in clinical practice and improve the treatments used for chronic pain. MCS has gained much attention in recent years due to its action in reversing chronic neuropathic pain, this being more effective than electrical stimulation at different locations and related pain nuclei.

  2. Electrical stimulation superimposed onto voluntary muscular contraction.

    Science.gov (United States)

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  3. Is transcranial direct current stimulation a potential method for improving response inhibition?

    Science.gov (United States)

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  4. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  5. Effectiveness of transcutaneous electrical nerve stimulation on saliva production in post-radiated oral cancer patients

    Directory of Open Access Journals (Sweden)

    Sakshi Ojha

    2016-01-01

    Full Text Available Aims and Objectives: To determine the effectiveness of transcutaneous electrical nerve stimulation (TENS in stimulating salivary flow in post-radiated oral cancer patients, and to compare the salivary flow rate between unstimulated saliva and saliva stimulated with TENS in post-radiated oral cancer patients. Materials and Methods: In 30 patients who underwent radiotherapy for oral cancer, unstimulated saliva was collected every minute for 5 min in a graduated test tube. The TENS unit was activated and stimulated saliva was collected for 5 min in a separate graduated test tube, and the flow rate was compared with the unstimulated salivary flow rate. Results: A statistically significant improvement was seen in saliva production during stimulation (P < 0.001. In addition, statistically significant increase in TENS stimulated saliva was observed in patients aged ≥50 years compared to that in patients aged <50 years (P < 0.05. There was no significant difference in salivary flow rate between the two genders in both stimulated and unstimulated conditions, however, statistically significant increase in salivary flow rate was observed in males under stimulated condition (P < 0.01. Conclusion: TENS was highly effective in stimulating the whole salivary flow rate in post-radiated oral cancer patients. It is an effective supportive treatment modality in xerostomia patients caused by radiotherapy in oral cancer patients.

  6. Follicle-stimulating hormone (FSH) blood test

    Science.gov (United States)

    ... ency/article/003710.htm Follicle-stimulating hormone (FSH) blood test To use the sharing features on this page, please enable JavaScript. The follicle stimulating hormone (FSH) blood test measures the level of FSH in blood. FSH ...

  7. Vagus Nerve Stimulation for Treating Epilepsy

    Science.gov (United States)

    ... and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you ... how vagus nerve stimulation (VNS) may help treat epilepsy. The American Academy of Neurology (AAN) is the ...

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Clinical significance of neonatal menstruation.

    Science.gov (United States)

    Brosens, Ivo; Benagiano, Giuseppe

    2016-01-01

    Past studies have clearly shown the existence of a spectrum of endometrial progesterone responses in neonatal endometrium, varying from proliferation to full decidualization with menstrual-like shedding. The bleedings represent, similar to what occurs in adult menstruation, a progesterone withdrawal bleeding. Today, the bleeding is completely neglected and considered an uneventful episode of no clinical significance. Yet clinical studies have linked the risk of bleeding to a series of events indicating fetal distress. The potential link between the progesterone response and major adolescent disorders requires to be investigated by prospective studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  2. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  3. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  4. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  5. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    Science.gov (United States)

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Moral significance of phenomenal consciousness.

    Science.gov (United States)

    Levy, Neil; Savulescu, Julian

    2009-01-01

    Recent work in neuroimaging suggests that some patients diagnosed as being in the persistent vegetative state are actually conscious. In this paper, we critically examine this new evidence. We argue that though it remains open to alternative interpretations, it strongly suggests the presence of consciousness in some patients. However, we argue that its ethical significance is less than many people seem to think. There are several different kinds of consciousness, and though all kinds of consciousness have some ethical significance, different kinds underwrite different kinds of moral value. Demonstrating that patients have phenomenal consciousness--conscious states with some kind of qualitative feel to them--shows that they are moral patients, whose welfare must be taken into consideration. But only if they are subjects of a sophisticated kind of access consciousness--where access consciousness entails global availability of information to cognitive systems--are they persons, in the technical sense of the word employed by philosophers. In this sense, being a person is having the full moral status of ordinary human beings. We call for further research which might settle whether patients who manifest signs of consciousness possess the sophisticated kind of access consciousness required for personhood.

  8. Clinical significance of the fabella

    International Nuclear Information System (INIS)

    Dodevski, A.; Lazarova-Tosovska, D.; Zhivadinovik, J.; Lazareska, M.

    2012-01-01

    Full text: Introduction: There is variable number of sesamoid bones in the human body; one of them is fabella, located in the tendon of the gastrocnemius muscle. Aim of this study was to investigate the frequency of occurrence of fabella in the Macedonian population and to discuss about clinical importance of this bone. Materials and methods: We retrospectively examined radiographs of 53 patients who had knee exams undertaken for a variety of clinical reasons, performed as a part of their medical treatment. Over a time span of six months, 53 patients (38 males and 15 females, age range 19-60 years, mean age of 36.7±12.3 years) were examined. Results: In seven (13.2%) patients of 53 analyzed reports, fabella was found in the lateral tendon of gastrocnemius muscle. We did not find a significant gender or side difference in the appearance of fabella. Conclusion: Although anatomic studies emphasized a lack of significance of the fabella, this bone has been associated with a spectrum of pathology affecting the knee as fabellar syndrome, perineal nerve injury and fracture. We should think of this sesamoid bone while performing diagnostic and surgical procedures

  9. Stimulation of granulocytic cell iodination by pine cone antitumor substances

    International Nuclear Information System (INIS)

    Unten, S.; Sakagami, H.; Konno, K.

    1989-01-01

    Antitumor substances (Fractions VI and VII) prepared from the NaOH extract of pine cone significantly stimulated the iodination (incorporation of radioactive iodine into an acid-insoluble fraction) of human peripheral blood adherent mononuclear cells, polymorphonuclear cells (PMN), and human promyelocytic leukemic HL-60 cells. In contrast, these fractions did not significantly increase the iodination of nonadherent mononuclear cells, red blood cells, other human leukemic cell lines (U-937, THP-1, K-562), human diploid fibroblast (UT20Lu), or mouse cell lines (L-929, J774.1). Iodination of HL-60 cells, which were induced to differentiate by treatment with either retinoic acid or tumor necrosis factor, were stimulated less than untreated cells. The stimulation of iodination of both PMN and HL-60 cells required the continuous presence of these fractions and was almost completely abolished by the presence of myeloperoxidase inhibitors. The stimulation activity of these fractions was generally higher than that of various other immunopotentiators. Possible mechanisms of extract stimulation of myeloperoxidase-containing cell iodination are discussed

  10. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  11. A Chip for an Implantable Neural Stimulator

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    2000-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation (FES). The purpose of FES is to restore muscular control in disabled patients. The chip performs all the signal processing required in an implanted neural stimulator. The power and digital data...

  12. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  13. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  14. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...

  15. The significance of small streams

    Science.gov (United States)

    Wohl, Ellen

    2017-09-01

    Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

  16. No significant fuel failures (NSFF)

    International Nuclear Information System (INIS)

    Domaratzki, Z.

    1979-01-01

    It has long been recognized that no emergency core cooling system (ECCS) could be absolutely guaranteed to prevent fuel failures. In 1976 the Atomic Energy Control Board decided that the objective for an ECCS should be to prevent fuel failures, but if the objective could not be met it should be shown that the consequences are acceptable for dual failures comprising any LOCA combined with an assumed impairment of containment. Out of the review of the Bruce A plant came the definition of 'no significant fuel failures': for any postulated LOCA combined with any one mode of containment impairment the resultant dose to a person at the edge of the exclusion zone is less than the reference dose limits for dual failures

  17. Ritual Significance in Mycenaean Hairstyles

    Directory of Open Access Journals (Sweden)

    Hsu, Florence Sheng-chieh

    2012-04-01

    Full Text Available Although the frescoes excavated from Bronze Age sites on the Greek mainland provide evidence for female figures in the Mycenaean society, the hairstyles of these figures have not been studied in detail. As in many other ancient cultures, hairstyles were not only an exhibition of beauty and fashion, but they also represented certain age groups or a person’s social status. The Mycenaeans inherited many of their hairstyles from their Minoan predecessors, although differences existed as well. It is also possible there may have been a shift in meaning for seemingly similar looking hairstyles from the Minoan to the Mycenaean periods. Female figures, which compose most of the Mycenaean figures in frescoes known to date, are fine examples for discussing the artistic representation and potential significance of Mycenaean hairstyles. By comparing with Minoan hairstyles, discussions of Mycenaean examples lead to conclusions in the relationship between hairstyles and ritual activities in the Mycenaean society.

  18. Anhedonia and Amotivation in Psychiatric Outpatients with Fully Remitted Stimulant Use Disorder

    OpenAIRE

    Leventhal, Adam M.; Kahler, Christopher W.; Ray, Lara A.; Stone, Kristen; Young, Diane; Chelminski, Iwona; Zimmerman, Mark

    2008-01-01

    This study evaluated whether psychiatric outpatients with a past stimulant use disorder in full remission for ≥ 2 months (STIM+, n = 204) and those with no history of stimulant use disorder (STIM−, n = 2070) differed in the prevalence of current anhedonia and amotivation. Results showed that a significantly greater proportion of STIM+ participants reported anhedonia and amotivation than STIM− participants. The relation between stimulant use disorder history and anhedonia remained robust after...

  19. Do changes in spinal reflex excitability elicited by transcranial magnetic stimulation differ based on the site of cerebellar stimulation?

    Science.gov (United States)

    Matsugi, Akiyoshi

    2018-05-06

    The present study aimed to investigate whether spinal reflex excitability is influenced by the site of cerebellar transcranial magnetic stimulation (C-TMS). Fourteen healthy volunteers (mean age: 24.6 ± 6.6 years [11 men]) participated. Participants lay on a bed in the prone position, with both ankle joints fixed to prevent unwanted movement. Right tibial nerve stimulation was provided to elicit the H-reflex in the right soleus muscle. Conditioning transcranial magnetic stimulation (TMS) was delivered at one of the following sites 110 ms prior to tibial stimulation: right, central, or left cerebellum; midline parietal (Pz) region; or sham stimulation. A total of 10 test trials were included for each condition, in random order. The unconditioned and conditioned H-reflexes were measured during random inter-test trials, and the cerebellar spinal facilitation (CSpF) ratios for each site were calculated (the ratio of conditioned to unconditioned H-reflexes). CSpF ratios were compared among TMS sites. CSpF ratios were significantly higher at cerebellar sites than at the Pz site or during sham stimulation. However, there was no significant difference in CSpF ratio among cerebellar sites. TMS conditioning over any part of the cerebellum facilitated the excitability of the spinal motoneuron pool. Facilitation of the H-reflex due to C-TMS may involve the effects of the bilateral descending tract of the spinal cord on the spinal motoneuron pool. Alternatively, direct brainstem stimulation may have activated portions of the bilateral descending tract of the spinal cord.

  20. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  1. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  2. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    International Nuclear Information System (INIS)

    Salvador, R; Miranda, P C; Roth, Y; Zangen, A

    2009-01-01

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/√2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  3. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    Science.gov (United States)

    Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.

    2009-05-01

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  4. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, R; Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Roth, Y [Advanced Technology Center, Sheba Medical Center, Tel-Hashomer (Israel); Zangen, A [Neurobiology Department, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: rnsalvador@fc.ul.pt

    2009-05-21

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/{radical}2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  5. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  6. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  7. Effect of electrical stimulation of carcasses from Dorper sheep with ...

    African Journals Online (AJOL)

    Three consumer sensory tests, namely the hedonic rating of the acceptability of each sensory attribute, a preference test and a food action rating test, were conducted in sequence. The acceptability of the juiciness, tenderness, flavour and overall acceptability were not significantly influenced by the electrical stimulation of ...

  8. Significant biases affecting abundance determinations

    Science.gov (United States)

    Wesson, Roger

    2015-08-01

    I have developed two highly efficient codes to automate analyses of emission line nebulae. The tools place particular emphasis on the propagation of uncertainties. The first tool, ALFA, uses a genetic algorithm to rapidly optimise the parameters of gaussian fits to line profiles. It can fit emission line spectra of arbitrary resolution, wavelength range and depth, with no user input at all. It is well suited to highly multiplexed spectroscopy such as that now being carried out with instruments such as MUSE at the VLT. The second tool, NEAT, carries out a full analysis of emission line fluxes, robustly propagating uncertainties using a Monte Carlo technique.Using these tools, I have found that considerable biases can be introduced into abundance determinations if the uncertainty distribution of emission lines is not well characterised. For weak lines, normally distributed uncertainties are generally assumed, though it is incorrect to do so, and significant biases can result. I discuss observational evidence of these biases. The two new codes contain routines to correctly characterise the probability distributions, giving more reliable results in analyses of emission line nebulae.

  9. Astrobiological significance of chemolithoautotrophic acidophiles

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-02-01

    For more than a century (since Winogradsky discovered lithautotrophic bacteria) there has been a dilemma in microbiology about life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modern biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithoheterotrophic and organoheterotrophic or from organoheterotrophic to organautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant roel on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur-oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  10. Determining Semantically Related Significant Genes.

    Science.gov (United States)

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  11. Statistically significant relational data mining :

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann; Pinar, Ali; Robinson, David Gerald; Berger-Wolf, Tanya; Bhowmick, Sanjukta; Casleton, Emily; Kaiser, Mark; Nordman, Daniel J.; Wilson, Alyson G.

    2014-02-01

    This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publications that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.

  12. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  13. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  14. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  15. Detection of significant protein coevolution.

    Science.gov (United States)

    Ochoa, David; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2015-07-01

    The evolution of proteins cannot be fully understood without taking into account the coevolutionary linkages entangling them. From a practical point of view, coevolution between protein families has been used as a way of detecting protein interactions and functional relationships from genomic information. The most common approach to inferring protein coevolution involves the quantification of phylogenetic tree similarity using a family of methodologies termed mirrortree. In spite of their success, a fundamental problem of these approaches is the lack of an adequate statistical framework to assess the significance of a given coevolutionary score (tree similarity). As a consequence, a number of ad hoc filters and arbitrary thresholds are required in an attempt to obtain a final set of confident coevolutionary signals. In this work, we developed a method for associating confidence estimators (P values) to the tree-similarity scores, using a null model specifically designed for the tree comparison problem. We show how this approach largely improves the quality and coverage (number of pairs that can be evaluated) of the detected coevolution in all the stages of the mirrortree workflow, independently of the starting genomic information. This not only leads to a better understanding of protein coevolution and its biological implications, but also to obtain a highly reliable and comprehensive network of predicted interactions, as well as information on the substructure of macromolecular complexes using only genomic information. The software and datasets used in this work are freely available at: http://csbg.cnb.csic.es/pMT/. pazos@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Thermally stimulated scattering in plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    this experiment local heat conduction is of little importance and the dynamic evolution for the electron temperature is dominated by heating and energy exchange with the ion component. These features are incorporated in the analysis. The resulting set of equations gives a growth rate and characteristic scale size......A theory for stimulated scattering of a laser beam is formulated where the dominant nonlinearity is the ohmic heating of the plasma. The analysis is carried out with particular reference to experimental investigations of CO2 laser heating of linear discharge plasma. In the conditions characterizing...

  17. Dobutamine use for arrhythmia induction during electrical programmed heart stimulation

    International Nuclear Information System (INIS)

    Vanegas, Diego I; Perez, Climaco de J; Montenegro, Juan de J; Orjuela, Alejandro

    2006-01-01

    isoproterenol is the traditionally used drug for incrementing arrhythmia induction when this induction is not achieved during electric programmed heart stimulation under basal conditions. Dobutamine is an adrenergic agent, chemical precursor of isoproterenol, which can be an alternative for inducing arrhythmia during electrical programmed heart stimulation (PES). Patients and methods: a retrospective comparative study of the experience with dobutamine for inducing arrhythmia during electrical programmed heart stimulation was performed. The following data were collected: number of studies, data about the patient (medical record, age, gender, and study indication) protocol of programmed electrical stimulation, basal and under dobutamine or isoproterenol, and result of the study. Isoproterenol was used in doses of 1 to 3 micrograms per minute until the basal heart rate was incremented at least in 25%. Dobutamine was used in doses of 10 to 40 micrograms per kg of body weight, until obtaining the same increment in the basal heart rate. Results: 1054 electrophysiological studies were evaluated. In 144 patients (group A) isoproterenol was used and in 140, dobutamine (group B). In A group the mean age was 39.2 ± 16.2 and 58.3% were females. In-group B, mean age was 41.9 ± 18.6 and 51% were females. The most frequent symptom was palpitation and the most commonly induced arrhythmia was AV nodal reentry tachycardia in both groups. The induction of arrhythmia during the electrical programmed heat stimulation under drugs was similar in-group A (isoproterenol) respect to group B (dobutamine). Conclusions: There were no statistical significant differences in the induction of arrhythmia during electrical programmed heart stimulation using dobutamine or isoproterenol. Dobutamine may be safe and may be successfully used as an alternative to isoproterenol for arrhythmia induction during electrical programmed stimulation

  18. Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2013-07-01

    Full Text Available Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session. Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers.

  19. Evaluation of dynamic MRCP after secretin stimulation for biliopancreatic diseases

    International Nuclear Information System (INIS)

    Ohhigashi, Seiji; Nishio, Takeki; Watanabe, Fumihiko; Haradome, Hiroki; Doi, Osamu

    2000-01-01

    Both pancreaticobiliary maljunction and pancreatogastrostomy after pancreatoduodenectomy were analyzed to assess the utility of dynamic MRCP after secretin stimulation. Dynamic MRCP obtained every 60 seconds for 15 minutes after secretin administration revealed the bile and pancreatic fluid kinetics. Calculating the intensity value from the MR images allowed objective estimation of the bile and pancreatic fluid kinetics. Thus, this study demonstrated that dynamic MRCP after secretin stimulation was significantly useful in evaluating not only the morphologic features in pancreaticobiliary maljunction but also pancreatic exocrine function after resection of the pancreas. (author)

  20. Evaluation of different types of rooting stimulators

    Directory of Open Access Journals (Sweden)

    Petr Salaš

    2012-01-01

    Full Text Available This paper focuses on the assessment of selected stimulators, especially from Rhizopon product line, which are used for rooting and root system enhancement in various ornamental woody species. Two available methods of cuttings stimulation were selected from the available range of rooting stimulators: stimulation by long-term immersion in solutions or treatment of cuttings with powder stimulators. The experiment involved stimulators with two active components, currently the most commonly used phytohormones for this purpose – IBA and NAA – that were applied in different concentrations. The experiment took place in three propagation terms with twelve coniferous and deciduous shrub varieties. The results of the experiment show the different reactions of the individual species as well as varieties on the respective term of propagation and used form of stimulator.

  1. Caloric vestibular stimulation in aphasic syndrome

    Directory of Open Access Journals (Sweden)

    David eWilkinson

    2013-12-01

    Full Text Available Caloric vestibular stimulation (CVS is commonly used to diagnose brainstem disorder but its therapeutic application is much less established. Based on the finding that CVS increases blood flow to brain structures associated with language and communication, we assessed whether the procedure has potential to relieve symptoms of post-stroke aphasia. Three participants, each presenting with chronic, unilateral lesions to the left hemisphere, were administered daily CVS for 4 consecutive weeks. Relative to their pre-treatment baseline scores, two of the three participants showed significant improvement on both picture and responsive naming at immediate and one-week follow-up. One of these participants also showed improved sentence repetition, and another showed improved auditory word discrimination. No adverse reactions were reported. These data provide the first, albeit tentative, evidence that CVS may relieve expressive and receptive symptoms of aphasia. A larger, sham-controlled study is now needed to further assess efficacy.

  2. Electrical and optical co-stimulation in the deaf white cat

    Science.gov (United States)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  3. A Novel In Vitro System for Comparative Analyses of Bone Cells and Bacteria under Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Josef Dauben

    2016-01-01

    Full Text Available Electrical stimulation is a promising approach to enhance bone regeneration while having potential to inhibit bacterial growth. To investigate effects of alternating electric field stimulation on both human osteoblasts and bacteria, a novel in vitro system was designed. Electric field distribution was simulated numerically and proved by experimental validation. Cells were stimulated on Ti6Al4V electrodes and in short distance to electrodes. Bacterial growth was enumerated in supernatant and on the electrode surface and biofilm formation was quantified. Electrical stimulation modulated gene expression of osteoblastic differentiation markers in a voltage-dependent manner, resulting in significantly enhanced osteocalcin mRNA synthesis rate on electrodes after stimulation with 1.4VRMS. While collagen type I synthesis increased when stimulated with 0.2VRMS, it decreased after stimulation with 1.4VRMS. Only slight and infrequent influence on bacterial growth was observed following stimulations with 0.2VRMS and 1.4VRMS after 48 and 72 h, respectively. In summary this novel test system is applicable for extended in vitro studies concerning definition of appropriate stimulation parameters for bone cell growth and differentiation, bacterial growth suppression, and investigation of general effects of electrical stimulation.

