WorldWideScience

Sample records for significantly increased connectivity

  1. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based...... on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null...

  2. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    Science.gov (United States)

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  3. Increased precuneus connectivity during propofol sedation.

    Science.gov (United States)

    Liu, Xiaolin; Li, Shi-Jiang; Hudetz, Anthony G

    2014-02-21

    Using functional magnetic resonance imaging in human participants, we show that sedation by propofol to the point of lost overt responsiveness during the performance of an auditory verbal memory task unexpectedly increases functional connectivity of the precuneus with cortical regions, particularly the dorsal prefrontal and visual cortices. After recovery of consciousness, functional connectivity returns to a pattern similar to that observed during the wakeful baseline. In the context of a recent proposal that highlights the uncoupling of consciousness, connectedness, and responsiveness in general anesthesia, the increased precuneus functional connectivity under propofol sedation may reflect disconnected endogenous mentation or dreaming that continues at a reduced level of metabolic activity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism

    Directory of Open Access Journals (Sweden)

    Anne J. Blood

    2018-01-01

    Full Text Available Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either “matrix-weighted”, or “striosome-weighted” connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset.

  5. Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution.

    Science.gov (United States)

    Tagliazucchi, Enzo; Roseman, Leor; Kaelen, Mendel; Orban, Csaba; Muthukumaraswamy, Suresh D; Murphy, Kevin; Laufs, Helmut; Leech, Robert; McGonigle, John; Crossley, Nicolas; Bullmore, Edward; Williams, Tim; Bolstridge, Mark; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin

    2016-04-25

    Lysergic acid diethylamide (LSD) is a non-selective serotonin-receptor agonist that was first synthesized in 1938 and identified as (potently) psychoactive in 1943. Psychedelics have been used by indigenous cultures for millennia [1]; however, because of LSD's unique potency and the timing of its discovery (coinciding with a period of major discovery in psychopharmacology), it is generally regarded as the quintessential contemporary psychedelic [2]. LSD has profound modulatory effects on consciousness and was used extensively in psychological research and psychiatric practice in the 1950s and 1960s [3]. In spite of this, however, there have been no modern human imaging studies of its acute effects on the brain. Here we studied the effects of LSD on intrinsic functional connectivity within the human brain using fMRI. High-level association cortices (partially overlapping with the default-mode, salience, and frontoparietal attention networks) and the thalamus showed increased global connectivity under the drug. The cortical areas showing increased global connectivity overlapped significantly with a map of serotonin 2A (5-HT2A) receptor densities (the key site of action of psychedelic drugs [4]). LSD also increased global integration by inflating the level of communication between normally distinct brain networks. The increase in global connectivity observed under LSD correlated with subjective reports of "ego dissolution." The present results provide the first evidence that LSD selectively expands global connectivity in the brain, compromising the brain's modular and "rich-club" organization and, simultaneously, the perceptual boundaries between the self and the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Increasing sensitivity of MOS dosemeters in cascade connection

    International Nuclear Information System (INIS)

    Vychytil, F.; Cechak, T.; Gerndt, J.; Petr, I.

    1978-01-01

    The possibilities of increasing the sensitivity of MOS transistors in their cascade connection were studied theoretically and experimentally. The measurements confirmed the presumption that the instability of cascade-connected MOS transistors increased with the square of the number of transistors in the system. This allows systems to be formed with different sensitivity to ionizing radiation by encasing 10 to 10 4 transistors connected in cascade, which is technologically feasible. The procedure is also acceptable from the point of view of cost. (Z.M.)

  7. 77 FR 74048 - Culturally Significant Object Imported for Exhibition Determinations: “Connecting Collections...

    Science.gov (United States)

    2012-12-12

    ... determine that the object to be included in the exhibition ``Connecting Collections: Collecting Connections... DEPARTMENT OF STATE [Public Notice 8112] Culturally Significant Object Imported for Exhibition Determinations: ``Connecting Collections: Collecting Connections. 50 Years of Pre-Columbian Art at Dumbarton Oaks...

  8. Does the Shanghai-Hong Kong Stock Connect significantly affect the A-H premium of the stocks?

    Science.gov (United States)

    Hui, Eddie C. M.; Chan, Ka Kwan Kevin

    2018-02-01

    Since the Shanghai-Hong Kong Stock Connect ("the Connect") was launched in late 2014, more and more Mainland investors have invested in Hong Kong listed shares, and vice versa, increasing the transaction volume of the stock market on both sides. However, only a few studies investigated how the Shanghai-Hong Kong Stock Connect affected the pricing dynamics of stocks listed in both Shanghai and Hong Kong. Applying linear regression, this study investigates how the Connect affects the H-share discounts of 12 stocks cross-listed in Shanghai and Hong Kong. A new feature of our model is that we add a dummy variable so as to be the first study to examine the effect of the China financial crisis on the A-H premium of the stocks. We find that the A-H premium of all stocks widens significantly after the Connect is launched, implying immatureness or even inefficiency of China's financial market. Furthermore, the result shows that trading activities in the mainland market affects the A-H premium more significantly than trading activities in the Hong Kong market do. This implies that China's financial market plays a dominant role in the Connect.

  9. Anterior-Posterior Connectivity within the Default Mode Network Increases During Maturation.

    Science.gov (United States)

    Washington, Stuart D; VanMeter, John W

    The default mode network (DMN) supports self-referential thought processes important for successful socialization including: theory-of-mind, episodic memory, and prospection. Connectivity between DMN's nodes, which are distributed between the frontal, temporal, and parietal lobes, change with age and may continue changing into adulthood. We have previously explored the maturation of functional connections in the DMN as they relate to autism spectrum disorder (ASD) in children 6 to 18 years of age. In this chapter, we refine our earlier study of DMN functional maturation by focusing on the development of inter-nodal connectivity in a larger pool of typically developing people 6 to 25 years of age (mean = 13.22 years ± 5.36 s.d.; N = 36; 42% female). Correlations in BOLD activity (Fisher's Z) between ROIs revealed varying strengths of functional connectivity between regions, the strongest of which was between the left and right inferior parietal lobules or IPLs (Z = 0.62 ± 0.25 s.d.) and the weakest of which was between the posterior cingulate cortex (PCC) and right middle temporal gyrus or MTG (Z = 0.06 ± 0.22 s.d.). Further, connectivity between two pairs of DMN nodes significantly increased as a quadratic function of age ( p maturational trajectory.

  10. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Science.gov (United States)

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease

    International Nuclear Information System (INIS)

    Onu, Mihaela; Badea, Liviu; Roceanu, Adina; Bajenaru, Ovidiu; Tivarus, Madalina

    2015-01-01

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD. (orig.)

  12. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Onu, Mihaela [Medical Imaging Department, Clinical Hospital ' ' Prof. Dr. Th. Burghele' ' , Bucharest (Romania); Carol Davila University of Medicine and Pharmacy, Biophysics, Bucharest (Romania); Badea, Liviu [National Institute for Research and Development in Informatics, Artificial Intelligence and Bioinformatics Group, Bucharest (Romania); Roceanu, Adina; Bajenaru, Ovidiu [University of Bucharest Emergency Hospital, Neurology Department, Bucharest (Romania); Tivarus, Madalina [University of Rochester Medical Center, Department of Imaging Sciences and Rochester Center for Brain Imaging, Rochester, NY (United States)

    2015-09-15

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD. (orig.)

  13. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations.

    Science.gov (United States)

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S

    2017-12-01

    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT 2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  14. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.

    Science.gov (United States)

    Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole

    2015-04-01

    Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.

  15. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.

    Directory of Open Access Journals (Sweden)

    Saskia Koehler

    Full Text Available Pathological gambling (PG shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum. PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.

  16. Increased functional connectivity strength of right inferior temporal gyrus in first-episode, drug-naive somatization disorder.

    Science.gov (United States)

    Su, Qinji; Yao, Dapeng; Jiang, Muliang; Liu, Feng; Jiang, Jiajing; Xu, Chunxing; Dai, Yi; Yu, Miaoyu; Long, Liling; Li, Hongzheng; Liu, Jianrong; Zhang, Zhikun; Zhang, Jian; Xiao, Changqing; Guo, Wenbin

    2015-01-01

    Evidence of brain structural and functional alterations have been implicated in patients with somatization disorder (SD). However, little is known about brain functional connectivity in SD. In the present study, resting-state functional magnetic resonance imaging (fMRI) and graph theory were used to obtain a comprehensive view of whole-brain functional connectivity and to investigate the changes of voxel-wise functional networks in patients with SD. Twenty-five first-episode, medication-naive patients with SD and 28 age-, sex- and education-matched healthy controls (HCs) underwent resting-state fMRI. The graph theory approach was employed to analyze the data. Compared to the HCs, patients with SD showed significantly increased functional connectivity strength in the right inferior temporal gyrus (ITG). There is a significant positive correlation between the z-values of the cluster in the right ITG and Hamilton Anxiety Scale scores. Our findings indicate that there is a disruption of the functional connectivity pattern in the right ITG in first-episode, treatment-naive patients with SD, which bears clinical significance. © The Royal Australian and New Zealand College of Psychiatrists 2014.

  17. Increased Alpha Band Functional Connectivity Following the Quadrato Motor Training: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Stefano Lasaponara

    2017-06-01

    Full Text Available Quadrato Motor Training (QMT is a new training paradigm, which was found to increase cognitive flexibility, creativity and spatial cognition. In addition, QMT was reported to enhance inter- and intra-hemispheric alpha coherence as well as Fractional Anisotropy (FA in a number of white matter pathways including corpus callosum. Taken together, these results seem to suggest that electrophysiological and structural changes induced by QMT may be due to an enhanced interplay and communication of the different brain areas within and between the right and the left hemisphere. In order to test this hypothesis using the exact low-resolution brain electromagnetic tomography (eLORETA, we estimated the current neural density and lagged linear connectivity (LLC of the alpha band in the resting state electroencephalography (rsEEG recorded with open (OE and closed eyes (CE at three different time points, following 6 and 12 weeks of daily QMT. Significant changes were observed for the functional connectivity. In particular, we found that limbic and fronto-temporal alpha connectivity in the OE condition increased after 6 weeks, while it enhanced at the CE condition in occipital network following 12-weeks of daily training. These findings seem to show that the QMT may have dissociable long-term effects on the functional connectivity depending on the different ways of recording rsEEG. OE recording pointed out a faster onset of Linear Lag Connectivity modulations that tend to decay as quickly, while CE recording showed sensible effect only after the complete 3-months training.

  18. Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression.

    Science.gov (United States)

    Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna

    2016-06-01

    Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11-60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD.

  19. Love is the triumph of the imagination: Daydreams about significant others are associated with increased happiness, love and connection.

    Science.gov (United States)

    Poerio, Giulia L; Totterdell, Peter; Emerson, Lisa-Marie; Miles, Eleanor

    2015-05-01

    Social relationships and interactions contribute to daily emotional well-being. The emotional benefits that come from engaging with others are known to arise from real events, but do they also come from the imagination during daydreaming activity? Using experience sampling methodology with 101 participants, we obtained 371 reports of naturally occurring daydreams with social and non-social content and self-reported feelings before and after daydreaming. Social, but not non-social, daydreams were associated with increased happiness, love and connection and this effect was not solely attributable to the emotional content of the daydreams. These effects were only present when participants were lacking in these feelings before daydreaming and when the daydream involved imagining others with whom the daydreamer had a high quality relationship. Findings are consistent with the idea that social daydreams may function to regulate emotion: imagining close others may serve the current emotional needs of daydreamers by increasing positive feelings towards themselves and others. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Alpha/Theta Neurofeedback Increases Mentalization and Default Mode Network Connectivity in a Non-Clinical Sample.

    Science.gov (United States)

    Imperatori, Claudio; Della Marca, Giacomo; Amoroso, Noemi; Maestoso, Giulia; Valenti, Enrico Maria; Massullo, Chiara; Carbone, Giuseppe Alessio; Contardi, Anna; Farina, Benedetto

    2017-11-01

    Several studies showed the effectiveness of alpha/theta (A/T) neurofeedback training in treating some psychiatric conditions. Despite the evidence of A/T effectiveness, the psychological and neurobiological bases of its effects is still unclear. The aim of the present study was to explore the usefulness of the A/T training in increasing mentalization in a non-clinical sample. The modifications of electroencephalographic (EEG) functional connectivity in Default Mode Network (DMN) associated with A/T training were also investigated. Forty-four subjects were enrolled in the study and randomly assigned to receive ten sessions of A/T training [neurofeedback group (NFG) = 22], or to act as controls [waiting list group (WLG) = 22]. All participants were administered the mentalization questionnaire (MZQ) and the Symptom Checklist-90-Revised (SCL-90-R). In the post training assessment, compared to WLG, NFG showed a significant increase of MZQ total scores (3.94 ± 0.73 vs. 3.53 ± 0.77; F 1;43 = 8.19; p = 0.007; d = 0.863). Furthermore, A/T training was also associated with a significant increase of EEG functional connectivity in several DMN brain areas (e.g. Posterior Cingulate Cortex). Taken together our results support the usefulness of the A/T training in enhancing mentalization and DMN connectivity.

  1. Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors

    DEFF Research Database (Denmark)

    Kawczyński, Adam; Samani, Afshin; Mroczek, Dariusz

    2015-01-01

    endurance contraction consisting of bilateral arm abduction at 90°. The normalized mutual information (NMI) was computed between muscle pairs as an index indicating functional connectivity. Results: The NMIs increased significantly during endurance test for 10 of the 15 muscle pairs (P ... : We concluded that the increases in NMIs highlighted functional changes in the interplay between core and shoulder muscles during an endurance contraction in elite judokas....

  2. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy.

    Directory of Open Access Journals (Sweden)

    Adham Elshahabi

    Full Text Available Idiopathic/genetic generalized epilepsy (IGE/GGE is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease.

  3. Expression and clinical significance of connective tissue growth factor in thyroid carcinomas.

    Science.gov (United States)

    Wang, Guimin; Zhang, Wei; Meng, Wei; Liu, Jia; Wang, Peisong; Lin, Shan; Xu, Liyan; Li, Enmin; Chen, Guang

    2013-08-01

    To examine expression of the connective tissue growth factor (CTGF) gene in human thyroid cancer and establish whether a correlation exists between the presence of CTGF protein and clinicopathological parameters of the disease. CTGF protein expression was investigated retrospectively by immunohistochemical analysis of CTGF protein levels in thyroid tumour tissue. Associations between immunohistochemical score and several clinicopathological parameters were examined. In total, 131 thyroid tissue specimens were included. High levels of CTGF protein were observed in papillary thyroid carcinoma tissue; benign thyroid tumour tissue scored negatively for CTGF protein. In papillary thyroid carcinoma, there was a significant relationship between high CTGF protein levels and Union for International Cancer Control disease stage III-IV, and presence of lymph node metastasis. In papillary thyroid carcinomas, CTGF protein levels were not significantly associated with sex or age. These findings suggest that the CTGF protein level is increased in papillary thyroid carcinoma cells compared with benign thyroid tumours. CTGF expression might play a role in the development of malignant tumours in the thyroid.

  4. Connecting Music, Art, and Science for Increased Creativity and Topic Engagement

    Directory of Open Access Journals (Sweden)

    Tamara L. McNealy

    2013-08-01

    Full Text Available ‘Attention spans have shortened,’ is a common phrase often used in reference to today’s college students. As faculty and instructors, we need to address this issue through the utilization of innovative and creative techniques that aid in making our subjects accessible to our students. Connecting a serious topic such as microbiology with a ‘fun’ activity can increase student engagement and learning. Ideas to maintain student attention on a subject include providing information in 15- to 20-minute blocks, giving one- to two-minute assignments, and providing an active learning activity at least once per hour. But what if we could also increase their engagement with science by connecting it to things they already think of outside of class, and, in addition, make science thinking interdisciplinary? I have recently introduced exercises that connect music and art to various microbiology topics in my class. The creative processes in art and science have much in common. Albert Einstein recognized that both science and art delve into the mysterious by stating, “The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science” (1. Connecting these subjects in the minds of our students will help them realize the importance of technology, industry, and progress in science and simultaneously emphasize the importance of art, music, and the humanities. The tools presented here will encourage students to connect new science information through the music and art they already know and, therefore, provide increased engagement and retention of the new knowledge. These techniques used in a microbiology class increased the amount of time spent thinking about new information, increased engagement with the information being presented, and encouraged critical thinking of microbiology topics. These tools were used in an upper level microbiology course, but the techniques can be easily incorporated into any course

  5. Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset Alzheimer’s Disease

    Science.gov (United States)

    Ochoa, John Fredy; Alonso, Joan Francesc; Duque, Jon Edinson; Tobón, Carlos Andrés; Mañanas, Miguel Angel; Lopera, Francisco; Hernández, Alher Mauricio

    2016-01-01

    Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD. PMID:27792014

  6. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  7. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial.

    Science.gov (United States)

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa

    2017-12-01

    Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.

  8. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  9. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  10. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing

    Science.gov (United States)

    Klapwijk, Eduard T.; Goddings, Anne-Lise; Heyes, Stephanie Burnett; Bird, Geoffrey; Viner, Russell M.; Blakemore, Sarah-Jayne

    2015-01-01

    There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our prior work, using psychophysiological interaction (PPI) analysis. Female adolescents aged 11 to 13 years were scanned whilst silently reading scenarios designed to evoke either social emotions (guilt and embarrassment) or basic emotions (disgust and fear), of which only social compared to basic emotions require the representation of another person’s mental states. Pubertal stage and menarcheal status were used to assign participants to pre/early or mid/late puberty groups. We found increased functional connectivity between the dorsomedial prefrontal cortex (DMPFC) and the right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (TPJ) during social relative to basic emotion processing. Moreover, increasing oestradiol concentrations were associated with increased functional connectivity between the DMPFC and the right TPJ during social relative to basic emotion processing, independent of age. Our analysis of the PPI data by phenotypic pubertal status showed that more advanced puberty stage was associated with enhanced functional connectivity between the DMPFC and the left anterior temporal cortex (ATC) during social relative to basic emotion processing, also independent of age. Our results suggest increased functional maturation of the social brain network with the advancement of puberty in girls. PMID:23998674

  11. Increased Default Mode Network Connectivity in Obsessive–Compulsive Disorder During Reward Processing

    Directory of Open Access Journals (Sweden)

    Kathrin Koch

    2018-06-01

    Full Text Available Objective: Obsessive-compulsive disorder (OCD is characterized by anxiety-provoking, obsessive thoughts (i.e., obsessions which patients react to with compulsive behaviors (i.e., compulsions. Due to the transient feeling of relief following the reduction of obsession-induced anxiety, compulsions are often described as relieving or even rewarding. Several studies investigated functional activation during reward processing in OCD, but findings are heterogeneous up to now and little is known about potential alterations in functional connectivity.Method: Against this background we studied OCD patients (n = 44 and healthy controls (n = 37 during the receipt of monetary reward by assessing both activation and functional connectivity.Results: Patients showed a decreased activation in several frontal regions and the posterior cingulate (PCC, BA31 together with a stronger connectivity between the PCC and the vmPFC (BA10.Conclusion: Present findings demonstrate an increased connectivity in patients within major nodes of the default mode network (DMN—a network known to be involved in the evaluation of internal mental states. These results may indicate an increased activity of internal, self-related processing at the expense of a normal responsiveness toward external rewards and incentives. This, in turn, may explain the constant urge for additional reinforcement and patients' inability to inhibit their compulsive behaviors.

  12. INCREASES IN FUNCTIONAL CONNECTIVITY BETWEEN PREFRONTAL CORTEX AND STRIATUM DURING CATEGORY LEARNING

    Science.gov (United States)

    Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    SUMMARY Functional connectivity between the prefrontal cortex (PFC) and striatum (STR) is thought critical for cognition, and has been linked to conditions like autism and schizophrenia. We recorded from multiple electrodes in PFC and STR while monkeys acquired new categories. Category learning was accompanied by an increase in beta-band synchronization of LFPs between, but not within, the PFC and STR. After learning, different pairs of PFC-STR electrodes showed stronger synchrony for one or the other category, suggesting category-specific functional circuits. This category-specific synchrony was also seen between PFC spikes and STR LFPs, but not the reverse, reflecting the direct monosynaptic connections from the PFC to STR. However, causal connectivity analyses suggested that the polysynaptic connections from STR to the PFC exerted a stronger overall influence. This supports models positing that the basal ganglia “train” the PFC. Category learning may depend on the formation of functional circuits between the PFC and STR. PMID:24930701

  13. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.)

    Science.gov (United States)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.

    2017-12-01

    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  14. Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Horne, Ralph E.

    2011-01-01

    The last decade has seen significant innovation and change in regulatory incentives to support photovoltaic deployment globally. With high fossil fuel dependency and abundant solar resource availability in Australia, grid connected photovoltaics are a viable low carbon technology option in existing electricity grids. Drawing on international examples, the potential to increase grid PV deployment through government response and regulation is explored. For each renewable energy certificate (REC) earned by small scale photovoltaics until 2012, the market provides four additional certificates under the current banded renewable targets. Our analysis indicates that REC eligibility is not accurately estimated currently, and an energy model is developed to calculate the variance. The energy model estimates as much as 26% additional REC's to be obtained by a 3 kWp PV system, when compared to the currently used regulatory method. Moreover, the provision of REC's increases benefits to PV technologies, in the process distorting CO 2 abatement (0.21 tonne/REC) by 68%, when PV displaces peaking natural gas plants. Consideration of the secondary effects of a banded structure on emissions trading market is important in the context of designing a range of initiatives intended to support a transition to a low carbon electricity sector. - Research Highlights: →Grid connected photovoltaics hedge spikes in peak demand summer electricity prices. →Nationwide feed in tariff and new building regulations needed to increase PV deployment. →Australia has transitioned from a solar rebate to a banded solar credit structure. →The currently used regulatory deeming method underestimates REC eligibility by 27%. →The banded structure can potentially distort CO 2 abatement by as much as 68%.

  15. Gas revenue increasingly significant

    International Nuclear Information System (INIS)

    Megill, R.E.

    1991-01-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities

  16. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance.

    Science.gov (United States)

    Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo

    2015-01-01

    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.

  17. Company, country, connections: counterfactual origins increase organizational commitment, patriotism, and social investment.

    Science.gov (United States)

    Ersner-Hershfield, Hal; Galinsky, Adam D; Kray, Laura J; King, Brayden G

    2010-10-01

    Four studies examined the relationship between counterfactual origins--thoughts about how the beginning of organizations, countries, and social connections might have turned out differently--and increased feelings of commitment to those institutions and connections. Study 1 found that counterfactually reflecting on the origins of one's country increases patriotism. Study 2 extended this finding to organizational commitment and examined the mediating role of poignancy. Study 3 found that counterfactual reflection boosts organizational commitment even beyond the effects of other commitment-enhancing appeals and that perceptions of fate mediate the positive effect of counterfactual origins on commitment. Finally, Study 4 temporally separated the counterfactual manipulation from a behavioral measure of commitment and found that counterfactual reflection predicted whether participants e-mailed social contacts 2 weeks later. The robust relationship between counterfactual origins and commitment was found across a wide range of companies and countries, with undergraduates and M.B.A. students, and for attitudes and behaviors.

  18. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  19. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

    Science.gov (United States)

    Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara

    2015-09-10

    The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. The Significant Surface-Water Connectivity of “Geographically Isolated Wetlands”

    Science.gov (United States)

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of g...