  4. Transcranial magnetic stimulation (TMS) in Attention Deficit Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Zaman, Rashid

    2015-09-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder, which affects children as well as adults and leads to significant impairment in educational, social and occupational functioning and has associated personal and societal costs. Whilst there are effective medications (mostly stimulants) as well as some psychobehavioural treatments that help alleviate symptoms of ADHD, there is still need to improve our understanding of its neurobiology as well as explore other treatment options. Transcranial Magnetic Stimulation (TMS) and repetitive transcranial magnetic stimulation (rTMS) are safe and non-invasive investigative and therapeutic tools respectively. In this short article, I will explore their potential for improving our understanding of the neurobiology of ADHD as well consider its as a possible treatment option.

  5. Discovery of pulsed OH maser emission stimulated by a pulsar.

    Science.gov (United States)

    Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana

    2005-07-01

    Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.

  6. Electric stimulation with sinusoids and white noise for neural prostheses

    Directory of Open Access Journals (Sweden)

    Daniel K Freeman

    2010-02-01

    Full Text Available We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell’s spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with peak response that occur 25ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS.

  7. Braille line using electrical stimulation

    International Nuclear Information System (INIS)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G

    2007-01-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards

  8. Braille line using electrical stimulation

    Science.gov (United States)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  9. Transcranial magnetic stimulation: language function.

    Science.gov (United States)

    Epstein, C M

    1998-07-01

    Studies of language using transcranial magnetic stimulation (TMS) have focused both on identification of language areas and on elucidation of function. TMS may result in either inhibition or facilitation of language processes and may operate directly at a presumptive site of language cortex or indirectly through intracortical networks. TMS has been used to create reversible "temporary lesions," similar to those produced by Wada tests and direct cortical electrical stimulation, in cerebral cortical areas subserving language function. Rapid-rate TMS over the left inferior frontal region blocks speech output in most subjects. However, the results are not those predicted from classic models of language organization. Speech arrest is obtained most easily over facial motor cortex, and true aphasia is rare, whereas right hemisphere or bilateral lateralization is unexpectedly prominent. A clinical role for these techniques is not yet fully established. Interfering with language comprehension and verbal memory is currently more difficult than blocking speech output, but numerous TMS studies have demonstrated facilitation of language-related tasks, including oral word association, story recall, digit span, and picture naming. Conversely, speech output also facilitates motor responses to TMS in the dominant hemisphere. Such new and often-unexpected findings may provide important insights into the organization of language.

  10. Braille line using electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G [Gabinete de TecnologIa Medica. Universidad N. de San Juan (Argentina)

    2007-11-15

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  11. An Investigation into the Use of Stimulant Therapy during Pregnancy

    Directory of Open Access Journals (Sweden)

    Natalie Shields

    2012-01-01

    Full Text Available Introduction. A lack of documentation of stimulant use during pregnancy means that doctors have difficulty advising narcoleptic and hypersomnolent patients. Objectives. To investigate the use of stimulant therapy in narcoleptic and hypersomnolent patients during pregnancy. Method. A search of clinic letters at a tertiary sleep clinic identified women who became pregnant whilst receiving stimulant therapy between 01/09/1999 and 18/11/2010. Fifteen patients were included in a telephone survey. Results. There were 20 pregnancies. The reported advice received with regards to stimulant use was variable. In 7 pregnancies, medication was stopped preconceptually: 1 had a cleft palate and an extra digit 6 had good foetal outcomes. In 8 pregnancies, medication was stopped postconceptually: 1 had autism and attention-deficit hyperactivity disorder; 7 had good foetal outcomes. In 5 pregnancies, medication was continued throughout pregnancy: 2 ended in miscarriage; 1 was ectopic; 2 had good foetal outcomes. The most common symptom experienced was debilitating hypersomnolence. Conclusion. There are no standardised guidelines for use of stimulants during pregnancy. Women have significant symptoms during pregnancy for which there is an unmet clinical need. More research is needed into whether medication can be safely continued during pregnancy, and if not, when it should be discontinued. Better standardized advice should be made available.

  12. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes.

    Science.gov (United States)

    Van Schaftingen, E; Vandercammen, A

    1989-01-15

    The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.

  13. Labor stimulation with oxytocin: effects on obstetrical and neonatal outcomes

    Directory of Open Access Journals (Sweden)

    Pedro Hidalgo-Lopezosa

    Full Text Available Abstract Objective: to evaluate the effects of labor stimulation with oxytocin on maternal and neonatal outcomes. Method: descriptive and analytical study with 338 women who gave birth at a tertiary hospital. Obstetric and neonatal variables were measured and compared in women submitted and non-submitted to stimulation with oxytocin. Statistics were performed using Chi-square test, Fisher exact test, Student t-test; and crude Odds Ratio with 95% confidence interval were calculated. A p < 0.05 was considered statistically significant. Results: stimulation with oxytocin increases the rates of cesarean sections, epidural anesthesia and intrapartum maternal fever in primiparous and multiparous women. It has also been associated with low pH values of umbilical cord blood and with a shorter duration of the first stage of labor in primiparous women. However, it did not affect the rates of 3rd and 4th degree perineal lacerations, episiotomies, advanced neonatal resuscitation, 5-minute Apgar scores and meconium. Conclusion: stimulation with oxytocin should not be used systematically, but only in specific cases. These findings provide further evidence to health professionals and midwives on the use of oxytocin during labor. Under normal conditions, women should be informed of the possible effects of labor stimulation with oxytocin.

  14. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  15. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds.

    Science.gov (United States)

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C

    2016-01-01

    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

  16. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  17. Electrical stimulation induces propagated colonic contractions in an experimental model.

    Science.gov (United States)

    Aellen, S; Wiesel, P H; Gardaz, J-P; Schlageter, V; Bertschi, M; Virag, N; Givel, J-C

    2009-02-01

    Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.

  18. Anhedonia and amotivation in psychiatric outpatients with fully remitted stimulant use disorder.

    Science.gov (United States)

    Leventhal, Adam M; Kahler, Christopher W; Ray, Lara A; Stone, Kristen; Young, Diane; Chelminski, Iwona; Zimmerman, Mark

    2008-01-01

    This study evaluated whether psychiatric outpatients with a past stimulant use disorder in full remission for >/= 2 months (STIM+, n = 204) and those with no history of stimulant use disorder (STIM-, n = 2070) differed in the prevalence of current anhedonia and amotivation. Results showed that a significantly greater proportion of STIM+ participants reported anhedonia and amotivation than STIM- participants. The relation between stimulant use disorder history and anhedonia remained robust after controlling for other relevant clinical and demographic factors. These findings suggest that anhedonia may be a preexisting risk factor or protracted effect of stimulant misuse.

  19. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  20. Influence of udder stimulation, stage of lactation and parity on milk ...

    African Journals Online (AJOL)

    Influence of udder stimulation, stage of lactation and parity on milk yield in West African Dwarf goats. ... Left teat of the does produced significantly (P<0.05) more milk than the right teat. Therefore, it is recommended that goats udder in higher parity be stimulated prior to milking at early stage of lactation for higher milk ...

  1. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    Science.gov (United States)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  2. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  3. Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation

    Science.gov (United States)

    Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.

    2018-06-01

    Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.

  4. Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation.

    Science.gov (United States)

    Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo

    2018-03-24

    Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review.

    Science.gov (United States)

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-05-30

    Carotenoids are a diverse group of tetraterpenoid pigments that play indispensable roles in plants and animals. The biosynthesis of carotenoids in plants is strictly regulated at the transcriptional and post-transcriptional levels in accordance with inherited genetic signals and developmental requirements and in response to external environmental stimulants. The alteration in the biosynthesis of carotenoids under the influence of external environmental stimulants, such as high light, drought, salinity, and chilling stresses, has been shown to significantly influence the nutritional value of crop plants. In addition to these stimulants, several pre- and postharvesting cultivation practices significantly influence carotenoid compositions and contents. Thus, this review discusses how various environmental stimulants and pre- and postharvesting factors can be positively modulated for the enhanced biosynthesis and accumulation of carotenoids in the edible parts of crop plants, such as the leaves, roots, tubers, flowers, fruit, and seeds. In addition, future research directions in this context are identified.

  6. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  7. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  8. Multisensory stimulation in stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Barbro Birgitta Johansson

    2012-04-01

    Full Text Available The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, or various kinds of music therapy. Several studies have shown positive effects been reported but to give general recommendation more studies are needed. Patient heterogeneity and the interactions of age, gender, genes and environment are discussed. Randomized controlled longitudinal trials starting earlier post stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation.

  9. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  10. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  11. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  12. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  13. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  14. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  15. Paired Associative Stimulation Targeting the Tibialis Anterior Muscle using either Mono or Biphasic Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Natalie Mrachacz-Kersting

    2017-04-01

    Full Text Available Paired associative stimulation (PAS protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA muscle using a biphasic transcranial magnetic stimulation (TMS pulse form and, to determine whether a reduced intensity of this pulse would lead to significant changes as has been reported for hand muscles using a monophasic TMS pulse. Three interventions were investigated: (1 suprathreshold PAbi-PAS (n = 11; (2 suprathreshold PAmono-PAS (n = 11 where PAS was applied using a biphasic or monophasic pulse form at 120% resting motor threshold (RMT; (3 subthreshold PAbi-PAS (n = 10 where PAS was applied as for (1 at 95% active motor threshold (AMT. The peak-to-peak motor evoked potentials (MEPs were quantified prior to, immediately following, and 30 min after the cessation of the intervention. TA MEP size increased significantly for all interventions immediately post (61% for suprathreshold PAbi-PAS, 83% for suprathreshold PAmono-PAS, 55% for subthreshold PAbi-PAS and 30 min after the cessation of the intervention (123% for suprathreshold PAbi-PAS, 105% for suprathreshold PAmono-PAS, 80% for subthreshold PAbi-PAS. PAS using a biphasic pulse form at subthreshold intensities induces similar effects to conventional PAS.

  16. The Significance of Memory in Sensory Cortex.

    Science.gov (United States)

    Muckli, Lars; Petro, Lucy S

    2017-05-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The significance of memory in sensory cortex

    OpenAIRE

    Muckli, Lars; Petro, Lucy S.

    2017-01-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.

  18. Unilateral prefrontal direct current stimulation effects are modulated by working memory load and gender.

    Science.gov (United States)

    Meiron, Oded; Lavidor, Michal

    2013-05-01

    Recent studies revealed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may improve verbal working memory (WM) performance in humans. In the present study, we evaluated executive attention, which is the core of WM capacity, considered to be significantly involved in tasks that require active maintenance of memory representations in interference-rich conditions, and is highly dependent on DLPFC function. We investigated verbal WM accuracy using a WM task that is highly sensitive to executive attention function. We were interested in how verbal WM accuracy may be affected by WM load, unilateral DLPFC stimulation, and gender, as previous studies showed gender-dependent brain activation during verbal WM tasks. We utilized a modified verbal n-Back task hypothesized to increase demands on executive attention. We examined "online" WM performance while participants received transcranial direct current stimulation (tDCS), and implicit learning performance in a post-stimulation WM task. Significant lateralized "online" stimulation effects were found only in the highest WM load condition revealing that males benefit from left DLPFC stimulation, while females benefit from right DLPFC stimulation. High WM load performance in the left DLPFC stimulation was significantly related to post-stimulation recall performance. Our findings support the idea that lateralized stimulation effects in high verbal WM load may be gender-dependent. Further, our post-stimulation results support the idea that increased left hemisphere activity may be important for encoding verbal information into episodic memory as well as for facilitating retrieval of context-specific targets from semantic memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph

    2016-09-01

    Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.

  20. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  1. Step-wise stimulated martensitic transformations

    International Nuclear Information System (INIS)

    Airoldi, G.; Riva, G.

    1991-01-01

    NiTi alloys, widely known both for their shape memory properties and for unusual pseudoelastic behaviour, are now on the forefront attention for step-wise induced memory processes, thermal or stress stimulated. Literature results related to step-wise stimulated martensite (direct transformation) are examined and contrasted with step-wise thermal stimulated parent phase (reverse transformation). Hypothesis are given to explain the key characters of both transformations, a thermodynamic model from first principles being till now lacking

  2. Analysis of Facial Expression by Taste Stimulation

    Science.gov (United States)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  3. Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents.

    Science.gov (United States)

    Croarkin, Paul E; Nakonezny, Paul A; Wall, Christopher A; Murphy, Lauren L; Sampson, Shirlene M; Frye, Mark A; Port, John D

    2016-01-30

    Abnormalities in glutamate neurotransmission may have a role in the pathophysiology of adolescent depression. The present pilot study examined changes in cortical glutamine/glutamate ratios in depressed adolescents receiving high-frequency repetitive transcranial magnetic stimulation. Ten adolescents with treatment-refractory major depressive disorder received up to 30 sessions of 10-Hz repetitive transcranial magnetic stimulation at 120% motor threshold with 3000 pulses per session applied to the left dorsolateral prefrontal cortex. Baseline, posttreatment, and 6-month follow-up proton magnetic resonance spectroscopy scans of the anterior cingulate cortex and left dorsolateral prefrontal cortex were collected at 3T with 8-cm(3) voxels. Glutamate metabolites were quantified with 2 distinct proton magnetic resonance spectroscopy sequences in each brain region. After repetitive transcranial magnetic stimulation and at 6 months of follow-up, glutamine/glutamate ratios increased in the anterior cingulate cortex and left dorsolateral prefrontal cortex with both measurements. The increase in the glutamine/glutamate ratio reached statistical significance with the TE-optimized PRESS sequence in the anterior cingulate cortex. Glutamine/glutamate ratios increased in conjunction with depressive symptom improvement. This reached statistical significance with the TE-optimized PRESS sequence in the left dorsolateral prefrontal cortex. High-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex may modulate glutamate neurochemistry in depressed adolescents. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of intermittent theta burst stimulation on spasticity after stroke.

    Science.gov (United States)

    Kim, Dae Hyun; Shin, Ji Cheol; Jung, Seungsoo; Jung, Tae-Min; Kim, Deog Young

    2015-07-08

    Spasticity is a common cause of long-term disability in poststroke hemiplegic patients. We investigated whether intermittent theta burst stimulation (iTBS) could reduce upper-limb spasticity after a stroke. Fifteen hemiplegic stroke patients were recruited for a double-blind sham-controlled cross-over design study. A single session of iTBS or sham stimulation was delivered on the motor hotspot of the affected flexor carpi radialis muscle in a random and counterbalanced order with a 1-week interval. Modified Ashworth scale (MAS), modified Tardieu scale (MTS), H-wave/M-wave amplitude ratio, peak torque (PT), peak torque angle (PTA), work of affected wrist flexor, and rectified integrated electromyographic activity of the flexor carpi radialis muscle were measured before, immediately after, 30 min after, and 1 week after iTBS or sham stimulation. Repeated-measures analysis of variance showed a significant interaction between time and intervention for the MAS, MTS, PT, PTA, and rectified integrated electromyographic activity (PiTBS compared with sham stimulation. However, the H-wave/M-wave amplitude ratio and work were not affected. MAS and MTS significantly improved for at least 30 min after iTBS, but the other parameters only improved immediately after iTBS (PiTBS on the affected hemisphere may help to reduce poststroke spasticity transiently.

  5. Transcranial Direct Current Stimulation in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Argye E. Hillis

    2014-04-01

    Full Text Available We review rationale, challenges, study designs, reported results, and future directions in the use of transcranial direct cranial stimulation (tDCS in neurodegenerative disease, focusing on treatment of spelling in primary progressive aphasia (PPA. Rationale Evidence from both animal studies and human studies indicates that anodal and cathodal tDCS over the brain result in a temporary change in membrane potentials, reducing the threshold for long-term potentiation of neurons in the affected area. This may allow unaffected brain regions to assume functions of diseased regions. Challenges Special challenges in treating individuals with progressive conditions include altered goals of treatment and the possibility that participants may accumulate new deficits over the course of the treatment program that interfere with their ability to understand, retain, or cooperate with aspects of the program. The most serious challenge – particularly for single case designs - is that there may be no stable baseline against which to measure change with treatment. Thus, it is essential to demonstrate that treatment results in a statistically significant change in the slope of decline or improvement. Therefore, demonstration of a significant difference between tDCS and control (sham requires either a large number of participants or a large effect size. Designs The choice of a treatment design reflects these limitations. Group studies with a randomized, double-blind, sham control trial design (without cross-over provide the greatest power to detect a difference between intervention and control conditions, with the fewest participants. A cross-over design, in which all participants (from 1 to many receive both active and sham conditions, in randomized order, requires a larger effect size for the active condition relative to the control condition (or little to no maintenance of treatment gains or carry-over effect to show significant differences between treatment

  6. Subliminal stimulation and somatosensory signal detection.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Sahani, Maneesh; Haggard, Patrick

    2016-10-01

    Only a small fraction of sensory signals is consciously perceived. The brain's perceptual systems may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus reserving cortical capacity and conscious awareness for significant stimuli. Here we provide a new view of these mechanisms based on signal detection theory, and gain control. We demonstrated that subliminal somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, largely due to increased false alarm rates. By delivering the subliminal somatosensory stimulus and the to-be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads across the sensory surface. In addition, subliminal somatosensory stimulation tended to produce an increased probability of responding "yes", whether the somatosensory stimulus was present or not. Our results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further small inputs. This gain control may be automatic, and may precede discriminative classification of inputs into signals or noise. Crucially, we found that subliminal inputs influenced false alarm rates only on blocks where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent. Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the current context, with the presence of supraliminal stimuli having an important role in the criterion-setting process. These findings clarify the cognitive mechanisms that reserve conscious perception for salient and important signals. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  8. Studies in dosimetry using stimulated exoelectron emission

    International Nuclear Information System (INIS)

    Petel, Maurice.

    1976-06-01

    Some applications of the stimulated exoelectron emission in radiation dosimetry are discussed. The principles which govern the phenomenon are presented. The apparatus, in particular the counter, used to monitor the emission is discussed with reference to both optical and thermal stimulation. The correlation existing between thermoluminescence and thermally stimulated exoelectron emission were studied in both lithium fluoride and aluminium oxide. Furthermore, aluminium oxides from different sources were examined, and one of these, chosen to investigate the dosimetric properties of this material using both methods of stimulation [fr

  9. Optical stimulation of peripheral nerves in vivo

    Science.gov (United States)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  10. Galvanic Vestibular Stimulation in Hemi-Spatial Neglect

    Directory of Open Access Journals (Sweden)

    David eWilkinson

    2014-01-01

    Full Text Available Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduction persists after stimulation is stopped. To estimate longevity of effect, we therefore conducted a double-blind, randomized, dose-response trial involving a group of stroke patients suffering from left-sided neglect (n=52, mean age=66 years. To determine whether repeated sessions of galvanic vestibular stimulation more effectively induce lasting relief than a single session, participants received 1, 5, or 10 sessions, each lasting 25mins, of sub-sensory, left-anodal right-cathodal noisy direct current (mean amplitude=1mA. Ninety five percent confidence intervals indicated that all three treatment arms showed a statistically significant improvement between the pre-stimulation baseline and the final day of stimulation on the primary outcome measure, the conventional tests of the Behavioural Inattention Test. More remarkably, this change (mean change=28%, SD=18 was still evident 1month later. Secondary analyses indicated an allied increase of 20% in median Barthel Index score, a measure of functional capacity, in the absence of any adverse events or instances of participant non-compliance. Together these data suggest that galvanic vestibular stimulation, a simple, cheap technique suitable for home-based administration, may produce lasting reductions in neglect that are clinically important. Further protocol optimization is now needed ahead of a larger effectiveness study.

  11. Effect of subthalamic nucleus or globus pallidus interna stimulation on oculomotor function in patients with Parkinson's disease.

    Science.gov (United States)

    Fridley, Jared; Adams, Gareth; Sun, Ping; York, Michelle; Atassi, Farah; Lai, Eugene; Simpson, Richard; Viswanathan, Ashwin; Yoshor, Daniel

    2013-01-01

    Deep brain stimulation (DBS) of either the globus pallidus interna (GPi) or subthalamic nucleus (STN) is similarly effective for treating somatomotor manifestations of Parkinson's disease (PD), but differences in how stimulation of each target affects oculomotor function are poorly understood. We sought to determine if stimulation of the STN, but not the GPi, affects oculomotor function in PD patients. Nineteen PD patients with DBS implants (8 bilateral GPi, 9 bilateral STN and 2 unilateral STN) were studied. Testing was performed with stimulation on, then off. Somatomotor function was tested using the Unified Parkinson's Disease Rating Scale (UPDRS) motor exam. For oculomotor testing, patients performed pro- and antisaccade tasks while monitored with an infrared eye tracker. Saccadic latency, saccadic intrusions, and square-wave jerks (SWJs) were measured for each trial. As expected, UPDRS motor scores improved with both GPi and STN stimulation. With GPi stimulation, there was no significant difference in oculomotor function with stimulation on or off. However, with STN stimulation on, there was a significant increase in the mean number of SWJs/s, as well as a significant decrease in latency for both pro- and antisaccade tasks. Stimulation of either GPi or STN had similar effects on somatomotor function, but only STN stimulation significantly altered oculomotor function. Copyright © 2013 S. Karger AG, Basel.