  1. Connectivity Neurofeedback Training Can Differentially Change Functional Connectivity and Cognitive Performance.

    Science.gov (United States)

    Yamashita, Ayumu; Hayasaka, Shunsuke; Kawato, Mitsuo; Imamizu, Hiroshi

    2017-10-01

    Advances in functional magnetic resonance imaging have made it possible to provide real-time feedback on brain activity. Neurofeedback has been applied to therapeutic interventions for psychiatric disorders. Since many studies have shown that most psychiatric disorders exhibit abnormal brain networks, a novel experimental paradigm named connectivity neurofeedback, which can directly modulate a brain network, has emerged as a promising approach to treat psychiatric disorders. Here, we investigated the hypothesis that connectivity neurofeedback can induce the aimed direction of change in functional connectivity, and the differential change in cognitive performance according to the direction of change in connectivity. We selected the connectivity between the left primary motor cortex and the left lateral parietal cortex as the target. Subjects were divided into 2 groups, in which only the direction of change (an increase or a decrease in correlation) in the experimentally manipulated connectivity differed between the groups. As a result, subjects successfully induced the expected connectivity changes in either of the 2 directions. Furthermore, cognitive performance significantly and differentially changed from preneurofeedback to postneurofeedback training between the 2 groups. These findings indicate that connectivity neurofeedback can induce the aimed direction of change in connectivity and also a differential change in cognitive performance. © The Author 2017. Published by Oxford University Press.

  2. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  3. Meat Science and Muscle Biology Symposium: manipulating meat tenderness by increasing the turnover of intramuscular connective tissue.

    Science.gov (United States)

    Purslow, P P; Archile-Contreras, A C; Cha, M C

    2012-03-01

    Controlled reduction of the connective tissue contribution to cooked meat toughness is an objective that would have considerable financial impact in terms of added product value. The amount of intramuscular connective tissue in a muscle appears connected to its in vivo function, so reduction of the overall connective tissue content is not thought to be a viable target. However, manipulation of the state of maturity of the collagenous component is a biologically viable target; by increasing connective tissue turnover, less mature structures can be produced that are functional in vivo but more easily broken down on cooking at temperatures above 60°C, thus improving cooked meat tenderness. Recent work using cell culture models of fibroblasts derived from muscle and myoblasts has identified a range of factors that alter the activity of the principal enzymes responsible for connective tissue turnover, the matrix metalloproteinases (MMP). Fibroblasts cultured from 3 different skeletal muscles from the same animal show different cell proliferation and MMP activity, which may relate to the different connective tissue content and architecture in functionally different muscles. Expression of MMP by fibroblasts is increased by vitamins that can counter the negative effects of oxidative stress on new collagen synthesis. Preliminary work using in situ zymography of myotubes in culture also indicates increased MMP activity in the presence of epinephrine and reactive oxidative species. Comparison of the relative changes in MMP expression from muscle cells vs. fibroblasts shows that myoblasts are more responsive to a range of stimuli. Muscle cells are likely to produce more of the total MMP in muscle tissue as a whole, and the expression of latent forms of the enzymes (i.e., pro-MMP) may vary between oxidative and glycolytic muscle fibers within the same muscle. The implication is that the different muscle fiber composition of different muscles eaten as meat may influence the

  4. Connecting Music, Art, and Science for Increased Creativity and Topic Engagement ?

    OpenAIRE

    McNealy, Tamara L.

    2013-01-01

    ‘Attention spans have shortened,’ is a common phrase often used in reference to today’s college students. As faculty and instructors, we need to address this issue through the utilization of innovative and creative techniques that aid in making our subjects accessible to our students. Connecting a serious topic such as microbiology with a ‘fun’ activity can increase student engagement and learning. Ideas to maintain student attention on a subject include providing information in 15- to 20-min...

  5. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    Science.gov (United States)

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  6. Increased Resting-State Functional Connectivity in the Cingulo-Opercular Cognitive-Control Network after Intervention in Children with Reading Difficulties.

    Directory of Open Access Journals (Sweden)

    Tzipi Horowitz-Kraus

    Full Text Available Dyslexia, or reading difficulty, is characterized by slow, inaccurate reading accompanied by executive dysfunction. Reading training using the Reading Acceleration Program improves reading and executive functions in both children with dyslexia and typical readers. This improvement is associated with increased activation in and functional connectivity between the anterior cingulate cortex, part of the cingulo-opercular cognitive-control network, and the fusiform gyrus during a reading task after training. The objective of the current study was to determine whether the training also has an effect on functional connectivity of the cingulo-opercular and fronto-parietal cognitive-control networks during rest in children with dyslexia and typical readers. Fifteen children with reading difficulty and 17 typical readers (8-12 years old were included in the study. Reading and executive functions behavioral measures and resting-state functional magnetic resonance imaging data were collected before and after reading training. Imaging data were analyzed using a graphical network-modeling tool. Both reading groups had increased reading and executive-functions scores after training, with greater gains among the dyslexia group. Training may have less effect on cognitive control in typical readers and a more direct effect on the visual area, as previously reported. Statistical analysis revealed that compared to typical readers, children with reading difficulty had significantly greater functional connectivity in the cingulo-opercular network after training, which may demonstrate the importance of cognitive control during reading in this population. These results support previous findings of increased error-monitoring activation after reading training in children with dyslexia and confirm greater gains with training in this group.

  7. Viewing socio-affective stimuli increases connectivity within an extended default mode network.

    Science.gov (United States)

    Göttlich, Martin; Ye, Zheng; Rodriguez-Fornells, Antoni; Münte, Thomas F; Krämer, Ulrike M

    2017-03-01

    Empathy is an essential ability for prosocial behavior. Previous imaging studies identified a number of brain regions implicated in affective and cognitive aspects of empathy. In this study, we investigated the neural correlates of empathy from a network perspective using graph theory and beta-series correlations. Two independent data sets were acquired using the same paradigm that elicited empathic responses to socio-affective stimuli. One data set was used to define the network nodes and modular structure, the other data set was used to investigate the effects of emotional versus neutral stimuli on network connectivity. Emotional relative to neutral stimuli increased connectivity between 74 nodes belonging to different networks. Most of these nodes belonged to an extended default mode network (eDMN). The other nodes belonged to a cognitive control network or visual networks. Within the eDMN, posterior STG/TPJ regions were identified as provincial hubs. The eDMN also showed stronger connectivity to the cognitive control network encompassing lateral PFC regions. Connector hubs between the two networks were posterior cingulate cortex and ventrolateral PFC. This stresses the advantage of a network approach as regions similarly modulated by task conditions can be dissociated into distinct networks and regions crucial for network integration can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available BACKGROUND: Numerous studies have demonstrated the higher-order functions of the cerebellum, including emotion regulation and cognitive processing, and have indicated that the cerebellum should therefore be included in the pathophysiological models of major depressive disorder. The aim of this study was to compare the resting-state functional connectivity of the cerebellum in adults with major depression and healthy controls. METHODS: Twenty adults with major depression and 20 gender-, age-, and education-matched controls were investigated using seed-based resting-state functional connectivity magnetic resonance imaging. RESULTS: Compared with the controls, depressed patients showed significantly increased functional connectivity between the cerebellum and the temporal poles. However, significantly reduced cerebellar functional connectivity was observed in the patient group in relation to both the default-mode network, mainly including the ventromedial prefrontal cortex and the posterior cingulate cortex/precuneus, and the executive control network, mainly including the superior frontal cortex and orbitofrontal cortex. Moreover, the Hamilton Depression Rating Scale score was negatively correlated with the functional connectivity between the bilateral Lobule VIIb and the right superior frontal gyrus in depressed patients. CONCLUSIONS: This study demonstrated increased cerebellar coupling with the temporal poles and reduced coupling with the regions in the default-mode and executive control networks in adults with major depression. These differences between patients and controls could be associated with the emotional disturbances and cognitive control function deficits that accompany major depression. Aberrant cerebellar connectivity during major depression may also imply a substantial role for the cerebellum in the pathophysiological models of depression.

  9. Relating increasing hantavirus incidences to the changing climate: the mast connection

    Directory of Open Access Journals (Sweden)

    Maes Piet

    2009-01-01

    Full Text Available Abstract Background Nephropathia epidemica (NE, an emerging rodent-borne viral disease, has become the most important cause of infectious acute renal failure in Belgium, with sharp increases in incidence occurring for more than a decade. Bank voles are the rodent reservoir of the responsible hantavirus and are known to display cyclic population peaks. We tried to relate these peaks to the cyclic NE outbreaks observed since 1993. Our hypothesis was that the ecological causal connection was the staple food source for voles, being seeds of deciduous broad-leaf trees, commonly called "mast". We also examined whether past temperature and precipitation preceding "mast years" were statistically linked to these NE outbreaks. Results Since 1993, each NE peak is immediately preceded by a mast year, resulting in significantly higher NE case numbers during these peaks (Spearman R = -0.82; P = 0.034. NE peaks are significantly related to warmer autumns the year before (R = 0.51; P Conclusion NE peaks in year 0 are induced by abundant mast formation in year-1, facilitating bank vole survival during winter, thus putting the local human population at risk from the spring onwards of year 0. This bank vole survival is further promoted by higher autumn temperatures in year-1, whereas mast formation itself is primed by higher summer temperatures in year-2. Both summer and autumn temperatures have been rising to significantly higher levels during recent years, explaining the virtually continuous epidemic state since 2005 of a zoonosis, considered rare until recently. Moreover, in 2007 a NE peak and an abundant mast formation occurred for the first time within the same year, thus forecasting yet another record NE incidence for 2008. We therefore predict that with the anticipated climate changes due to global warming, NE might become a highly endemic disease in Belgium and surrounding countries.

  10. Increased cortical thickness and altered functional connectivity of the right superior temporal gyrus in left-handers.

    Science.gov (United States)

    Li, Meiling; Chen, Heng; Wang, Junping; Liu, Feng; Wang, Yifeng; Lu, Fengmei; Yu, Chunshui; Chen, Huafu

    2015-01-01

    Altered structure in the temporal cortex has been implicated in the variable language laterality of left-handers (LH). The neuroanatomy of language lateralization and the corresponding synchronous functional connectivity (FC) in handedness cohorts are not, however, fully understood. We used structural and resting-state functional magnetic resonance imaging (fMRI) data to investigate the effect of altered cortical thickness on FC in LH and right-handers (RH). Whole-brain cortical thickness was calculated and compared between the LH and RH. We observed increased cortical thickness in the right superior temporal gyrus (STG) in the LH. A further FC analysis was conducted between the right STG and the remaining voxels in the brain. Compared with RH, the LH showed significantly higher FC in the left STG, right occipital cortex, and lower FC in the left inferior frontal gyrus and supramarginal gyrus. Our findings suggest that LH have atypical connectivity in the language network, with an enhanced role of the STG, findings which provide novel insights into the structural and functional substrates underlying the atypical language development of left-handed individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  12. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex.

    Science.gov (United States)

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-07-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.

  13. Mobile cell-phones (M-phones in telemicroscopy: increasing connectivity of isolated laboratories

    Directory of Open Access Journals (Sweden)

    Missoni Eduardo

    2009-06-01

    Full Text Available Abstract Background The development of modern information telecommunication (ITC technology and its use in telemedicine plays an increasingly important role in facilitating access to some diagnostic services even to people living in the most remote areas. However, physical and economical constraints in the access to broad band data-transmission network, still represent a considerable obstacle to the transmission of images for the purpose of tele-pathology. Methods Indifferently using m-phones of different brands, and a variety of microscopic preparations, images were taken without the use of any adaptor simply approaching the lens of the mobile cell phone camera to the ocular of common optical microscopes, and subsequently sent via Multimedia Messaging Services (MMS to distant reference centres for tele-diagnosis. Access to MMS service was reviewed with specific reference to the African information communication technology (ICT market. Results Images of any pathologic preparation could be captured and sent over the mobile phone with an MMS, without being limited by appropriate access to the internet for transmission (i.e. access to broad-band services. The quality of the image was not influenced by the brand or model of the mobile-phone used, but only by its digital resolution, with any resolution above 0.8 megapixel resulting in images sufficient for diagnosis. Access to MMS services is increasingly reaching remote disadvantaged areas. Current penetration of the service in Africa was mapped appearing already available in almost every country, with penetration index varying from 1.5% to 92.2%. Conclusion The use of otherwise already widely available technologies, without any need for adaptors or otherwise additional technology, could significantly increase opportunities and quality diagnostics while lowering costs and considerably increasing connectivity between most isolated laboratories and distant reference center.

  14. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Larsson, Henrik B W

    2017-01-01

    The neurological disturbances of migraine aura are caused by transient cortical dysfunction due to waves of spreading depolarization that disrupt neuronal signaling. The effects of these cortical events on intrinsic brain connectivity during attacks of migraine aura have not previously been......-based approach focusing on cortical visual areas and areas involved in migraine pain, and a data-driven independent component analysis approach to detect changes in intrinsic brain signaling during attacks. In addition, we performed the analyses after mirroring the MRI data according to the side of perceived......-sided pain. For aura-side normalized data, we found increased connectivity during attacks between visual area V5 and the lower middle frontal gyrus in the symptomatic hemisphere (peak voxel: P = 0.0194, (x, y, z) = (40, 40, 12). The present study provides evidence of altered intrinsic brain connectivity...

  15. Developmental Changes in Brain Network Hub Connectivity in Late Adolescence.

    Science.gov (United States)

    Baker, Simon T E; Lubman, Dan I; Yücel, Murat; Allen, Nicholas B; Whittle, Sarah; Fulcher, Ben D; Zalesky, Andrew; Fornito, Alex

    2015-06-17

    The human brain undergoes substantial development throughout adolescence and into early adulthood. This maturational process is thought to include the refinement of connectivity between putative connectivity hub regions of the brain, which collectively form a dense core that enhances the functional integration of anatomically distributed, and functionally specialized, neural systems. Here, we used longitudinal diffusion magnetic resonance imaging to characterize changes in connectivity between 80 cortical and subcortical anatomical regions over a 2 year period in 31 adolescents between the ages of 15 and 19 years. Connectome-wide analysis indicated that only a small subset of connections showed evidence of statistically significant developmental change over the study period, with 8% and 6% of connections demonstrating decreased and increased structural connectivity, respectively. Nonetheless, these connections linked 93% and 90% of the 80 regions, respectively, pointing to a selective, yet anatomically distributed pattern of developmental changes that involves most of the brain. Hub regions showed a distinct tendency to be highly connected to each other, indicating robust "rich-club" organization. Moreover, connectivity between hubs was disproportionately influenced by development, such that connectivity between subcortical hubs decreased over time, whereas frontal-subcortical and frontal-parietal hub-hub connectivity increased over time. These findings suggest that late adolescence is characterized by selective, yet significant remodeling of hub-hub connectivity, with the topological organization of hubs shifting emphasis from subcortical hubs in favor of an increasingly prominent role for frontal hub regions. Copyright © 2015 the authors 0270-6474/15/359078-10$15.00/0.

  16. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    Science.gov (United States)

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  17. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  18. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Vilar-López, Raquel; Perales, Jose C; Martínez-Gonzalez, Jose M; Fernández-Serrano, Maria J; Lozano-Rojas, Oscar; Clark, Luke; Verdejo-García, Antonio

    2016-05-01

    Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect. © 2015 Society for the Study of Addiction.

  19. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search......-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  20. Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest.

    Science.gov (United States)

    Wang, Houliang; Guo, Wenbin; Liu, Feng; Wang, Guodong; Lyu, Hailong; Wu, Renrong; Chen, Jindong; Wang, Shuai; Li, Lehua; Zhao, Jingping

    2016-05-18

    Increased cerebellar-default mode network (DMN) connectivity has been observed in first-episode, drug-naive patients with schizophrenia. However, it remains unclear whether increased cerebellar-DMN connectivity starts earlier than disease onset. Thirty-four ultra-high risk (UHR) subjects, 31 first-episode, drug-naive patients with schizophrenia and 37 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, UHR subjects and patients with schizophrenia shared increased connectivity between the right Crus I and bilateral posterior cingulate cortex/precuneus and between Lobule IX and the left superior medial prefrontal cortex. There are positive correlations between the right Crus I-bilateral precuneus connectivity and clinical variables (Structured Interview for Prodromal Syndromes/Positive and Negative Symptom Scale negative symptoms/total scores) in the UHR subjects. Increased cerebellar-DMN connectivity shared by the UHR subjects and the patients not only highlights the importance of the DMN in the pathophysiology of psychosis but also may be a trait alteration for psychosis.

  1. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  2. DISSECTING HABITAT CONNECTIVITY

    Science.gov (United States)

    abstractConnectivity is increasingly recognized as an important element of a successful reserve design. Connectivity matters in reserve design to the extent that it promotes or hinders the viability of target populations. While conceptually straightforward, connectivity i...

  3. Increased Brain Connectivity In Early Postmenopausal Women with Subjective Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Jennifer N Vega

    2016-09-01

    Full Text Available Cognitive changes after menopause are a common complaint, especially as the loss of estradiol at menopause has been hypothesized to contribute to the higher rates of dementia in women. To explore the neural processes related to subjective cognitive complaints, this study examined resting state functional connectivity in 31 postmenopausal women (aged 50-60 in relationship to cognitive complaints following menopause. A cognitive complaint index was calculated using responses to a 120-item questionnaire. Seed regions were identified for resting state brain networks important for higher-order cognitive processes and for areas that have shown differences in volume and functional activity associated with cognitive complaints in prior studies. Results indicated a positive correlation between the executive control network and cognitive complaint score, weaker negative functional connectivity within the frontal cortex, and stronger positive connectivity within the right middle temporal gyrus in postmenopausal women who report more cognitive complaints. While longitudinal studies are needed to confirm this hypothesis, these data are consistent with previous findings suggesting that high levels of cognitive complaints may reflect changes in brain connectivity and may be a potential marker for the risk of late-life cognitive dysfunction in postmenopausal women with otherwise normal cognitive performance.

  4. Development and functional significance of dorsal air bags in ...

    African Journals Online (AJOL)

    Histological examination of the air bags showed that they were integumentary structures composed of an outer epidermis and an inner dermis. The air bags were not connected to the respiratory system. The body temperature (Tb) of Monteiro's Hornbill nestlings increased significantly with increasing age. Comparisons of ...

  5. Power system services provided by inverter connected distributed energy resources

    DEFF Research Database (Denmark)

    For the last few years there has been a significant increase of DER units in Denmark, of those units more and more are connected to the power system using inverters. These inverter connected units have the potential to support the electrical power system with various power system services. One...

  6. Establishing Connectivity

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed ...... and human rights can be understood as serving a constitutionalising function aimed at stabilising and facilitating connectivity. This allows for an understanding of colonialism and contemporary global governance as functional, but not as normative, equivalents.......Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed...... social components, such as economic capital and products, religious doctrines and scientific knowledge, from one legally structured context to another within world society. This was the case from colonialism and colonial law to contemporary global supply chains and human rights. Both colonial law...

  7. Altered whole-brain connectivity in albinism.

    Science.gov (United States)

    Welton, Thomas; Ather, Sarim; Proudlock, Frank A; Gottlob, Irene; Dineen, Robert A

    2017-02-01

    Albinism is a group of congenital disorders of the melanin synthesis pathway. Multiple ocular, white matter and cortical abnormalities occur in albinism, including a greater decussation of nerve fibres at the optic chiasm, foveal hypoplasia and nystagmus. Despite this, visual perception is largely preserved. It was proposed that this may be attributable to reorganisation among cerebral networks, including an increased interhemispheric connectivity of the primary visual areas. A graph-theoretic model was applied to explore brain connectivity networks derived from resting-state functional and diffusion-tensor magnetic resonance imaging data in 23 people with albinism and 20 controls. They tested for group differences in connectivity between primary visual areas and in summary network organisation descriptors. Main findings were supplemented with analyses of control regions, brain volumes and white matter microstructure. Significant functional interhemispheric hyperconnectivity of the primary visual areas in the albinism group were found (P = 0.012). Tests of interhemispheric connectivity based on the diffusion-tensor data showed no significant group difference (P = 0.713). Second, it was found that a range of functional whole-brain network metrics were abnormal in people with albinism, including the clustering coefficient (P = 0.005), although this may have been driven partly by overall differences in connectivity, rather than reorganisation. Based on the results, it was suggested that changes occur in albinism at the whole-brain level, and not just within the visual processing pathways. It was proposed that their findings may reflect compensatory adaptations to increased chiasmic decussation, foveal hypoplasia and nystagmus. Hum Brain Mapp 38:740-752, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. FHR patterns that become significant in connection with ST waveform changes and metabolic acidosis at birth.

    Science.gov (United States)

    Rosén, Karl G; Norén, Håkan; Carlsson, Ann

    2018-04-18

    Recent developments have produced new CTG classification systems and the question is to what extent these may affect the model of FHR + ST interpretation? The two new systems (FIGO2015 and SSOG2017) classify FHR + ST events differently from the current CTG classification system used in the STAN interpretation algorithm (STAN2007). Identify the predominant FHR patterns in connection with ST events in cases of cord artery metabolic acidosis missed by the different CTG classification systems. Indicate to what extent STAN clinical guidelines could be modified enhancing the sensitivity. Provide a pathophysiological rationale. Forty-four cases with umbilical cord artery metabolic acidosis were retrieved from a European multicenter database. Significant FHR + ST events were evaluated post hoc in consensus by an expert panel. Eighteen cases were not identified as in need of intervention and regarded as negative in the sensitivity analysis. In 12 cases, ST changes occurred but the CTG was regarded as reassuring. Visual analysis of the FHR + ST tracings revealed specific FHR patterns: Conclusion: These findings indicate FHR + ST analysis may be undertaken regardless of CTG classification system provided there is a more physiologically oriented approach to FHR assessment in connection with an ST event.

  9. Default mode network connectivity as a function of familial and environmental risk for psychotic disorder.

    Science.gov (United States)

    Peeters, Sanne C T; van de Ven, Vincent; Gronenschild, Ed H B M; Patel, Ameera X; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.

  10. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    Science.gov (United States)

    Wolf, Kristin L.; Noe, Gregory; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  11. Do age-related word retrieval difficulties appear (or disappear) in connected speech?

    Science.gov (United States)

    Kavé, Gitit; Goral, Mira

    2017-09-01

    We conducted a comprehensive literature review of studies of word retrieval in connected speech in healthy aging and reviewed relevant aphasia research that could shed light on the aging literature. Four main hypotheses guided the review: (1) Significant retrieval difficulties would lead to reduced output in connected speech. (2) Significant retrieval difficulties would lead to a more limited lexical variety in connected speech. (3) Significant retrieval difficulties would lead to an increase in word substitution errors and in pronoun use as well as to greater dysfluency and hesitation in connected speech. (4) Retrieval difficulties on tests of single-word production would be associated with measures of word retrieval in connected speech. Studies on aging did not confirm these four hypotheses, unlike studies on aphasia that generally did. The review suggests that future research should investigate how context facilitates word production in old age.

  12. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.

    Science.gov (United States)

    Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan

    2018-02-01

    Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.

  13. Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit.

    Science.gov (United States)

    Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi

    2017-05-01

    Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction. © 2016 Society for the Study of Addiction.

  14. Corporate Leadership and Governance for Increasing Stakeholder Involvement and Developing Stronger Connections

    OpenAIRE

    Coulson-Thomas, Colin

    2018-01-01

    Many organisations and their supply chains are networks of relationships, but greater connectivity, additional connections and more intimate relationships can involve costs and risks as well as confer benefits, while inappropriate relationships can be harmful. Aspects of company law and regulation and contemporary corporate leadership and governance codes, priorities and practices favour some stakeholders over others and can hinder rather than help the building of relationships with a wider r...

  15. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    Science.gov (United States)

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ashly P.; Bond-Lamberty, Benjamin; Benscoter, Brian W.; Tfaily, Malak M.; Hinkle, Ross; Liu, Chongxuan; Bailey, Vanessa L.