  12. Cognitive stimulation in healthy older adults: a cognitive stimulation program using leisure activities compared to a conventional cognitive stimulation program.

    Science.gov (United States)

    Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David

    2017-06-01

    The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.

  13. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    Science.gov (United States)

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. © The Author(s) 2014.

  15. Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 μA, was used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–material interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 μA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 μA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell–material interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. - Highlights: ► D.C. stimulation was used to enhance in vitro bone cell adhesion and proliferation. ► Cells cultured on Ti were stimulated by using a custom made electrical stimulator. ► Optimization was performed by using a varying range of direct currents ∼ 5 to 25 μA. ► 25 μA stimulation was found most beneficial for promotion of cell adhesion/growth.

  16. Blood Pressure Responses to Endovascular Stimulation: A Potential Therapy for Autonomic Disorders With Vasodilatation.

    Science.gov (United States)

    Naksuk, Niyada; Killu, Ammar M; Yogeswaran, Vidhushei; Desimone, Christopher V; Suddendorf, Scott H; Ladewig, Dorothy J; Powers, Joanne M; Weber, Sarah; Madhavan, Malini; Cha, Yong-Mei; Kapa, Suraj; Asirvatham, Samuel J

    2016-09-01

    We have previously shown that sympathetic ganglia stimulation via the renal vein rapidly increases blood pressure. This study further investigated the optimal target sites and effective energy levels for stimulation of the renal vasculatures and nearby sympathetic ganglia for rapid increase in blood pressure. The pre-study protocol for endovascular stimulations included 2 minutes of stimulation (1-150 V and 10 pulses per second) and at least 2 minutes of rest during poststimulation. If blood pressure and/or heart rate were changed during the stimulation, time to return to baseline was allowed prior to the next stimulation. In 11 acute canine studies, we performed 85 renal artery, 30 renal vein, and 8 hepatic vasculature stimulations. The mean arterial pressure (MAP) rapidly increased during stimulation of renal artery (95 ± 18 mmHg vs. 103 ± 15 mmHg; P vein (90 ± 16 mmHg vs. 102 ± 20 mmHg; P = 0.001), and hepatic vasculatures (74 ± 8 mmHg vs. 82 ± 11 mmHg; P = 0.04). Predictors of a significant increase in MAP were energy >10 V focused on the left renal artery, bilateral renal arteries, and bilateral renal veins (especially the mid segment). Overall, heart rate was unchanged, but muscle fasciculation was observed in 22.0% with an output >10 V (range 15-150 V). Analysis after excluding the stimulations that resulted in fasciculation yielded similar results to the main findings. Stimulation of intra-abdominal vasculatures promptly increased the MAP and thus may be a potential treatment option for hypotension in autonomic disorders. Predictors of optimal stimulation include energy delivery and the site of stimulation (for the renal vasculatures), which informs the design of subsequent research. © 2016 Wiley Periodicals, Inc.

  17. Modern management of epilepsy: Vagus nerve stimulation.

    Science.gov (United States)

    Ben-Menachem, E

    1996-12-01

    Vagus nerve stimulation (VNS) was first tried as a treatment for seizure patients in 1988. The idea to stimulate the vagus nerve and disrupt or prevent seizures was proposed by Jacob Zabarra. He observed a consistent finding among several animal studies which indicated that stimulation of the vagus nerve could alter the brain wave patterns of the animals under study. His hypothesis formed the basis for the development of the vagus nerve stimulator, an implantable device similar to a pacemaker, which is implanted in the left chest and attached to the left vagus nerve via a stimulating lead. Once implanted, the stimulator is programmed by a physician to deliver regular stimulation 24 hours a day regardless of seizure activity. Patients can also activate extra 'on-demand' stimulation with a handheld magnet. Clinical studies have demonstrated VNS therapy to be a safe and effective mode of treatment when added to the existing regimen of severe, refractory patients with epilepsy. Efficacy ranges from seizure free to no response with the majority of patients (> 50%) reporting at least a 50% improvement in number of seizures after 1.5 years of treatment. The side-effect profile is unique and mostly includes stimulation-related sensations in the neck and throat. The mechanism of action for VNS is not clearly understood although two theories have emerged. First, the direct connection theory hypothesizes that the anticonvulsant action of VNS is caused by a threshold raising effect of the connections to the nucleus of the solitary tract and on to other structures. The second is the concept that chronic stimulation of the vagus nerve increases the amount of inhibitory neurotransmitters and decreases the amount of excitatory neurotransmitters. Additional research into the optimal use of VNS is ongoing. Animal and clinical research have produced some interesting new data suggesting there are numerous ways to improve the clinical performance of vagus nerve stimulation as a

  18. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  19. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities

    CSIR Research Space (South Africa)

    Tukulula, M

    2015-02-01

    Full Text Available There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would...

  20. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    Science.gov (United States)

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  1. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  2. Stimulation site within the MRI-defined STN predicts postoperative motor outcome.

    Science.gov (United States)

    Wodarg, Fritz; Herzog, Jan; Reese, René; Falk, Daniela; Pinsker, Markus O; Steigerwald, Frank; Jansen, Olav; Deuschl, Günther; Mehdorn, H Maximillian; Volkmann, Jens

    2012-06-01

    High-frequency stimulation of the subthalamic nucleus (STN-HFS) is highly effective in treating motor symptoms in Parkinson's disease (PD) and medication side effects as well as in improving quality of life. Despite preoperative screening for patients as eligible candidates for this treatment, electrode position may furthermore influence treatment quality. Here, we investigated the relationship between the anatomical site of stimulation within the MRI-defined STN and the outcome of PD patients after STN-HFS. In 30 PD patients with bilateral STN stimulation, we retrospectively defined the boundaries of the STN within the axial target plane of the stereotactic T2-weighted MRI and determined the position of the active electrode contact in relation to the border of the STN. The position of the active contact within the STN was the only variable to predict the outcome of STN stimulation. In contrast, covariates such as age, disease duration, symptom severity, and response to levodopa had no effect. The lateral position of the stimulation contact within the STN led to significantly better clinical improvement, lower stimulation parameters, and less need for postoperative dopaminergic medication. The outcome of patients with stimulation contacts within the medial region of the STN was significantly worse. Precise targeting of the lateral region of the STN is essential for achieving sufficient stimulation efficacy. Preoperative T2-weighted MRI might be a useful component of the targeting procedure to improve the outcome of PD patients. Copyright © 2012 Movement Disorder Society.

  3. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  4. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okuma

    Full Text Available This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation.Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry.In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors.Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation.

  5. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  6. Transcranial magnetic stimulation in children.

    Science.gov (United States)

    Garvey, Marjorie A; Mall, Volker

    2008-05-01

    Developmental disabilities (e.g. attention deficit disorder; cerebral palsy) are frequently associated with deviations of the typical pattern of motor skill maturation. Neurophysiologic tools, such as transcranial magnetic stimulation (TMS), which probe motor cortex function, can potentially provide insights into both typical neuromotor maturation and the mechanisms underlying the motor skill deficits in children with developmental disabilities. These insights may set the stage for finding effective interventions for these disorders. We review the literature pertaining to the use of TMS in pediatrics. Most TMS-evoked parameters show age-related changes in typically developing children and some of these are abnormal in a number of childhood-onset neurological disorders. Although no TMS-evoked parameters are diagnostic for any disorder, changes in certain parameters appear to reflect disease burden or may provide a measure of treatment-related improvement. Furthermore, TMS may be especially useful when combined with other neurophysiologic modalities (e.g. fMRI). However, much work remains to be done to determine if TMS-evoked parameters can be used as valid and reliable biomarkers for disease burden, the natural history of neurological injury and repair, and the efficacy of pharmacological and rehabilitation interventions.

  7. Total renin after gonadotropin stimulation in polycystic ovarian disease.

    Science.gov (United States)

    Matinlauri, I; Anttila, L; Jaatinen, T A; Koskinen, P; Aalto, M; Irjala, K; Nikkanen, V

    1995-02-01

    To examine the influence of polycystic ovarian disease (PCOD) on the levels of total renin in plasma and follicular fluid (FF) after stimulation with hMG. Comparative study of the plasma and FF concentrations of total renin in women with and without PCOD after stimulation with hMG. In vitro fertilization-embryo transfer program at the Department of Obstetrics and Gynecology, the University Central Hospital of Turku, Finland. Thirty-six women undergoing IVF-ET for infertility with (n = 10) or without (n = 26) ultrasonographically diagnosed PCOD. Of the latter group, 15 women had tubal infertility, and the rest suffered from an anovulatory infertility and reacted with PCO-like ovarian response to stimulation. The concentrations of total renin in plasma and FF, serum E2, and protein in FF. The concentrations of plasma total renin after the gonadotropin stimulation were significantly higher in the PCOD and PCO-like groups when compared with the tubal group. The concentration of total renin in FF and the ratio of total renin per protein in FF were higher in the PCOD and PCO-like groups than in the tubal group, but the differences did not reach statistical significance. Positive correlations were found between the plasma total renin and serum E2 concentrations in the PCO-like and in the tubal group and between plasma total renin concentrations and the number of mature follicles in all groups. Follicular fluid total renin did not correlate with FF protein in any group. All findings were independent of the total hMG dosage used and the body mass index of the patients. In the present study the concentrations of total renin in plasma were enhanced markedly after gonadotropin stimulation in women with PCOD compared with women having tubal infertility. The pattern of the hormonal secretions revealed a group of infertile patients reacting biochemically like women with PCOD.

  8. Electrocutaneous stimulation system for Braille reading.

    Science.gov (United States)

    Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente

    2010-01-01

    This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.

  9. Twiddler's syndrome in spinal cord stimulation.

    Science.gov (United States)

    Al-Mahfoudh, Rafid; Chan, Yuen; Chong, Hsu Pheen; Farah, Jibril Osman

    2016-01-01

    The aims are to present a case series of Twiddler's syndrome in spinal cord stimulators with analysis of the possible mechanism of this syndrome and discuss how this phenomenon can be prevented. Data were collected retrospectively between 2007 and 2013 for all patients presenting with failure of spinal cord stimulators. The diagnostic criterion for Twiddler's syndrome is radiological evidence of twisting of wires in the presence of failure of spinal cord stimulation. Our unit implants on average 110 spinal cord stimulators a year. Over the 5-year study period, all consecutive cases of spinal cord stimulation failure were studied. Three patients with Twiddler's syndrome were identified. Presentation ranged from 4 to 228 weeks after implantation. Imaging revealed repeated rotations and twisting of the wires of the spinal cord stimulators leading to hardware failure. To the best of our knowledge this is the first reported series of Twiddler's syndrome with implantable pulse generators (IPGs) for spinal cord stimulation. Hardware failure is not uncommon in spinal cord stimulation. Awareness and identification of Twiddler's syndrome may help prevent its occurrence and further revisions. This may be achieved by implanting the IPG in the lumbar region subcutaneously above the belt line. Psychological intervention may have a preventative role for those who are deemed at high risk of Twiddler's syndrome from initial psychological screening.

  10. Stimulation of seeds by low dose irradiation

    International Nuclear Information System (INIS)

    Lawson, Helen

    1976-05-01

    The first section of the bibliography lists materials on the stimulation of seeds by low dose irradiation, with particular reference to stimulation of germination and yield. The second section contains a small number of selected references on seed irradiation facilities. (author)

  11. Motor cortex stimulation: role of computer modeling

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Sakas, D.E.; Simpson, B.A

    Motor cortex stimulation (MCS) is a promising clinical technique used to treat chronic, otherwise intractable pain. However, the mechanisms by which the neural elements that are stimulated during MCS induce pain relief are not understood. Neither is it known which neural elements (fibers (parallel

  12. Thyroid stimulating hormone and subclinical thyroid dysfunction

    International Nuclear Information System (INIS)

    Guo Yongtie

    2008-01-01

    Subclinical thyroid dysfunction has mild clinical symptoms. It is nonspecific and not so noticeable. It performs only for thyroid stimulating hormone rise and decline. The value of early diagnosis and treatment of thyroid stimulating hormone in subclinical thyroid dysfunction were reviewed. (authors)

  13. Effects of polycationic compounds on mitogen stimulation

    DEFF Research Database (Denmark)

    Heron, I; Larsen, B; Hokland, M

    1981-01-01

    The effects of polycations added to phytomitogen stimulated human lymphocyte cultures have been studied. Within certain dose ranges all polycations tested gave rise to augmented thymidine uptake in mitogen stimulated cultures. The optimum enhancing concentrations of polycations was depending on t...

  14. Oligofructose stimulates calcium absorption in adolescents

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muys, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Background: In rats, nondigestible oligosaccharides stimulate calcium absorption. Recently, this effect was also found in human subjects. Objective: The objective of the study was to investigate whether consumption of 15 g oligofructose/d stimulates calcium absorption in male adolescents. Design:

  15. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  16. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  17. Massive hydraulic fracturing gas stimulation project

    International Nuclear Information System (INIS)

    Appledorn, C.R.; Mann, R.L.

    1977-01-01

    The Rio Blanco Massive Hydraulic Fracturing Project was fielded in 1974 as a joint Industry/ERDA demonstration to test the relative formations that were stimulated by the Rio Blanco Nuclear fracturing experiment. The project is a companion effort to and a continuation of the preceding nuclear stimulation project, which took place in May 1973. 8 figures

  18. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    Science.gov (United States)

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  19. Neurologic Complications of Psychomotor Stimulant Abuse.

    Science.gov (United States)

    Sanchez-Ramos, Juan

    2015-01-01

    Psychomotor stimulants are drugs that act on the central nervous system (CNS) to increase alertness, elevate mood, and produce a sense of well-being. These drugs also decrease appetite and the need for sleep. Stimulants can enhance stamina and improve performance in tasks that have been impaired by fatigue or boredom. Approved therapeutic applications of stimulants include attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. These agents also possess potent reinforcing properties that can result in excessive self-administration and abuse. Chronic use is associated with adverse effects including psychosis, seizures, and cerebrovascular accidents, though these complications usually occur in individuals with preexisting risk factors. This chapter reviews the adverse neurologic consequences of chronic psychomotor stimulant use and abuse, with a focus on two prototypical stimulants methamphetamine and cocaine. © 2015 Elsevier Inc. All rights reserved.

  20. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders A meta-analysis***

    Institute of Scientific and Technical Information of China (English)

    Yingli Zhang; Wei Liang; Shichang Yang; Ping Dai; Lijuan Shen; Changhong Wang

    2013-01-01

    OBJECTIVE: This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hal ucination of patients with schizophrenia spectrum disorders. DATA SOURCES: Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Control ed Trials databases from January 1985 to May 2012. Key words were “transcranial magnetic stimulation”, “TMS”, “repetitive transcranial magnetic stimulation”, and “hal ucination”. STUDY SELECTION: Selected studies were randomized control ed trials assessing therapeutic ef-ficacy of repetitive transcranial magnetic stimulation for hal ucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hal ucination in schizophrenia spectrum disorders. Control groups received sham stimulation. MAIN OUTCOME MEASURES: The primary outcome was total scores of Auditory Hal ucinations Rating Scale, Auditory Hal ucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hal ucination item, and Hal ucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. RESULTS: Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. Al data were completely effective, involving 398 patients. Overal mean weighted effect size for repeti-tive transcranial magnetic stimulation versus sham stimulation was statistical y significant (MD =-0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P =0.005). No significant differences were found

  1. Subthalamic stimulation: toward a simplification of the electrophysiological procedure.

    Science.gov (United States)

    Fetter, Damien; Derrey, Stephane; Lefaucheur, Romain; Borden, Alaina; Wallon, David; Chastan, Nathalie; Maltete, David

    2016-06-01

    The aim of the present study was to assess the consequences of a simplification of the electrophysiological procedure on the post-operative clinical outcome after subthalamic nucleus implantation in Parkinson disease. Microelectrode recordings were performed on 5 parallel trajectories in group 1 and less than 5 trajectories in group 2. Clinical evaluations were performed 1 month before and 6 months after surgery. After surgery, the UPDRS III score in the off-drug/on-stimulation and on-drug/on-stimulation conditions significantly improved by 66,9% and 82%, respectively in group 1, and by 65.8% and 82.3% in group 2 (P<0.05). Meanwhile, the total number of words (P<0.05) significantly decreased for fluency tasks in both groups. Motor disability improvement and medication reduction were similar in both groups. Our results suggest that the electrophysiological procedure should be simplified as the team's experience increases.

  2. ACTH stimulation test in the captive cheetah (Acinonyx jubatus

    Directory of Open Access Journals (Sweden)

    L.S. Koster

    2007-06-01

    Full Text Available Serum cortisol response was assessed in 8 captive cheetahs, of varying ages, after the intravenous administration of 500 µg of tetracosactide (Synacthen Depot(R, Novartis, Kempton Park while maintained under general anaesthesia. In addition, 8 cheetahs were anaesthetised and given an equal volume of saline in order to establish baseline cortisol concentrations at similar stages of anaesthesia. A significant difference in the median cortisol concentration measured over time was found following ACTH administration in the ACTH group (P < 0.001. There was no difference between the median cortisol concentrations in the ACTH group at time-points 120, 150 and 180 min after ACTH stimulation (P = 0.867. Thus it appears appropriate to collect serum 120 to 180 min after tetracosactide administration to assess maximal stimulation of the adrenal in the cheetah. No statistically significant rise was seen in the anaesthetised control group following the injection of saline (P = 0.238.

  3. Role of spontaneous and stimulated emission in photon correlations

    International Nuclear Information System (INIS)

    Chopra, S.; Bohidar, H.; Harwalkar, V.

    1984-01-01

    Photon correlations have been alternately attributed to either spontaneous or stimulated emission by various authors. In this paper, the authors interpret, on the basis of available experimental data, the contribution of each emission form to the evolution of photon statistics. The laser is used as an example of a source which exhibits different statistical characteristics depending on the level of excitation, which is governed by the pump parameter a. From the data, it is evident that the transition from below to above threshold is accompanied by a significant drop in the magnitude of correlation and an increase in decay time. It may be noted that this transition causes a substantial increase in the coherent output which emphasizes the predominance of stimulated emission. In the case of a laser below threshold, however, photon correlations arise due to superposition of the more dominant spontaneously emitted wavetrains. Exact solutions of quantized systems do not exist in the presence of saturation effects. This implies that factorization and identification of terms with spontaneous or stimulated emission has not yet been done. This does not preculde a physical and intuitive interpretation of photon statistics within the framework of a standard model, and it is therefore argued that spontaneous emission is responsible for photon correlations while stimulated emission shows up in the dynamics as the coherence time

  4. Purchase decision-making is modulated by vestibular stimulation.

    Science.gov (United States)

    Preuss, Nora; Mast, Fred W; Hasler, Gregor

    2014-01-01

    Purchases are driven by consumers' product preferences and price considerations. Using caloric vestibular stimulation (CVS), we investigated the role of vestibular-affective circuits in purchase decision-making. CVS is an effective noninvasive brain stimulation method, which activates vestibular and overlapping emotional circuits (e.g., the insular cortex and the anterior cingulate cortex (ACC)). Subjects were exposed to CVS and sham stimulation while they performed two purchase decision-making tasks. In Experiment 1 subjects had to decide whether to purchase or not. CVS significantly reduced probability of buying a product. In Experiment 2 subjects had to rate desirability of the products and willingness to pay (WTP) while they were exposed to CVS and sham stimulation. CVS modulated desirability of the products but not WTP. The results suggest that CVS interfered with emotional circuits and thus attenuated the pleasant and rewarding effect of acquisition, which in turn reduced purchase probability. The present findings contribute to the rapidly growing literature on the neural basis of purchase decision-making.

  5. Commonly used stimulants: Sleep problems, dependence and psychological distress.

    Science.gov (United States)

    Ogeil, Rowan P; Phillips, James G

    2015-08-01

    Caffeine and nicotine are commonly used stimulants that enhance alertness and mood. Discontinuation of both stimulants is associated with withdrawal symptoms including sleep and mood disturbances, which may differ in males and females. The present study examines changes in sleep quality, daytime sleepiness and psychological distress associated with use and dependence on caffeine and nicotine. An online survey comprising validated tools to assess sleep quality, excessive daytime sleepiness and psychological distress was completed by 166 participants (74 males, 96 females) with a mean age of 28 years. Participants completed the study in their own time, and were not offered any inducements to participate. Sleep quality was poorer in those dependent upon caffeine or nicotine, and there were also significant interaction effects with gender whereby females reported poorer sleep despite males reporting higher use of both stimulants. Caffeine dependence was associated with poorer sleep quality, increased daytime dysfunction, and increased levels of night time disturbance, while nicotine dependence was associated with poorer sleep quality and increased use of sleep medication and sleep disturbances. There were strong links between poor sleep and diminished affect, with psychological distress found to co-occur in the context of disturbed sleep. Stimulants are widely used to promote vigilance and mood; however, dependence on commonly used drugs including caffeine and nicotine is associated with decrements in sleep quality and increased psychological distress, which may be compounded in female dependent users. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Testosterone suppression of CRH-stimulated cortisol in men.

    Science.gov (United States)

    Rubinow, David R; Roca, Catherine A; Schmidt, Peter J; Danaceau, Merry A; Putnam, Karen; Cizza, Giovanni; Chrousos, George; Nieman, Lynnette

    2005-10-01

    Despite observations of age-dependent sexual dimorphisms in hypothalamic-pituitary-adrenal (HPA) axis activity, the role of androgens in the regulation of HPA axis activity in men has not been examined. We assessed this role by performing CRH stimulation tests in 10 men (ages 18-45 years) during gonadal suppression with leuprolide acetate and during testosterone addition to leuprolide. CRH-stimulated cortisol levels as well as peak cortisol and greatest cortisol excursion were significantly lower (pcortisol area under the curve was lower at a trend level (pcortisol : ACTH ratio, a measure of adrenal sensitivity, was lower during testosterone replacement (pcortisol. These data demonstrate that testosterone regulates CRH-stimulated HPA axis activity in men, with the divergent effects on ACTH and cortisol suggesting a peripheral (adrenal) locus for the suppressive effects on cortisol. Our results further demonstrate that the enhanced stimulated HPA axis activity previously described in young men compared with young women cannot be ascribed to an activational upregulation of the axis by testosterone.

  7. Cognitive enhancement as a pharmacotherapy target for stimulant addiction.

    Science.gov (United States)

    Sofuoglu, Mehmet

    2010-01-01

    No medications have been proven to be effective for cocaine and methamphetamine addiction. Attenuation of drug reward has been the main strategy for medications development, but this approach has not led to effective treatments. Thus, there is a need to identify novel treatment targets in addition to the brain reward system. To propose a novel treatment strategy for stimulant addiction that will focus on medications enhancing cognitive function and attenuating drug reward. Pre-clinical and clinical literature on potential use of cognitive enhancers for stimulant addiction pharmacotherapy was reviewed. Cocaine and methamphetamine users show significant cognitive impairments, especially in attention, working memory and response inhibition functions. The cognitive impairments seem to be predictive of poor treatment retention and outcome. Medications targeting acetylcholine and norepinephrine are particularly well suited for enhancing cognitive function in stimulant users. Many cholinergic and noradrenergic medications are on the market and have a good safety profile and low abuse potential. These include galantamine, donepezil and rivastigmine (cholinesterase inhibitors), varenicline (partial nicotine agonist), guanfacine (alpha(2)-adrenergic agonist) and atomoxetine (norepinephrine transporter inhibitor). Future clinical studies designed optimally to measure cognitive function as well as drug use behavior would be needed to test the efficacy of these cognitive enhancers for stimulant addiction.

  8. Emerging modalities in dysphagia rehabilitation: neuromuscular electrical stimulation.

    Science.gov (United States)

    Huckabee, Maggie-Lee; Doeltgen, Sebastian

    2007-10-12

    The aim of this review article is to advise the New Zealand medical community about the application of neuromuscular electrical stimulation (NMES) as a treatment for pharyngeal swallowing impairment (dysphagia). NMES in this field of rehabilitation medicine has quickly emerged as a widely used method overseas but has been accompanied by significant controversy. Basic information is provided about the physiologic background of electrical stimulation. The literature reviewed in this manuscript was derived through a computer-assisted search using the biomedical database Medline to identify all relevant articles published until from the initiation of the databases up to January 2007. The reviewers used the following search strategy: [(deglutition disorders OR dysphagia) AND (neuromuscular electrical stimulation OR NMES)]. In addition, the technique of reference tracing was used and very recently published studies known to the authors but not yet included in the database systems were included. This review elucidates not only the substantive potential benefit of this treatment, but also potential key concerns for patient safety and long term outcome. The discussion within the clinical and research communities, especially around the commercially available VitalStim stimulator, is objectively explained.

  9. Neuropsychology of selective attention and magnetic cortical stimulation.

    Science.gov (United States)

    Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V

    1996-01-01

    Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.

  10. Tactile thermal oral stimulation increases the cortical representation of swallowing

    Directory of Open Access Journals (Sweden)

    Suntrup Sonja

    2009-06-01

    Full Text Available Abstract Background Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Compared to the normal swallowing task a significantly increased bilateral cortical activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition. Conclusion In the present study functional cortical changes elicited by oral sensory stimulation could be demonstrated. We suggest that these results reflect short-term cortical plasticity of sensory swallowing areas. These findings facilitate our understanding of the role of cortical reorganization in dysphagia treatment and recovery.

  11. SBS [stimulated Brillouin scattering] pulse distortion in multimode optical fibers

    International Nuclear Information System (INIS)

    Smith, J.R.; Hawkins, R.J.; Laumann, C.W.; Hatch, J.

    1989-01-01

    We have observed sever temporal-pulse-shape distortion due to stimulated Brillouin scattering (SBS) in multimode optical fibers used to diagnose 351 m laser pulses on the Nova laser system. Our measurements can be fit by a basic model of SBS and provide a clear indication of the intensity and temporal regimes where significant SBS-induced temporal-pulse-shape distortion can be avoided. 15 refs., 3 figs., 1 tab

  12. Spinal cord stimulation for neuropathic pain: current perspectives

    OpenAIRE

    Wolter, Tilman

    2014-01-01

    Tilman Wolter Interdisciplinary Pain Centre, University Hospital Freiburg, Freiburg, Germany Abstract: Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, re...

  13. Control of Single Molecule Fluorescence Dynamics by Stimulated Emission Depletion

    OpenAIRE

    Marsh, R. J.; Osborne, M. A.; Bain, A. J.

    2003-01-01

    The feasibility of manipulating the single molecule absorption-emission cycle using picosecond stimulated emission depletion (STED) is investigated using a stochastic computer simulation. In the simulation the molecule is subjected to repeated excitation and depletion events using time delayed pairs of excitation (PUMP) and depletion (DUMP) pulses derived from a high repetition rate pulsed laser system. The model is used to demonstrate that a significant and even substantial reduction in the ...

  14. Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Michele Devido dos Santos

    2017-11-01

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS and sham, and analyze the results between these neuromodulation techniques; and secondly, through computational model on the cortex and surrounding tissues, to assess current flow distribution and responses among patients who received tDCS and presented different levels of results from naming tasks. DESIGN AND SETTING: Prospective, descriptive, qualitative and quantitative, double blind, randomized and placebo-controlled study conducted at Faculdade de Ciências Médicas da Santa Casa de São Paulo. METHODS: Patients with aphasia received one session of tDCS, TMS or sham stimulation. The time taken to name pictures and the response time were evaluated before and after neuromodulation. Selected patients from the first intervention underwent a computational model stimulation procedure that simulated tDCS. RESULTS: The results did not indicate any statistically significant differences from before to after the stimulation.The computational models showed different current flow distributions. CONCLUSIONS: The present study did not show any statistically significant difference between tDCS, TMS and sham stimulation regarding naming tasks. The patients’responses to the computational model showed different patterns of current distribution.

  15. Combined Dextroamphetamine and Transcranial Direct Current Stimulation in Poststroke Aphasia.

    Science.gov (United States)

    Keser, Zafer; Dehgan, Michelle Weber; Shadravan, Shaparak; Yozbatiran, Nuray; Maher, Lynn M; Francisco, Gerard E

    2017-10-01

    There is a growing need for various effective adjunctive treatment options for speech recovery after stroke. A pharmacological agent combined with noninvasive brain stimulation has not been previously reported for poststroke aphasia recovery. In this "proof of concept" study, we aimed to test the safety of a combined intervention consisting of dextroamphetamine, transcranial direct current stimulation, and speech and language therapy in subjects with nonfluent aphasia. Ten subjects with chronic nonfluent aphasia underwent two experiments where they received dextroamphetamine or placebo along with transcranial direct current stimulation and speech and language therapy on two separate days. The Western Aphasia Battery-Revised was used to monitor changes in speech performance. No serious adverse events were observed. There was no significant increase in blood pressure with amphetamine or deterioration in speech and language performance. Western Aphasia Battery-Revised aphasia quotient and language quotient showed a statistically significant increase in the active experiment. Comparison of proportional changes of aphasia quotient and language quotient in active experiment with those in placebo experiment showed significant difference. We showed that the triple combination therapy is safe and implementable and seems to induce positive changes in speech and language performance in the patients with chronic nonfluent aphasia due to stroke.

  16. Disturbance of visual search by stimulating to posterior parietal cortex in the brain using transcranial magnetic stimulation

    Science.gov (United States)

    Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo

    2009-04-01

    In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.

  17. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  18. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates.

    Science.gov (United States)

    Mueller, Jerel K; Grigsby, Erinn M; Prevosto, Vincent; Petraglia, Frank W; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V; Sommer, Marc A; Egner, Tobias; Platt, Michael L; Grill, Warren M

    2014-08-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.

  19. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    Science.gov (United States)

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  20. Unilateral phrenic nerve stimulation for neurogenic hypoventilation in Arnold Chiari malformation

    Directory of Open Access Journals (Sweden)

    Nitin Garg

    2013-01-01

    Full Text Available Long- term ventilator dependence in patients with neurogenic hypoventilation is associated with significant morbidity and restricts mobility. Diaphragmatic pacing by phrenic nerve stimulation (PNS is a viable alternative. This is a case report of patient with Arnold-Chiari malformation with extensive syrinx who had neurogenic hypoventilation during sleep even after foramen magnum decompression and resolution of the syrinx. Unilateral PNS was done using spinal cord stimulator. With intermittent stimulation for 8 h while asleep, patient could be weaned off the ventilator completely. At 2 years follow- up, patient is ambulant and has returned to his routine activities. PNS is a good treatment tool in patients with neurogenic hypoventilation. Spinal cord stimulator can be used with optimal results. This is first such reported case of using spinal cord stimulator for PNS from India.

  1. Comparison of the components of mindfulness on Stimulant and opiate addicts

    Directory of Open Access Journals (Sweden)

    Sayeadyounes Mohammadi

    2016-07-01

    Full Text Available Background: Phenomenon of addiction as one of the social problem have the high prevalence, especially among youth. Study and scientific cognition of mental and psychological components of addicts is very important in order to help them to compatibility and reduce their psychological problem. Therefore, the aim of present study was to comparison of mindfulness components on stimulant and opiate addicts. Materials & Methods: In this study 60 addicts (30 opiate addicts and 30 stimulants addicts were studied by using Five Factor Mindfulness Questionnaire (FFMQ. Data were analyzed by using multivariate analysis of variance (MANOVA. Results: findings showed that there was a significant difference between opiate and stimulant addicts in mindfulness components. Conclusion: results illustrated that the opiate addicts gained higher scores than stimulant addicts in mindfulness components. The results also emphasized that mindfulness components are as determinant variable in opiate and stimulant addicts pathology.

  2. [Stimulation at home and motor development among 36-month-old Mexican children].

    Science.gov (United States)

    Osorio, Erika; Torres-Sánchez, Luisa; Hernández, María Del Carmen; López-Carrillo, Lizbeth; Schnaas, Lourdes

    2010-01-01

    To identify the relationship between stimulation at home and motor development among 36 month-old children. The development of gross and fine motor skills of 169 infants (50.9% boys and 49.1% girls) was assessed at the age of 36 months with the Peabody Developmental Motor Scale. The quality of home stimulation was determined during a prior evaluation (at 30 months) by means of the HOME Scale. Total stimulation at home was significantly associated with better performance in the gross and fine motor areas. Particular aspects of this home stimulation were related to better gross and fine motor functions. Static balance and locomotion (gross motor skills) and grasping and visual-motor integration (fine motor skills) are associated with particular aspects of home stimulation, such as parent-child interaction, verbal reinforcement of the child's positive actions and providing the child with clear boundaries.

  3. Effects of oral and gastric stimulation on appetite and energy intake.

    Science.gov (United States)

    Wijlens, Anne G M; Erkner, Alfrun; Alexander, Erin; Mars, Monica; Smeets, Paul A M; de Graaf, Cees

    2012-11-01

    Appetite is regulated by many factors, including oro-sensory and gastric signals. There are many studies on contributions of and possible interaction between sensory and gastric stimulation, but there are few studies in humans using simultaneous oral and gastric stimulation. We investigated the effect of simultaneous, but independently manipulated, oral and gastric stimulation on appetite ratings and energy intake. We hypothesized that compared with no stimulation, oral and gastric stimulation would equally and additively decrease appetite ratings and energy intake. Healthy men (n = 26, 21 ± 2 years, BMI 22 ± 3 kg/m(2)) participated in a randomized crossover trial with four experimental conditions and a control condition. Experimental conditions consisted of oral stimulation, with either 1 or 8 min modified sham feeding (MSF), and gastric stimulation, with either 100 or 800 ml intragastrically infused liquid (isocaloric, 99 kcal, 100 ml/min). The control condition consisted of no oral or gastric stimulation. Outcome measures were energy intake 30 min after the treatment and appetite ratings. Compared with the control condition, energy intake decreased significantly after the 8 min/100 ml (19% lower, P = 0.001) and 8 min/800 ml conditions (15% lower, P = 0.02), but not after the 1 min/100 ml (14% lower, P = 0.06) and 1 min/800 ml conditions (10% lower, P = 0.39). There was no interaction of oral and gastric stimulation on energy intake. Hunger and fullness differed across all conditions (P ≤ 0.01). In conclusion, duration of oral exposure was at least as important in decreasing energy intake as gastric filling volume. Oral and gastric stimulation did not additively decrease energy intake. Longer oro-sensory stimulation, therefore, may be an important contributor to a lower energy intake.

  4. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    Science.gov (United States)

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  5. The Presence of Thyroid-Stimulation Blocking Antibody Prevents High Bone Turnover in Untreated Premenopausal Patients with Graves' Disease.

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    Full Text Available Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93 and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83 and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10. From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII to the blocking activity group were further classified as stimulating activity-matched control (n = 11. Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.

  6. The Presence of Thyroid-Stimulation Blocking Antibody Prevents High Bone Turnover in Untreated Premenopausal Patients with Graves' Disease.

    Science.gov (United States)

    Cho, Sun Wook; Bae, Jae Hyun; Noh, Gyeong Woon; Kim, Ye An; Moon, Min Kyong; Park, Kyoung Un; Song, Junghan; Yi, Ka Hee; Park, Do Joon; Chung, June-Key; Cho, Bo Youn; Park, Young Joo

    2015-01-01

    Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.

  7. Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jungsoo Lee

    2018-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS has been used for the modulation of stroke patients’ motor function. Recently, more challenging approaches have been studied. In this study, simultaneous stimulation using both rTMS and tDCS (dual-mode stimulation over bilateral primary motor cortices (M1s was investigated to compare its modulatory effects with single rTMS stimulation over the ipsilesional M1 in subacute stroke patients. Twenty-four patients participated; 12 participants were assigned to the dual-mode stimulation group while the other 12 participants were assigned to the rTMS-only group. We assessed each patient’s motor function using the Fugl-Meyer assessment score and acquired their resting-state fMRI data at two times: prior to stimulation and 2 months after stimulation. Twelve healthy subjects were also recruited as the control group. The interhemispheric connectivity of the contralesional M1, interhemispheric connectivity between bilateral hemispheres, and global efficiency of the motor network noticeably increased in the dual-mode stimulation group compared to the rTMS-only group. Contrary to the dual-mode stimulation group, there was no significant change in the rTMS-only group. These data suggested that simultaneous dual-mode stimulation contributed to the recovery of interhemispheric interaction than rTMS only in subacute stroke patients. This trial is registered with NCT03279640.

  8. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    Science.gov (United States)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  9. Enhanced Motor Skill Acquisition in the Non-dominant Upper Extremity using Intermittent Theta Burst Stimulation and Transcranial Direct Current Stimulation

    Directory of Open Access Journals (Sweden)

    Ray eButts

    2014-06-01

    Full Text Available Individuals suffering from motor impairments often require physical therapy (PT to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS and bihemispheric transcranial direct current stimulation may increase the speed and extent of motor learning/relearning and that this increase may be related to brain derived neurotrophic factor (BDNF. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-hours, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15 or control group (n = 12. iTBS (20 trains of 10 pulse triplets each delivered at 80% AMT / 50Hz over 191.84 seconds and bihemispheric tDCS (1.0 ma for 20 minutes were used as a primer to, and in conjunction with, 20 minutes of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function Test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-hours post training (p = 0.055, and were significant at 7-days post training (p < 0.05. These results suggest that the combined iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations.

  10. Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation.

    Science.gov (United States)

    Butts, Raymond J; Kolar, Melissa B; Newman-Norlund, Roger D

    2014-01-01

    Individuals suffering from motor impairments often require physical therapy (PT) to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS) and bihemispheric transcranial direct current stimulation (tDCS) may increase the speed and extent of motor learning/relearning. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-h, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15) or control group (n = 12). iTBS (20 trains of 10 pulse triplets each delivered at 80% active motor threshold (AMT) / 50 Hz over 191.84 s) and bihemispheric tDCS (1.0 ma for 20 min) were used as a primer to, and in conjunction with, 20 min of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function (JTHF) test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-h post training (p = 0.055), and were significant at 7-days post training (p iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations.

  11. Computational modeling of epidural cortical stimulation

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  12. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  13. Augmenting nerve regeneration with electrical stimulation.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Chan, K M

    2008-12-01

    Poor functional recovery after peripheral nerve injury is generally attributed to irreversible target atrophy. In rats, we addressed the functional outcomes of prolonged neuronal separation from targets (chronic axotomy for up to 1 year) and atrophy of Schwann cells (SCs) in distal nerve stumps, and whether electrical stimulation (ES) accelerates axon regeneration. In carpal tunnel syndrome (CTS) patients with severe axon degeneration and release surgery, we asked whether ES accelerates muscle reinnervation. Reinnervated motor unit (MUs) and regenerating neuron numbers were counted electrophysiologically and with dye-labeling after chronic axotomy, chronic SC denervation and after immediate nerve repair with and without trains of 20 Hz ES for 1 hour to 2 weeks in rats and in CTS patients. Chronic axotomy reduced regenerative capacity to 67% and was alleviated by exogenous growth factors. Reduced regeneration to approximately 10% by SC denervation atrophy was ameliorated by forskolin and transforming growth factor-beta SC reactivation. ES (1 h) accelerated axon outgrowth across the suture site in association with elevated neuronal neurotrophic factor and receptors and in patients, promoted the full reinnervation of thenar muscles in contrast to a non-significant increase in MU numbers in the control group. The rate limiting process of axon outgrowth, progressive deterioration of both neuronal growth capacity and SC support, but not irreversible target atrophy, account for observed poor functional recovery after nerve injury. Brief ES accelerates axon outgrowth and target muscle reinnervation in animals and humans, opening the way to future clinical application to promote functional recovery.

  14. Stimulation of functional vision in children with perinatal brain damage.

    Science.gov (United States)

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  15. Intracranial self-stimulation to evaluate abuse potential of drugs.

    Science.gov (United States)

    Negus, S Stevens; Miller, Laurence L

    2014-07-01

    Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Nonpainful remote electrical stimulation alleviates episodic migraine pain.

    Science.gov (United States)

    Yarnitsky, David; Volokh, Lana; Ironi, Alon; Weller, Boaz; Shor, Merav; Shifrin, Alla; Granovsky, Yelena

    2017-03-28

    To evaluate the efficacy of remote nonpainful electrical upper arm skin stimulation in reducing migraine attack pain. This is a prospective, double-blinded, randomized, crossover, sham-controlled trial. Migraineurs applied skin electrodes to the upper arm soon after attack onset for 20 minutes, at various pulse widths, and refrained from medications for 2 hours. Patients were asked to use the device for up to 20 attacks. In 71 patients (299 treatments) with evaluable data, 50% pain reduction was obtained for 64% of participants based on best of 200-μs, 150-μs, and 100-μs pulse width stimuli per individual vs 26% for sham stimuli. Greater pain reduction was found for active stimulation vs placebo; for those starting at severe or moderate pain, reduction (1) to mild or no pain occurred in 58% (25/43) of participants (66/134 treatments) for the 200-μs stimulation protocol and 24% (4/17; 8/29 treatments) for placebo ( p = 0.02), and (2) to no pain occurred in 30% (13/43) of participants (37/134 treatments) and 6% (1/17; 5/29 treatments), respectively ( p = 0.004). Earlier application of the treatment, within 20 minutes of attack onset, yielded better results: 46.7% pain reduction as opposed to 24.9% reduction when started later ( p = 0.02). Nonpainful remote skin stimulation can significantly reduce migraine pain, especially when applied early in an attack. This is presumably by activating descending inhibition pathways via the conditioned pain modulation effect. This treatment may be proposed as an attractive nonpharmacologic, easy to use, adverse event free, and inexpensive tool to reduce migraine pain. NCT02453399. This study provides Class III evidence that for patients with an acute migraine headache, remote nonpainful electrical stimulation on the upper arm skin reduces migraine pain. © 2017 American Academy of Neurology.