    2017-11-06

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.

  17. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  18. Musical training increases functional connectivity, but does not enhance mu suppression.

    Science.gov (United States)

    Wu, C Carolyn; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J

    2017-09-01

    Musical training provides an ideal platform for investigating action representation for sound. Learning to play an instrument requires integration of sensory and motor perception-action processes. Functional neuroimaging studies have indicated that listening to trained music can result in the activity in premotor areas, even after a short period of training. These studies suggest that action representation systems are heavily dependent on specific sensorimotor experience. However, others suggest that because humans naturally move to music, sensorimotor training is not necessary and there is a more general action representation for music. We previously demonstrated that EEG mu suppression, commonly implemented to demonstrate mirror-neuron-like action representation while observing movements, can also index action representations for sounds in pianists. The current study extends these findings to a group of non-musicians who learned to play randomised sequences on a piano, in order to acquire specific sound-action mappings for the five fingers of their right hand. We investigated training-related changes in neural dynamics as indexed by mu suppression and task-related coherence measures. To test the specificity of training effects, we included sounds similar to those encountered in the training and additionally rhythm sequences. We found no effect of training on mu suppression between pre- and post-training EEG recordings. However, task-related coherence indexing functional connectivity between electrodes over audiomotor areas increased after training. These results suggest that long-term training in musicians and short-term training in novices may be associated with different stages of audiomotor integration that can be reflected in different EEG measures. Furthermore, the changes in functional connectivity were specifically found for piano tones, and were not apparent when participants listened to rhythms, indicating some degree of specificity related to training

  19. Impact of connected vehicle guidance information on network-wide average travel time

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2016-12-01

    Full Text Available With the emergence of connected vehicle technologies, the potential positive impact of connected vehicle guidance on mobility has become a research hotspot by data exchange among vehicles, infrastructure, and mobile devices. This study is focused on micro-modeling and quantitatively evaluating the impact of connected vehicle guidance on network-wide travel time by introducing various affecting factors. To evaluate the benefits of connected vehicle guidance, a simulation architecture based on one engine is proposed representing the connected vehicle–enabled virtual world, and connected vehicle route guidance scenario is established through the development of communication agent and intelligent transportation systems agents using connected vehicle application programming interface considering the communication properties, such as path loss and transmission power. The impact of connected vehicle guidance on network-wide travel time is analyzed by comparing with non-connected vehicle guidance in response to different market penetration rate, following rate, and congestion level. The simulation results explore that average network-wide travel time in connected vehicle guidance shows a significant reduction versus that in non–connected vehicle guidance. Average network-wide travel time in connected vehicle guidance have an increase of 42.23% comparing to that in non-connected vehicle guidance, and average travel time variability (represented by the coefficient of variance increases as the travel time increases. Other vital findings include that higher penetration rate and following rate generate bigger savings of average network-wide travel time. The savings of average network-wide travel time increase from 17% to 38% according to different congestion levels, and savings of average travel time in more serious congestion have a more obvious improvement for the same penetration rate or following rate.

  20. Connection of leak detectors for duplex tube plates of modular steam generator

    International Nuclear Information System (INIS)

    Banovec, J.; Konarik, M.; Vytopil, O.

    1985-01-01

    The sensors are connected to common line and column conductors. This connection significantly reduces the number of evaluation points and thus also the required number of evaluation unit channels. The reliability of the instrument is increased by each sensor being connected to two separate group conductors. Even upon failure of one of the conductors, the group of tube plates can be identified where a leak occurred. (J.B.)

  1. Inter- and intrahemispheric connectivity differences when reading Japanese Kanji and Hiragana.

    Science.gov (United States)

    Kawabata Duncan, Keith J; Twomey, Tae; Parker Jones, 'Ōiwi; Seghier, Mohamed L; Haji, Tomoki; Sakai, Katsuyuki; Price, Cathy J; Devlin, Joseph T

    2014-06-01

    Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito-temporal (vOT) cortex and Broca's area ("pars opercularis"). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca's area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca's area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions.

  2. Network connectivity value.

    Science.gov (United States)

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-04-21

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Significance of connective tissue diseases features in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Vincent Cottin

    2013-09-01

    Full Text Available Interstitial lung disease (ILD can occur in any of the connective tissue diseases (CTD with varying frequency and severity, and an overall long-term prognosis that is less severe than that of idiopathic pulmonary fibrosis (IPF. Because ILD may be the presenting manifestation of CTD and/or the dominant manifestation of CTD, clinical extra-thoracic manifestations should be systematically considered in the diagnostic approach of ILD. When present, autoantibodies strongly contribute to the recognition and classification of the CTD. Patients with clinical extrathoracic manifestations of CTD and/or autoantibodies (especially with a high titer and/or the antibody is considered “highly specific” of an autoimmune condition, but who do not fit with established international CTD criteria may be called undifferentiated CTD or “lung-dominant CTD”. Although it remains to be determined which combination of symptoms and serologic tests best identify the subset of patients with clinically relevant CTD features, available evidence suggests that such patients may have distinct clinical and imaging presentation and may portend a distinct clinical course. However, autoantibodies alone when present in IPF patients do not seem to impact prognosis or management. Referral to a rheumatologist and multidisciplinary discussion may contribute to management of patients with undifferentiated CTD.

  4. Predicting individual brain maturity using dynamic functional connectivity

    Directory of Open Access Journals (Sweden)

    Jian eQin

    2015-07-01

    Full Text Available Neuroimaging-based functional connectivity (FC analyses have revealed significant developmental trends in specific intrinsic connectivity networks linked to cognitive and behavioral maturation. However, knowledge of how brain functional maturation is associated with FC dynamics at rest is limited. Here, we examined age-related differences in the temporal variability of FC dynamics with data publicly released by the Nathan Kline Institute (NKI (n=183, ages 7-30 and showed that dynamic inter-region interactions can be used to accurately predict individual brain maturity across development. Furthermore, we identified a significant age-dependent trend underlying dynamic inter-network FC, including increasing variability of the connections between the visual network, default mode network (DMN and cerebellum as well as within the cerebellum and DMN and decreasing variability within the cerebellum and between the cerebellum and DMN as well as the cingulo-opercular network. Overall, the results suggested significant developmental changes in dynamic inter-network interaction, which may shed new light on the functional organization of typical developmental brains.

  5. Analyzing Indonesian Air Connectivity Period of 2006 - 2016

    Directory of Open Access Journals (Sweden)

    Prayoga Nugraha

    2017-01-01

    Full Text Available As an emerging country, Indonesia needs to cope up with recent global development. One of those pivotal elements is arguably the air connection. However, no studies have been found examining Indonesian air connectivity in detail. Deriving from such a situation, this study attempts to analysis the connectivity levels of Indonesia through the period of 2006 and 2016. The study uses the Netscan formulae which entail three elements, namely direct, indirect and hub connectivity. It has been noted that Indonesian connectivity has significantly increased by doubling in size. As a result, the country is relatively well connected in domestic level. Furthermore, many global destinations can be reached thanks to onward connections offered by international gateways with an exception toward Latin America and Central Asia. A contra-productive decision of government concerning designation of main international gateways is also outlined. As these airports mainly located in western part yet their growth is comparatively mature than those are in the eastern part or smaller regions. In terms of airport network, Indonesian airports have greatly raised their hub connectivity by nearly three times. However, these airports have barely been utilized as an intermediate stop for international flights. Finally, this study recommends suggestions to improve the connectivity level from available literature.

  6. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions.

    Science.gov (United States)

    Hu, Jiehui; Qi, Song; Becker, Benjamin; Luo, Lizhu; Gao, Shan; Gong, Qiyong; Hurlemann, René; Kendrick, Keith M

    2015-06-01

    In male Caucasian subjects, learning is facilitated by receipt of social compared with non-social feedback, and the neuropeptide oxytocin (OXT) facilitates this effect. In this study, we have first shown a cultural difference in that male Chinese subjects actually perform significantly worse in the same reinforcement associated learning task with social (emotional faces) compared with non-social feedback. Nevertheless, in two independent double-blind placebo (PLC) controlled between-subject design experiments we found OXT still selectively facilitated learning with social feedback. Similar to Caucasian subjects this OXT effect was strongest with feedback using female rather than male faces. One experiment performed in conjunction with functional magnetic resonance imaging showed that during the response, but not feedback phase of the task, OXT selectively increased activity in the amygdala, hippocampus, parahippocampal gyrus and putamen during the social feedback condition, and functional connectivity between the amygdala and insula and caudate. Therefore, OXT may be increasing the salience and reward value of anticipated social feedback. In the PLC group, response times and state anxiety scores during social feedback were associated with signal changes in these same regions but not in the OXT group. OXT may therefore have also facilitated learning by reducing anxiety in the social feedback condition. Overall our results provide the first evidence for cultural differences in social facilitation of learning per se, but a similar selective enhancement of learning with social feedback under OXT. This effect of OXT may be associated with enhanced responses and functional connectivity in emotional memory and reward processing regions. © 2015 Wiley Periodicals, Inc.

  7. Efficacy of Peer Networks to Increase Social Connections among High School Students with and without Autism Spectrum Disorder

    Science.gov (United States)

    Hochman, Julia M.; Carter, Erik W.; Bottema-Beutel, Kristen; Harvey, Michelle N.; Gustafson, Jenny R.

    2015-01-01

    Although peer interaction takes on increased salience during adolescence, such social connections remain elusive for many high school students with autism spectrum disorder (ASD). This social isolation can be particularly prevalent within unstructured school contexts. In this study, we examined the effects of a lunchtime peer network intervention…

  8. Political Connections and Investment in Rural Vietnam

    DEFF Research Database (Denmark)

    Markussen, Thomas; Tarp, Finn

    This paper uses household panel data from rural Vietnam to explore the effects of having a relative in a position of political or bureaucratic power on farmers’ agricultural investment decisions. Our main result is that households significantly increase their investment in land improvement...... as a result of relatives moving into public office. Connections to office holders appear to be important for investment because they strengthen de facto land property rights and improve access to off-farm employment and to informal loans. The findings underline the importance of informal networks for economic...... behaviour in environments with developing institutions and markets. They also suggest the presence of an untapped potential for economic development: if households without connections could obtain equally strong property rights and access to credit and insurance as the well-connected households, investment...

  9. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.

    Science.gov (United States)

    Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T

    2017-03-01

    Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task

  10. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer.

    Science.gov (United States)

    Kikuchi, Ryoko; Kikuchi, Yoshihiro; Tsuda, Hitoshi; Maekawa, Hitoshi; Kozaki, Ken-Ichi; Imoto, Issei; Tamai, Seiichi; Shiotani, Akihiro; Iwaya, Keiichi; Sakamoto, Masaru; Sekiya, Takao; Matsubara, Osamu

    2014-07-01

    Connective tissue growth factor (CTGF) has been reported to play critical roles in the tumorigenesis of several human malignancies. This study was performed to evaluate CTGF protein expression in head and neck squamous cell carcinoma (HNSCC). Surgical specimens from 76 primary HNSCC were obtained with written informed consents and the expression level of CTGF was immunohistochemically evaluated. The cytoplasmic immunoreactivity of CTGF in cancer cells was semiquantitatively classified into low and high expression. Among all 76 cases with or without neoadjuvant therapy, low CTGF showed significantly longer (P = 0.0282) overall survival (OS), but not disease-free survival (DFS) than high CTGF. Although low CTGF in patients with stage I, II and III did not result in any significant difference of the OS and DFS, stage IV HNSCC patients with low CTGF showed significantly longer OS (P = 0.032) and DFS (P = 0.0107) than those with high CTGF. These differences in stage IV cases were also confirmed using multivariate analyses. These results suggest that low CTGF in stage IV HNSCC is an independent prognostic factor, despite with or without neoadjuvant therapy.

  11. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    Science.gov (United States)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  12. Altered resting-state functional connectivity in women with chronic fatigue syndrome.

    Science.gov (United States)

    Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul

    2015-12-30

    The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties

    Directory of Open Access Journals (Sweden)

    Tzipi Horowitz-Kraus

    2015-01-01

    Full Text Available The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8–12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.

  14. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder.

    Science.gov (United States)

    Wang, Jia; Fu, Kuang; Chen, Lei; Duan, Xujun; Guo, Xiaonan; Chen, Heng; Wu, Qiong; Xia, Wei; Wu, Lijie; Chen, Huafu

    2017-01-01

    Autism spectrum disorder (ASD) has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3-7-year-old children with ASD compared with typically developing controls (TDs), and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM) analysis on structural magnetic resonance imaging (sMRI) data to assess the differences of gray matter volume (GMV) between 31 autistic boys aged 3-7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG) and left postcentral gyrus (PCG) in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG) and greater negative connectivity with right superior parietal gyrus (SPG) and right superior occipital gyrus (SOG), which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory integration in ASD

  15. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2017-08-01

    Full Text Available Autism spectrum disorder (ASD has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3–7-year-old children with ASD compared with typically developing controls (TDs, and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM analysis on structural magnetic resonance imaging (sMRI data to assess the differences of gray matter volume (GMV between 31 autistic boys aged 3–7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG and left postcentral gyrus (PCG in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG and greater negative connectivity with right superior parietal gyrus (SPG and right superior occipital gyrus (SOG, which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory

  16. Functional organization of intrinsic connectivity networks in Chinese-chess experts.

    Science.gov (United States)

    Duan, Xujun; Long, Zhiliang; Chen, Huafu; Liang, Dongmei; Qiu, Lihua; Huang, Xiaoqi; Liu, Timon Cheng-Yi; Gong, Qiyong

    2014-04-16

    The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations during a resting state condition. Accumulating evidence suggests that the overall organization of functional connectivity networks is associated with individual differences in cognitive performance and prior experience. Such an association raises the question of how cognitive expertise exerts an influence on the topological properties of large-scale functional networks. To address this question, we examined the overall organization of brain functional networks in 20 grandmaster and master level Chinese-chess players (GM/M) and twenty novice players, by means of resting-state functional connectivity and graph theoretical analyses. We found that, relative to novices, functional connectivity was increased in GM/Ms between basal ganglia, thalamus, hippocampus, and several parietal and temporal areas, suggesting the influence of cognitive expertise on intrinsic connectivity networks associated with learning and memory. Furthermore, we observed economical small-world topology in the whole-brain functional connectivity networks in both groups, but GM/Ms exhibited significantly increased values of normalized clustering coefficient which resulted in increased small-world topology. These findings suggest an association between the functional organization of brain networks and individual differences in cognitive expertise, which might provide further evidence of the mechanisms underlying expert behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons

    Science.gov (United States)

    Streeter, Kristi A.; Sunshine, Michael D.; Patel, Shreya; Gonzalez-Rothi, Elisa J.; Reier, Paul J.

    2017-01-01

    Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O2, H1–H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; p phrenic motoneurons and excitatory inputs to these “pre-phrenic” cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network. SIGNIFICANCE STATEMENT Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our results demonstrate that AIH recruits excitatory C-INs into the spinal respiratory (phrenic) network. AIH also enhances excitatory and reduces inhibitory connections among the C-IN network. We conclude that C-INs are part of the respiratory, somatic, and/or autonomic response to AIH, and that propriospinal plasticity may contribute to sustained increases in motor output after AIH. PMID:28751456

  18. Political connections, media monitoring and long-term loans

    Institute of Scientific and Technical Information of China (English)

    Deming; Yang; Zhengfei; Lu; Danglun; Luo

    2014-01-01

    We analyze data on Chinese non-state-listed firms and find that it is easier for firms with political connections to obtain long-term loans with extended debt maturities than it is for firms without political connections. Our investigation indicates that this phenomenon is significantly less common with increased media monitoring. Houston et al.(2011) find strong evidence that the state ownership of media is associated with higher levels of bank corruption in China, but our study shows that, to a certain extent, media monitoring can curb corruption.

  19. Political connections, media monitoring and long-term loans

    Directory of Open Access Journals (Sweden)

    Deming Yang

    2014-09-01

    Full Text Available We analyze data on Chinese non-state-listed firms and find that it is easier for firms with political connections to obtain long-term loans with extended debt maturities than it is for firms without political connections. Our investigation indicates that this phenomenon is significantly less common with increased media monitoring. Houston et al. (2011 find strong evidence that the state ownership of media is associated with higher levels of bank corruption in China, but our study shows that, to a certain extent, media monitoring can curb corruption.

  20. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search...... of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  1. Altered network hub connectivity after acute LSD administration

    Directory of Open Access Journals (Sweden)

    Felix Müller

    Full Text Available LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum and cortical (precuneus, anterior cingulate cortex hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model. Keywords: LSD, fMRI, Functional connectivity, Networks, Hubs

  2. Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu

    2016-09-01

    The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Physical Exercise Keeps the Brain Connected: Biking Increases White Matter Integrity in Patients With Schizophrenia and Healthy Controls.

    Science.gov (United States)

    Svatkova, Alena; Mandl, René C W; Scheewe, Thomas W; Cahn, Wiepke; Kahn, René S; Hulshoff Pol, Hilleke E

    2015-07-01

    It has been shown that learning a new skill leads to structural changes in the brain. However, it is unclear whether it is the acquisition or continuous practicing of the skill that causes this effect and whether brain connectivity of patients with schizophrenia can benefit from such practice. We examined the effect of 6 months exercise on a stationary bicycle on the brain in patients with schizophrenia and healthy controls. Biking is an endemic skill in the Netherlands and thus offers an ideal situation to disentangle the effects of learning vs practice. The 33 participating patients with schizophrenia and 48 healthy individuals were assigned to either one of two conditions, ie, physical exercise or life-as-usual, balanced for diagnosis. Diffusion tensor imaging brain scans were made prior to and after intervention. We demonstrate that irrespective of diagnosis regular physical exercise of an overlearned skill, such as bicycling, significantly increases the integrity, especially of motor functioning related, white matter fiber tracts whereas life-as-usual leads to a decrease in fiber integrity. Our findings imply that exercise of an overlearned physical skill improves brain connectivity in patients and healthy individuals. This has important implications for understanding the effect of fitness programs on the brain in both healthy subjects and patients with schizophrenia. Moreover, the outcome may even apply to the nonphysical realm. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Abnormal rich club organization and impaired correlation between structural and functional connectivity in migraine sufferers.

    Science.gov (United States)

    Li, Kang; Liu, Lijun; Yin, Qin; Dun, Wanghuan; Xu, Xiaolin; Liu, Jixin; Zhang, Ming

    2017-04-01

    Because of the unique position of the topologically central role of densely interconnected brain hubs, our study aimed to investigate whether these regions and their related connections would be particularly vulnerable to migraine. In our study, we explored the rich club structure and its role in global functional dynamics in 30 patients with migraine without aura and 30 healthy controls. DTI and resting fMRI were used to construct structural connectivity (SC) and functional connectivity (FC) networks. An independent replication data set of 26 patients and 26 controls was included to replicate and validate significant findings. As compared with the controls, the structural networks of patients exhibited altered rich club organization with higher level of feeder connection density, abnormal small-world organization with increased global efficiency and decreased strength of SC-FC coupling. As these abnormal topological properties and headache attack duration exhibited a significant association with increased density of feeder connections, our results indicated that migraine may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher 'bridgeness' with non-rich club regions, which may increase the integration among pain-related brain circuits with more excitability but less inhibition for the modulation of migraine.

  5. Autistic fluid intelligence: Increased reliance on visual functional connectivity with diminished modulation of coupling by task difficulty

    Science.gov (United States)

    Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A.; Soulières, Isabelle

    2015-01-01

    Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid “reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a

  6. Autistic fluid intelligence: Increased reliance on visual functional connectivity with diminished modulation of coupling by task difficulty

    Directory of Open Access Journals (Sweden)

    Isabelle Simard

    2015-01-01

    Full Text Available Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid “reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI, we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual

  7. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  8. Intermittent Theta-Burst Stimulation of the Lateral Cerebellum Increases Functional Connectivity of the Default Network

    Science.gov (United States)

    Farzan, Faranak; Eldaief, Mark C.; Schmahmann, Jeremy D.; Pascual-Leone, Alvaro

    2014-01-01

    Cerebral cortical intrinsic connectivity networks share topographically arranged functional connectivity with the cerebellum. However, the contribution of cerebellar nodes to distributed network organization and function remains poorly understood. In humans, we applied theta-burst transcranial magnetic stimulation, guided by subject-specific connectivity, to regions of the cerebellum to evaluate the functional relevance of connections between cerebellar and cerebral cortical nodes in different networks. We demonstrate that changing activity in the human lateral cerebellar Crus I/II modulates the cerebral default mode network, whereas vermal lobule VII stimulation influences the cerebral dorsal attention system. These results provide novel insights into the distributed, but anatomically specific, modulatory impact of cerebellar effects on large-scale neural network function. PMID:25186750

  9. Multisite Reliability of MR-Based Functional Connectivity

    Science.gov (United States)

    Noble, Stephanie; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen M.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Cannon, Tyrone D.; Constable, R. Todd

    2016-01-01

    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0

  10. Airport industry connectivity report: 2015

    NARCIS (Netherlands)

    Boonekamp, T.; Lieshout, R.; Burghouwt, G.

    2015-01-01

    This report is an update of the 'Airport Industry Connectivity Report 2004-2014'. It's focused on more recent developments and charting how Europe’s connectivity has evolved over the past 12 months. Airport connectivity is an increasingly discussed topic in European policy circles. With good reason.

  11. Significance in the increase of women psychiatrists in Korea.

    Science.gov (United States)

    Kim, Ha Kyoung; Kim, Soo In

    2008-01-01

    The number of female doctors has increased in Korea; 18.9% (13,083) of the total medical doctors registered (69,097) were women in 2006, compared to 13.6% (2,216) in 1975. The proportion of female doctors will jump up by 2010 considering that nearly 40% of the medical students are women as of today. This trend has had strong influence on the field of psychiatry; the percentage of women psychiatrists rose from 1.6 (6)% to 18% (453), from 1975 to 2006 and now women residents comprise 39% (206) of all. This is not only a reflection of a social phenomenon of the increase in professional women but also attributed to some specific characteristics of the psychiatry. Psychiatric practice may come more natural to women. While clinical activities of women psychiatrists are expanding, there are few women leaders and much less women are involving in academic activities in this field as yet. Though there is less sexual discrimination in the field of psychiatry, women psychiatrists are still having a lot of difficulties in balancing work and family matters. Many women psychiatrists also report they've ever felt an implied discrimination in their careers. In this study, we are to identify the characteristics of women psychiatrists and to explore the significance of the increase in women psychiatrists in Korea and the situation in which they are.

  12. Enabling Research Network Connectivity to Clouds with Virtual Router Technology

    Science.gov (United States)

    Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ

    2017-10-01

    The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.

  13. On interrelations of recurrences and connectivity trends between stock indices

    Science.gov (United States)

    Goswami, B.; Ambika, G.; Marwan, N.; Kurths, J.

    2012-09-01

    Financial data has been extensively studied for correlations using Pearson's cross-correlation coefficient ρ as the point of departure. We employ an estimator based on recurrence plots - the correlation of probability of recurrence (CPR) - to analyze connections between nine stock indices spread worldwide. We suggest a slight modification of the CPR approach in order to get more robust results. We examine trends in CPR for an approximately 19-month window moved along the time series and compare them to trends in ρ. Binning CPR into three levels of connectedness (strong, moderate, and weak), we extract the trends in number of connections in each bin over time. We also look at the behavior of CPR during the dot-com bubble by shifting the time series to align their peaks. CPR mainly uncovers that the markets move in and out of periods of strong connectivity erratically, instead of moving monotonically towards increasing global connectivity. This is in contrast to ρ, which gives a picture of ever-increasing correlation. CPR also exhibits that time-shifted markets have high connectivity around the dot-com bubble of 2000. We use significance tests using twin surrogates to interpret all the measures estimated in the study.