  17. Technical review of the high energy gas stimulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haney, B.; Cuthill, D. [Computalog Ltd., Calgary, AB (Canada)

    1997-08-01

    High Energy Gas Stimulation (HEGS) or propellant stimulation is a process that enhances production of oil wells by decreasing wellbore damage and increasing near wellbore permeability. The technique has been used on about 7,000 wells with varying results. The HEGS tool is a cast cylinder of solid rocket propellant with a central ignition system. The propellant is fired and as it burns it produces a pressure load on the formation, increasing fracture volume which enhances the flow channels. Background information on the development and application of this stimulation technique was provided. The introduction of fractures around a wellbore is dependent on the pressure loading rate and the dynamic response of the rock. Propellant stimulation relies on controlling the pressure-time behaviour to maximize fracture growth by fluid pressurization. The process is composed of 3 sequential phases: (1) wellbore pressurization, (2) fracture initiation, and (3) fracture extension. A full description of each of these phases was provided. Geologic and well-tool factors that have a significant influence on the fracturing process such as in-situ stress, natural fractures and flaws, formation mechanical properties, formation fluid and flow properties, formation thermal properties, and wellbore, tool, and tamp configuration, were also reviewed. The many applications for HEGS were presented. It was emphasized that the success of HEGS is dependent on pre-stimulation problem evaluation and on proper charge design. Since HEGS will decrease near-wellbore restrictions and initiate formation breakdown, it should only be used in cases where this will be beneficial to the well. Careful attention to engineering will optimize results. 21 refs., 13 figs.

  18. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  19. Optimal stimulation as theoretical basis of hyperactivity.

    Science.gov (United States)

    Zentall, Sydney

    1975-07-01

    Current theory and practice in the clinical and educational management of hyperactive children recommend reduction of environmental stimulation, assuming hyperactive and distractable behaviors to be due to overstimulation. This paper reviews research suggesting that hyperactive behavior may result from a homeostatic mechanism that functions to increase stimulation for a child experienceing insufficient sensory stimulation. It is suggested that the effectiveness of drug and behavior therapies, as well as evidence from the field of sensory deprivation, further support the theory of a homeostatic mechanism that attempts to optimize sensory input.

  20. Radioimmunoassay for thyroid-stimulating hormone (TSH)

    International Nuclear Information System (INIS)

    Blakemore, J.I.; Lewin, N.; Burgett, M.W.

    1978-01-01

    This invention provides a method for the radioimmunoassay of thyroid-stimulating hormone which utilizes a rapid and convenient version of a double antibody procedure. Highly purified second antibody is bound, by means of covalent bonds, to hydrolyzed polyacrylamide particles to produce a two-phase system. The solid phase comprises immobilized second antibody bound to the reaction product of labeled and unlabeled thyroid-stimulating hormone with the first antibody (first antibody-antigen complex) and the liquid phase comprises free (unbound) labeled and unlabeled thyroid-stimulating hormone. The two phases are separated and the radioactivity of either phase is measured

  1. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  2. Elevated progesterone during ovarian stimulation for IVF

    DEFF Research Database (Denmark)

    Al-Azemi, M; Kyrou, D; Kolibianakis, E M

    2012-01-01

    of Medline and PubMed were searched to identify relevant publications. Good-quality evidence supports the negative impact on endometrial receptivity of elevated progesterone concentrations at the end of the follicular phase in ovarian stimulation. Future trials should document the cause and origin...... phase in ovarian stimulation. The databases of Medline and PubMed were searched to identify relevant publications. Good-quality evidence supports the negative impact on endometrial receptivity of elevated progesterone concentrations at the end of follicular phase in ovarian stimulation. Future trials...

  3. Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with parkinsonian disorders.

    Science.gov (United States)

    Fischer, Julia; Schwiecker, Kati; Bittner, Verena; Heinze, Hans-Jochen; Voges, Jürgen; Galazky, Imke; Zaehle, Tino

    2015-07-01

    Low-frequency electrical stimulation of the pedunculopontine nucleus (PPN) is a therapeutic approach aiming to improve motor symptoms such as freezing of gate and postural instability in parkinsonian disorders. Because the PPN is a component of the reticular activating system, we tested whether PPN stimulation directly affects attention and consciousness. Eight patients with parkinsonian disorders and implanted with electrodes in the bilateral PPN underwent computerized assessment of attention. Performance in 3 standard reaction time (RT) tasks was assessed at 5 different stimulation frequencies in 5 consecutive sessions. Stimulation of the PPN at low (8 Hz) and therapeutic (20 Hz) frequencies led to a significant improvement of performance in a simple RT task. Patients' RTs were significantly faster at stimulation frequencies of 8 Hz and 20 Hz relative to no stimulation. Stimulation did not affect patients' performance in more complex attentional tasks. Low-frequent stimulation of PPN improves basal attentional processing in patients with parkinsonian disorders, leading to an improved tonic alertness. As successful performance in this task requires the intrinsic ability to build up and keep a certain level of attention, this might be interpreted as attentional augmentation related to stimulation features. Stimulation had no effect on more complex attentional processing. Our results suggest an influence of the PPN on certain aspects of attention, supporting attentional augmentation as one possible mechanism to improve motor action and gait in patients with parkinsonian disorders. (c) 2015 APA, all rights reserved).

  4. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Science.gov (United States)

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P hemiparesis more than peroneal FES alone. PMID:23097635

  5. Augmented brain function by coordinated reset stimulation with slowly varying sequences

    Directory of Open Access Journals (Sweden)

    Magteld eZeitler

    2015-03-01

    Full Text Available Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e. an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS. In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e. CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.

  6. Augmented brain function by coordinated reset stimulation with slowly varying sequences.

    Science.gov (United States)

    Zeitler, Magteld; Tass, Peter A

    2015-01-01

    Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.

  7. Random-start ovarian stimulation in women desiring elective cryopreservation of oocytes.

    Science.gov (United States)

    Pereira, Nigel; Voskuilen-Gonzalez, Anna; Hancock, Kolbe; Lekovich, Jovana P; Schattman, Glenn L; Rosenwaks, Zev

    2017-10-01

    The current study investigates the utility of random-start ovarian stimulation in women desiring elective oocyte cryopreservation. Women in the study cohort underwent random-start ovarian stimulation, and were subdivided based on the phase of the menstrual cycle that ovarian stimulation began, i.e. early follicular, late follicular or luteal phase. Women undergoing conventional cycle day (CD) 2/3 ovarian stimulation start were controls. A total of 1302 women were included - 859 (66.0%) conventional CD 2/3, 342 (26.3%) early follicular, 42 (3.2%) late follicular and 59 (4.5%) luteal ovarian stimulation starts. There was no difference in the demographics or baseline ovarian stimulation characteristics. The duration of ovarian stimulation (11 versus 9 days; P start group. The number of total and MII oocytes in the control and random-start groups was similar. A non-significant trend towards increased cycle cancellation was noted in the late follicular start group (7.1%). Study findings indicate the number of total and MII oocytes derived from random-start protocols initiated during any phase of the menstrual cycle is similar to conventional CD 2/3 ovarian stimulation start protocols in women desiring elective oocyte cryopreservation. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (. In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.

  9. The effects of sustained manual pressure stimulation according to Vojta Therapy on heart rate variability.

    Science.gov (United States)

    Opavsky, Jaroslav; Slachtova, Martina; Kutin, Miroslav; Hok, Pavel; Uhlir, Petr; Opavska, Hana; Hlustik, Petr

    2018-05-23

    The physiotherapeutic technique of Vojta reflex locomotion is often accompanied by various autonomic activity changes and unpleasant sensations. It is unknown whether these effects are specific to Vojta Therapy. Therefore, the aim of this study was to compare changes in cardiac autonomic control after Vojta reflex locomotion stimulation and after an appropriate sham stimulation. A total of 28 young healthy adults (20.4 - 25.7 years) were enrolled in this single-blind randomized cross-over study. Participants underwent two modes of 20-minute sustained manual pressure stimulation on the surface of the foot on two separate visits. One mode used manual pressure on the lateral heel, i.e., in a zone employed in the Vojta Therapy (active stimulation). The other mode used pressure on the lateral ankle (control), in an area not included among the active zones used by Vojta Therapy and whose activation does not evoke manifestations of reflex locomotion. Autonomic nervous system activity was evaluated using spectral analysis of heart rate variability before and after the intervention. The active stimulation was perceived as more unpleasant than the control stimulation. Heart rate variability parameters demonstrated almost identical autonomic responses after both stimulation types, showing either modest increase in parasympathetic activity, or increased heart rate variability with similar contribution of parasympathetic and sympathetic activity. The results demonstrate changes of cardiac autonomic control in both active and control stimulation, without evidence for a significant difference between the two.

  10. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  11. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  12. Effect of Color Light Stimulation Using LED on Sleep Induction Time

    Directory of Open Access Journals (Sweden)

    Seonjin Lee

    2017-01-01

    Full Text Available The effects of color are already being used widely. For this reason, in this study, an attempt was made to use such effects of color to examine the changes in sleep onset through the use of the preferred and nonpreferred color light stimulation. Color light stimulations were randomly presented to the subjects, and based on these colors, the changes in sleep onset were examined through the EEG. Also, to quantify the physiological changes that were caused by each color light stimulation, the changes in the HRV were examined through ECG to determine the level of activation of the autonomous nervous system. The results showed that sleep onset time was changed based on the light stimulation. The result of the EEG analysis showed that sleep onset time was most significantly shortened in preferred color light stimulation. Also, the result of HRV was the fastest change about both the time domain and the frequency domain in the preferred color light stimulation. Therefore, because the preferred color light stimulation activated the parasympathetic nervous system, sleep was induced quickly. Also, by simply using the HRV, the differences in the index of HRV showed changes of sleep onset according to the color light stimulation.

  13. Collegiate misuse of prescription stimulants: examining differences in self-worth.

    Science.gov (United States)

    Giordano, Amanda L; Prosek, Elizabeth A; Reader, Emily A; Bevly, Cynthia M; Turner, Kori D; LeBlanc, Yvette N; Vera, Ryan A; Molina, Citlali E; Garber, Sage Ann

    2015-02-01

    Prescription stimulant medication is commonly used to treat attention-deficit hyperactivity disorder (ADHD). However, stimulant medication misuse is a prevalent problem among the college population. There is limited research on psychological factors associated with collegiate nonmedical stimulant misuse. To examine the association between college students' self-worth and stimulant medication misuse. A quantitative study implemented during the 2013-2014 academic year in which we utilized a convenience sample of undergraduate students at a public university. College students (N = 3,038) completed an electronic survey packet including a stimulant use index and the Contingencies of Self-Worth Scale. We conducted descriptive discriminant analysis (DDA) to measure the associations between four groups: Nonusers, Appropriate Users, Nonprescribed Misusuers, and Prescribed Users. Significant differences in contingencies of self-worth existed between the four groups of students. Specifically, external contingencies of self-worth, such as appearance and approval, were associated with stimulant medication misuse, whereas, internal contingencies of self-worth, such as God's love and virtue, were associated with nonuse and appropriate prescribed use. Conclusions/Importance: The findings of the current study suggested contingencies of self-worth partially explain prescription stimulant misuse among the collegiate population. Addressing self-worth may be helpful in the treatment of stimulant misuse with college students.

  14. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines.

    Directory of Open Access Journals (Sweden)

    Bao G Vu

    Full Text Available BACKGROUND: Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. METHODOLOGY/PRINCIPAL FINDINGS: Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. CONCLUSIONS/SIGNIFICANCE: Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to

  15. Comparison of side effects of pentagastrin test and calcium stimulation test in patients with increased basal calcitonin concentration: the gender-specific differences.

    Science.gov (United States)

    Ubl, Philipp; Gincu, Tatiana; Keilani, Mohammad; Ponhold, Lothar; Crevenna, Richard; Niederle, Bruno; Hacker, Marcus; Li, Shuren

    2014-08-01

    The aim of this study was to compare the side effects of the pentagastrin test and the calcium stimulation test in patients with increased basal calcitonin concentration, especially the gender-specific differences of side effects. A total of 256 patients (123 females and 133 males, mean age of 56 ± 27 years, range 21-83 years) had both pentagastrin and calcium stimulation tests. All patients filled in a questionnaire regarding the side effects within 30 min after completion of the stimulation tests. The differences of side effects between female and male patients as well as between the pentagastrin stimulation test and the calcium stimulation test were evaluated. Warmth feeling was the most frequent occurring side effect in all patients who had both pentagastrin and calcium stimulation tests, followed by nausea, altered gustatory sensation, and dizziness. The incidences of urgency to micturate (p stimulation test. Significant higher incidences of urgency to micturate (p stimulation test as compared with those by pentagastrin test in female patients. The incidences of nausea (p stimulation test than by calcium stimulation test. There is a significant gender-specific difference in side effects induced by calcium stimulation test. Female patients have fewer side effects by pentagastrin test than by calcium stimulation test. Male patients may tolerate the calcium stimulation test better than the pentagastrin test.

  16. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    Science.gov (United States)

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  17. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson's disease patients.

    Science.gov (United States)

    Samotus, Olivia; Parrent, Andrew; Jog, Mandar

    2018-02-14

    Benefits of dopaminergic therapy and deep brain stimulation are limited and unpredictable for axial symptoms in Parkinson's disease. Dorsal spinal cord stimulation may be a new therapeutic approach. The objective of this study was to investigate the therapeutic effect of spinal cord stimulation on gait including freezing of gait in advanced PD patients. Five male PD participants with significant gait disturbances and freezing of gait underwent midthoracic spinal cord stimulation. Spinal cord stimulation combinations (200-500 μs/30-130 Hz) at suprathreshold intensity were tested over a 1- to 4-month period, and the effects of spinal cord stimulation were studied 6 months after spinal cord stimulation surgery. Protokinetics Walkway measured gait parameters. Z scores per gait variable established each participant's best spinal cord stimulation setting. Timed sit-to-stand and automated freezing-of-gait detection using foot pressures were analyzed. Freezing of Gait Questionnaire (FOG-Q), UPDRS motor items, and activities-specific balance confidence scale were completed at each study visit. Spinal cord stimulation setting combinations of 300-400 μs/30-130 Hz provided gait improvements. Although on-medication/on-stimulation at 6 months, mean step length, stride velocity, and sit-to-stand improved by 38.8%, 42.3%, and 50.3%, respectively, mean UPDRS, Freezing of Gait Questionnaire, and activities-specific balance confidence scale scores improved by 33.5%, 26.8%, and 71.4%, respectively. The mean number of freezing-of-gait episodes reduced significantly from 16 presurgery to 0 at 6 months while patients were on levodopa and off stimulation. By using objective measures to detect dynamic gait characteristics, the therapeutic potential of spinal cord stimulation was optimized to each participant's characteristics. This pilot study demonstrated the safety and significant therapeutic outcome of spinal cord stimulation in advanced PD patients, and thus a larger and longer

  18. Model-based Vestibular Afferent Stimulation: Modular Workflow for Analyzing Stimulation Scenarios in Patient Specific and Statistical Vestibular Anatomy

    Directory of Open Access Journals (Sweden)

    Michael Handler

    2017-12-01

    Full Text Available Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i the transformation of labeled datasets to a tetrahedra mesh, (ii nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii inclusion of arbitrary electrode designs, (iv simulation of quasistationary potential distributions, and (v analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.

  19. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Tonya M Moloney

    Full Text Available BACKGROUND: The primary motor cortex (M1 is an effective target of non-invasive cortical stimulation (NICS for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE: Here we investigate whether transcranial direct current stimulation (tDCS primed 1 Hz repetitive transcranial magnetic stimulation (rTMS modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. METHOD: 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. RESULTS: Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (p<0.001 with a parallel increase in pressure pain thresholds (p<0.01. In contrast, anodal tDCS-primed 1 Hz-rTMS resulted in a corresponding decrease in cortical excitability (p<0.05, with no significant effect on pressure pain. CONCLUSION: This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  20. Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Science.gov (United States)

    Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746

  1. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Directory of Open Access Journals (Sweden)

    David B Green

    Full Text Available One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus. By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG, hypothalamus, amygdala, and anterior cingulate cortex (ACC. Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  2. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Science.gov (United States)

    Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  3. Anal sphincter responses after perianal electrical stimulation

    DEFF Research Database (Denmark)

    Pedersen, Ejnar; Klemar, B; Schrøder, H D

    1982-01-01

    By perianal electrical stimulation and EMG recording from the external anal sphincter three responses were found with latencies of 2-8, 13-18 and 30-60 ms, respectively. The two first responses were recorded in most cases. They were characterised by constant latency and uniform pattern, were...... not fatigued by repeated stimulation, were most dependent on placement of stimulating and recording electrodes, and always had a higher threshold than the third response. The third response was constantly present in normal subjects. It had the longest EMG response and the latency decreased with increasing...... stimulation to a minimum of 30-60 ms. This response represented the clinical observable spinal reflex, "the classical anal reflex". The latencies of the two first responses were so short that they probably do not represent spinal reflexes. This was further supported by the effect of epidural anaesthesia which...

  4. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  5. TSH (Thyroid-stimulating hormone) test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Thyroid-Stimulating Hormone, Serum; p. 484. ...

  6. On elementary act of stimulated emission

    International Nuclear Information System (INIS)

    Buzek, V.; Grigorijev, V.I.

    1984-11-01

    A microscopical description of stimulated emission in the framework of the modified Lee model is given. Besides this, the exact solutions in all sectors (n photons + atom) are obtained in the proposed model. (author)

  7. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  8. Aromatase inhibitors in stimulated IVF cycles

    DEFF Research Database (Denmark)

    Papanikolaou, Evangelos G; Polyzos, Nikolaos P; Al Humaidan, Peter Samir Heskjær

    2011-01-01

    are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears...... to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing...... to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels....

  9. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  10. Thermally stimulated exoelectron emission from solid Xe

    International Nuclear Information System (INIS)

    Khyzhniy, I.V.; Grigorashchenko, O.N.; Savchenko, E.V.; Ponomarev, A.N.; Bondybey, V.E.

    2007-01-01

    Thermally-stimulated emission of exoelectrons and photons from solid Xe pre-irradiated by low-energy electrons were studied. A high sensitivity of thermally-stimulated luminescence (TSL) and thermally-stimulated exoelectron emission (TSEE) to sample prehistory was demonstrated. It was shown that electron traps in unannealed samples are characterized by much broader distribution of trap levels in comparison with annealed samples and their concentration exceeds in number that in annealed samples. Both phenomena, TSL and TSEE, were found to be triggered by release of electrons from the same kind of traps. The data obtained suggest a competition between two relaxation channels: charge recombination and electron transport terminated by TSL and TSEE. It was found that TSEE predominates at low temperatures while at higher temperatures TSL prevails. An additional relaxation channel, a photon-stimulated exoelectron emission pre-irradiated solid Xe, was revealed

  11. Stimulated Raman scattering: old physics, new applications.

    Science.gov (United States)

    Yakovlev, Vladislav V; Petrov, Georgi I; Zhang, Hao F; Noojin, Gary D; Denton, Michael L; Thomas, Robert J; Scully, Marlan O

    2009-10-01

    Stimulated Raman scattering as a promising way of expanding the tunability of ultrafast lasers and as an exciting new biomedical imaging modality capable of selective excitation and chemically-specific diagnostics of molecular species.

  12. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  13. Growth hormone stimulation test - series (image)

    Science.gov (United States)

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. In children, GH has growth-promoting effects on the body. It stimulates the ...

  14. 21 CFR 874.1800 - Air or water caloric stimulator.

    Science.gov (United States)

    2010-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...

  15. Physiological Effects of Visual Stimulation with Forest Imagery

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2018-01-01

    Full Text Available This study was aimed to clarify the physiological effects of visual stimulation using forest imagery on activity of the brain and autonomic nervous system. Seventeen female university students (mean age, 21.1 ± 1.0 years participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb concentrations were measured in the left and right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV was used as an indicator of autonomic nervous activity. The high-frequency (HF component of HRV, which reflected parasympathetic nervous activity, and the ratio of low-frequency (LF and high-frequency components (LF/HF, which reflected sympathetic nervous activity, were measured. Forest and city (control images were used as visual stimuli using a large plasma display window. After sitting at rest viewing a gray background for 60 s, participants viewed two images for 90 s. During rest and visual stimulation, HRV and oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of feelings was performed using a modified semantic differential (SD method. The results showed that visual stimulation with forest imagery induced (1 a significant decrease in oxy-Hb concentrations in the right prefrontal cortex and (2 a significant increase in perceptions of feeling “comfortable,” “relaxed,” and “natural.”

  16. [Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?

    Science.gov (United States)

    Nouhaud, C; Sherrard, R M; Belmin, J

    2017-03-01

    Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  17. Sensory stimulation programme to improve recovery in comatose patients.