  14. Bank equity connections, intellectual property protection and enterprise innovation – A bank ownership perspective

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2016-09-01

    Full Text Available This study investigates the effects of bank equity connections and intellectual property protection on enterprises’ innovation behavior, and the regulating effect of intellectual property protection on the relationship between bank equity connections and innovation. In general, bank equity connections and intellectual property protection not only significantly increase innovation input, but also improve innovation performance. However, the efficiency of bank equity connections is influenced by the heterogeneity of enterprises and the value orientation of the subjects. Bank equity connections have a more significantly positive effect on innovation in private and central enterprises, whereas the principal-agent problem and government intervention may weaken the marginal contribution of bank equity connections to the innovation of local state-owned enterprises. Bank equity connections and intellectual property protection are complementary in promoting enterprise innovation. Not only are the combined effects of bank equity connections and intellectual property protection greater than the individual effects, but when the latter is relatively weak, the former’s positive effect on innovation is obviously weakened and may even crowd out innovation.

  15. Today's University Students and Their Need to Connect

    Science.gov (United States)

    Russo, Theresa J.; Fallon, Moira A.; Zhang, Jie; Acevedo, Veronica C.

    2014-01-01

    Higher education is rapidly changing and university instructors are presented with new types of students for whom technology is a significant influence. They perceive technology as a way of life and express a need to feel connected at all times. With increasingly diverse university classroom, technology integration is both a challenge and an…

  16. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate

    NARCIS (Netherlands)

    Mizutani, Makoto; Ito, Yasuhiko; Mizuno, Masashi; Nishimura, Hayato; Suzuki, Yasuhiro; Hattori, Ryohei; Matsukawa, Yoshihisa; Imai, Masaki; Oliver, Noelynn; Goldschmeding, Roel; Aten, Jan; Krediet, Raymond T.; Yuzawa, Yukio; Matsuo, Seiichi

    2010-01-01

    Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, Matsukawa Y, Imai M, Oliver N, Goldschmeding R, Aten J, Krediet RT, Yuzawa Y, Matsuo S. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol

  17. Anticipating changes to future connectivity within a network of marine protected areas.

    Science.gov (United States)

    Coleman, Melinda A; Cetina-Heredia, Paulina; Roughan, Moninya; Feng, Ming; van Sebille, Erik; Kelaher, Brendan P

    2017-09-01

    Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self-seeding within higher-latitude MPAs tended to increase, and the role of low-latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  18. The brain matures with stronger functional connectivity and decreased randomness of its network.

    Directory of Open Access Journals (Sweden)

    Dirk J A Smit

    Full Text Available We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998 graph parameters C (local clustering and L (global path length for alpha (~10 Hz, beta (~20 Hz, and theta (~4 Hz oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ~50 yrs. Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ~18 yrs. Older age (55+ was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05, while path length was related to both white matter (alpha: max. r = 38, p<001 and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001 volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain.

  19. Cerebro-cerebellar resting state functional connectivity in children and adolescents with autism spectrum disorder

    Science.gov (United States)

    Khan, Amanda J.; Nair, Aarti; Keown, Christopher L.; Datko, Michael C.; Lincoln, Alan J.; Müller, Ralph-Axel

    2017-01-01

    Background The cerebellum plays important roles in both sensorimotor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available. Methods We used resting-state functional connectivity MRI in 56 children and adolescents (28 ASD, 28 typically developing [TD]) aged 8–17 years. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensorimotor (premotor/primary motor, somatosensory, superior temporal, occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal). Results There were three main findings: (i) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; (ii) partial correlation analyses that emphasized domain-specificity (sensorimotor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared to the TD group) for sensorimotor ROIs, but predominantly reduced connectivity for supramodal ROIs; (iii) this atypical pattern of connectivity was supported by significantly increased non-canonical connections (between sensorimotor cerebral and supramodal cerebellar ROIs, and vice versa) in the ASD group. Conclusions Our findings indicate that sensorimotor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition. PMID:25959247

  20. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation.

    Science.gov (United States)

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Chen, Wen-Yih; Ruaan, Ruoh-Chyu; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-06-01

    Urothelial carcinoma (UC) is the most common histologic subtype of bladder cancer. The administration of mitomycin C (MMC) into the bladder after transurethral resection of the bladder tumor (TURBT) is a common treatment strategy for preventing recurrence after surgery. We previously applied hydrostatic pressure combined with MMC in UC cells and found that hydrostatic pressure synergistically enhanced MMC-induced UC cell apoptosis through the Fas/FasL pathways. To understand the alteration of gene expressions in UC cells caused by hydrostatic pressure and MMC, oligonucleotide microarray was used to explore all the differentially expressed genes. After bioinformatics analysis and gene annotation, Toll-like receptor 6 (TLR6) and connective tissue growth factor (CTGF) showed significant upregulation among altered genes, and their gene and protein expressions with each treatment of UC cells were validated by quantitative real-time PCR and immunoblotting. Under treatment with MMC and hydrostatic pressure, UC cells showed increasing apoptosis using extrinsic pathways through upregulation of TLR6 and CTGF.

  1. Aberrant Dynamic Connectivity for Fear Processing in Anorexia Nervosa and Body Dysmorphic Disorder

    Directory of Open Access Journals (Sweden)

    D. Rangaprakash

    2018-06-01

    Full Text Available Anorexia nervosa (AN and body dysmorphic disorder (BDD share distorted perceptions of appearance with extreme negative emotion, yet the neural phenotypes of emotion processing remain underexplored in them, and they have never been directly compared. We sought to determine if shared and disorder-specific fronto-limbic connectivity patterns characterize these disorders. FMRI data was obtained from three unmedicated groups: BDD (n = 32, weight-restored AN (n = 25, and healthy controls (HC; n = 37, while they viewed fearful faces and rated their own degree of fearfulness in response. We performed dynamic effective connectivity modeling with medial prefrontal cortex (mPFC, rostral anterior cingulate cortex (rACC, and amygdala as regions-of-interest (ROI, and assessed associations between connectivity and clinical variables. HCs exhibited significant within-group bidirectional mPFC-amygdala connectivity, which increased across the blocks, whereas BDD participants exhibited only significant mPFC-to-amygdala connectivity (P < 0.05, family-wise error corrected. In contrast, participants with AN lacked significant prefrontal-amygdala connectivity in either direction. AN showed significantly weaker mPFC-to-amygdala connectivity compared to HCs (P = 0.0015 and BDD (P = 0.0050. The mPFC-to-amygdala connectivity was associated with greater subjective fear ratings (R2 = 0.11, P = 0.0016, eating disorder symptoms (R2 = 0.33, P = 0.0029, and anxiety (R2 = 0.29, P = 0.0055 intensity scores. Our findings, which suggest a complex nosological relationship, have implications for understanding emotion regulation circuitry in these related psychiatric disorders, and may have relevance for current and novel therapeutic approaches.

  2. Brain structural connectivity increases concurrent with functional improvement: Evidence from diffusion tensor MRI in children with cerebral palsy during therapy

    Directory of Open Access Journals (Sweden)

    Zoë A. Englander

    2015-01-01

    Full Text Available Cerebral Palsy (CP refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005. Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17, who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  3. Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy.

    Science.gov (United States)

    Englander, Zoë A; Sun, Jessica; Laura Case; Mikati, Mohamad A; Kurtzberg, Joanne; Song, Allen W

    2015-01-01

    Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  4. The Always-Connected Generation

    Science.gov (United States)

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  5. Altered resting-state connectivity within default mode network associated with late chronotype.

    Science.gov (United States)

    Horne, Charlotte Mary; Norbury, Ray

    2018-04-20

    Current evidence suggests late chronotype individuals have an increased risk of developing depression. However, the underlying neural mechanisms of this association are not fully understood. Forty-six healthy, right-handed individuals free of current or previous diagnosis of depression, family history of depression or sleep disorder underwent resting-state functional Magnetic Resonance Imaging (rsFMRI). Using an Independent Component Analysis (ICA) approach, the Default Mode Network (DMN) was identified based on a well validated template. Linear effects of chronotype on DMN connectivity were tested for significance using non-parametric permutation tests (applying 5000 permutations). Sleep quality, age, gender, measures of mood and anxiety, time of scan and cortical grey matter volume were included as covariates in the regression model. A significant positive correlation between chronotype and functional connectivity within nodes of the DMN was observed, including; bilateral PCC and precuneus, such that later chronotype (participants with lower rMEQ scores) was associated with decreased connectivity within these regions. The current results appear consistent with altered DMN connectivity in depressed patients and weighted evidence towards reduced DMN connectivity in other at-risk populations which may, in part, explain the increased vulnerability for depression in late chronotype individuals. The effect may be driven by self-critical thoughts associated with late chronotype although future studies are needed to directly investigate this. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Airport industry connectivity report: 2004-2014

    NARCIS (Netherlands)

    Burghouwt, G.; Lieshout, R.

    2014-01-01

    Airport connectivity is an increasingly discussed topic in European policy circles. With good reason. Connectivity is closely connected with productivity, economic growth and international trade. And with the centre of global economic activity shifting eastward, it is essential that Europe remains

  7. Development of thalamocortical connectivity during infancy and its cognitive correlations.

    Science.gov (United States)

    Alcauter, Sarael; Lin, Weili; Smith, J Keith; Short, Sarah J; Goldman, Barbara D; Reznick, J Steven; Gilmore, John H; Gao, Wei

    2014-07-02

    Although commonly viewed as a sensory information relay center, the thalamus has been increasingly recognized as an essential node in various higher-order cognitive circuits, and the underlying thalamocortical interaction mechanism has attracted increasing scientific interest. However, the development of thalamocortical connections and how such development relates to cognitive processes during the earliest stages of life remain largely unknown. Leveraging a large human pediatric sample (N = 143) with longitudinal resting-state fMRI scans and cognitive data collected during the first 2 years of life, we aimed to characterize the age-dependent development of thalamocortical connectivity patterns by examining the functional relationship between the thalamus and nine cortical functional networks and determine the correlation between thalamocortical connectivity and cognitive performance at ages 1 and 2 years. Our results revealed that the thalamus-sensorimotor and thalamus-salience connectivity networks were already present in neonates, whereas the thalamus-medial visual and thalamus-default mode network connectivity emerged later, at 1 year of age. More importantly, brain-behavior analyses based on the Mullen Early Learning Composite Score and visual-spatial working memory performance measured at 1 and 2 years of age highlighted significant correlations with the thalamus-salience network connectivity. These results provide new insights into the understudied early functional brain development process and shed light on the behavioral importance of the emerging thalamocortical connectivity during infancy. Copyright © 2014 the authors 0270-6474/14/349067-09$15.00/0.

  8. Connective tissue diseases, multimorbidity and the ageing lung.

    Science.gov (United States)

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.

  9. A376S in the connection subdomain of HIV-1 reverse transcriptase confers increased risk of virological failure to nevirapine therapy

    DEFF Research Database (Denmark)

    Paredes, Roger; Puertas, Maria Carmen; Bannister, Wendy

    2011-01-01

    Background. The clinical relevance of mutations in the connection subdomain and the ribonuclease (RNase) H domain of HIV-1 reverse transcriptase (RT) is uncertain. Methods. The risk of virological failure to nonnucleoside RT inhibitor (NNRTI)-based antiretroviral therapy (ART) was evaluated...... in NNRTI-naive patients who started NNRTIs in the EuroSIDA study after July 1997 according to preexisting substitutions in the connection subdomain and the RNase H domain of HIV-1 RT. An observed association between A376S and virological failure was further investigated by testing in vitro NNRTI...... = .013). A376S conferred selective low-level nevirapine resistance in vitro, and led to greater affinity for double-stranded DNA. Conclusions. The A376S substitution in the connection subdomain of HIV-1 RT causes selective nevirapine resistance and confers an increased risk of virological failure...

  10. THE SMALL BUT SIGNIFICANT AND NONTRANSITORY INCREASE IN PRICES (SSNIP TEST

    Directory of Open Access Journals (Sweden)

    Liviana Niminet

    2008-12-01

    Full Text Available The Small but Significant Nontransitory Increase in Price Test was designed to define the relevant market by concepts of product, geographical area and time. This test, also called the ,,hypothetical monopolistic test” is the subject of many researches both economical and legal as it deals with economic concepts as well as with legally aspects.

  11. Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome.

    Science.gov (United States)

    Liu, Chunyan; Wang, Jiaojian; Hou, Yue; Qi, Zhigang; Wang, Li; Zhan, Shuqin; Wang, Rong; Wang, Yuping

    2018-05-01

    The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of leg discomfort symptoms in restless legs syndrome (RLS) patients remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in RLS. First, we constructed the whole-brain voxelwise functional connectivity and calculated a functional connectivity strength (FCS) map in each of 16 drug-naive idiopathic RLS patients and 26 gender- and age-matched healthy control (HC) subjects. Next, a two-sample t test was applied to compare the FCS maps between HC and RLS patients, and to identify significant changes in FCS in RLS patients. To further elucidate the corresponding changes in the functional connectivity patterns of the aberrant hubs in RLS patients, whole-brain resting-state functional connectivity analyses for the hub areas were performed. The hub analysis revealed decreased FCS in the cuneus, fusiform gyrus, paracentral lobe, and precuneus, and increased FCS in the superior frontal gyrus and thalamus in idiopathic drug-naive RLS patients. Subsequent functional connectivity analyses revealed decreased functional connectivity in sensorimotor and visual processing networks and increased functional connectivity in the affective cognitive network and cerebellar-thalamic circuit. Furthermore, the mean FCS value in the superior frontal gyrus was significantly correlated with Hamilton Anxiety Rating Scale scores in RLS patients, and the mean FCS value in the fusiform gyrus was significantly correlated with Hamilton Depression Rating Scale scores. These findings may provide novel insight into the pathophysiology of RLS. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  13. Increased frequency of retinopathy of prematurity over the last decade and significant regional differences.

    Science.gov (United States)

    Holmström, Gerd; Tornqvist, Kristina; Al-Hawasi, Abbas; Nilsson, Åsa; Wallin, Agneta; Hellström, Ann

    2018-03-01

    Retinopathy of prematurity (ROP) causes childhood blindness globally in prematurely born infants. Although increased levels of oxygen supply lead to increased survival and reduced frequency of cerebral palsy, increased incidence of ROP is reported. With the help of a Swedish register for ROP, SWEDROP, national and regional incidences of ROP and frequencies of treatment were evaluated from 2008 to 2015 (n = 5734), as well as before and after targets of provided oxygen changed from 85-89% to 91-95% in 2014. Retinopathy of prematurity (ROP) was found in 31.9% (1829/5734) of all infants with a gestational age (GA) of <31 weeks at birth and 5.7% of the infants (329/5734) had been treated for ROP. Analyses of the national data revealed an increased incidence of ROP during the 8-year study period (p = 0.003), but there was no significant increase in the frequency of treatment. There were significant differences between the seven health regions of Sweden, regarding both incidence of ROP and frequency of treatment (p < 0.001). Comparison of regional data before and after the new oxygen targets revealed a significant increase in treated ROP in one region [OR: 2.24 (CI: 1.11-4.49), p = 0.024] and a borderline increase in one other [OR: 3.08 (CI: 0.99-9.60), p = 0.052]. The Swedish national ROP register revealed an increased incidence of ROP during an 8-year period and significant regional differences regarding the incidence of ROP and frequency of treatment. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Bolted Flanged Connection for Critical Plant/Piping Systems

    International Nuclear Information System (INIS)

    Efremov, Anatoly

    2006-01-01

    A novel type of Bolted Flanged Connection with bolts and gasket manufactured on a basis of advanced Shape Memory Alloys is examined. Presented approach combined with inverse flexion flange design of plant/piping joint reveals a significant increase of internal pressure under conditions of a variety of operating temperatures relating to critical plant/piping systems. (author)

  15. Cybersecurity for Connected Diabetes Devices.

    Science.gov (United States)

    Klonoff, David C

    2015-04-16

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure. © 2015 Diabetes Technology Society.

  16. Engaging Youth with and without Significant Disabilities in Inclusive Service Learning

    Science.gov (United States)

    Carter, Erik W.; Swedeen, Beth; Moss, Colleen K.

    2012-01-01

    Service learning is an effective curricular approach to increase instructional relevance and engagement for all students. For students with significant disabilities in transition, meaningful service can be an especially useful avenue for exploring career interests, gaining and practicing important life skills, and connecting to the community in…

  17. Observed connection and individuation: relation to symptoms in families of adolescents with bulimia nervosa.

    Science.gov (United States)

    Thomas, Sarah A; Hoste, Renee Rienecke; Le Grange, Daniel

    2012-11-01

    To examine the relation between observed familial connection and individuation and adolescent bulimia nervosa (BN) symptoms. As part of a treatment study for adolescent BN, adolescents (n = 54) and their parents participated in a videotaped semi-structured interview. Participants were rated on observed connection and individuation from these interviews using the Scale of Intergenerational Relationship Quality and two measures of connection. There was a significant negative relation between individuation from parents and adolescent BN symptoms. Connection both to and from mothers and adolescents was negatively associated with BN symptoms. Increased eating concern was significantly associated with a greater likelihood of expressing a desire for more connection with the family. Investigating and understanding family factors present at the time of adolescent BN may assist in providing treatment specific to the needs of the family to best aid the adolescent's recovery process. Copyright © 2012 Wiley Periodicals, Inc.

  18. Both Hypo-Connectivity and Hyper-Connectivity of the Insular Subregions Associated With Severity in Children With Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2018-04-01

    Full Text Available Some studies identified hypo-connectivity, while others showed hyper-connectivity of the insula in the autism spectrum disorders (ASD. These contradictory findings leave open the question of whether and to what extent functional connectivity of the insula is altered and how functional connectivity of the insula is associated with the severity of ASD. A newly emerging insular atlas that comprises multiple functionally differentiated subregions provides a new framework to interpret the functional significance of insular findings and uncover the mechanisms underlying the severity of ASD. Using the new insular atlas, the present study aimed to investigate the distinct functional connectivity of the insular subregions and their associations with ASD severity in a cohort of 49 children with ASD and 33 typically developing (TD subjects. We found that compared with TD group, the ASD group showed different connectivity patterns in the left ventral agranular insula, right ventral dysgranular and granular insula, and dorsal dysgranular insula, characterized by significant hyper-connectivity and/or hypo-connectivity with special brain regions. Furthermore, both the hypo-connectivity and hyper-connectivity patterns of the insular subregions were significantly associated with the severity of ASD symptoms. Our research demonstrated distinct functional connectivity patterns of the insular subregions and emphasized the importance of the subdivisions within the insula to the potential impact of functional difference in children with ASD. Moreover, these results might help us to better understand the mechanisms underlying the symptoms in children with ASD and might elucidate potential biomarkers for clinical applications.

  19. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    Science.gov (United States)

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  20. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    International Nuclear Information System (INIS)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee

    1990-01-01

    Unexpected renal abnormality can be detected on bone scan using 99m Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  1. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-03-15

    Unexpected renal abnormality can be detected on bone scan using {sup 99m}Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  2. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    International Nuclear Information System (INIS)

    Yang, Shih-Ying; Juang, Shin-Hun; Tsai, Shang-Yuan; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2012-01-01

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC 0−t and C max of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC 0−t of MTX by 55%. In addition, diclofenac enhanced the C max of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC 0−t and C max of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  3. Altered brain connectivity in sagittal craniosynostosis.

    Science.gov (United States)

    Beckett, Joel S; Brooks, Eric D; Lacadie, Cheryl; Vander Wyk, Brent; Jou, Roger J; Steinbacher, Derek M; Constable, R Todd; Pelphrey, Kevin A; Persing, John A

    2014-06-01

    Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: -6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates -31, -61, 34), posterior cingulate cortex (MNI coordinates 13, -52, 18), precuneus (MNI coordinates 10, -55, 54), left and right parahippocampus (MNI coordinates -13, -52, 2 and MNI coordinates 11, -50, 2, respectively), lingual (MNI coordinates -11, -86, -10), and fusiform gyri (MNI coordinates -30, -79, -18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices

  4. Cone-morse implant connection system significantly reduces bacterial leakage between implant and abutment: an in vitro study.

    Science.gov (United States)

    Baj, A; Bolzoni, A; Russillo, A; Lauritano, D; Palmieri, A; Cura, F; Silvestre, F J; Giannì, A B

    2017-01-01

    Osseointegrated implants are very popular dental treatments today in the world. In osseointegrated implants, the occlusal forces are transmitted from prosthesis through an abutment to a dental implant. The abutment is connected to the implant by mean of a screw. A screw is the most used mean for connecting an implant to an abutment. Frequently the screws break and are lost. There is an alternative to screw retained abutment systems: the cone-morse connection (CMC). The CMC, thanks to the absence of the abutment screw, guarantees no micro-gaps, no micro-movements, and a reduction of bacterial leakage between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new CMC implants systems (Leone Spa®, Florence, Italy). To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Four cone-morse Leone implants (Leone® Spa, Florence, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was then measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 3% for P. gingivalis and 4% for T. forsythia. Cone-morse connection implant system has very low bacterial leakage percentage and is similar to one-piece implants.

  5. Dream aim reached: 1300 operational district heating supply connections

    Energy Technology Data Exchange (ETDEWEB)

    Handl, K H

    1988-11-01

    Only four years after the beginning of operation of the first consumer station at Klingnau on October 19, 1984, the Regional District Heating Supply in the Lower Aare Valley (Refuna) can already show 1295 operational district heating connections. There are almost 300 more than one year ago and about 20% more than originally foreseen during this short construction time. As in recent years, the number of consumers has significantly increased during a 'connection boom' in the first autumn weeks. The total heat supply power amounts to 51500 kilowatts. This is 70% of the power foreseen in the final stage. 3 figs., 1 tab.

  6. The German experience with grid-connected PV-systems

    International Nuclear Information System (INIS)

    Erge, T.; Hoffmann, V.U.; Kiefer, K.

    2001-01-01

    Grid-connected photovoltaics experienced increasing attention in Germany in recent years and are expected to face a major boost at the beginning of the new millennium. Highlights like the German 100,000-Roofs-Solar-Programme, PV programmes at schools financed by utilities and governments (e.g. 'SONNEonline' by PreussenElektra, 'Sonne in der Schule' by BMWi and 'Sonne in der Schule' by Bayernwerk) and large centralised installations of MW size ('Neue Messe Munchen' by Bayernwerk and 'Energiepark Mont-Cenis' by state Nordrhein-Westfalen, Stadtwerke Herne and European Union) count for the potential of grid-connected PV. Today in Germany a typical grid-connected PV installation of 1 kW nominal power produces average annual energy yields of 700 kWh (dependent on location and system components) and shows a high operating availability. The price per kWh from PV installations is still significantly higher than the price for conventional energy, but new funding schemes and cost models (like the large increase of feed-in tariff in Germany due to the Act on Granting Priority to Renewable Energy Sources in 2000) give optimism about the future. (Author)

  7. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  8. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  9. Study on the Connecting Length of CFRP

    Science.gov (United States)

    Liu, Xiongfei; Li, Yue; Li, Zhanguo

    2018-05-01

    The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.

  10. The influence of implant-abutment connection on the screw loosening and microleakage.

    Science.gov (United States)

    Tsuruta, Katsuhiro; Ayukawa, Yasunori; Matsuzaki, Tatsuya; Kihara, Masafumi; Koyano, Kiyoshi

    2018-04-09

    There are some spaces between abutment and implant body which can be a reservoir of toxic substance, and they can penetrate into subgingival space from microgap at the implant-abutment interface. This penetration may cause periimplantitis which is known to be one of the most important factors associated with late failure. In the present study, three kinds of abutment connection system, external parallel connection (EP), internal parallel connection (IP), and internal conical connection (CC), were studied from the viewpoint of microleakage from the gap between the implant and the abutment and in connection with the loosening of abutment screw. We observed dye leakage from abutment screw hole to outside through microgap under the excessive compressive and tensile load and evaluated the anti-leakage characteristics of these connection systems. During the experiment, one abutment screw for EP and two screws for IP, out of seven samples in each group, were fractured. After the 2000 cycles of compressive tensile loadings, removal torque value (RTV) of abutment screw represented no statistical differences among three groups. Standard deviation was largest in the RTV of EP and smallest in that of CC. The results of microleakage of toluidine blue from implant-abutment connection indicated that microleakage generally increased as loading procedure progressed. The amount of microleakage was almost plateau at 2000 cycles in CC, but still increasing in other two groups. The value of microleakage greatly scattered in EP, but the deviation of that in CC is significantly smaller. At 500 cycles of loading, there were no significant differences in the amount of microleakage among the groups, but at 1000, 1500, and 2000 cycles of loading, the amount of microleakage in CC was significantly smaller than that in IP. Throughout the experiment, the amount of microleakage in EP was largest, but no statistical difference was indicated due to the high standard deviation. Within the

  11. Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder.

    Science.gov (United States)

    Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2018-01-01

    We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback

  12. Radiotherapy in patients with connective tissue diseases.

    Science.gov (United States)

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics.

    Science.gov (United States)

    Hodgson, Jenny A; Moilanen, Atte; Thomas, Chris D

    2009-06-01

    Many species have to track changes in the spatial distribution of suitable habitat from generation to generation. Understanding the dynamics of such species will likely require spatially explicit models, and patch-based metapopulation models are potentially appropriate. However, relatively little attention has been paid to developing metapopulation models that include habitat dynamics, and very little to testing the predictions of these models. We tested three predictions from theory about the differences between dynamic habitat metapopulations and their static counterparts using long-term survey data from two metapopulations of the butterfly Plebejus argus. As predicted, we showed first that the metapopulation inhabiting dynamic habitat had a lower level of habitat occupancy, which could not be accounted for by other differences between the metapopulations. Secondly, we found that patch occupancy did not significantly increase with increasing patch connectivity in dynamic habitat, whereas there was a strong positive connectivity-occupancy relationship in static habitat. Thirdly, we found no significant relationship between patch occupancy and patch quality in dynamic habitat, whereas there was a strong, positive quality-occupancy relationship in static habitat. Modeling confirmed that the differences in mean patch occupancy and connectivity-occupancy slope could arise without changing the species' metapopulation parameters-importantly, without changing the dependence of colonization upon connectivity. We found that, for a range of landscape scenarios, successional simulations always produced a lower connectivity-occupancy slope than comparable simulations with static patches, whether compared like-for-like or controlling for mean occupancy. We conclude that landscape-scale studies may often underestimate the importance of connectivity for species occurrence and persistence because habitat turnover can obscure the connectivity-occupancy relationship in commonly

  14. Altered effective connectivity within default mode network in major depression disorder

    Science.gov (United States)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  15. Cerebro-cerebellar Resting-State Functional Connectivity in Children and Adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    Khan, Amanda J; Nair, Aarti; Keown, Christopher L; Datko, Michael C; Lincoln, Alan J; Müller, Ralph-Axel

    2015-11-01

    The cerebellum plays important roles in sensori-motor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available. We used resting-state functional connectivity magnetic resonance imaging in 56 children and adolescents (28 subjects with ASD, 28 typically developing subjects) 8-17 years old. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensori-motor (premotor/primary motor, somatosensory, superior temporal, and occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal). There were three main findings: 1) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; 2) partial correlation analyses that emphasized domain specificity (sensori-motor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared with the typically developing group) for sensori-motor ROIs but predominantly reduced connectivity for supramodal ROIs; and 3) this atypical pattern of connectivity was supported by significantly increased noncanonical connections (between sensori-motor cerebral and supramodal cerebellar ROIs and vice versa) in the ASD group. Our findings indicate that sensori-motor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  17. Connectivity in river deltas

    Science.gov (United States)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  18. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  20. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  1. Thalamotemporal impairment in temporal lobe epilepsy: a combined MRI analysis of structure, integrity, and connectivity.

    Science.gov (United States)

    Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P

    2014-02-01

    Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc

  2. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    Science.gov (United States)

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed

  3. Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox

    Directory of Open Access Journals (Sweden)

    Andre Santos Ribeiro

    2015-07-01

    Full Text Available Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity.Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI and positron emission tomography (PET. It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19–73 years old with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also.Results. It was observed both a high inter

  4. Synchronization from second order network connectivity statistics

    Directory of Open Access Journals (Sweden)

    Liqiong eZhao

    2011-07-01

    Full Text Available We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks (SONETs, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by a pool and redistribute mechanism. The pooling of many inputs averages out independent fluctuations, amplifying weak correlations in the inputs. With increased chain connections, neurons with many inputs tend to have many outputs. Hence, chains ensure that the amplified correlations in the neurons with many inputs are redistributed throughout the network, enhancing the development of synchrony across the network.

  5. Parent-child intervention decreases stress and increases maternal brain activity and connectivity during own baby-cry: An exploratory study.

    Science.gov (United States)

    Swain, James E; Ho, S Shaun; Rosenblum, Katherine L; Morelen, Diana; Dayton, Carolyn J; Muzik, Maria

    2017-05-01

    Parental responses to their children are crucially influenced by stress. However, brain-based mechanistic understanding of the adverse effects of parenting stress and benefits of therapeutic interventions is lacking. We studied maternal brain responses to salient child signals as a function of Mom Power (MP), an attachment-based parenting intervention established to decrease maternal distress. Twenty-nine mothers underwent two functional magnetic resonance imaging brain scans during a baby-cry task designed to solicit maternal responses to child's or self's distress signals. Between scans, mothers were pseudorandomly assigned to either MP (n = 14) or control (n = 15) with groups balanced for depression. Compared to control, MP decreased parenting stress and increased child-focused responses in social brain areas highlighted by the precuneus and its functional connectivity with subgenual anterior cingulate cortex, which are key components of reflective self-awareness and decision-making neurocircuitry. Furthermore, over 13 weeks, reduction in parenting stress was related to increasing child- versus self-focused baby-cry responses in amygdala-temporal pole functional connectivity, which may mediate maternal ability to take her child's perspective. Although replication in larger samples is needed, the results of this first parental-brain intervention study demonstrate robust stress-related brain circuits for maternal care that can be modulated by psychotherapy.

  6. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  7. Privacy and the Connected Society

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Khajuria, Samant; Skouby, Knud Erik

    The Vision of the 5G enabled connected society is highly based on the evolution and implementation of Internet of Things. This involves, amongst others, a significant raise in devices, sensors and communication in pervasive interconnections as well as cooperation amongst devices and entities across...... the society. Enabling the vision of the connected society, researchers point in the direction of security and privacy as areas to challenge the vision. By use of the Internet of Things reference model as well as the vision of the connected society, this paper identifies privacy of the individual with respect...... to three selected areas: Shopping, connected cars and online gaming. The paper concludes that privacy is a complexity within the connected society vision and that thee is a need for more privacy use cases to shed light on the challenge....

  8. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  9. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease.

    Science.gov (United States)

    Tessitore, Alessandro; De Micco, Rosa; Giordano, Alfonso; di Nardo, Federica; Caiazzo, Giuseppina; Siciliano, Mattia; De Stefano, Manuela; Russo, Antonio; Esposito, Fabrizio; Tedeschi, Gioacchino

    2017-12-01

    Impulse control disorders can be triggered by dopamine replacement therapies in patients with PD. Using resting-state functional MRI, we investigated the intrinsic brain network connectivity at baseline in a cohort of drug-naive PD patients who successively developed impulse control disorders over a 36-month follow-up period compared with patients who did not. Baseline 3-Tesla MRI images of 30 drug-naive PD patients and 20 matched healthy controls were analyzed. The impulse control disorders' presence and severity at follow-up were assessed by the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale. Single-subject and group-level independent component analysis was used to investigate functional connectivity differences within the major resting-state networks. We also compared internetwork connectivity between patients. Finally, a multivariate Cox regression model was used to investigate baseline predictors of impulse control disorder development. At baseline, decreased connectivity in the default-mode and right central executive networks and increased connectivity in the salience network were detected in PD patients with impulse control disorders at follow-up compared with those without. Increased default-mode/central executive internetwork connectivity was significantly associated with impulse control disorders development (P impulse control disorders while on dopaminergic treatment. We hypothesize that these divergent cognitive and limbic network connectivity changes could represent a potential biomarker and an additional risk factor for the emergence of impulse control disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. Group-ICA model order highlights patterns of functional brain connectivity

    Directory of Open Access Journals (Sweden)

    Ahmed eAbou Elseoud

    2011-06-01

    Full Text Available Resting-state networks (RSNs can be reliably and reproducibly detected using independent component analysis (ICA at both individual subject and group levels. Altering ICA dimensionality (model order estimation can have a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Recent evidence from several neuroimaging studies suggests that the human brain has a modular hierarchical organization which resembles the hierarchy depicted by different ICA model orders. We hypothesized that functional connectivity between-group differences measured with ICA might be affected by model order selection. We investigated differences in functional connectivity using so-called dual-regression as a function of ICA model order in a group of unmedicated seasonal affective disorder (SAD patients compared to normal healthy controls. The results showed that the detected disease-related differences in functional connectivity alter as a function of ICA model order. The volume of between-group differences altered significantly as a function of ICA model order reaching maximum at model order 70 (which seems to be an optimal point that conveys the largest between-group difference then stabilized afterwards. Our results show that fine-grained RSNs enable better detection of detailed disease-related functional connectivity changes. However, high model orders show an increased risk of false positives that needs to be overcome. Our findings suggest that multilevel ICA exploration of functional connectivity enables optimization of sensitivity to brain disorders.

  11. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  12. MEG connectivity analysis in patients with Alzheimer's disease using cross mutual information and spectral coherence.

    Science.gov (United States)

    Alonso, Joan Francesc; Poza, Jesús; Mañanas, Miguel Angel; Romero, Sergio; Fernández, Alberto; Hornero, Roberto

    2011-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder which represents the most common form of dementia in western countries. An early and accurate diagnosis of AD would enable to develop new strategies for managing the disease; however, nowadays there is no single test that can accurately predict the development of AD. In this sense, only a few studies have focused on the magnetoencephalographic (MEG) AD connectivity patterns. This study compares brain connectivity in terms of linear and nonlinear couplings by means of spectral coherence and cross mutual information function (CMIF), respectively. The variables defined from these functions provide statistically significant differences (p CMIF. The results suggest that AD is characterized by both decreases and increases of functional couplings in different frequency bands as well as by an increase in regularity, that is, more evident statistical deterministic relationships in AD patients' MEG connectivity. The significant differences obtained indicate that AD could disturb brain interactions causing abnormal brain connectivity and operation. Furthermore, the combination of coherence and CMIF features to perform a diagnostic test based on logistic regression improved the tests based on individual variables for its robustness.

  13. Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis.

    Science.gov (United States)

    Dogonowski, A-M; Siebner, H R; Soelberg Sørensen, P; Paulson, O B; Dyrby, T B; Blinkenberg, M; Madsen, K H

    2013-11-01

    To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). A total of 27 patients with relapsing-remitting MS (RR-MS) and 15 patients with secondary progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8 between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network with increasing clinical disability. No significant relation between motor resting-state connectivity of the right PMd and clinical disability was detected in MS. The increase in functional coupling between left PMd and the motor resting-state network with increasing clinical disability can be interpreted as adaptive reorganization of the motor system to maintain motor function, which appears to be limited to the relapsing-remitting stage of the disease. © 2013 John Wiley & Sons A/S.

  14. Functional connectivity changes in adults with developmental stuttering: a preliminary study using quantitative electro-encephalography

    Science.gov (United States)

    Joos, Kathleen; De Ridder, Dirk; Boey, Ronny A.; Vanneste, Sven

    2014-01-01

    Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is

  15. Connecting Functions in Geometry and Algebra

    Science.gov (United States)

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  16. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    Science.gov (United States)

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohu; Xi, Qian; Wang, Peijun; Li, Chunbo [Tong Ji Hospital of Tong Ji University, Shanghai (China); He, Hongjian [Bio-X lab, Dept. of Physics, Zhe Jiang University, Hangzhou (China)

    2014-08-15

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  18. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Zhao, Xiaohu; Xi, Qian; Wang, Peijun; Li, Chunbo; He, Hongjian

    2014-01-01

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  19. Behavior of Reinforced Hybrid Concrete Corbel-Column Connection with Vertical Construction Joint

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2017-03-01

    Full Text Available In this paper, shear behavior of reinforced hybrid concrete connection of corbel-column is experimentally investigated. Nine homogenous and hybrid concrete corbel-column connections subjected to vertical applied loads were constructed and tested within two test groups (A, B. The experimental program included the effect of several variables such as type of hybrid concrete;high strength concrete (HSC or steel fiber reinforced concrete (SFRC, monolithic casting of hybrid concrete connection, and presence of construction joint at the interface of corbel-column. Experimental results showed significant effects of concrete hybridization on the structural behavior of connection specimens such as: ultimate strength, cracking loads, cracking patterns, and failure modes. Hybridization process in group (A included hybrid connection of corbel-column with HSC or SFRC corbel instated of NSC. This process led to increase the capacity of connection by (26%, 38% and shear cracking loads by (20%, 120% respectively. Moreover, connections of hybrid concrete corbels cast monolithically improved the shear capacity of corbels by (19%, 42% for HSC or SFRC respectively. In group (B, presence of construction joint at connection region reduced the shear capacity of connectionsby (10% to 22% and cracking loads by (23%-62% compared with connections cast monolithically.

  20. Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.

    Science.gov (United States)

    Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng

    2012-06-01

    Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Abnormal amygdala connectivity in patients with primary insomnia: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Huang Zhaoyang; Liang Peipeng; Jia Xiuqin; Zhan Shuqin; Li Ning; Ding Yan; Lu Jie; Wang Yuping; Li Kuncheng

    2012-01-01

    Background: Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Methods: Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. Results: We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). Conclusions: The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients.

  2. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  3. Bronx Teens Connection's Clinic Linkage Model: Connecting Youth to Quality Sexual and Reproductive Health Care.

    Science.gov (United States)

    O'Uhuru, Deborah J; Santiago, Vivian; Murray, Lauren E; Travers, Madeline; Bedell, Jane F

    2017-03-01

    Teen pregnancy and birth rates in the Bronx have been higher than in New York City, representing a longstanding health disparity. The New York City Department of Health and Mental Hygiene implemented a community-wide, multicomponent intervention to reduce unintended teen pregnancy, the Bronx Teens Connection. The Bronx Teens Connection Clinic Linkage Model sought to increase teens' access to and use of sexual and reproductive health care by increasing community partner capacity to link neighborhood clinics to youth-serving organizations, including schools. The Bronx Teens Connection Clinic Linkage Model used needs assessments, delineated the criteria for linkages, clarified roles and responsibilities of partners and staff, established trainings to support the staff engaged in linkage activities, and developed and used process evaluation methods. Early results demonstrated the strength and feasibility of the model over a 4-year period, with 31 linkages developed and maintained, over 11,300 contacts between clinic health educators and teens completed, and increasing adherence to the Centers for Disease Control and Prevention-defined clinical best practices for adolescent reproductive health. For those eight clinics that were able to provide data, there was a 25% increase in the number of teen clients seen over 4 years. There are many factors that relate to an increase in clinic utilization; some of this increase may have been a result of the linkages between schools and clinics. The Bronx Teens Connection Clinic Linkage Model is an explicit framework for clinical and youth-serving organizations seeking to establish formal linkage relationships that may be useful for other municipalities or organizations. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  4. Hydrological connectivity for riverine fish: measurement challenges and research opportunities

    Science.gov (United States)

    Fullerton, A.H.; Burnett, K.M.; Steel, E.A.; Flitcroft, R.L.; Pess, G.R.; Feist, B.E.; Torgersen, Christian E.; Miller, D.J.; Sanderson, B.L.

    2010-01-01

    In this review, we first summarize how hydrologic connectivity has been studied for riverine fish capable of moving long distances, and then identify research opportunities that have clear conservation significance. Migratory species, such as anadromous salmonids, are good model organisms for understanding ecological connectivity in rivers because the spatial scale over which movements occur among freshwater habitats is large enough to be easily observed with available techniques; they are often economically or culturally valuable with habitats that can be easily fragmented by human activities; and they integrate landscape conditions from multiple surrounding catchment(s) with in‐river conditions. Studies have focussed on three themes: (i) relatively stable connections (connections controlled by processes that act over broad spatio‐temporal scales >1000 km2 and >100 years); (ii) dynamic connections (connections controlled by processes acting over fine to moderate spatio‐temporal scales ∼1–1000 km2 and hydrologic connectivity, including actions that disrupt or enhance natural connections experienced by fish.We outline eight challenges to understanding the role of connectivity in riverine fish ecology, organized under three foci: (i) addressing the constraints of river structure; (ii) embracing temporal complexity in hydrologic connectivity; and (iii) managing connectivity for riverine fishes. Challenges include the spatial structure of stream networks, the force and direction of flow, scale‐dependence of connectivity, shifting boundaries, complexity of behaviour and life histories and quantifying anthropogenic influence on connectivity and aligning management goals. As we discuss each challenge, we summarize relevant approaches in the literature and provide additional suggestions for improving research and management of connectivity for riverine fishes.Specifically, we suggest that rapid advances are possible in the following arenas: (i

  5. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  6. Dynamic brain connectivity is a better predictor of PTSD than static connectivity.

    Science.gov (United States)

    Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna

    2017-09-01

    Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Patterns and persistence of larval retention and connectivity in a marine fish metapopulation

    KAUST Repository

    Saenz Agudelo, Pablo

    2012-08-14

    Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3-year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self-recruitment and connectivity were remarkably consistent over time, with a low level of self-recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions. © 2012 Blackwell Publishing Ltd.

  8. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  9. Connectivity: An emerging concept for physiotherapy practice.

    Science.gov (United States)

    Nicholls, David A; Atkinson, Karen; Bjorbækmo, Wenche S; Gibson, Barbara E; Latchem, Julie; Olesen, Jens; Ralls, Jenny; Setchell, Jennifer

    2016-01-01

    Having spent their first century anchored to a biomedical model of practice, physiotherapists have been increasingly interested in exploring new models and concepts that will better equip them for serving the health-care needs of 21st century clients/patients. Connectivity offers one such model. With an extensive philosophical background in phenomenology, symbolic interactionism, structuralism, and postmodern research, connectivity resists the prevailing western biomedical view that health professionals should aim to increase people's independence and autonomy, preferring instead to identify and amplify opportunities for collaboration and co-dependence. Connectivity critiques the normalization that underpins modern health care, arguing that our constant search for deviance is building stigma and discrimination into our everyday practice. It offers provocative opportunities for physiotherapists to rethink some of the fundamental tenets of their profession and better align physiotherapy with 21st century societal expectations. In this paper, we provide a background to the place connectivity may play in future health care, and most especially future physiotherapy practice. The paper examines some of the philosophical antecedents that have made connectivity an increasingly interesting and challenging concept in health care today.

  10. Effect of MELT method on thoracolumbar connective tissue: The full study.

    Science.gov (United States)

    Sanjana, Faria; Chaudhry, Hans; Findley, Thomas

    2017-01-01

    Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Altered functional connectivity of interoception in illness anxiety disorder.

    Science.gov (United States)

    Grossi, Dario; Longarzo, Mariachiara; Quarantelli, Mario; Salvatore, Elena; Cavaliere, Carlo; De Luca, Paolofabrizio; Trojano, Luigi; Aiello, Marco

    2017-01-01

    Interoception collects all information coming from the body and is sustained by several brain areas such as insula and cingulate cortex. Here, we used resting-state functional magnetic resonance imaging to investigate functional connectivity (FC) of networks implied in interoception in patients with Illness anxiety disorders (IADs). We observed significantly reduced FC between the left extrastriate body area (EBA) and the paracentral lobule compared to healthy controls. Moreover, the correlation analysis between behavioural questionnaires and ROI to ROI FC showed that higher levels of illness anxiety were related to hyper-connectivity between EBA and amygdala and hippocampus. Scores on a questionnaire for interoceptive awareness were significantly correlated with higher FC between right hippocampus and nucleus accumbens bilaterally, and with higher connectivity between left anterior cingulate cortex (ACC) and left orbitofrontal cortex (OFC). Last, patients showed increased interoceptive awareness, measured by Self-Awareness Questionnaire (SAQ), and reduced capability in recognizing emotions, indicating inverse correlation between interoception and emotional awareness. Taken together our results suggested that, in absence of structural and micro-structural changes, patients with IADs show functional alteration in the neural network involved in the self-body representation; such functional alteration might be the target of possible treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    Science.gov (United States)

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological

  13. Hydrologic Connectivity Estimated throughout the Nation's River Corridors

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    Hydrologic connectivity is a key concept that integrates longitudinal transport in rivers with vertical and lateral exchanges between rivers and hyporheic zones, riparian wetlands, floodplains, and ponded aquatic ecosystems. Desirable levels of connectivity are thought to be associated with rivers that are well-connected longitudinally while also being well connected vertically and laterally with marginal waters where carbon and nutrients are efficiently transformed, and where aquatic organisms feed, or are reared, or take refuge during floods. But what is the proper balance between longitudinal and vertical and lateral connectivity? We took a step towards quantifying hydrologic connectivity using the model NEXSS (Gomez-Velez and Harvey, 2014, GRL) applied throughout the nation's rivers. NEXSS simulates vertical and lateral connectivity and compares it with longitudinal transport along the river's main axis. It uses as inputs measured network topology for first to eighth order channels, river hydraulic geometry, sediment grain size, bedform types and sizes, estimated hydraulic conductivity of sediments, and estimates of reaction rates such as denitrification. Results indicate that hyporheic flow is large enough to exchange a river's entire volume many times within a river network, which increases biogeochemical opportunities for nutrient processing and attenuation of contaminants. Also, the analysis demonstrated why and where (i.e., in which physiographic regions of the nation) are hyporheic flow and solute reactions the greatest. The cumulative influence of hydrologic connectivity on water quality is expressed by a dimensionless index of reaction significance. Our quantification of hydrologic connectivity adds a physical basis that supports water quality modeling, and also supports scientifically based prioritization of management actions (e.g. stream restoration) and may support other types of actions (e.g. legislative actions) to help conserve healthy functional

  14. Connectivity and propagule sources composition drive ditch plant metacommunity structure

    Science.gov (United States)

    Favre-Bac, Lisa; Ernoult, Aude; Mony, Cendrine; Rantier, Yann; Nabucet, Jean; Burel, Françoise

    2014-11-01

    The fragmentation of agricultural landscapes has a major impact on biodiversity. In addition to habitat loss, dispersal limitation increasingly appears as a significant driver of biodiversity decline. Landscape linear elements, like ditches, may reduce the negative impacts of fragmentation by enhancing connectivity for many organisms, in addition to providing refuge habitats. To characterize these effects, we investigated the respective roles of propagule source composition and connectivity at the landscape scale on hydrochorous and non-hydrochorous ditch bank plant metacommunities. Twenty-seven square sites (0.5 km2 each) were selected in an agricultural lowland of northern France. At each site, plant communities were sampled on nine ditch banks (totaling 243 ditches). Variables characterizing propagule sources composition and connectivity were calculated for landscape mosaic and ditch network models. The landscape mosaic influenced only non-hydrochorous species, while the ditch network impacted both hydrochorous and non-hydrochorous species. Non-hydrochorous metacommunities were dependent on a large set of land-use elements, either within the landscape mosaic or adjacent to the ditch network, whereas hydrochorous plant metacommunities were only impacted by the presence of ditches adjacent to crops and roads. Ditch network connectivity also influenced both hydrochorous and non-hydrochorous ditch bank plant metacommunity structure, suggesting that beyond favoring hydrochory, ditches may also enhance plant dispersal by acting on other dispersal vectors. Increasing propagule sources heterogeneity and connectivity appeared to decrease within-metacommunity similarity within landscapes. Altogether, our results suggest that the ditch network's composition and configuration impacts plant metacommunity structure by affecting propagule dispersal possibilities, with contrasted consequences depending on species' dispersal vectors.