    Science.gov (United States)

    Oh, Hyunsoo; Seo, Whasook

    2003-05-01

    The purpose of this study was to examine whether positive changes in consciousness level after applying a sensory stimulation programme exceed natural recovery. A single experimental group interrupted time series design was used. Subjects were brain-injured patients who were hospitalized at a university hospital in South Korea. The sensory stimulation programme was composed of auditory, visual, olfactory, gustatory, tactile and physical stimulation. Levels of consciousness were evaluated using the Glasgow Coma Scale. The intervention was carried out twice, first for 4 weeks, then a recession period was allowed for 4 weeks, and immediately after this the second intervention was implemented for 4 weeks. Results showed significant alterations in consciousness levels 2 weeks after starting intervention 1. This effect increased gradually and was maintained for 3-4 weeks. However, consciousness levels began to decrease 2 weeks after terminating intervention 1 and this decrement continued until starting intervention 2. The pattern of improvement of intervention 1 could be represented as a gradual onset and temporary duration model. At the beginning of intervention 2, consciousness levels were maintained at a low level. However, they began to increase again after 2 weeks and this increment continued even after terminating intervention 2. Therefore, the effect of intervention 2 could be represented as a gradual onset and permanent duration model. These results suggest that an intervention programme should be applied for more than 1 month to achieve a permanent effect on consciousness levels and that at least 2 weeks are required for any significant effect.

  18. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  19. Post training REMs coincident auditory stimulation enhances memory in humans.

    Science.gov (United States)

    Smith, C; Weeden, K

    1990-06-01

    Sleep activity was monitored in 20 freshman college students for two consecutive nights. Subjects were assigned to 4 equal groups and all were asked to learn a complex logic task before bed on the second night. Two groups of subjects learned the task with a constant clicking noise in the background (cued groups), while two groups simply learned the task (non cued). During the night, one cued and one non cued group were presented with auditory clicks during REM sleep such as to coincide with all REMs of at least 100 microvolts. The second cued group was given auditory clicks during REM sleep, but only during the REMs "quiet" times. The second non-cued control group was never given any nighttime auditory stimulations. The cued REMs coincident group showed a significant 23% improvement in task performance when tested one week later. The non cued REMs coincident group showed only an 8.8% improvement which was not significant. The cued REMs quiet and non-stimulated control groups showed no change in task performance when retested. The results were interpreted as support for the idea that the cued auditory stimulation induced a "recall" of the learned material during the REM sleep state in order for further memory processing to take place.

  20. Impact of Prefrontal Theta Burst Stimulation on Clinical Neuropsychological Tasks

    Directory of Open Access Journals (Sweden)

    Raquel Viejo-Sobera

    2017-08-01

    Full Text Available Theta burst stimulation (TBS protocols hold high promise in neuropsychological rehabilitation. Nevertheless, their ability to either decrease (continuous, cTBS or increase (intermittent, iTBS cortical excitability in areas other than the primary motor cortex, and their consistency modulating human behaviors with clinically relevant tasks remain to be fully established. The behavioral effects of TBS over the dorsolateral prefrontal cortex (dlPFC are particularly interesting given its involvement in working memory (WM and executive functions (EF, often impaired following frontal brain damage. We aimed to explore the ability of cTBS and iTBS to modulate WM and EF in healthy individuals, assessed with clinical neuropsychological tests (Digits Backward, 3-back task, Stroop Test, and Tower of Hanoi. To this end, 36 participants were assessed using the four tests 1 week prior to stimulation and immediately following a single session of either cTBS, iTBS, or sham TBS, delivered to the left dlPFC. No significant differences were found across stimulation conditions in any of the clinical tasks. Nonetheless, in some of them, active stimulation induced significant pre/post performance modulations, which were not found for the sham condition. More specifically, sham stimulation yielded improvements in the 3-back task and the Color, Color-Word, and Interference Score of the Stroop Test, an effect likely caused by task practice. Both, iTBS and cTBS, produced improvements in Digits Backward and impairments in 3-back task accuracy. Moreover, iTBS increased Interference Score in the Stroop Test in spite of the improved word reading and impaired color naming, whereas cTBS decreased the time required to complete the Tower of Hanoi. Differing from TBS outcomes reported for cortico-spinal measures on the primary motor cortex, our analyses did not reveal any of the expected performance differences across stimulation protocols. However, if one considers independently

  1. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  2. Blood pressure control with selective vagal nerve stimulation and minimal side effects

    Science.gov (United States)

    Plachta, Dennis T. T.; Gierthmuehlen, Mortimer; Cota, Oscar; Espinosa, Nayeli; Boeser, Fabian; Herrera, Taliana C.; Stieglitz, Thomas; Zentner, Joseph

    2014-06-01

    Objective. Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. Approach. We present a novel method for selective VN stimulation to reduce BP without the aforementioned side effects. Baroreceptor compound activity of rat VN (n = 5) was localized using a multichannel cuff electrode, true tripolar recording and a coherent averaging algorithm triggered by BP or electrocardiogram. Main results. Tripolar stimulation over electrodes near the barofibers reduced the BP without triggering significant bradycardia and bradypnea. The BP drop was adjusted to 60% of the initial value by varying the stimulation pulse width and duration, and lasted up to five times longer than the stimulation. Significance. The presented method is robust to impedance changes, independent of the electrode's relative position, does not compromise the nerve and can run on implantable, ultra-low power signal processors.

  3. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation

    Directory of Open Access Journals (Sweden)

    Sho Kojima

    2018-01-01

    Full Text Available We investigated the effects of different patterns of mechanical tactile stimulation (MS on corticospinal excitability by measuring the motor-evoked potential (MEP. This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.

  4. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation.

    Science.gov (United States)

    Kojima, Sho; Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Sasaki, Ryoki; Nakagawa, Masaki; Kirimoto, Hikari; Tamaki, Hiroyuki

    2018-01-01

    We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5-20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.

  5. Acupoints Stimulation for Anxiety and Depression in Cancer Patients: A Quantitative Synthesis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available This study aims at concluding the current evidence on the therapeutic effects of acupoints stimulation for cancer patients with anxiety and depression. Randomized controlled trials using acupoints stimulation for relieving anxiety and/or depression in cancer patients were searched, and 11 studies were finally included, of which eight trials compared acupoints stimulation with standard methods of treatment/care, and acupoints stimulation showed significantly better effects in improving depression than using standard methods of treatment/care. Four studies compared true acupoints stimulation with sham methods, and no significant differences can be found between groups for either depression or anxiety, although the pooled effects still favored true intervention. For the five studies that evaluated sleep quality, the results were conflicting, with three supporting the superiority of acupoints stimulation in improving sleep quality and two demonstrating no differences across groups. Acupoints stimulation seems to be an effective approach in relieving depression and anxiety in cancer patients, and placebo effects may partially contribute to the benefits. However, the evidence is not conclusive due to the limited number of included studies and the clinical heterogeneity identified among trials. More rigorous designed randomized, sham-controlled studies are necessary in future research.

  6. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  7. Antinociception induced by stimulating amygdaloid nuclei in rats: changes produced by systemically administered antagonists

    Directory of Open Access Journals (Sweden)

    M.A. Oliveira

    1998-05-01

    Full Text Available The antinociceptive effects of stimulating the medial (ME and central (CE nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.

  8. Effect of Low-Level Laser Stimulation on EEG Power in Normal Subjects with Closed Eyes

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2013-01-01

    Full Text Available In a previous study, we found that the low-level laser (LLL stimulation at the palm with a frequency of 10 Hz was able to induce significant brain activation in normal subjects with opened eyes. However, the electroencephalography (EEG changes to LLL stimulation in subjects with closed eyes have not been studied. In the present study, the laser array stimulator was applied to deliver insensible laser stimulations to the palm of the tested subjects with closed eyes (the laser group. The EEG activities before, during, and after the laser stimulation were collected. The EEG amplitude powers of each EEG frequency band at 19 locations were calculated. These power data were then analyzed by SPSS software using repeated-measure ANOVAs and appropriate posthoc tests. We found a pronounced decrease in the EEG power in alpha-bandwidth during laser simulation and then less decrease in the EEG power in delta-bandwidth in normal subjects with laser stimulation. The EEG power in beta-bandwidth in the right occipital area also decreased significantly in the laser group. We suggest that LLL stimulation might be conducive to falling into sleep in patients with sleep problems.

  9. Use of basal stimulation at anesthesiology department

    OpenAIRE

    MARKOVÁ, Alena

    2012-01-01

    The theme ?The Use of Basal Stimulation at the Anaesthesiology and Resuscitation Department? was chosen in order to map out the use of this nursing method by the nurses and the staff who I cooperate with. The theoretical part deals with the environment at the Anaesthesiology and Resuscitation Department where the basal stimulation is used and also with special characteristics of the nursing care. Further, it deals with monitoring patients, causes of consciousness defects occurrence and kinds ...

  10. Closing the loop of deep brain stimulation.

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-12-20

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  11. Closing the loop of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2013-12-01

    Full Text Available High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfils these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  12. Closing the loop of deep brain stimulation

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  13. Stimulants for the Control of Hedonic Appetite

    OpenAIRE

    Poulton, Alison S.; Hibbert, Emily J.; Champion, Bernard L.; Nanan, Ralph K. H.

    2016-01-01

    The focus of this paper is treatment of obesity in relation to the management of hedonic appetite. Obesity is a complex condition which may be potentiated by excessive reward seeking in combination with executive functioning deficits that impair cognitive control of behaviour. Stimulant medications address both reward deficiency and enhance motivation, as well as suppressing appetite. They have long been recognised to be effective for treating obesity. However, stimulants can be abused for th...

  14. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  15. Paired pulse TMS stimulation and human tongue corticomotor pathways

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    Objectives: Paired pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-term interval intra-cortical inhibitory (SICI) and facilitatory (ICF) networks. The degree of SICI and ICF varies with interstimulus intervals (ISI) and stimulus intensities of the conditioning stimulus...... ms were applied 8 times each in randomized order in two blocks (CS intensity of 70% and 80% of rMT, respectively). The amplitudes of the averaged MEPs were analyzed with analysis of variance. Results: There was an overall effect of ISI (P... intensities (P = 0.984). Post-hoc tests revealed that there was significant SICI with ppTMS ISI of 2, 2.5, 3, and 3.5 ms compared with single pulse stimulation (Pstimulation (P=0.988). There was no interaction between...

  16. Transcranial Magnetic Stimulation in Child Neurology: Current and Future Directions

    Science.gov (United States)

    Frye, Richard E.; Rotenberg, Alexander; Ousley, Molliann; Pascual-Leone, Alvaro

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation based on the principle of electromagnetic induction, where small intracranial electric currents are generated by a powerful, rapidly changing extracranial magnetic field. Over the past 2 decades TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disease in adults, but has been used on a more limited basis in children. We reviewed the literature to identify potential diagnostic and therapeutic applications of TMS in child neurology and also its safety in pediatrics. Although TMS has not been associated with any serious side effects in children and appears to be well tolerated, general safety guidelines should be established. The potential for applications of TMS in child neurology and psychiatry is significant. Given its excellent safety profile and possible therapeutic effect, this technique should develop as an important tool in pediatric neurology over the next decade. PMID:18056688

  17. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  18. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Alexander C. Lehn

    2017-07-01

    Full Text Available Background: Orthostatic tremor (OT was first described in 1977. It is characterized by rapid tremor of 13–18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS.Case Report: We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation.Discussion: Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data. 

  19. The management of catatonia in bipolar disorder with stimulants.

    Science.gov (United States)

    Bajwa, Waheed K; Rastegarpour, Ali; Bajwa, Omar A; Babbitt, Jessica

    2015-01-01

    Catatonia, while not a rare occurrence in bipolar disorder, has not been widely discussed in the literature. We present a case of a married Caucasian male with a history of bipolar disorder, exhibiting catatonia and experiencing difficulty in day-to-day functioning. He demonstrated impairment in cognition and an inability to organize simple activities of daily life. After exhausting a number of options for medical management, including benzodiazepines, atypical antipsychotics, and amantadine, he only displayed significant clinical improvement with the addition of a stimulant, methylphenidate. In time, the patient saw a complete return to normal functioning. The use of stimulants for catatonia in bipolar disorder may be an interesting and effective option for treatment. While this is not the first time this treatment has been suggested, there is very little data in support of it; our case confirms the discoveries of previous case reports.

  20. The Management of Catatonia in Bipolar Disorder with Stimulants

    Directory of Open Access Journals (Sweden)

    Waheed K. Bajwa

    2015-01-01

    Full Text Available Catatonia, while not a rare occurrence in bipolar disorder, has not been widely discussed in the literature. We present a case of a married Caucasian male with a history of bipolar disorder, exhibiting catatonia and experiencing difficulty in day-to-day functioning. He demonstrated impairment in cognition and an inability to organize simple activities of daily life. After exhausting a number of options for medical management, including benzodiazepines, atypical antipsychotics, and amantadine, he only displayed significant clinical improvement with the addition of a stimulant, methylphenidate. In time, the patient saw a complete return to normal functioning. The use of stimulants for catatonia in bipolar disorder may be an interesting and effective option for treatment. While this is not the first time this treatment has been suggested, there is very little data in support of it; our case confirms the discoveries of previous case reports.

  1. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  2. Biophysical methods for disinfection and stimulation of wheat seeds

    International Nuclear Information System (INIS)

    Marinkovic, S.; Marinkovic, B.

    2007-01-01

    In this paper we are shown results of applying electron treatment (disinfection of seed by electrons), and RIES method (electromagnetic seed stimulation). Four cultivars of wheat were used in this trial: Renesansa, Durumko, NS-Rana 5 and Sonata. Seed was treated with fast electrons and just before sowing stimulated by ultra low frequency electromagnetic field (from 0 to 100 Hz). For seed disinfection was used chemical treatment as well, as control variant. Control variant for all treatments was seed without any disinfection. The highest number of spikelets per spike was obtained at variant H+RIES. The highest spike length was obtained at variants e sup(-) + RIES and control. At variant H+RIES was achieved the highest grain number. Treatment H had influence on decreasing of grain mass per spike in relation to control variant, for significant value of 0.15 g. The highest grain mass per spike was obtained at variant e sup(-) + RIES

  3. Experimental program to stimulate competitive energy research in North Dakota: Summary and significance of DOE Trainee research

    Energy Technology Data Exchange (ETDEWEB)

    Boudjouk, Philip

    1999-07-01

    The general goals of the North Dakota DOE/EPSCoR Program are to enhance the capabilities of North Dakota's researchers to conduct nationally competitive energy-related research and to develop science and engineering human resources to meet current and future needs in energy-related areas. Doctoral students were trained and energy research was conducted.

  4. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  5. Preovulatory progesterone concentration associates significantly to follicle number and LH concentration but not to pregnancy rate

    DEFF Research Database (Denmark)

    Yding Andersen, Claus; Bungum, Leif; Nyboe Andersen, Anders

    2011-01-01

    Using data from a large prospective randomized controlled trial that evaluated the effect of recombinant LH (rLH)co-administration for ovarian stimulation, the present study assessed whether progesterone concentration on the day of human chorionic gonadotrophin (HCG) administration was associated...... with or without rLH administration from day 6 of stimulation. There was no significant association between the late-follicular-phase progesterone concentration and the clinical pregnancy rate. However, progesterone concentration was strongly associated with the number of follicles and retrieved oocytes. Late......-follicular-phase LH concentration also showed a significant positive association with progesterone concentration (P = 0.018). Administration of rLH during ovarian stimulation did not affect progesterone concentration. The present study does not support an association between progesterone concentration on the day...

  6. Use of early tactile stimulation in rehabilitation of digital nerve injuries.

    Science.gov (United States)

    Cheng, A S

    2000-01-01

    Digital nerves are the most frequently injured peripheral nerve. To improve the recovery of functional sensibility of digital nerve injuries, a prospective randomized controlled study was conducted to see the effect of using early tactile stimulation in rehabilitation of digital nerve injuries. Two specific tactile stimulators were made and prescribed for patients with digital nerve-injury. Twenty-four participants with 32 digital nerve injuries received the prescribed tactile stimulators (experimental group), and another 25 participants with 33 digital nerve injuries received only routine conventional therapy (control group). A significant difference (p sensibility in digital nerve injuries without combined nerve, tendon, and bone injuries.

  7. Gender effect on discrimination of location and frequency in surface electrical stimulation.

    Science.gov (United States)

    Geng, Bo; Paramanathan, Senthoopiya A; Pedersen, Karina F; Lauridsen, Mette V; Gade, Julie; Lontis, Romulus; Jensen, Winnie

    2015-01-01

    This work investigated the gender effect on discrimination of surface electrical stimulation applied on the human forearm. Three experiments were conducted to examine the abilty of discriminating stimulation frequency, location, or both parameters in 14 healthy subjects. The results indicated a statistically significant impact of gender on the discrimination performance in all the three experiments (p gender difference in perceiving and interpreting electrical stimulation. Considering the gender difference may improve the efficacy of electrically evoked sensory feedback in applications such as prosthetic use and pain relief.

  8. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Edward W. J. Cadigan

    2017-09-01

    Full Text Available Transcranial magnetic (TMS and motor point stimulation have been used to determine voluntary activation (VA. However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs and Erb's point stimulation (maximal M-waves, Mmax were also recorded. VA was estimated using the equation: VA% = (1−SITforce/PTforce × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly (p < 0.05 decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly (p < 0.05 underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly (p < 0.05 higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly (p < 0.05 decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at

  9. Integrated and flexible multichannel interface for electrotactile stimulation

    Science.gov (United States)

    Štrbac, Matija; Belić, Minja; Isaković, Milica; Kojić, Vladimir; Bijelić, Goran; Popović, Igor; Radotić, Milutin; Došen, Strahinja; Marković, Marko; Farina, Dario; Keller, Thierry

    2016-08-01

    Objective. The aim of the present work was to develop and test a flexible electrotactile stimulation system to provide real-time feedback to the prosthesis user. The system requirements were to accommodate the capabilities of advanced multi-DOF myoelectric hand prostheses and transmit the feedback variables (proprioception and force) using intuitive coding, with high resolution and after minimal training. Approach. We developed a fully-programmable and integrated electrotactile interface supporting time and space distributed stimulation over custom designed flexible array electrodes. The system implements low-level access to individual stimulation channels as well as a set of high-level mapping functions translating the state of a multi-DoF prosthesis (aperture, grasping force, wrist rotation) into a set of predefined dynamic stimulation profiles. The system was evaluated using discrimination tests employing spatial and frequency coding (10 able-bodied subjects) and dynamic patterns (10 able-bodied and 6 amputee subjects). The outcome measure was the success rate (SR) in discrimination. Main results. The more practical electrode with the common anode configuration performed similarly to the more usual concentric arrangement. The subjects could discriminate six spatial and four frequency levels with SR >90% after a few minutes of training, whereas the performance significantly deteriorated for more levels. The dynamic patterns were intuitive for the subjects, although amputees showed lower SR than able-bodied individuals (86% ± 10% versus 99% ± 3%). Significance. The tests demonstrated that the system was easy to setup and apply. The design and resolution of the multipad electrode was evaluated. Importantly, the novel dynamic patterns, which were successfully tested, can be superimposed to transmit multiple feedback variables intuitively and simultaneously. This is especially relevant for closing the loop in modern multifunction prostheses. Therefore, the proposed

  10. Computational modeling of pedunculopontine nucleus deep brain stimulation

    Science.gov (United States)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  11. Some Motivational Properties of Sensory Stimulation in Psychotic Children

    Science.gov (United States)

    Rincover, Arnold; And Others

    1977-01-01

    This experiment assessed the reinforcing properties of sensory stimulation for autistic children using three different types of sensory stimulation: music, visual flickering, and visual movement. (SB)

  12. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  13. Vagus Nerve Stimulation for Electrographic Status Epilepticus in Slow-Wave Sleep.

    Science.gov (United States)

    Carosella, Christopher M; Greiner, Hansel M; Byars, Anna W; Arthur, Todd M; Leach, James L; Turner, Michele; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2016-07-01

    Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep that was successfully treated with vagus nerve stimulation. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Vagus nerve stimulation may be considered for electrographic status epilepticus in slow sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study

    OpenAIRE

    Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-01-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. ...

  15. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol...

  16. Differential effects of bifrontal and occipital nerve stimulation on pain and fatigue using transcranial direct current stimulation in fibromyalgia patients.

    Science.gov (United States)

    To, Wing Ting; James, Evan; Ost, Jan; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2017-07-01

    Fibromyalgia is a disorder characterized by widespread musculoskeletal pain frequently accompanied by other symptoms such as fatigue. Moderate improvement from pharmacological and non-pharmacological treatments have proposed non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) to the occipital nerve (more specifically the C2 area) or to the dorsolateral prefrontal cortex (DLPFC) as potential treatments. We aimed to explore the effectiveness of repeated sessions of tDCS (eight sessions) targeting the C2 area and DLPFC in reducing fibromyalgia symptoms, more specifically pain and fatigue. Forty-two fibromyalgia patients received either C2 tDCS, DLPFC tDCS or sham procedure (15 C2 tDCS-11 DLPFC tDCS-16 sham). All groups were treated with eight sessions (two times a week for 4 weeks). Our results show that repeated sessions of C2 tDCS significantly improved pain, but not fatigue, in fibromyalgia patients, whereas repeated sessions of DLPFC tDCS significantly improved pain as well as fatigue. This study shows that eight sessions of tDCS targeting the DLPFC have a more general relief in fibromyalgia patients than when targeting the C2 area, suggesting that stimulating different targets with eight sessions of tDCS can lead to benefits on different symptom dimensions of fibromyalgia.

  17. A clinical repetitive transcranial magnetic stimulation service in Australia: 6 years on.

    Science.gov (United States)

    Galletly, Cherrie A; Clarke, Patrick; Carnell, Benjamin L; Gill, Shane

    2015-11-01

    There is considerable research evidence for the effectiveness of repetitive transcranial magnetic stimulation in the treatment of depression. However, there is little information about its acceptability and outcomes in clinical settings. This naturalistic study reports on a clinical repetitive transcranial magnetic stimulation service that has been running in Adelaide, South Australia (SA), for 6 years. During this time, 214 complete acute courses were provided to patients with treatment-resistant Major Depressive Disorder. Patients received either sequential bilateral or right unilateral repetitive transcranial magnetic stimulation treatment involving either 18 or 20 sessions given over 6 or 4 weeks respectively. Data included patient demographic details, duration of depression, and medication at the beginning of their repetitive transcranial magnetic stimulation course. The Hamilton Depression Rating Scale was used to assess response to repetitive transcranial magnetic stimulation. Of those undergoing a first-time acute treatment course of repetitive transcranial magnetic stimulation (N = 167), 28% achieved remission, while a further 12% met the criteria for a response to treatment. Most patients (N = 123, 77%) had previously been treated with five or more antidepressant medications, and 77 (47%) had previously received electroconvulsive therapy. Referral rates remained high over the 6 years, indicating acceptance of the treatment by referring psychiatrists. There were no significant adverse events, and the treatment was generally well tolerated. In all, 41 patients (25%) had a second course of repetitive transcranial magnetic stimulation and 6 (4%) patients had a third course; 21 patients subsequently received maintenance repetitive transcranial magnetic stimulation. This naturalistic study showed that repetitive transcranial magnetic stimulation was well accepted by both psychiatrists and patients, and has good efficacy and safety. Furthermore

  18. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  19. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  20. Impact significance determination-Back to basics

    International Nuclear Information System (INIS)

    Lawrence, David P.

    2007-01-01

    Impact significance determination is widely recognized as a vital and critical EIA activity. But impact significance related concepts are poorly understood. And the quality of approaches for impact significance determination in EIA practice remains highly variable. This article seeks to help establish a sound and practical conceptual foundation for formulating and evaluating impact significance determination approaches. It addresses the nature (what is impact significance?), the core characteristics (what are the major properties of significance determination?), the rationale (why are impact significance determinations necessary?), the procedural and substantive objectives (what do impact significance determinations seek to achieve?), and the process for making impact significance judgments (how is impact significance determination conducted?). By identifying fundamental attributes and key distinctions associated with impact significance determinations, a basis is provided for designing and evaluating impact significance determination procedures at both the regulatory and applied levels

  1. Brain stimulation in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Vladan Novakovic

    2011-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT and Cranial electrotherapy stimulation (CES have both been in use for decades; transcranial magnetic stimulation (TMS, magnetic seizure therapy (MST, deep brain stimulation (DBS, transcranial Direct Current Stimulation (tDCS, and vagus nerve stimulation (VNS have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES, depression (ECT, CES, rTMS, VNS, DBS, obsessive-compulsive disorder (OCD (DBS, essential tremor, dystonia (DBS, epilepsy (DBS, VNS, Parkinson Disease (DBS, pain (CES, and insomnia (CES. To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  2. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  3. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T.; Thanos, Panayotis K.; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S.

    2009-01-01

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insul...

  4. A Complier Average Causal Effect Analysis of the Stimulant Reduction Intervention using Dosed Exercise Study.

    Science.gov (United States)

    Carmody, Thomas; Greer, Tracy L; Walker, Robrina; Rethorst, Chad D; Trivedi, Madhukar H

    2018-06-01

    Exercise is a promising treatment for substance use disorders, yet an intention-to-treat analysis of a large, multi-site study found no reduction in stimulant use for exercise versus health education. Exercise adherence was sub-optimal; therefore, secondary post-hoc complier average causal effects (CACE) analysis was conducted to determine the potential effectiveness of adequately dosed exercise. The STimulant use Reduction Intervention using Dosed Exercise study was a randomized controlled trial comparing a 12 kcal/kg/week (KKW) exercise dose versus a health education control conducted at nine residential substance use treatment settings across the U.S. that are affiliated with the National Drug Abuse Treatment Clinical Trials Network. Participants were sedentary but medically approved for exercise, used stimulants within 30 days prior to study entry, and received a DSM-IV stimulant abuse or dependence diagnosis within the past year. A CACE analysis adjusted to include only participants with a minimum threshold of adherence (at least 8.3 KKW) and using a negative-binomial hurdle model focused on 218 participants who were 36.2% female, mean age 39.4 years ( SD =11.1), and averaged 13.0 ( SD =9.2) stimulant use days in the 30 days before residential treatment. The outcome was days of stimulant use as assessed by the self-reported TimeLine Follow Back and urine drug screen results. The CACE-adjusted analysis found a significantly lower probability of relapse to stimulant use in the exercise group versus the health education group (41.0% vs. 55.7%, p <.01) and significantly lower days of stimulant use among those who relapsed (5.0 days vs. 9.9 days, p <.01). The CACE adjustment revealed significant, positive effects for exercise. Further research is warranted to develop strategies for exercise adherence that can ensure achievement of an exercise dose sufficient to produce a significant treatment effect.

  5. Flow rates in the head and neck lymphatics after food stimulation in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Thommesen, P.; Buhl, J.; Jansen, K.; Funch-Jensen, P.

    1981-02-01

    In 22 healthy subjects lymph transport flow rates was studied in the head lymphatics after food stimulation, mastication (chewing) and taste. After food stimulation there was a significantly higher transport rate (0.67 meter/hour) than after taste (0.57 meter/hour) and mastication (0.55 meter/hour). The calculation of transport flow rate was independent of quantitative distribution of radioactivity in the head and neck lymphatics, and it could therefore perhaps be of clinical value.

  6. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study

    OpenAIRE

    Santos,Michele Devido; Gagliardi,Rubens José; Mac-Kay,Ana Paula Machado Goyano; Boggio,Paulo Sergio; Lianza,Roberta; Fregni,Felipe

    2013-01-01

    CONTEXT AND OBJECTIVE: Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. DESIGN AND SETTING: Prospective cohort study developed in a public university hospital. METHODS: Nineteen patients with ...

  7. Electrical stimulation of superior colliculus affects strabismus angle in monkey models for strabismus

    Science.gov (United States)

    Upadhyaya, Suraj; Meng, Hui

    2017-01-01

    Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different (P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus. PMID:28031397

  8. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.

    Science.gov (United States)

    Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen

    2015-01-01

    Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. The significance of the heavy top quark

    International Nuclear Information System (INIS)

    Simmons, Elizabeth H.

    1997-01-01

    Experiment shows that the top quark is far heavier than the other elementary fermions. This finding has stimulated research on theories of electroweak and flavor symmetry breaking that include physics beyond the standard model. Efforts to accommodate a heavy top quark within existing frameworks have revealed constraints on model-building. Other investigations have started from the premise that a large top quark mass could signal a qualitative difference between the top quark and other fermions, perhaps in the form of new interactions peculiar to the top quark. Such new dynamics may also help answer existing questions about electroweak and flavor physics. This talk explores the implications of the heavy top quark in the context of weakly-coupled (e.g., SUSY) and strongly-coupled (e.g., technicolor) theories of electroweak symmetry breaking

  10. Modulation and rehabilitation of spatial neglect by sensory stimulation.

    Science.gov (United States)

    Kerkhoff, Georg

    2003-01-01

    After unilateral cortical or subcortical, often parieto-temporal lesions, patients exhibit a marked neglect of their contralateral space and/or body side. These patients are severely disabled in all daily activities, have a poor rehabilitation outcome and therefore require professional treatment. Unfortunately, effective treatments for neglect are just in the process of development. The present chapter reviews three aspects related to the rehabilitation of neglect. The first part summarizes findings about spontaneous recovery in patients and experimental animals with neglect. The second part deals with techniques and studies evaluating short-term sensory modulation effects in neglect. In contrast to many other neurological syndromes spatial neglect may be modulated transiently but dramatically in its severity by sensory (optokinetic, neck proprioceptive, vestibular, attentional, somatosensory-magnetic) stimulation. In part three, current treatment approaches are summarized, with a focus on three novel techniques: repetitive optokinetic stimulation, neck vibration training and peripheral somatosensory-magnetic stimulation. Recent studies of repetitive optokinetic as well as neck vibratory treatment both indicate significantly greater as well as multimodal improvements in neglect symptomatology as compared to the standard treatment of neglect. This clear superiority might result from the partial (re)activation of a distributed, multisensory vestibular network in the lesioned hemisphere. Somatosensory-magnetic stimulation of the neglected or extinguishing hand provides another feasible, non-invasive stimulation technique. It may be particularly suited for the rehabilitation of somatosensory extinction and unawareness of the contralesional body side. Finally, pharmacological approaches for the treatment of neglect are shortly addressed. Isolated drug treatment of neglect is currently no successful rehabilitation strategy due to inconsistent results as well as possible

  11. Transient Sensory Recovery in Stroke Patients After Pulsed Radiofrequency Electrical Stimulation on Dorsal Root Ganglia: A Case Series.

    Science.gov (United States)

    Apiliogullari, Seza; Gezer, Ilknur A; Levendoglu, Funda

    2017-01-01

    The integrity of the somatosensory system is important for motor recovery and neuroplasticity after strokes. Peripheral stimulation or central stimulation in patients with central nervous system lesions can be an effective modality in improving function and in facilitating neuroplasticity. We present 2 hemiplegic cases with sensory motor deficit and the result of the pulsed radiofrequency (PRF) electrical stimulation to the dorsal root ganglia. After PRF electrical stimulation, significant improvement was achieved in the examination of patients with superficial and deep sensation. However, during the follow-up visits were observed that the effect of PRF electrical stimulation disappeared. We believe that these preliminary results could be used in the development of future prospective cohort studies and randomized controlled trials that focus on the effect of PRF electrical stimulation on dorsal root ganglia to treat sensory deficits in poststroke patients.

  12. Deep Brain Stimulation for Tourette-Syndrome: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Baldermann, Juan Carlos; Schüller, Thomas; Huys, Daniel; Becker, Ingrid; Timmermann, Lars; Jessen, Frank; Visser-Vandewalle, Veerle; Kuhn, Jens

    2016-01-01

    A significant proportion of patients with Tourette syndrome (TS) continue to experience symptoms across adulthood that in severe cases fail to respond to standard therapies. For these cases, deep brain stimulation (DBS) is emerging as a promising treatment option. We conducted a systematic literature review to evaluate the efficacy of DBS for GTS. Individual data of case reports and series were pooled; the Yale Global Tic Severity Scale (YGTSS) was chosen as primary outcome parameter. In total, 57 studies were eligible, including 156 cases. Overall, DBS resulted in a significant improvement of 52.68% (IQR = 40.74, p < 0.001) in the YGTSS. Analysis of controlled studies significantly favored stimulation versus off stimulation with a standardized mean difference of 0.96 (95% CI: 0.36-1.56). Disentangling different target points revealed significant YGTSS reductions after stimulation of the thalamus, the posteroventrolateral part and the anteromedial part of the globus pallidus internus, the anterior limb of the internal capsule and nucleus accumbens with no significant difference between these targets. A significant negative correlation of preoperative tic scores with the outcome of thalamic stimulation was found. Despite small patient numbers, we conclude that DBS for GTS is a valid option for medically intractable patients. Different brain targets resulted in comparable improvement rates, indicating a modulation of a common network. Future studies might focus on a better characterization of the clinical effects of distinct regions, rather than searching for a unique target. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Modulation of N400 in Chronic Non-Fluent Aphasia Using Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS)

    Science.gov (United States)

    Barwood, Caroline H. S.; Murdoch, Bruce E.; Whelan, Brooke-Mai; Lloyd, David; Riek, Stephan; O'Sullivan, John D.; Coulthard, Alan; Wong, Andrew

    2011-01-01

    Low frequency Repetitive Transcranial Magnetic Stimulation (rTMS) has previously been applied to language homologues in non-fluent populations of persons with aphasia yielding significant improvements in behavioral language function up to 43 months post stimulation. The present study aimed to investigate the electrophysiological correlates…

  14. Stimulation of eryptosis by aluminium ions

    International Nuclear Information System (INIS)

    Niemoeller, Olivier M.; Kiedaisch, Valentin; Dreischer, Peter; Wieder, Thomas; Lang, Florian

    2006-01-01

    Aluminium salts are utilized to impede intestinal phosphate absorption in chronic renal failure. Toxic side effects include anemia, which could result from impaired formation or accelerated clearance of circulating erythrocytes. Erythrocytes may be cleared secondary to suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. As macrophages are equipped with PS receptors, they bind, engulf and degrade PS-exposing cells. The present experiments have been performed to explore whether Al 3+ ions trigger eryptosis. The PS exposure was estimated from annexin binding and cell volume from forward scatter in FACS analysis. Exposure to Al 3+ ions (≥ 10 μM Al 3+ for 24 h) indeed significantly increased annexin binding, an effect paralleled by decrease of forward scatter at higher concentrations (≥ 30 μM Al 3+ ). According to Fluo3 fluorescence Al 3+ ions (≥ 30 μM for 3 h) increased cytosolic Ca 2+ activity. Al 3+ ions (≥ 10 μM for 24 h) further decreased cytosolic ATP concentrations. Energy depletion by removal of glucose similarly triggered annexin binding, an effect not further enhanced by Al 3+ ions. The eryptosis was paralleled by release of hemoglobin, pointing to loss of cell membrane integrity. In conclusion, Al 3+ ions decrease cytosolic ATP leading to activation of Ca 2+ -permeable cation channels, Ca 2+ entry, stimulation of cell membrane scrambling and cell shrinkage. Moreover, Al 3+ ions lead to loss of cellular hemoglobin, a feature of hemolysis. Both effects are expected to decrease the life span of circulating erythrocytes and presumably contribute to the development of anemia during Al 3+ intoxication

  15. Galvanic vestibular stimulation may improve anterior bending posture in Parkinson's disease.

    Science.gov (United States)

    Okada, Yohei; Kita, Yorihiro; Nakamura, Junji; Kataoka, Hiroshi; Kiriyama, Takao; Ueno, Satoshi; Hiyamizu, Makoto; Morioka, Shu; Shomoto, Koji

    2015-05-06

    This study investigated the effects of binaural monopolar galvanic vestibular stimulation (GVS), which likely stimulates the bilateral vestibular system, on the anterior bending angle in patients with Parkinson's disease (PD) with anterior bending posture in a single-blind, randomized sham-controlled crossover trial. The seven PD patients completed two types of stimulation (binaural monopolar GVS and sham stimulation) applied in a random order 1 week apart. We measured each patient's anterior bending angles while he or she stood with eyes open and eyes closed before/after the stimulations. The anterior bending angles in both the eyes-open and the eyes-closed conditions were significantly reduced after the GVS. The amount of change in the eyes-closed condition post-GVS was significantly larger than that by sham stimulation. The amount of change in anterior bending angles in the GVS condition was not significantly correlated with Unified Parkinson's Disease Rating Scale motor score, disease duration, the duration of the postural deformities, and the anterior bending angles before the GVS. Binaural monopolar GVS might improve anterior bending posture in PD patients, irrespective of the duration and the severity of disease and postural deformities. Binaural monopolar GVS might be a novel treatment strategy to improve anterior bending posture in PD.

  16. Effect of Neuromuscular Electrical Muscle Stimulation on Energy Expenditure in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2011-02-01

    Full Text Available Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES at different intensities on energy expenditure (oxygen and calories in healthy adults. The secondary aim was to develop a generalized linear regression (GEE model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1, motor threshold (E2, and maximal intensity comfortably tolerated (E3. Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  17. Comparison of temperament and character personality traits in opiate and stimulant addicts

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadeghi Pouya

    2016-11-01

    Full Text Available Background: Phenomenon of addiction as one of the social problems has a high prevalence, especially among youth. The aim of the present study was to compare personality traits based on the temperament and character inventory in opiate and stimulant addicts in Tehran.  Methods: In the present quasi-experimental study, 60 male addicts (30 opiate and 30 stimulant addicts who referred to addiction treatment centers in the suburbs of Tehran were selected through convenience sampling method and were studied using Temperament and Character Inventory (TCI. The participants were sorted according to their age and education.    Results: There was a significant difference between the two groups with regard to harm avoidance, reward dependence, cooperativeness, and self-transcendence traits. Thus, opiate addicts had higher levels of harm avoidance, reward dependence, and cooperativeness, and stimulant addicts had higher levels of self-transcendence. The significance level was set at P<0.01.  Conclusion: The obtained results showed that there was a significant difference between opiate and stimulant addicts. Opiate addicts gained higher scores, compared with stimulant addicts, in Temperament and Character Inventory variables. The obtained results also showed that stimulant addicts were suffering from more severe disorders than opiate addicts. Based on the means of the values of the TCI, personality traits reflecting personality disorders are detectable and predictable in substance abusers. This new understanding is important in the prevention and treatment of addiction.

  18. Effect of neuromuscular electrical muscle stimulation on energy expenditure in healthy adults.

    Science.gov (United States)

    Hsu, Miao-Ju; Wei, Shun-Hwa; Chang, Ya-Ju

    2011-01-01

    Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject's demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  19. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  20. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  1. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    Science.gov (United States)

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  2. Appetite stimulants for people with cystic fibrosis.

    Science.gov (United States)

    Chinuck, Ruth; Dewar, Jane; Baldwin, David R; Hendron, Elizabeth

    2014-07-27

    Chronic loss of appetite in cystic fibrosis concerns both individuals and families. Appetite stimulants have been used to help cystic fibrosis patients with chronic anorexia attain optimal body mass index and nutritional status. However, these may have adverse effects on clinical status. The aim of this review is to systematically search for and evaluate evidence on the beneficial effects of appetite stimulants in the management of CF-related anorexia and synthesize reports of any side-effects. Trials were identified by searching the Cochrane Cystic Fibrosis and Genetic Disorders Group's Cystic Fibrosis Trials Register, MEDLINE, Embase, CINAHL, handsearching reference lists and contacting local and international experts.Last search of online databases: 01 April 2014.Last search of the Cystic Fibrosis Trials Register: 08 April 2014. Randomised and quasi-randomised controlled trials of appetite stimulants, compared to placebo or no treatment for at least one month in adults and children with cystic fibrosis. Authors independently extracted data and assessed the risk of bias within eligible trials. Meta-analyses were performed. Three trials (total of 47 recruited patients) comparing appetite stimulants (cyproheptadine hydrochloride and megesterol acetate) to placebo were included; the numbers of adults or children within each trial were not always reported. The risk of bias of the included trials was graded as moderate.A meta-analysis of all three trials showed appetite stimulants produced a larger increase in weight z score at three months compared to placebo, mean difference 0.61 (95% confidence interval 0.29 to 0.93) (P children, appetite stimulants improved only two of the outcomes in this review - weight (or weight z score) and appetite; and side effects were insufficiently reported to determine the full extent of their impact. Whilst the data may suggest the potential use of appetite stimulants in treating anorexia in adults and children with cystic fibrosis

  3. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond

    Directory of Open Access Journals (Sweden)

    Patrick Biggar

    2017-09-01

    Full Text Available Anemia, complicating the course of chronic kidney disease, is a significant parameter, whether interpreted as subjective impairment or an objective prognostic marker. Renal anemia is predominantly due to relative erythropoietin (EPO deficiency. EPO inhibits apoptosis of erythrocyte precursors. Studies using EPO substitution have shown that increasing hemoglobin (Hb levels up to 10-11 g/dL is associated with clinical improvement. However, it has not been unequivocally proven that further intensification of erythropoiesis stimulating agent (ESA therapy actually leads to a comprehensive benefit for the patient, especially as ESAs are potentially associated with increased cerebro-cardiovascular events. Recently, new developments offer interesting options not only via stimulating erythropoeisis but also by employing additional mechanisms. The inhibition of activin, a member of the transforming growth factor superfamily, has the potential to correct anemia by stimulating liberation of mature erythrocyte forms and also to mitigate disturbed mineral and bone metabolism as well. Hypoxia-inducible factor prolyl hydroxylase inhibitors also show pleiotropic effects, which are at the focus of present research and have the potential of reducing mortality. However, conventional ESAs offer an extensive body of safety evidence, against which the newer substances should be measured. Carbamylated EPO is devoid of Hb augmenting effects whilst exerting promising tissue protective properties. Additionally, the role of hepcidin antagonists is discussed. An innovative new hemodialysis blood tube system, reducing blood contact with air, conveys a totally different and innocuous option to improve renal anemia by reducing mechanical hemolysis.