  15. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  16. Connectivity effects in the dynamic model of neural networks

    International Nuclear Information System (INIS)

    Choi, J; Choi, M Y; Yoon, B-G

    2009-01-01

    We study, via extensive Monte Carlo calculations, the effects of connectivity in the dynamic model of neural networks, to observe that the Mattis-state order parameter increases with the number of coupled neurons. Such effects appear more pronounced when the average number of connections is increased by introducing shortcuts in the network. In particular, the power spectra of the order parameter at stationarity are found to exhibit power-law behavior, depending on how the average number of connections is increased. The cluster size distribution of the 'memory-unmatched' sites also follows a power law and possesses strong correlations with the power spectra. It is further observed that the distribution of waiting times for neuron firing fits roughly to a power law, again depending on how neuronal connections are increased

  17. Altered functional connectivity density in patients with herpes zoster and postherpetic neuralgia

    Directory of Open Access Journals (Sweden)

    Hong S

    2018-04-01

    Full Text Available Shunda Hong,1,* Lili Gu,2,* Fuqing Zhou,1 Jiaqi Liu,1 Muhua Huang,1 Jian Jiang,1 Laichang He,1 Honghan Gong,1 Xianjun Zeng1 1Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Purpose: The aim of this study was to explore intrinsic functional connectivity patterns in patients with herpes zoster (HZ and postherpetic neuralgia (PHN. Patients and methods: Thirty-three right-handed HZ patients (13 males; mean age 57.15±9.30 years, 22 right-handed PHN patients (9 males; mean age 66.13±6.77 years, and 28 well-matched healthy controls (HC (9 males; mean age 54.21±7.72 years underwent resting-state functional magnetic resonance imaging for intrinsic functional connectivity analyses. Functional connectivity density (FCD was calculated and compared among the PHN, HZ, and HC groups. In addition, the Pearson correlation coefficient was calculated to compare various clinical indices in the regions with abnormal FCD values. Results: Compared with the HC, both HZ and PHN patients showed significantly decreased FCD in the precuneus, and patients with HZ displayed significantly increased FCD in the brainstem/limbic lobe/parahippocampalgyrus, whereas patients with PHN displayed significantly increased FCD in the hippocampus (correlation thresholds r=0.25, voxel level of P<0.01 and Gaussian random field theory at a cluster level of P<0.05. However, the FCD was not significantly different between the PHN and HZ patients. Furthermore, the decreased FCD in the precuneus was positively correlated with the visual analog scale score in the PHN group (r=0.672; P=0.001. Conclusion: Decreased connectivity of the precuneus occurred in both HZ and PHN patients, indicating a disrupted default-mode network. Furthermore, in the HZ

  18. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.

    Science.gov (United States)

    Weber, Kenneth A; Sentis, Amy I; Bernadel-Huey, Olivia N; Chen, Yufen; Wang, Xue; Parrish, Todd B; Mackey, Sean

    2018-01-15

    The spinal cord has an active role in the modulation and transmission of the neural signals traveling between the body and the brain. Recent advancements in functional magnetic resonance imaging (fMRI) have made the in vivo examination of spinal cord function in humans now possible. This technology has been recently extended to the investigation of resting state functional networks in the spinal cord, leading to the identification of distinct patterns of spinal cord functional connectivity. In this study, we expand on the previous work and further investigate resting state cervical spinal cord functional connectivity in healthy participants (n = 15) using high resolution imaging coupled with both seed-based functional connectivity analyses and graph theory-based metrics. Within spinal cord segment functional connectivity was present between the left and right ventral horns (bilateral motor network), left and right dorsal horns (bilateral sensory network), and the ipsilateral ventral and dorsal horns (unilateral sensory-motor network). Functional connectivity between the spinal cord segments was less apparent with the connectivity centered at the region of interest and spanning spinal cord functional network was demonstrated to be state-dependent as thermal stimulation of the right ventrolateral forearm resulted in significant disruption of the bilateral sensory network, increased network global efficiency, and decreased network modularity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Properly colored connectivity of graphs

    CERN Document Server

    Li, Xueliang; Qin, Zhongmei

    2018-01-01

    A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.

  20. Two Days' Sleep Debt Causes Mood Decline During Resting State Via Diminished Amygdala-Prefrontal Connectivity.

    Science.gov (United States)

    Motomura, Yuki; Katsunuma, Ruri; Yoshimura, Michitaka; Mishima, Kazuo

    2017-10-01

    Sleep debt (SD) has been suggested to evoke emotional instability by diminishing the suppression of the amygdala by the medial prefrontal cortex (MPFC). Here, we investigated how short-term SD affects resting-state functional connectivity between the amygdala and MPFC, self-reported mood, and sleep parameters. Eighteen healthy adult men aged 29 ± 8.24 years participated in a 2-day sleep control session (SC; time in bed [TIB], 9 hours) and 2-day SD session (TIB, 3 hours). On day 2 of each session, resting-state functional magnetic resonance imaging was performed, followed immediately by measuring self-reported mood on the State-Trait Anxiety Inventory-State subscale (STAI-S). STAI-S score was significantly increased, and functional connectivity between the amygdala and MPFC was significantly decreased in SD compared with SC. Significant correlations were observed between reduced rapid eye movement (REM) sleep and reduced left amygdala-MPFC functional connectivity (FCL_amg-MPFC) and between reduced FCL_amg-MPFC and increased STAI-S score in SD compared with SC. These findings suggest that reduced MPFC functional connectivity of amygdala activity is involved in mood deterioration under SD, and that REM sleep reduction is involved in functional changes in the corresponding brain regions. Having adequate REM sleep may be important for mental health maintenance. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. White Matter Structural Connectivity Is Not Correlated to Cortical Resting-State Functional Connectivity over the Healthy Adult Lifespan

    Directory of Open Access Journals (Sweden)

    Adrian Tsang

    2017-05-01

    Full Text Available Structural connectivity (SC of white matter (WM and functional connectivity (FC of cortical regions undergo changes in normal aging. As WM tracts form the underlying anatomical architecture that connects regions within resting state networks (RSNs, it is intuitive to expect that SC and FC changes with age are correlated. Studies that investigated the relationship between SC and FC in normal aging are rare, and have mainly compared between groups of elderly and younger subjects. The objectives of this work were to investigate linear SC and FC changes across the healthy adult lifespan, and to define relationships between SC and FC measures within seven whole-brain large scale RSNs. Diffusion tensor imaging (DTI and resting-state functional MRI (rs-fMRI data were acquired from 177 healthy participants (male/female = 69/108; aged 18–87 years. Forty cortical regions across both hemispheres belonging to seven template-defined RSNs were considered. Mean diffusivity (MD, fractional anisotropy (FA, mean tract length, and number of streamlines derived from DTI data were used as SC measures, delineated using deterministic tractography, within each RSN. Pearson correlation coefficients of rs-fMRI-obtained BOLD signal time courses between cortical regions were used as FC measure. SC demonstrated significant age-related changes in all RSNs (decreased FA, mean tract length, number of streamlines; and increased MD, and significant FC decrease was observed in five out of seven networks. Among the networks that showed both significant age related changes in SC and FC, however, SC was not in general significantly correlated with FC, whether controlling for age or not. The lack of observed relationship between SC and FC suggests that measures derived from DTI data that are commonly used to infer the integrity of WM microstructure are not related to the corresponding changes in FC within RSNs. The possible temporal lag between SC and FC will need to be addressed

  2. The effects of patch shape and connectivity on nest site selection and reproductive success of the Indigo Bunting.

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, Aimee Jean

    2004-07-01

    Description – Ph.D Dissertation. North Carolina State University. Raleigh, North Carolina. 135 pp. Abatract - Habitat fragmentation and its associated effects have been blamed for the recent population declines of many Neotropical migratory bird species. Increased predation and parasitism resulting from edge-related effects have been implicated for poor nesting success in many studies, mostly of forest interior species. However, little attention has been devoted to disturbance-dependent birds. In this study, I examine how patch shape and connectivity in fragmented landscapes affects the reproductive success of disturbance-dependent bird species, specifically the Indigo Bunting (Passerina cyanea). I conducted my study in a landscape-scale experimental system of similar-area habitat patches that differed in connectivity and in shape. Shapes differed between edgy and rectangular forms, where edgy patches contained 50% more edge than rectangular patches. I tested whether edgy patches function as ecological traps for species with strong edge preferences, by leading them to select dangerous habitats. Indigo Buntings preferentially selected edgy patches over rectangular patches, but experienced significantly lower reproductive success in edgy patches early in the season. Although predation pressure intensified in rectangular patches late in the season, seasonal fecundity was still significantly lower in edgy patches, providing the first empirical evidence that edges can function as ecological traps for Indigo Buntings. A second objective of my study was to evaluate the efficacy of conservation corridors for disturbance-dependent bird species. Conservation corridors have become a popular strategy to preserve biodiversity and promote gene flow in fragmented landscapes, but corridors may also have negative consequences. I tested the hypothesis that corridors can increase nest predation risk in connected patches relative to unconnected patches. Nest predation rates

  3. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  4. Abnormal Brain Connectivity Spectrum Disorders Following Thimerosal Administration

    Directory of Open Access Journals (Sweden)

    David A. Geier

    2017-03-01

    Full Text Available Background: Autism spectrum disorder (ASD, tic disorder (TD, and hyperkinetic syndrome of childhood (attention deficit disorder [ADD]/attention deficit hyperactivity disorder [ADHD] are disorders recently defined as abnormal connectivity spectrum disorders (ACSDs because they show a similar pattern of abnormal brain connectivity. This study examines whether these disorders are associated with exposure to thimerosal, a mercury (Hg-based preservative. Methods: A hypothesis testing case-control study evaluated the Vaccine Safety Datalink for the potential dose-dependent odds ratios (ORs for diagnoses of ASD, TD, and ADD/ADHD compared to controls, following exposure to Hg from thimerosal-containing Haemophilus influenzae type b vaccines administrated within the first 15 months of life. Febrile seizures, cerebral degeneration, and unspecified disorders of metabolism, which are not biologically plausibly linked to thimerosal, were examined as control outcomes. Results: On a per 25 μg Hg basis, cases diagnosed with ASD (OR = 1.493, TD (OR = 1.428, or ADD/ADHD (OR = 1.503 were significantly (P < .001 more likely than controls to have received increased Hg exposure. Similar relationships were observed when separated by gender. Cases diagnosed with control outcomes were no more likely than controls to have received increased Hg exposure. Conclusion: The results suggest that Hg exposure from thimerosal is significantly associated with the ACSDs of ASD, TD, and ADD/ADHD.

  5. Conditions and costs for renewables electricity grid connection: Examples in Europe

    International Nuclear Information System (INIS)

    Swider, Derk J.; Beurskens, Luuk; Davidson, Sarah; Twidell, John; Pyrko, Jurek; Prueggler, Wolfgang; Auer, Hans; Vertin, Katarina; Skema, Romualdas

    2008-01-01

    This paper compares conditions and costs for RES-E grid connection in selected European countries. These are Germany, the Netherlands, the United Kingdom, Sweden, Austria, Lithuania and Slovenia. Country specific case studies are presented for wind onshore and offshore, biomass and photovoltaic power systems, as based on literature reviews and stakeholder interviews. It is shown that, especially for wind offshore, the allocation of grid connection costs can form a significant barrier for the installation of new RES-E generation if the developer has to bear all such costs. If energy policy makers want to reduce the barriers for new large-scale RES-E deployment, then it is concluded that the grid connection costs should be covered by the respective grid operator. These costs may then be recouped by increasing consumer tariffs for the use of the grid. (author)

  6. Pathological changes in the subsynovial connective tissue increase with self-reported carpal tunnel syndrome symptoms.

    Science.gov (United States)

    Tat, Jimmy; Wilson, Katherine E; Keir, Peter J

    2015-05-01

    Fibrosis and thickening of the subysnovial connective tissue are the most common pathological findings in carpal tunnel syndrome. The relationship between subsynovial connective tissue characteristics and self-reported carpal tunnel syndrome symptoms was assessed. Symptoms were characterized using the Boston Carpal Tunnel Questionnaire and Katz hand diagram in twenty-two participants (11 with symptoms, 11 with no symptoms). Using ultrasound, the thickness of the subsynovial connective tissue was measured using a thickness ratio (subsynovial thickness/tendon thickness) and gliding function was assessed using a shear strain index ((Displacement(tendon)-Displacement(subsynovial))/Displacement(tendon)x 100). For gliding function, participants performed 10 repeated flexion-extension cycles of the middle finger at a rate of one cycle per second. Participants with symptoms had a 38.5% greater thickness ratio and 39.2% greater shear strain index compared to participants without symptoms (p<0.05). Ultrasound detected differences the SSCT in symptomatic group that was characterized by low self-reported symptom severity scores. This study found ultrasound useful for measuring structural and functional changes in the SSCT that could provide insight in the early pathophysiology associated with carpal tunnel syndrome symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  8. Node-based measures of connectivity in genetic networks.

    Science.gov (United States)

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.

  9. Assessing temporal variations in connectivity through suspended sediment hysteresis analysis

    Science.gov (United States)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; Melland, Alice; Mellander, Per-Erik; hUallacháin, Daire Ó.

    2016-04-01

    Connectivity provides a valuable concept for understanding catchment-scale sediment dynamics. In intensive agricultural catchments, land management through tillage, high livestock densities and extensive land drainage practices significantly change hydromorphological behaviour and alter sediment supply and downstream delivery. Analysis of suspended sediment-discharge hysteresis has offered insights into sediment dynamics but typically on a limited selection of events. Greater availability of continuous high-resolution discharge and turbidity data and qualitative hysteresis metrics enables assessment of sediment dynamics during more events and over time. This paper assesses the utility of this approach to explore seasonal variations in connectivity. Data were collected from three small (c. 10 km2) intensive agricultural catchments in Ireland with contrasting morphologies, soil types, land use patterns and management practices, and are broadly defined as low-permeability supporting grassland, moderate-permeability supporting arable and high-permeability supporting arable. Suspended sediment concentration (using calibrated turbidity measurements) and discharge data were collected at 10-min resolution from each catchment outlet and precipitation data were collected from a weather station within each catchment. Event databases (67-90 events per catchment) collated information on sediment export metrics, hysteresis category (e.g., clockwise, anti-clockwise, no hysteresis), numeric hysteresis index, and potential hydro-meteorological controls on sediment transport including precipitation amount, duration, intensity, stream flow and antecedent soil moisture and rainfall. Statistical analysis of potential controls on sediment export was undertaken using Pearson's correlation coefficient on separate hysteresis categories in each catchment. Sediment hysteresis fluctuations through time were subsequently assessed using the hysteresis index. Results showed the numeric

  10. A Connective Pedagogy.

    Science.gov (United States)

    Goral, Mary

    2000-01-01

    Our increasingly hurried lifestyle, changes in family structure, and intense economic pressures place stress on children and families. Waldorf education provides an educational environment that alleviates this stress through a connective pedagogy that encompasses continuity of people, curriculum, and instruction; a reverence and respect for the…

  11. Insight and psychosis: Functional and anatomical brain connectivity and self-reflection in Schizophrenia.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; van der Meer, Lisette; Pijnenborg, Gerdina H M; David, Anthony S; Aleman, André

    2015-12-01

    Impaired insight into illness, associated with worse treatment outcome, is common in schizophrenia. Insight has been related to the self-reflective processing, centred on the medial frontal cortex. We hypothesized that anatomical and functional routes to and from the ventromedial prefrontal cortex (vmPFC) would differ in patients according to their degree of impaired insight. Forty-five schizophrenia patients and 19 healthy subjects performed a self-reflection task during fMRI, and underwent diffusion tensor imaging. Using dynamic causal modelling we observed increased effective connectivity from the posterior cingulate cortex (PCC), inferior parietal lobule (IPL), and dorsal mPFC (dmPFC) towards the vmPFC with poorer insight and decrease from vmPFC to the IPL. Stronger connectivity from the PCC to vmPFC during judgment of traits related to self was associated with poorer insight. We found small-scale significant changes in white matter integrity associated with clinical insight. Self-reflection may be influenced by synaptic changes that lead to the observed alterations in functional connectivity accompanied by the small-scale but measurable alterations in anatomical connections. Our findings may point to a neural compensatory response to an impairment of connectivity between self-processing regions. Similarly, the observed hyper-connectivity might be a primary deficit linked to inefficiency in the component cognitive processes that lead to impaired insight. We suggest that the stronger cognitive demands placed on patients with poor insight is reflected in increased effective connectivity during the task in this study. © 2015 Wiley Periodicals, Inc.

  12. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    Science.gov (United States)

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  13. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ying [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Juang, Shin-Hun [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Tsai, Shang-Yuan; Chao, Pei-Dawn Lee [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Hou, Yu-Chi, E-mail: hou5133@gmail.com [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China)

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC{sub 0−t} and C{sub max} of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC{sub 0−t} of MTX by 55%. In addition, diclofenac enhanced the C{sub max} of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC{sub 0−t} and C{sub max} of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  14. Ecological connectivity networks in rapidly expanding cities.

    Science.gov (United States)

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for

  15. Ecological connectivity networks in rapidly expanding cities

    Directory of Open Access Journals (Sweden)

    Amal Najihah M. Nor

    2017-06-01

    Full Text Available Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus and Yellow-vented bulbul (Pycnonotus goiavier in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines. The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such

  16. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS/SIGNIFICANCE

  17. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  18. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Deborah L. Harrington

    2017-06-01

    Full Text Available Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI are common in Parkinson’s disease (PD, but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF and regional homogeneity (ReHo, a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex, sensorimotor cortex (primary motor, pre/post-central gyrus, basal ganglia (putamen, caudate, and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a

  19. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample.

    Science.gov (United States)

    Yoder, Keith J; Porges, Eric C; Decety, Jean

    2015-04-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.

  20. Prefrontal-limbic Functional Connectivity during Acquisition and Extinction of Conditioned Fear.

    Science.gov (United States)

    Barrett, Douglas W; Gonzalez-Lima, F

    2018-04-15

    This study is a new analysis to obtain novel metabolic data on the functional connectivity of prefrontal-limbic regions in Pavlovian fear acquisition and extinction of tone-footshock conditioning. Mice were analyzed with the fluorodeoxyglucose (FDG) autoradiographic method to metabolically map regional brain activity. New FDG data were sampled from the nuclei of the habenula and other regions implicated in aversive conditioning, such as infralimbic cortex, amygdala and periaqueductal gray regions. The activity patterns among these regions were inter-correlated during acquisition, extinction or pseudorandom training to develop a functional connectivity model. Two subdivisions of the habenular complex showed increased activity after acquisition relative to extinction, with the pseudorandom group intermediate between the other two groups. Significant acquisition activation effects were also found in centromedial amygdala, dorsomedial and ventrolateral periaqueductal gray. FDG uptake increases during extinction were found only in dorsal and ventral infralimbic cortex. The overall pattern of activity correlations between these regions revealed extensive but differential functional connectivity during acquisition and extinction training, with less functional connectivity found after pseudorandom training. Interestingly, habenula nuclei showed a distinct pattern of inter-correlations with amygdala nuclei during extinction. The functional connectivity model revealed changing interactions among infralimbic cortex, amygdala, habenula and periaqueductal gray regions through the stages of Pavlovian fear acquisition and extinction. This study provided new data on the contributions of the habenula to fear conditioning, and revealed previously unreported infralimbic-amygdala-habenula-periaqueductal gray interactions implicated in acquisition and extinction of conditioned fear. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    Science.gov (United States)

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  2. Altered cerebro-cerebellum resting-state functional connectivity in HIV-infected male patients.

    Science.gov (United States)

    Wang, Huijuan; Li, Ruili; Zhou, Yawen; Wang, Yanming; Cui, Jin; Nguchu, Benedictor Alexander; Qiu, Bensheng; Wang, Xiaoxiao; Li, Hongjun

    2018-05-21

    In addition to the role of planning and executing movement, the cerebellum greatly contributes to cognitive process. Numerous studies have reported structural and functional abnormalities in the cerebellum for HIV-infected patients, but little is known about the altered functional connectivity of particular cerebellar subregions and the cerebrum. Therefore, this study aimed to explore the resting-state functional connectivity (rsFC) changes of the cerebellum and further analyze the relationship between the rsFC changes and the neuropsychological evaluation. The experiment involved 26 HIV-infected men with asymptomatic neurocognitive impairment (ANI) and 28 healthy controls (HC). We selected bilateral hemispheric lobule VI and lobule IX as seed regions and mapped the whole-brain rsFC for each subregion. Results revealed that right lobule VI showed significant increased rsFC with the anterior cingulate cortex (ACC) in HIV-infected subjects. In addition, the correlation analysis on HIV-infected subjects illustrated the increased rsFC was negatively correlated with the attention/working memory score. Moreover, significantly increased cerebellar rsFCs were also observed in HIV-infected patients related to right inferior frontal gyrus (IFG) and right superior medial gyrus (SMG) while decreased rsFC was just found between right lobule VI and the left hippocampus (HIP). These findings suggested that, abnormalities of cerebro-cerebellar functional connectivity might be associated with cognitive dysfunction in HIV-infected men, particularly working memory impairment. It could also be the underlying mechanism of ANI, providing further evidence for early injury in the neural substrate of HIV-infected patients.

  3. Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: implications for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Harrison, Ben J; Adapa, Ram; Gaillard, Raphael; Giorlando, Francesco; Wood, Stephen J; Fletcher, Paul C; Fornito, Alex

    2015-02-01

    The psychotomimetic effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine is thought to arise from a functional modulation of the brain's fronto-striato-thalamic (FST) circuits. Animal models suggest a pronounced effect on ventral 'limbic' FST systems, although recent work in patients with psychosis and high-risk individuals suggests specific alterations of dorsal 'associative' FST circuits. Here, we used functional magnetic resonance imaging to investigate the effects of a subanesthetic dose of ketamine on measures of functional connectivity as indexed by the temporal coherence of spontaneous neural activity in both dorsal and ventral FST circuits, as well as their symptom correlates. We adopted a placebo-controlled, double-blind, randomized, repeated-measures design in which 19 healthy participants received either an intravenous saline infusion or a racemic mixture of ketamine (100 ng/ml) separated by at least 1 week. Compared with placebo, ketamine increased functional connectivity between the dorsal caudate and both the thalamus and midbrain bilaterally. Ketamine additionally increased functional connectivity of the ventral striatum/nucleus accumbens and ventromedial prefrontal cortex. Both connectivity increases significantly correlated with the psychosis-like and dissociative symptoms under ketamine. Importantly, dorsal caudate connectivity with the ventrolateral thalamus and subthalamic nucleus showed inverse correlation with ketamine-induced symptomatology, pointing to a possible resilience role to disturbances in FST circuits. Although consistent with the role of FST in mediating psychosis, these findings contrast with previous research in clinical samples by suggesting that acute NMDAR antagonism may lead to psychosis-like experiences via a mechanism that is distinct from that implicated in frank psychotic illness.

  4. Reduced prefrontal connectivity in psychopathy.

    Science.gov (United States)

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  5. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band.

    Science.gov (United States)

    Jin, Jing-Na; Wang, Xin; Li, Ying; Jin, Fang; Liu, Zhi-Peng; Yin, Tao

    2017-01-01

    It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8-13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.

  6. Multimodal Imaging of Brain Connectivity Using the MIBCA Toolbox: Preliminary Application to Alzheimer's Disease

    Science.gov (United States)

    Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre

    2015-06-01

    The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to

  7. Network-based analysis reveals functional connectivity related to internet addiction tendency

    Directory of Open Access Journals (Sweden)

    Tanya eWen

    2016-02-01

    Full Text Available IntroductionPreoccupation and compulsive use of the internet can have negative psychological effects, such that it is increasingly being recognized as a mental disorder. The present study employed network-based statistics to explore how whole-brain functional connections at rest is related to the extent of individual’s level of internet addiction, indexed by a self-rated questionnaire. We identified two topologically significant networks, one with connections that are positively correlated with internet addiction tendency, and one with connections negatively correlated with internet addiction tendency. The two networks are interconnected mostly at frontal regions, which might reflect alterations in the frontal region for different aspects of cognitive control (i.e., for control of internet usage and gaming skills. Next, we categorized the brain into several large regional subgroupings, and found that the majority of proportions of connections in the two networks correspond to the cerebellar model of addiction which encompasses the four-circuit model. Lastly, we observed that the brain regions with the most inter-regional connections associated with internet addiction tendency replicate those often seen in addiction literature, and is corroborated by our meta-analysis of internet addiction studies. This research provides a better understanding of large-scale networks involved in internet addiction tendency and shows that pre-clinical levels of internet addiction are associated with similar regions and connections as clinical cases of addiction.

  8. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen; Sun, Qian; Ji, Shuiwang; Wonka, Peter; Davidson, Ian; Ye, Jieping

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability

  9. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  10. Neural signature of coma revealed by posteromedial cortex connection density analysis

    Directory of Open Access Journals (Sweden)

    Briguita Malagurski

    2017-01-01

    A complex pattern of decreased and increased connections was observed, suggesting a network imbalance between internal/external processing systems, within PMC during coma. The number of PMC voxels with hypo-CD positive correlation showed a significant negative association with the CRS-R score, notwithstanding aetiology. Traumatic injury specifically appeared to be associated with a greater prevalence of hyper-connected (negative correlation voxels, which was inversely associated with patient neurological outcome. A logistic regression model using the number of hypo-CD positive and hyper-CD negative correlations, accurately permitted patient's outcome prediction (AUC = 0.906, 95%IC = 0.795–1. These points might reflect adaptive plasticity mechanism and pave the way for innovative prognosis and therapeutics methods.

  11. Abnormal Functional Connectivity of Frontopolar Subregions in Treatment-Nonresponsive Major Depressive Disorder.

    Science.gov (United States)

    Fettes, Peter W; Moayedi, Massieh; Dunlop, Katharine; Mansouri, Farrokh; Vila-Rodriguez, Fidel; Giacobbe, Peter; Davis, Karen D; Lam, Raymond W; Kennedy, Sidney H; Daskalakis, Zafiris J; Blumberger, Daniel M; Downar, Jonathan

    2018-04-01

    Approximately 30% of patients with major depressive disorder develop treatment-nonresponsive depression (TNRD); novel interventions targeting the substrates of this illness population are desperately needed. Convergent evidence from lesion, stimulation, connectivity, and functional neuroimaging studies implicates the frontopolar cortex (FPC) as a particularly important region in TNRD pathophysiology; regions functionally connected to the FPC, once identified, could present favorable targets for novel brain stimulation treatments. We recently published a parcellation of the FPC based on diffusion tensor imaging data, identifying distinct medial and lateral subregions. Here, we applied this parcellation to resting-state functional magnetic resonance imaging scans obtained in 56 patients with TNRD and 56 matched healthy control subjects. In patients, the medial FPC showed reduced connectivity to the anterior midcingulate cortex and insula. The left lateral FPC showed reduced connectivity to the right lateral orbitofrontal cortex and increased connectivity to the fusiform gyri. In addition, TNRD symptom severity correlated significantly with connectivity of the left lateral FPC subregion to a medial orbitofrontal cortex region of the classical reward network. Taken together, these findings suggest that changes in FPC subregion connectivity may underlie several dimensions of TNRD pathology, including changes in reward/positive valence, nonreward/negative valence, and cognitive control domains. Nodes of functional networks showing abnormal connectivity to the FPC could be useful in generating novel candidates for therapeutic brain stimulation in TNRD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits.

    Directory of Open Access Journals (Sweden)

    Brad H McRae

    Full Text Available Landscape connectivity is crucial for many ecological processes, including dispersal, gene flow, demographic rescue, and movement in response to climate change. As a result, governmental and non-governmental organizations are focusing efforts to map and conserve areas that facilitate movement to maintain population connectivity and promote climate adaptation. In contrast, little focus has been placed on identifying barriers-landscape features which impede movement between ecologically important areas-where restoration could most improve connectivity. Yet knowing where barriers most strongly reduce connectivity can complement traditional analyses aimed at mapping best movement routes. We introduce a novel method to detect important barriers and provide example applications. Our method uses GIS neighborhood analyses in conjunction with effective distance analyses to detect barriers that, if removed, would significantly improve connectivity. Applicable in least-cost, circuit-theoretic, and simulation modeling frameworks, the method detects both complete (impermeable barriers and those that impede but do not completely block movement. Barrier mapping complements corridor mapping by broadening the range of connectivity conservation alternatives available to practitioners. The method can help practitioners move beyond maintaining currently important areas to restoring and enhancing connectivity through active barrier removal. It can inform decisions on trade-offs between restoration and protection; for example, purchasing an intact corridor may be substantially more costly than restoring a barrier that blocks an alternative corridor. And it extends the concept of centrality to barriers, highlighting areas that most diminish connectivity across broad networks. Identifying which modeled barriers have the greatest impact can also help prioritize error checking of land cover data and collection of field data to improve connectivity maps. Barrier detection

  13. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  14. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    Science.gov (United States)

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.

  15. Estuary-ocean connectivity: fast physics, slow biology.

    Science.gov (United States)

    Raimonet, Mélanie; Cloern, James E

    2017-06-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing

  16. Human Centred Design Considerations for Connected Health Devices for the Older Adult

    Directory of Open Access Journals (Sweden)

    Richard P. Harte

    2014-06-01

    Full Text Available Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications.

  17. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    OpenAIRE

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include...

  18. Network structure shapes spontaneous functional connectivity dynamics.

    Science.gov (United States)

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  19. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  20. Impaired rich club and increased local connectivity in children with traumatic brain injury: Local support for the rich?

    Science.gov (United States)

    Verhelst, Helena; Vander Linden, Catharine; De Pauw, Toon; Vingerhoets, Guy; Caeyenberghs, Karen

    2018-03-12

    Recent evidence has shown the presence of a "rich club" in the brain, which constitutes a core network of highly interconnected and spatially distributed brain regions, important for high-order cognitive processes. This study aimed to map the rich club organization in 17 young patients with moderate to severe TBI (15.71 ± 1.75 years) in the chronic stage of recovery and 17 age- and gender-matched controls. Probabilistic tractography was performed on diffusion weighted imaging data to construct the edges of the structural connectomes using number of streamlines as edge weight. In addition, the whole-brain network was divided into a rich club network, a local network and a feeder network connecting the latter two. Functional outcome was measured with a parent questionnaire for executive functioning. Our results revealed a significantly decreased rich club organization (p values < .05) and impaired executive functioning (p < .001) in young patients with TBI compared with controls. Specifically, we observed reduced density values in all three subnetworks (p values < .005) and a reduced mean strength in the rich club network (p = .013) together with an increased mean strength in the local network (p = .002) in patients with TBI. This study provides new insights into the nature of TBI-induced brain network alterations and supports the hypothesis that the local subnetwork tries to compensate for the biologically costly subnetwork of rich club nodes after TBI. © 2018 Wiley Periodicals, Inc.

  1. Low-frequency connectivity is associated with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    B.T. Dunkley

    2015-01-01

    Full Text Available Mild traumatic brain injury (mTBI occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS, these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20, and a control group (n = 21. We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially

  2. Reduced Language Connectivity in Pediatric Epilepsy

    Science.gov (United States)

    Leigh N., Sepeta; Louise J., Croft; Lauren A., Zimmaro; Elizabeth S., Duke; Virginia K., Terwilliger; Benjamin E., Yerys; Xiaozhen., You; Chandan J., Vaidya; William D., Gaillard; Madison M., Berl

    2014-01-01

    Objective Functional connectivity (FC) among language regions is decreased in adults with epilepsy compared to controls, but less is known about FC in children with epilepsy. We sought to determine if language FC is reduced in pediatric epilepsy, and examined clinical factors that associate with language FC in this population. Methods We assessed FC during an age-adjusted language task in children with left-hemisphere focal epilepsy (n=19) compared to controls (n=19). Time series data were extracted for three left ROIs and their right homologues: inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and Wernicke's area (WA) using SPM8. Associations between FC and factors such as cognitive performance, language dominance, and epilepsy duration were assessed. Results Children with epilepsy showed decreased interhemispheric connectivity compared to controls, particularly between core left language regions (IFG, WA) and their right hemisphere homologues, as well as decreased intrahemispheric right frontal FC. Increased intrahemispheric FC between left IFG and left WA was a positive predictor of language skills overall, and naming ability in particular. FC of language areas was not affected by language dominance, as the effects remained when only examining study participants with left language dominance. Overall FC did not differ according to duration of epilepsy or age of onset. Significance FC during a language task is reduced in children, similar to findings in adults. In specific, children with left focal epilepsy demonstrated decreased interhemispheric FC in temporal and frontal language connections and decreased intrahemispheric right frontal FC. These differences were present near the onset of epilepsy. Greater FC between left language centers is related to better language ability. Our results highlight that connectivity of language areas has a developmental pattern and is related to cognitive ability. PMID:25516399

  3. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.

    Science.gov (United States)

    Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco

    2014-08-30

    Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Are people more connective than political actions?

    DEFF Research Database (Denmark)

    Shehata, Mostafa

    2017-01-01

    The recent wave of Internet-based social movements in the Arab Spring countries and elsewhere has considerably changed the organizational structure of contentious action. One of the current and most significant theories that has handled this change is the logic of connective action, which...... distinguishes between two major types of contentious action: collective and connective. In the context of this theory, this article puts forward a new conception of political action participants and attempts to classify them along the categories of collective or connective. This conception, which consists...

  5. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites.

    Science.gov (United States)

    Meier, Timothy B; Lancaster, Melissa A; Mayer, Andrew R; Teague, T Kent; Savitz, Jonathan

    2017-02-15

    There is a great need to identify potential long-term consequences of contact sport exposure and to identify molecular pathways that may be associated with these changes. We tested the hypothesis that football players with (Ath-mTBI) (n = 25) and without a concussion history (Ath) (n = 24) have altered resting state functional connectivity in regions with previously documented structural changes relative to healthy controls without football or concussion history (HC) (n = 27). As a secondary aim, we tested the hypothesis that group differences in functional connectivity are moderated by the relative ratio of neuroprotective to neurotoxic metabolites of the kynurenine pathway. Ath-mTBI had significantly increased connectivity of motor cortex to the supplementary motor area relative to Ath and HC. In contrast, both Ath-mTBI and Ath had increased connectivity between the left orbital frontal cortex and the right lateral frontal cortex, and between the left cornu ammonis areas 2 and 3/dentate gyrus (CA2-3/DG) of the hippocampus and the middle and posterior cingulate cortices, relative to HC. The relationship between the ratio of plasma concentrations of kynurenic acid to quinolinic acid (KYNA/QUIN) and left pregenual anterior cingulate cortex connectivity to multiple regions as well as KYNA/QUIN and right CA2-3/DG connectivity to multiple regions differed significantly according to football and concussion history. The results suggest that football exposure with and without concussion history can have a significant effect on intrinsic brain connectivity and implicate the kynurenine metabolic pathway as one potential moderator of functional connectivity dependent on football exposure and concussion history.

  6. Functional connectivity substrates for tDCS response in Minimally Conscious State patients

    Directory of Open Access Journals (Sweden)

    Carlo Cavaliere

    2016-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI of 16 sub-acute and chronic MCS patients (6 tDCS responders who successively received a single left dorsolateral prefrontal cortex (DLPFC tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network and default-mode network was performed.TDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus.Our findings suggest that a prior high connectivity with regions belonging to extrinsic control network can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.

  7. BDNF genotype modulates resting functional connectivity in children

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    2009-11-01

    Full Text Available A specific polymorphism of the brain-derived neurotrophic factor (BDNF gene is associated with alterations in brain anatomy and memory; its relevance to the functional connectivity of brain networks, however, is unclear. Given that altered hippocampal function and structure has been found in adults who carry the methionine (met allele of the BDNF gene and the molecular studies elucidating the role of BDNF in neurogenesis and synapse formation, we examined in the association between BDNF gene variants and neural resting connectivity in children and adolescents. We observed a reduction in hippocampal and parahippocampal to cortical connectivity in met-allele carriers within each of three resting networks: the default-mode, executive, and paralimbic networks. In contrast, we observed increased connectivity to amygdala, insula and striatal regions in met-carriers, within the paralimbic network. Because the BDNF met-allele has been linked to increased susceptibility to neuropsychiatric disorders, this latter finding of greater connectivity in circuits important for emotion processing may indicate a new neural mechanism through which these gene-related psychiatric differences are manifest. Here we show that the BDNF gene, known to regulate synaptic plasticity and connectivity in the brain, affects functional connectivity at the neural systems level. Additionally, we provide the first demonstration that the spatial topography of multiple high-level resting state networks in healthy children and adolescents is similar to that observed in adults.

  8. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Science.gov (United States)

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  9. Large Scale Computing for the Modelling of Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Albers, Kristoffer Jon

    organization of the brain in continuously increasing resolution. From these images, networks of structural and functional connectivity can be constructed. Bayesian stochastic block modelling provides a prominent data-driven approach for uncovering the latent organization, by clustering the networks into groups...... of neurons. Relying on Markov Chain Monte Carlo (MCMC) simulations as the workhorse in Bayesian inference however poses significant computational challenges, especially when modelling networks at the scale and complexity supported by high-resolution whole-brain MRI. In this thesis, we present how to overcome...... these computational limitations and apply Bayesian stochastic block models for un-supervised data-driven clustering of whole-brain connectivity in full image resolution. We implement high-performance software that allows us to efficiently apply stochastic blockmodelling with MCMC sampling on large complex networks...

  10. Reconsidering connectivity in the sub-Antarctic.

    Science.gov (United States)

    Moon, Katherine L; Chown, Steven L; Fraser, Ceridwen I

    2017-11-01

    Extreme and remote environments provide useful settings to test ideas about the ecological and evolutionary drivers of biological diversity. In the sub-Antarctic, isolation by geographic, geological and glaciological processes has long been thought to underpin patterns in the region's terrestrial and marine diversity. Molecular studies using increasingly high-resolution data are, however, challenging this perspective, demonstrating that many taxa disperse among distant sub-Antarctic landmasses. Here, we reconsider connectivity in the sub-Antarctic region, identifying which taxa are relatively isolated, which are well connected, and the scales across which this connectivity occurs in both terrestrial and marine systems. Although many organisms show evidence of occasional long-distance, trans-oceanic dispersal, these events are often insufficient to maintain gene flow across the region. Species that do show evidence of connectivity across large distances include both active dispersers and more sedentary species. Overall, connectivity patterns in the sub-Antarctic at intra- and inter-island scales are highly complex, influenced by life-history traits and local dynamics such as relative dispersal capacity and propagule pressure, natal philopatry, feeding associations, the extent of human exploitation, past climate cycles, contemporary climate, and physical barriers to movement. An increasing use of molecular data - particularly genomic data sets that can reveal fine-scale patterns - and more effective international collaboration and communication that facilitates integration of data from across the sub-Antarctic, are providing fresh insights into the processes driving patterns of diversity in the region. These insights offer a platform for assessing the ways in which changing dispersal mechanisms, such as through increasing human activity and changes to wind and ocean circulation, may alter sub-Antarctic biodiversity patterns in the future. © 2017 Cambridge

  11. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    Science.gov (United States)

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  12. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    Directory of Open Access Journals (Sweden)

    Yang eJiang

    2016-02-01

    Full Text Available ß-amyloid (Aß plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD. The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF, in predicting future AD risk and cognitive decline is still being refined. Here we explored potential relationships between functional connectivity patterns within the default-mode network (DMN, age, CSF biomarkers (Aß42 and pTau181 and cognitive status in older adults. Multiple measures of functional connectivity were explored including a novel time series based measure (Total Interdependence; TI. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aß42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of functional connectivity in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk. Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults.

  13. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering.

    Science.gov (United States)

    Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.

  14. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    Science.gov (United States)

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. PMID:27199712

  15. Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    Directory of Open Access Journals (Sweden)

    Kevin Richard Sitek

    2016-05-01

    Full Text Available Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex. Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and orbitofrontal cortex may underlie successful compensatory mechanisms by more fluent stutterers.

  16. Stress assessment based on EEG univariate features and functional connectivity measures.

    Science.gov (United States)

    Alonso, J F; Romero, S; Ballester, M R; Antonijoan, R M; Mañanas, M A

    2015-07-01

    The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.

  17. Data for default network reduced functional connectivity in meditators, negatively correlated with meditation expertise

    Directory of Open Access Journals (Sweden)

    Aviva Berkovich-Ohana

    2016-09-01

    Full Text Available FMRI data described here was recorded during resting-state in Mindfulness Meditators (MM and control participants (see “Task-induced activity and resting-state fluctuations undergo similar alterations in visual and DMN areas of long-term meditators” Berkovich-Ohana et al. (2016 [1] for details. MM participants were also scanned during meditation. Analyses focused on functional connectivity within and between the default mode network (DMN and visual network (Vis. Here we show data demonstrating that: 1 Functional connectivity within the DMN and the Visual networks were higher in the control group than in the meditators; 2 Data show an increase for the functional connectivity between the DMN and the Visual networks in the meditators compared to controls; 3 Data demonstrate that functional connectivity both within and between networks reduces during meditation, compared to the resting-state; and 4 A significant negative correlation was found between DMN functional connectivity and meditation expertise. The reader is referred to Berkovich-Ohana et al. (2016 [1] for further interpretation and discussion.

  18. Dual connectivity for LTE-advanced heterogeneous networks

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.

    2016-01-01

    Dual connectivity (DC) allows user equipments (UEs) to receive data simultaneously from different eNodeBs (eNBs) in order to boost the performance in a heterogeneous network with dedicated carrier deployment. Yet, how to efficiently operate with DC opens a number of research questions. In this pa......Dual connectivity (DC) allows user equipments (UEs) to receive data simultaneously from different eNodeBs (eNBs) in order to boost the performance in a heterogeneous network with dedicated carrier deployment. Yet, how to efficiently operate with DC opens a number of research questions...... aggregation (CA) and virtually zerolatency fronthaul connections, and in any case it is significantly higher compared to the case without DC. Keywords: Dual connectivity Heterogeneous network LTE-advanced Radio resource management Performance evaluation...

  19. Frontoparietal Structural Connectivity in Childhood Predicts Development of Functional Connectivity and Reasoning Ability: A Large-Scale Longitudinal Investigation.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Ghetti, Simona; Bailey, Stephen K; Cutting, Laurie; Bunge, Silvia A

    2017-08-30

    Prior research points to a positive concurrent relationship between reasoning ability and both frontoparietal structural connectivity (SC) as measured by diffusion tensor imaging (Tamnes et al., 2010) and frontoparietal functional connectivity (FC) as measured by fMRI (Cocchi et al., 2014). Further, recent research demonstrates a link between reasoning ability and FC of two brain regions in particular: rostrolateral prefrontal cortex (RLPFC) and the inferior parietal lobe (IPL) (Wendelken et al., 2016). Here, we sought to investigate the concurrent and dynamic, lead-lag relationships among frontoparietal SC, FC, and reasoning ability in humans. To this end, we combined three longitudinal developmental datasets with behavioral and neuroimaging data from 523 male and female participants between 6 and 22 years of age. Cross-sectionally, reasoning ability was most strongly related to FC between RLPFC and IPL in adolescents and adults, but to frontoparietal SC in children. Longitudinal analysis revealed that RLPFC-IPL SC, but not FC, was a positive predictor of future changes in reasoning ability. Moreover, we found that RLPFC-IPL SC at one time point positively predicted future changes in RLPFC-IPL FC, whereas, in contrast, FC did not predict future changes in SC. Our results demonstrate the importance of strong white matter connectivity between RLPFC and IPL during middle childhood for the subsequent development of both robust FC and good reasoning ability. SIGNIFICANCE STATEMENT The human capacity for reasoning develops substantially during childhood and has a profound impact on achievement in school and in cognitively challenging careers. Reasoning ability depends on communication between lateral prefrontal and parietal cortices. Therefore, to understand how this capacity develops, we examined the dynamic relationships over time among white matter tracts connecting frontoparietal cortices (i.e., structural connectivity, SC), coordinated frontoparietal activation

  20. Aberrant orbitofrontal connectivity in marijuana smoking adolescents

    Directory of Open Access Journals (Sweden)

    Melissa Patricia Lopez-Larson

    2015-12-01

    Discussion: Findings indicate atypical OFC functional connectivity patterns in attentional/executive, motor and reward networks in adolescents with heavy MJ use. These anomalies may be related to suboptimal decision making capacities and increased impulsivity. Results also suggest different OFC connectivity patterns may be present in adolescents with early onset of MJ use and high lifetime exposure to MJ.

  1. The structural and functional connectivity of the grassland plant Lychnis flos-cuculi

    Science.gov (United States)

    Aavik, T; Holderegger, R; Bolliger, J

    2014-01-01

    Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937

  2. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Yang-teng eFan

    2015-10-01

    Full Text Available Most neuroimaging research in stroke rehabilitation mainly focuses on the neural mechanisms underlying the natural history of post-stroke recovery. However, connectivity mapping from resting-state fMRI is well suited for different neurological conditions and provides a promising method to explore plastic changes for treatment-induced recovery from stroke. We examined the changes in resting-state functional connectivity (RS-FC of the ipsilesional primary motor cortex (M1 in 10 post-acute stroke patients before and immediately after 4 weeks of robot-assisted bilateral arm therapy (RBAT. Motor performance, functional use of the affected arm, and daily function improved in all participants. Reduced interhemispheric RS-FC between the ipsilesional and contralesional M1 (M1-M1 and the contralesional-lateralized connections were noted before treatment. In contrast, greater M1-M1 functional connectivity and disturbed resting-state networks were observed after RBAT relative to pre-treatment. Increased changes in M1-M1 RS-FC after RBAT were coupled with better motor and functional improvements. Mediation analysis showed the pre-to-post difference in M1-M1 RS-FC was a significant mediator for the relationship between motor and functional recovery. These results show neuroplastic changes and functional recoveries induced by RBAT in post-acute stroke survivors and suggest that interhemispheric functional connectivity in the motor cortex may be a neurobiological marker for recovery after stroke rehabilitation.