  4. Epilepsia partialis continua responsive to neocortical electrical stimulation.

    Science.gov (United States)

    Valentin, Antonio; Ughratdar, Ismail; Cheserem, Beverly; Morris, Robert; Selway, Richard; Alarcon, Gonzalo

    2015-08-01

    Epilepsia partialis continua (EPC), defined as a syndrome of continuous focal jerking, is a rare form of focal status epilepticus that usually affects a distal limb, and when prolonged, can produce long-lasting deficits in limb function. Substantial electrophysiologic evidence links the origin of EPC to the motor cortex; thus surgical resection carries the risk of significant handicap. We present two patients with focal, drug-resistant EPC, who were admitted for intracranial video-electroencephalography monitoring to elucidate the location of the epileptogenic focus and identification of eloquent motor cortex with functional mapping. In both cases, the focus resided at or near eloquent motor cortex and therefore precluded resective surgery. Chronic cortical stimulation delivered through subdural strips at the seizure focus (continuous stimulation at 60-130 Hz, 2-3 mA) resulted in >90% reduction in seizures and abolition of the EPC after a follow-up of 22 months in both patients. Following permanent implantation of cortical stimulators, no adverse effects were noted. EPC restarted when intensity was reduced or batteries depleted. Battery replacement restored previous improvement. This two-case report opens up avenues for the treatment of this debilitating condition. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  5. Burst stimulation improves hemodynamics during resuscitation after prolonged ventricular fibrillation.

    Science.gov (United States)

    Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond

    2009-02-01

    Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Six swine were studied that underwent 6-7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3-4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean+/-SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2+/-2.5 min. Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above prestimulation levels.

  6. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  7. Prospective trial of aggressive postoperative bowel stimulation following radical hysterectomy.

    Science.gov (United States)

    Fanning, J; Yu-Brekke, S

    1999-06-01

    Postoperative traditional feeding protocols are not based on scientific studies, but rather on anecdotal evidence. We present the first prospective trial of aggressive postoperative bowel stimulation following radical hysterectomy in an attempt to determine its effect on the length of hospital stay. Twenty consecutive patients undergoing radical hysterectomy were entered onto a prospective trial of aggressive postoperative bowel stimulation, which consisted of 30 cc milk of magnesia p.o. b.i.d. starting on postoperative day 1 and biscolic suppositories q.d. starting on day 2. A clear liquid diet was begun following flatus or bowel movement and patients were discharged 12 h after tolerating a clear liquid diet. Diet was slowly advanced at home. Median time to flatus was 3 days, bowel movement 3 days, and clear liquid diet 3 days. Median time to discharge was 4 days. No patients developed ileus or bowel obstructions and there were no readmissions for bowel complications. Our median time to discharge of 4 days represents a 50% reduction in hospital stay compared to our previous prospective study using traditional postoperative bowel management (8 days), which was statistically significant at P = 0.001. Aggressive bowel stimulation with milk of magnesia and biscolic suppositories resulted in early return of bowel function and early discharge with no noticeable complications. Copyright 1999 Academic Press.

  8. Electronically switchable sham transcranial magnetic stimulation (TMS system.

    Directory of Open Access Journals (Sweden)

    Fumiko Hoeft

    Full Text Available Transcranial magnetic stimulation (TMS is increasingly being used to demonstrate the causal links between brain and behavior in humans. Further, extensive clinical trials are being conducted to investigate the therapeutic role of TMS in disorders such as depression. Because TMS causes strong peripheral effects such as auditory clicks and muscle twitches, experimental artifacts such as subject bias and placebo effect are clear concerns. Several sham TMS methods have been developed, but none of the techniques allows one to intermix real and sham TMS on a trial-by-trial basis in a double-blind manner. We have developed an attachment that allows fast, automated switching between Standard TMS and two types of control TMS (Sham and Reverse without movement of the coil or reconfiguration of the setup. We validate the setup by performing mathematical modeling, search-coil and physiological measurements. To see if the stimulus conditions can be blinded, we conduct perceptual discrimination and sensory perception studies. We verify that the physical properties of the stimulus are appropriate, and that successive stimuli do not contaminate each other. We find that the threshold for motor activation is significantly higher for Reversed than for Standard stimulation, and that Sham stimulation entirely fails to activate muscle potentials. Subjects and experimenters perform poorly at discriminating between Sham and Standard TMS with a figure-of-eight coil, and between Reverse and Standard TMS with a circular coil. Our results raise the possibility of utilizing this technique for a wide range of applications.

  9. UV stimulation of DNA-mediated transformation of human cells

    International Nuclear Information System (INIS)

    van Duin, M.; Westerveld, A.; Hoeijmakers, J.H.

    1985-01-01

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome

  10. Stimulants for the control of hedonic appetite

    Directory of Open Access Journals (Sweden)

    Alison Sally Poulton

    2016-04-01

    Full Text Available The focus of this paper is treatment of obesity in relation to the management of hedonic appetite. Obesity is a complex condition which may be potentiated by excessive reward seeking in combination with executive functioning deficits that impair cognitive control of behaviour. Stimulant medications address both reward deficiency and enhance motivation, as well as suppressing appetite. They have long been recognised to be effective for treating obesity. However, stimulants can be abused for their euphoric effect. They induce euphoria via the same neural pathway that underlies their therapeutic effect in obesity. For this reason they have generally not been endorsed for use in obesity. Among the stimulants, only phentermine (either alone or in combination with topiramate and bupropion (which has stimulant-like properties and is used in combination with naltrexone, are approved by the United States Food and Drug Administration (FDA for obesity, although dexamphetamine and methylpenidate are approved and widely used for treating attention deficit hyperactivity disorder (ADHD in adults and children. Experience gained over many years in the treatment of ADHD demonstrates that with careful dose titration, stimulants can be used safely. In obesity, improvement in mood and executive functioning could assist with the lifestyle changes necessary for weight control, acting synergistically with appetite suppression. The obesity crisis has reached the stage that strong consideration should be given to adequate utilisation of this effective and inexpensive class of drug.

  11. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  12. Effect of Cathodal Transcranial Direct Current Stimulation on a Child with Involuntary Movement after Hypoxic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Mayumi Nagai

    2018-01-01

    Full Text Available The aim of the study was to investigate the effect of cathodal transcranial direct current stimulation to the supplementary motor area to inhibit involuntary movements of a child. An 8-year-old boy who developed hypoxic encephalopathy after asphyxia at the age of 2 had difficulty in remaining standing without support because of involuntary movements. He was instructed to remain standing with his plastic ankle-foot orthosis for 10 s at three time points by leaning forward with his forearms on a desk. He received cathodal or sham transcranial direct current stimulation to the supplementary motor area at 1 mA for 10 min. Involuntary movements during standing were measured using an accelerometer attached to his forehead. The low-frequency power of involuntary movements during cathodal transcranial direct current stimulation significantly decreased compared with that during sham stimulation. No adverse effects were observed. Involuntary movement reduction by cathodal stimulation to supplementary motor areas suggests that stimulations modulated the corticobasal ganglia motor circuit. Cathodal stimulation to supplementary motor areas may be effective for reducing involuntary movements and may be safely applied to children with movement disorders.

  13. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings

    Science.gov (United States)

    O'Shea, Daniel J.; Shenoy, Krishna V.

    2018-04-01

    Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.

  14. Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.

    Science.gov (United States)

    Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang

    2011-01-01

    Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.

  15. Microwave induced stimulation of 32Pi incorporation into phosphoinositides of rat brain synaptosomes

    International Nuclear Information System (INIS)

    Gandhi, C.R.; Ross, D.H.

    1989-01-01

    Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the 32 Pi-incorporation into phosphoinositides. The extent of 32 Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP 2 ) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate 32 Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP 2 , PIP and PI and increased PA labeling. Li + also inhibited the microwave stimulated PIP 2 , PIP and PI labeling but had no effect on PA labeling. Calcium inophore, A 23187 , inhibited the basal and microwave stimulated 32 Pi labeling of PIP and PIP 2 , stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP 2 labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings. (orig.)

  16. Evaluation of high-perimeter electrode designs for deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  17. Effect of massage stimulation on weight gain in full term infants

    Directory of Open Access Journals (Sweden)

    Nyoman Nursari Dewi

    2011-08-01

    Full Text Available Background Massage is a tactile/kinesthetic stimulation with biochemical and physiological effects on the body. Newborn infant massage stimulation given by mothers may promote maternal-infant bonding and attachment, enhance infant weight gain and stimulate the production of breast milk. There have been few studies on the effect of massage stimulation on weight gain in full term infants, and this topic remains controversial. Objective To examine the effect of massage stimulation on weight gain in full term infants. Methods This quasi-experimental study was held in Sanglah Hospital and Bunda Setia Maternity Clinic. Massage stimulation was performed by mothers once daily for a four week period. Massage stimulation was given to 30 full term infants and their weight gain was compared to 31 control infants who did not receive massages. Results There were no differences in subject characteristics between the massage and control groups. Median weight gain in the massage group was 1230 grams, while that in the control group was 830 grams (P=0.028. Conclusion Weight gain in full term infants in the massage group was significantly greater than that in the control group after 4 weeks.

  18. Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.

    Science.gov (United States)

    Rosati, Giulio; Oscari, Fabio; Pacchierotti, Claudio; Prattichizzo, Domenico

    2014-01-01

    Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.

  19. Stimulation of GPR30 increases release of EMMPRIN-containing microvesicles in human uterine epithelial cells.

    Science.gov (United States)

    Burnett, Lindsey A; Light, Mallory M; Mehrotra, Pavni; Nowak, Romana A

    2012-12-01

    Uterine remodeling is highly dependent on the glycosylated transmembrane protein extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN). Previous studies indicate estradiol can increase EMMPRIN expression in uterine cells and promote subsequent induction of MMP production. The aim of this study was to investigate the role of G protein-coupled receptor 30 (GPR30) stimulation on EMMPRIN microvesicle release in the human uterine epithelial cell line hTERT-EEC (EECs). We examined EMMPRIN release by human EECs in response to GPR30 stimulation by microvesicle isolation, Western blot, and immunocytochemistry. We employed a pharmacological approach using the GPR30-selective agonist G1 and the antagonist G15 to determine the receptor specificity of this response. We demonstrated GPR30 expression in EECs and release of EMMPRIN in microvesicles in response to stimulation of GPR30. G1, estradiol, and cholera toxin stimulated EMMPRIN release in microvesicles as detected by Western blot and immunocytochemistry, indicating that stimulation of GPR30 can induce EMMPRIN microvesicle release. These data indicate that EMMPRIN release in microvesicles can be mediated by stimulation of GPR30 in human EECs, suggesting that inappropriate stimulation or expression of this receptor may be significant in uterine pathology.

  20. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    Science.gov (United States)

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  1. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    Science.gov (United States)

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  3. Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti-ictogenic actions in rats.

    Science.gov (United States)

    Cheng, Hui; Kuang, Yi-fang; Liu, Yang; Wang, Yi; Xu, Zheng-hao; Gao, Feng; Zhang, Shi-hong; Ding, Mei-ping; Chen, Zhong

    2015-08-01

    To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. In addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment.

  4. Identifying the appropriate time for deep brain stimulation to achieve spatial memory improvement on the Morris water maze.

    Science.gov (United States)

    Jeong, Da Un; Lee, Jihyeon; Chang, Won Seok; Chang, Jin Woo

    2017-03-07

    The possibility of using deep brain stimulation (DBS) for memory enhancement has recently been reported, but the precise underlying mechanisms of its effects remain unknown. Our previous study suggested that spatial memory improvement by medial septum (MS)-DBS may be associated with cholinergic regulation and neurogenesis. However, the affected stage of memory could not be distinguished because the stimulation was delivered during the execution of all memory processes. Therefore, this study was performed to determine the stage of memory affected by MS-DBS. Rats were administered 192 IgG-saporin to lesion cholinergic neurons. Stimulation was delivered at different times in different groups of rats: 5 days before the Morris water maze test (pre-stimulation), 5 days during the training phase of the Morris water maze test (training-stimulation), and 2 h before the Morris water maze probe test (probe-stimulation). A fourth group of rats was lesioned but received no stimulation. These four groups were compared with a normal (control) group. The most effective memory restoration occurred in the pre-stimulation group. Moreover, the pre-stimulation group exhibited better recall of the platform position than the other stimulation groups. An increase in the level of brain derived neurotrophic factor (BDNF) was observed in the pre-stimulation group; this increase was maintained for 1 week. However, acetylcholinesterase activity in the pre-stimulation group was not significantly different from the lesion group. Memory impairment due to cholinergic denervation can be improved by DBS. The improvement is significantly correlated with the up-regulation of BDNF expression and neurogenesis. Based on the results of this study, the use of MS-DBS during the early stage of disease may restore spatial memory impairment.

  5. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  6. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  7. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  8. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2017-01-01

    Objective: Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of

  9. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2017-01-01

    Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of this study

  10. Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    Science.gov (United States)

    Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767

  11. Age-dependent effects of brain stimulation on network centrality.

    Science.gov (United States)

    Antonenko, Daria; Nierhaus, Till; Meinzer, Marcus; Prehn, Kristin; Thielscher, Axel; Ittermann, Bernd; Flöel, Agnes

    2018-04-18

    Functional magnetic resonance imaging (fMRI) studies have suggested that advanced age may mediate the effects of transcranial direct current stimulation (tDCS) on brain function. However, studies directly comparing neural tDCS effects between young and older adults are scarce and limited to task-related imaging paradigms. Resting-state (rs-) fMRI, that is independent of age-related differences in performance, is well suited to investigate age-associated differential neural tDCS effects. Three "online" tDCS conditions (anodal, cathodal, sham) were compared in a cross-over, within-subject design, in 30 young and 30 older adults. Active stimulation targeted the left sensorimotor network (active electrode over left sensorimotor cortex with right supraorbital reference electrode). A graph-based rs-fMRI data analysis approach (eigenvector centrality mapping) and complementary seed-based analyses characterized neural tDCS effects. An interaction between anodal tDCS and age group was observed. Specifically, centrality in bilateral paracentral and posterior regions (precuneus, superior parietal cortex) was increased in young, but decreased in older adults. Seed-based analyses revealed that these opposing patterns of tDCS-induced centrality modulation were explained from differential effects of tDCS on functional coupling of the stimulated left paracentral lobule. Cathodal tDCS did not show significant effects. Our study provides first evidence for differential tDCS effects on neural network organization in young and older adults. Anodal stimulation mainly affected coupling of sensorimotor with ventromedial prefrontal areas in young and decoupling with posteromedial areas in older adults. Copyright © 2018. Published by Elsevier Inc.

  12. Early Maladaptive Schemas in Opiate and Stimulant Users

    Directory of Open Access Journals (Sweden)

    Zahra Karami

    2015-06-01

    Full Text Available Objectives: Early maladaptive schemas are valid representations of unpleasant childhood experiences that shape a person’s viewpoints of the world, and lead to clinical symptoms such as depression, personality disorders, and substance abuse. Given the importance of this matter, we conducted a research on early maladaptive schemas in substance-abusers, to allow more appropriate preventive measures to be taken with a better understanding of the issue. Methods: For this descriptive-comparative study, 115 patients (91 opiate users and 24 stimulant users visiting drug addiction treatment centers were selected through convenience sampling from persons who were admitted to substance abuse treatment centers (Methadone Maintenance therapy centers, addiction treatment camps and self-help groups and Narcotics Anonymous (NA of Yasuj. Data were collected using a Demographic Information Questionnaire and Young’s Schema Questionnaire-Short Form (SQ-SF. Data analysis was done with ANOVA and t-tests. Results: The results showed a significant difference (P<0.05 between users of opiates and stimulants in terms of vulnerability to harm or illness, enmeshment, subjugation, emotional inhibition, entitlement, insufficient self-control/self-discipline, emotional  deprivation, social isolation, defectiveness, failure/shame, and dependence. The average score of the stimulant-users was higher than that of opiate-users in all the schemas except for the dimensions of abandonment, mistrust, and unrelenting standards. Discussion: Stimulant users have more early maladaptive schemas and are at a greater risk of psychological vulnerability. Early maladaptive schemas can be used by clinicians and researchers as a psychopathology and treatment method for substance dependence disorder.

  13. Personality, dopamine, and Parkinson's disease: Insights from subthalamic stimulation.

    Science.gov (United States)

    Lhommée, Eugénie; Boyer, François; Wack, Maxime; Pélissier, Pierre; Klinger, Hélène; Schmitt, Emmanuelle; Bichon, Amélie; Fraix, Valérie; Chabardès, Stéphan; Mertens, Patrick; Castrioto, Anna; Kistner, Andrea; Broussolle, Emmanuel; Thobois, Stéphane; Krack, Paul

    2017-08-01

    Subthalamic stimulation improves the motor and neuropsychiatric symptoms of Parkinson's disease. However, the impact of this treatment on impulse control and personality is the subject of heavy debate. The objective of this study was to investigate personality changes after subthalamic stimulation. Using Cloninger's biosocial model, we assessed personality in 73 Parkinson's disease patients before and 12 months after subthalamic stimulation accompanied by a drastic reduction in dopaminergic medication. Changes in psychobehavioral symptoms were measured using a battery of validated clinical scales (apathy, depression, anxiety, hyperemotionality, mania, psychosis, punding, and impulse control behaviors). One year after surgery, the harm avoidance personality domain total score increased compared with the baseline (+2.8; 34 patients; P personality trait correlated with the decrease in dopaminergic medication. Total scores in the other personality domains remained unchanged, except for extravagance, a subdomain of novelty seeking, and persistence, a subdomain of reward dependence, which both decreased following surgery (-0.3; 7 patients; and -0.6; 9 patients; P = 0.03 and P = 0.0019, respectively). Although apathy increased, other psychobehavioral symptoms, including impulse control behaviors and neuropsychiatric nonmotor fluctuations, improved. Depression and anhedonia remained stable. Scores in hypodopaminergia and neuropsychiatric nonmotor OFF correlated with harm avoidance. Scores in hyperdopaminergia and neuropsychiatric nonmotor ON correlated with novelty seeking. When subthalamic stimulation is applied in Parkinson's disease, significant changes in personality traits are observed, which may be related to postoperative tapering of dopaminergic treatment. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  14. Physical injury stimulates aerobic methane emissions from terrestrial plants

    Directory of Open Access Journals (Sweden)

    Z.-P. Wang

    2009-04-01

    Full Text Available Physical injury is common in terrestrial plants as a result of grazing, harvesting, trampling, and extreme weather events. Previous studies demonstrated enhanced emission of non-microbial CH4 under aerobic conditions from plant tissues when they were exposed to increasing UV radiation and temperature. Since physical injury is also a form of environmental stress, we sought to determine whether it would also affect CH4 emissions from plants. Physical injury (cutting stimulated CH4 emission from fresh twigs of Artemisia species under aerobic conditions. More cutting resulted in more CH4 emissions. Hypoxia also enhanced CH4 emission from both uncut and cut Artemisia frigida twigs. Physical injury typically results in cell wall degradation, which may either stimulate formation of reactive oxygen species (ROS or decrease scavenging of them. Increased ROS activity might explain increased CH4 emission in response to physical injury and other forms of stress. There were significant differences in CH4 emissions among 10 species of Artemisia, with some species emitting no detectable CH4 under any circumstances. Consequently, CH4 emissions may be species-dependent and therefore difficult to estimate in nature based on total plant biomass. Our results and those of previous studies suggest that a variety of environmental stresses stimulate CH4 emission from a wide variety of plant species. Global change processes, including climate change, depletion of stratospheric ozone, increasing ground-level ozone, spread of plant pests, and land-use changes, could cause more stress in plants on a global scale, potentially stimulating more CH4 emission globally.

  15. Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-01-01

    Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations

  16. Modulation of human time processing by subthalamic deep brain stimulation.

    Science.gov (United States)

    Wojtecki, Lars; Elben, Saskia; Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.

  17. Gender differences in current received during transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Michael eRussell

    2014-08-01

    Full Text Available Low current transcranial electrical stimulation is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation (GETS modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, Proton Density MRIs from 24 adult subjects (12 male and 12 female were modeled with virtual electrodes placed at F3, F4, C3 and C4. Two sizes of electrodes 20 mm round and 50 x 45 mm square were examined at 0.5, 1 and 2 mA input currents. The intensity of current received was sampled in a one centimeter sphere placed at the cortex directly under each scalp electrode. There was a tenfold range in the current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P <0.05. Larger electrodes delivered somewhat larger amounts of current then the smaller ones (P <0.01. Electrodes in the frontal regions