  3. Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youjun Li

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN is closely related to cognition and is impaired in Alzheimer’s disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs from the five frequency bands: slow-5 (0.01–0.027 Hz, slow-4 (0.027–0.073 Hz, slow-3 (0.073–0.198 Hz, slow-2 (0.198–0.25 Hzs and standard low-frequency oscillations (LFO (0.01–0.08 Hz. We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

  4. Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder.

    Science.gov (United States)

    Rashid, Barnaly; Blanken, Laura M E; Muetzel, Ryan L; Miller, Robyn; Damaraju, Eswar; Arbabshirani, Mohammad R; Erhardt, Erik B; Verhulst, Frank C; van der Lugt, Aad; Jaddoe, Vincent W V; Tiemeier, Henning; White, Tonya; Calhoun, Vince

    2018-03-30

    Recent advances in neuroimaging techniques have provided significant insights into developmental trajectories of human brain function. Characterizations of typical neurodevelopment provide a framework for understanding altered neurodevelopment, including differences in brain function related to developmental disorders and psychopathology. Historically, most functional connectivity studies of typical and atypical development operate under the assumption that connectivity remains static over time. We hypothesized that relaxing stationarity assumptions would reveal novel features of both typical brain development related to children on the autism spectrum. We employed a "chronnectomic" (recurring, time-varying patterns of connectivity) approach to evaluate transient states of connectivity using resting-state functional MRI in a population-based sample of 774 6- to 10-year-old children. Dynamic connectivity was evaluated using a sliding-window approach, and revealed four transient states. Internetwork connectivity increased with age in modularized dynamic states, illustrating an important pattern of connectivity in the developing brain. Furthermore, we demonstrated that higher levels of autistic traits and ASD diagnosis were associated with longer dwell times in a globally disconnected state. These results provide a roadmap to the chronnectomic organization of the developing brain and suggest that characteristics of functional brain connectivity are related to children on the autism spectrum. © 2018 Wiley Periodicals, Inc.

  5. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents.

    Science.gov (United States)

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.

  6. Changes in Structural Connectivity Following a Cognitive Intervention in Children With Traumatic Brain Injury.

    Science.gov (United States)

    Yuan, Weihong; Treble-Barna, Amery; Sohlberg, McKay M; Harn, Beth; Wade, Shari L

    2017-02-01

    Structural connectivity analysis based on graph theory and diffusion tensor imaging tractography is a novel method that quantifies the topological characteristics in the brain network. This study aimed to examine structural connectivity changes following the Attention Intervention and Management (AIM) program designed to improve attention and executive function (EF) in children with traumatic brain injury (TBI). Seventeen children with complicated mild to severe TBI (13.66 ± 2.68 years; >12 months postinjury) completed magnetic resonance imaging (MRI) and neurobehavioral measures at time 1, 10 of whom completed AIM and assessment at time 2. Eleven matched healthy comparison (HC) children (13.37 ± 2.08 years) completed MRI and neurobehavioral assessment at both time points, but did not complete AIM. Network characteristics were analyzed to quantify the structural connectivity before and after the intervention. Mixed model analyses showed that small-worldness was significantly higher in the TBI group than the HC group at time 1, and both small-worldness and normalized clustering coefficient decreased significantly at time 2 in the TBI group whereas the HC group remained relatively unchanged. Reductions in mean local efficiency were significantly correlated with improvements in verbal inhibition and both parent- and child-reported EF. Increased normalized characteristic path length was significantly correlated with improved sustained attention. The results provide preliminary evidence suggesting that graph theoretical analysis may be a sensitive tool in pediatric TBI for detecting ( a) abnormalities of structural connectivity in brain network and ( b) structural neuroplasticity associated with neurobehavioral improvement following a short-term intervention for attention and EF.

  7. Detecting altered connectivity patterns in HIV associated neurocognitive impairment using mutual connectivity analysis

    Science.gov (United States)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.

  8. Change in brain network connectivity during PACAP38-induced migraine attacks

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano

    2016-01-01

    OBJECTIVE: To investigate resting-state functional connectivity in the salience network (SN), the sensorimotor network (SMN), and the default mode network (DMN) during migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38 (PACAP38). METHODS: In a double-blind, randomized...... connectivity with the bilateral opercular part of the inferior frontal gyrus in the SN. In SMN, there was increased connectivity with the right premotor cortex and decreased connectivity with the left visual cortex. Several areas showed increased (left primary auditory, secondary somatosensory, premotor......, and visual cortices) and decreased (right cerebellum and left frontal lobe) connectivity with DMN. We found no resting-state network changes after VIP (n = 15). CONCLUSIONS: PACAP38-induced migraine attack is associated with altered connectivity of several large-scale functional networks of the brain....

  9. Resting state functional connectivity changes in adults with developmental stuttering: an initial sLORETA study.

    Directory of Open Access Journals (Sweden)

    Kathleen eJoos

    2014-10-01

    Full Text Available Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity.Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on the quality of life (QoL, we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES, respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES.Results: No resting state activity differences were identified in comparison to fluently speaking controls or in correlation with stuttering severity or QoL measures. Significant alterations in resting state functional connectivity were found, predominantly interhemispheric, i.e. a decreased functional connectivity for high frequency oscillations (beta and gamma between motor speech areas (BA44 and 45 and the contralateral premotor (BA 6 and motor (BA 4 areas. A positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL.Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is

  10. Prevalence of increases in functional connectivity in visual, somatosensory and language areas in congenital blindness

    DEFF Research Database (Denmark)

    Heine, Lizette; Bahri, Mohamed A; Cavaliere, Carlo

    2015-01-01

    stronger functional connectivity in blind participants between the visual ROIs and areas implicated in language and tactile (Braille) processing such as the inferior frontal gyrus (Broca's area), thalamus, supramarginal gyrus and cerebellum. The observed group differences underscore the extent of the cross...

  11. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2015-01-01

    Full Text Available Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  12. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  13. The Physics Portal through Physics Connection Website: It's a new way to Stay Connected!

    Science.gov (United States)

    Jacome, D. Z.; Mato, P.; Lopez, J. L.; Zhu, W.; Dong, D.

    2011-12-01

    Our project involves connecting all level of students to science with limited funding available and having necessary resources to keep them updated. Students gain the opportunity to interact with others without having to leave the comfort of their schools. Through the Physics Portal, a door is automatically opened linking students to projects worldwide and expanding their knowledge each day. Through the funds provided we would purchase 2 laptops, a projector, speakers, a microphone, and an HD webcam. This package includes all of the tools needed to communicate and have an interactive experience with other institutions in our local area. Schools receive packages in the mail with every component needed to connect via conferencing to other students, teachers or professors in the field. Information can be recorded on each laptop, reactions of the students, and questions asked to later be updated on the Physics Connection webpage. Physics Connection allows the science community to explore through each recorded session and make recommendations to increase the efficiently of the program. Several applications on the website allow for groups to connect, discuss general ideas, or contact students for admissions to schools. Interviews, event participation, networking, and communication tools are all linked into one complete interactive package. When the experience ends for one student, it begins for another one. The process continues until the majority becomes informed.

  14. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study.

    Science.gov (United States)

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  15. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  16. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    Science.gov (United States)

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder. Copyright © 2015. Published by Elsevier B.V.

  17. Abnormal interhemispheric connectivity in male psychopathic offenders.

    Science.gov (United States)

    Hoppenbrouwers, Sylco S; De Jesus, Danilo R; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J; Schutter, Dennis J L G

    2014-01-01

    Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.

  18. How Important Is Connectivity for Surface Water Fluxes? A Generalized Expression for Flow Through Heterogeneous Landscapes

    Science.gov (United States)

    Larsen, Laurel G.; Ma, Jie; Kaplan, David

    2017-10-01

    How important is hydrologic connectivity for surface water fluxes through heterogeneous floodplains, deltas, and wetlands? While significant for management, this question remains poorly addressed. Here we adopt spatial resistance averaging, based on channel and patch configuration metrics quantifiable from aerial imagery, to produce an upscaled rate law for discharge. Our model suggests that patch coverage largely controls discharge sensitivity, with smaller effects from channel connectivity and vegetation patch fractal dimension. However, connectivity and patch configuration become increasingly important near the percolation threshold and at low water levels. These effects can establish positive feedbacks responsible for substantial flow change in evolving landscapes (14-36%, in our Everglades case study). Connectivity also interacts with other drivers; flow through poorly connected hydroscapes is less resilient to perturbations in other drivers. Finally, we found that flow through heterogeneous patches is alone sufficient to produce non-Manning flow-depth relationships commonly observed in wetlands but previously attributed to depth-varying roughness.

  19. Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression.

    Science.gov (United States)

    Jalbrzikowski, Maria; Larsen, Bart; Hallquist, Michael N; Foran, William; Calabro, Finnegan; Luna, Beatriz

    2017-10-01

    Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To identify to what extent the deviations in amygdala-vmPFC maturation contribute to the onset of psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during typical development. Using an accelerated cohort longitudinal design (1-3 time points, 10-25 years old, n = 246), we characterized developmental changes of the amygdala-vmPFC subregion functional and structural connectivity using resting-state functional magnetic resonance imaging and diffusion-weighted imaging. Functional connectivity between the centromedial amygdala and rostral anterior cingulate cortex (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late childhood to early adulthood in male and female subjects. Age-associated decreases were also observed between the basolateral amygdala and the rACC. Importantly, these findings were replicated in a separate cohort (10-22 years old, n = 327). Similarly, structural connectivity, as measured by quantitative anisotropy, significantly decreased with age in the same regions. Functional connectivity between the centromedial amygdala and the rACC was associated with structural connectivity in these same regions during early adulthood (22-25 years old). Finally, a novel time-varying coefficient analysis showed that increased centromedial amygdala-rACC functional connectivity was associated with greater anxiety and depression symptoms during early adulthood, while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter was associated with greater anxiety/depression during late childhood. Specific developmental periods of functional and structural connectivity between the amygdala and the prefrontal systems may contribute to the emergence of anxiety and depressive symptoms and may play a critical role in

  20. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors

    Directory of Open Access Journals (Sweden)

    Katharine Dunlop

    2015-01-01

    Conclusions: Enhanced frontostriatal connectivity was associated with responders to dmPFC-rTMS for binge/purge behavior. rTMS caused paradoxical suppression of frontostriatal connectivity in nonresponders. rs-fMRI could prove critical for optimizing stimulation parameters in a future sham-controlled trial of rTMS in disordered eating.

  1. Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer

    International Nuclear Information System (INIS)

    Hovdenak, Nils; Wang Junru; Sung, C.-C.; Kelly, Thomas; Fajardo, Luis F.; Hauer-Jensen, Martin

    2002-01-01

    Purpose: Rectal toxicity (proctitis) is a dose-limiting factor in pelvic radiation therapy. Mucosal atrophy, i.e., net extracellular matrix degradation, is a prominent feature of radiation proctitis, but the underlying mechanisms are not known. We prospectively examined changes in matrix metalloproteinase (MMP)-2 and MMP-9 (gelatinase A and B) in the rectal mucosa during radiation therapy of prostate cancer, as well as the relationships of these changes with symptomatic, structural, and cellular evidence of radiation proctitis. Methods and Materials: Seventeen patients scheduled for external beam radiation therapy for prostate cancer were prospectively enrolled. Symptoms of gastrointestinal toxicity were recorded, and endoscopy with biopsy of the rectal mucosa was performed before radiation therapy, as well as 2 and 6 weeks into the treatment course. Radiation proctitis was assessed by endoscopic scoring, quantitative histology, and quantitative immunohistochemistry. MMP-2 and MMP-9 were localized immunohistochemically, and activities were determined by gelatin zymography. Results: Symptoms, endoscopic scores, histologic injury, and mucosal macrophages and neutrophils increased from baseline to 2 weeks. Symptoms increased further from 2 weeks to 6 weeks, whereas endoscopic and cellular evidence of proctitis did not. Compared to pretreatment values, there was increased total gelatinolytic activity of MMP-2 and MMP-9 at 2 weeks (p=0.02 and p=0.004, respectively) and 6 weeks (p=0.006 and p=0.001, respectively). Active MMP-2 was increased at both time points (p=0.0001 and p=0.002). Increased MMP-9 and MMP-2 at 6 weeks was associated with radiation-induced diarrhea (p=0.007 and p=0.02, respectively) and with mucosal neutrophil infiltration (rho=0.62). Conclusions: Pelvic radiation therapy causes increased MMP-2 and MMP-9 activity in the rectal mucosa. These changes correlate with radiation-induced diarrhea and granulocyte infiltration and may contribute to abnormal

  2. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. cudaMap: a GPU accelerated program for gene expression connectivity mapping.

    Science.gov (United States)

    McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong

    2013-10-11

    Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

  4. Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study

    Science.gov (United States)

    Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang

    2014-03-01

    Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.

  5. Food web complexity and stability across habitat connectivity gradients.

    Science.gov (United States)

    LeCraw, Robin M; Kratina, Pavel; Srivastava, Diane S

    2014-12-01

    The effects of habitat connectivity on food webs have been studied both empirically and theoretically, yet the question of whether empirical results support theoretical predictions for any food web metric other than species richness has received little attention. Our synthesis brings together theory and empirical evidence for how habitat connectivity affects both food web stability and complexity. Food web stability is often predicted to be greatest at intermediate levels of connectivity, representing a compromise between the stabilizing effects of dispersal via rescue effects and prey switching, and the destabilizing effects of dispersal via regional synchronization of population dynamics. Empirical studies of food web stability generally support both this pattern and underlying mechanisms. Food chain length has been predicted to have both increasing and unimodal relationships with connectivity as a result of predators being constrained by the patch occupancy of their prey. Although both patterns have been documented empirically, the underlying mechanisms may differ from those predicted by models. In terms of other measures of food web complexity, habitat connectivity has been empirically found to generally increase link density but either reduce or have no effect on connectance, whereas a unimodal relationship is expected. In general, there is growing concordance between empirical patterns and theoretical predictions for some effects of habitat connectivity on food webs, but many predictions remain to be tested over a full connectivity gradient, and empirical metrics of complexity are rarely modeled. Closing these gaps will allow a deeper understanding of how natural and anthropogenic changes in connectivity can affect real food webs.

  6. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.

    Science.gov (United States)

    Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H

    2017-08-01

    Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Directory of Open Access Journals (Sweden)

    Fernanda Palhano-Fontes

    Full Text Available The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN, a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN. Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC/Precuneus and the medial Prefrontal Cortex (mPFC. Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic, meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  8. Functional connectivity in the basal ganglia network differentiates PD patients from controls

    Science.gov (United States)

    Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.L.; Rolinski, Michal; Duff, Eugene; Salimi-Khorshidi, Gholamreza; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T.M.

    2014-01-01

    Objective: To examine functional connectivity within the basal ganglia network (BGN) in a group of cognitively normal patients with early Parkinson disease (PD) on and off medication compared to age- and sex-matched healthy controls (HC), and to validate the findings in a separate cohort of participants with PD. Methods: Participants were scanned with resting-state fMRI (RS-fMRI) at 3T field strength. Resting-state networks were isolated using independent component analysis. A BGN template was derived from 80 elderly HC participants. BGN maps were compared between 19 patients with PD on and off medication in the discovery group and 19 age- and sex-matched controls to identify a threshold for optimal group separation. The threshold was applied to 13 patients with PD (including 5 drug-naive) in the validation group to establish reproducibility of findings. Results: Participants with PD showed reduced functional connectivity with the BGN in a wide range of areas. Administration of medication significantly improved connectivity. Average BGN connectivity differentiated participants with PD from controls with 100% sensitivity and 89.5% specificity. The connectivity threshold was tested on the validation cohort and achieved 85% accuracy. Conclusions: We demonstrate that resting functional connectivity, measured with MRI using an observer-independent method, is reproducibly reduced in the BGN in cognitively intact patients with PD, and increases upon administration of dopaminergic medication. Our results hold promise for RS-fMRI connectivity as a biomarker in early PD. Classification of evidence: This study provides Class III evidence that average connectivity in the BGN as measured by RS-fMRI distinguishes patients with PD from age- and sex-matched controls. PMID:24920856

  9. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  10. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  11. Structural and Functional Brain Connectivity of People with Obesity and Prediction of Body Mass Index Using Connectivity.

    Directory of Open Access Journals (Sweden)

    Bo-yong Park

    Full Text Available Obesity is a medical condition affecting billions of people. Various neuroimaging methods including magnetic resonance imaging (MRI have been used to obtain information about obesity. We adopted a multi-modal approach combining diffusion tensor imaging (DTI and resting state functional MRI (rs-fMRI to incorporate complementary information and thus better investigate the brains of non-healthy weight subjects. The objective of this study was to explore multi-modal neuroimaging and use it to predict a practical clinical score, body mass index (BMI. Connectivity analysis was applied to DTI and rs-fMRI. Significant regions and associated imaging features were identified based on group-wise differences between healthy weight and non-healthy weight subjects. Six DTI-driven connections and 10 rs-fMRI-driven connectivities were identified. DTI-driven connections better reflected group-wise differences than did rs-fMRI-driven connectivity. We predicted BMI values using multi-modal imaging features in a partial least-square regression framework (percent error 15.0%. Our study identified brain regions and imaging features that can adequately explain BMI. We identified potentially good imaging biomarker candidates for obesity-related diseases.

  12. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

    Science.gov (United States)

    Aydöre, Sergül; Mihçak, M Kivanç; Ciftçi, Koray; Akin, Ata

    2010-03-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method, which monitors the brain activation by measuring the successive changes in the concentration of oxy- and deoxyhemoglobin in real time. In this study, we present a method to investigate the functional connectivity of prefrontal cortex (PFC) Sby applying a Gauss-Markov model to fNIRS signals. The hemodynamic changes on PFC during the performance of cognitive paradigm are measured by fNIRS for 17 healthy adults. The color-word matching Stroop task is performed to activate 16 different regions of PFC. There are three different types of stimuli in this task, which can be listed as incongruent stimulus (IS), congruent stimulus (CS), and neutral stimulus (NS), respectively. We introduce a new measure, called "information transfer metric" (ITM) for each time sample. The behavior of ITMs during IS are significantly different from the ITMs during CS and NS, which is consistent with the outcome of the previous research, which concentrated on fNIRS signal analysis via color-word matching Stroop task. Our analysis shows that the functional connectivity of PFC is highly relevant with the cognitive load, i.e., functional connectivity increases with the increasing cognitive load.

  13. Alveolar Ridge Contouring with Free Connective Tissue Graft at Implant Placement: A 5-Year Consecutive Clinical Study.

    Science.gov (United States)

    Hanser, Thomas; Khoury, Fouad

    2016-01-01

    This study evaluated volume stability after alveolar ridge contouring with free connective tissue grafts at implant placement in single-tooth gaps. A total of 52 single-tooth gaps with labial volume deficiencies in the maxilla (incisors, canines, and premolars) were consecutively treated with implants and concomitant free palatal connective tissue grafts in 46 patients between 2006 and 2009. Implants had to be covered with at least 2 mm peri-implant local bone after insertion. At implant placement, a free connective tissue graft from the palate was fixed inside a labial split-thickness flap to form an existing concave buccal alveolar ridge contour due to tissue volume deficiency into a convex shape. Standardized volumetric measurements of the labial alveolar contour using a template were evaluated before connective tissue grafting and at 2 weeks, 1 year, and 5 years after implantprosthetic incorporation. Tissue volume had increased significantly (P tissue contour of the implant before connective tissue grafting to baseline (2 weeks after implant-prosthetic incorporation). Statistically, 50% of the reference points (P > .05) kept their volume from baseline to 1 year after prosthetic incorporation and from baseline to 5 years after prosthetic incorporation, respectively, whereas reference points located within the area of the implant sulcus showed a significant (P connective tissue grafting appears to be an appropriate long-term means to contour preexisting buccal alveolar volume deficiencies in single implants.

  14. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  15. Connective tissue graft vs. emdogain: A new approach to compare the outcomes.

    Science.gov (United States)

    Sayar, Ferena; Akhundi, Nasrin; Gholami, Sanaz

    2013-01-01

    The aim of this clinical trial study was to clinically evaluate the use of enamel matrix protein derivative combined with the coronally positioned flap to treat gingival recession compared to the subepithelial connective tissue graft by a new method to obtain denuded root surface area. Thirteen patients, each with two or more similar bilateral Miller class I or II gingival recession (40 recessions) were randomly assigned to the test (enamel matrix protein derivative + coronally positioned flap) or control group (subepithelial connective tissue graft). Recession depth, width, probing depth, keratinized gingival, and plaque index were recorded at baseline and at one, three, and six months after treatment. A stent was used to measure the denuded root surface area at each examination session. Results were analyzed using Kolmogorov-Smirnov, Wilcoxon, Friedman, paired-sample t test. The average percentages of root coverage for control and test groups were 63.3% and 55%, respectively. Both groups showed significant keratinized gingival increase (P 0.05). The results of Friedman test were significant for clinical indices (P < 0.05), except for probing depth in control group (P = 0.166). Enamel matrix protein derivative showed the same results as subepithelial connective tissue graft with relatively easy procedure to perform and low patient morbidity.

  16. A nonlinear theory of relativistic klystrons connected to a coaxial waveguide

    International Nuclear Information System (INIS)

    Uhm, H.S.; Hendricks, K.J.; Arman, M.J.; Bowers, L.; Hackett, K.E.; Spencer, T.A.; Coleman, P.D.; Lemke, R.W.

    1997-01-01

    A self-consistent nonlinear theory of current modulation in an electron beam propagating through relativistic klystrons connected to a coaxial waveguide is developed. A theoretical model of the beam-energy increase Δγ near the extraction cavity is also developed, based on the self-potential depression. The potential depression κ can be significantly reduced in the vicinity of the extraction cavity from its value at the injection point. In appropriate system parameters, the kinetic-energy increase can easily be more than 50 keV, thereby eliminating the possibility of virtual cathode in the extraction cavity. Properties of the current modulation in a klystron are also investigated, assuming that a regular cylindrical waveguide is connected to a coaxial waveguide at the propagation distance z=z 1 . Due to proximity of a grounded conductor, the beam close-quote s potential depression κ in the coaxial region is considerably less than that in the regular region. It is shown in the present analysis that amplitude of the current modulation increases drastically as the coaxial inner-conductor approaches the driving cavity. Moreover, the amplitude of the current modulation in the coaxial region changes slowly in comparison with that in the regular region

  17. Improved Performance of Connected Foundations for Resilient Energy Transmission Infrastructure in Soft Soils

    Directory of Open Access Journals (Sweden)

    Doohyun Kyung

    2015-12-01

    Full Text Available The connected foundation is an effective structural type of foundation that can improve the sustainability of electrical transmission towers in soft soils to serve as a resilient energy supply system. In this study, the performance of electrical transmission towers reinforced with connected beams was investigated using a series of field load tests. Model transmission tower structures were manufactured and adopted into the tests. Based on the load capacity mobilization and failure mechanism, a criterion to define the load carrying capacity for connected foundation was proposed. It was found that the performance of connected foundation varies with the mechanical property of connection beam. The load capacity and differential settlement increased and decreased, respectively, with increasing connection beam stiffness. Such effect of connection beam was more pronounced as the height of load application point or tower height (zh increases. Based on the load test results, a design model was proposed that can be used to evaluate the sustainable performance and load carrying capacity of connected foundations. Field load tests with prototype transmission tower structure models were conducted to check and confirm the performance of connected foundation and the proposed design method.

  18. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  19. Repaired tetralogy of Fallot with coexisting unrepaired partial anomalous pulmonary venous connection is associated with diminished right ventricular ejection fraction and more severe right ventricular dilation

    International Nuclear Information System (INIS)

    Chan, Sherwin S.; Whitehead, Kevin K.; Kim, Timothy S.; Fu, Gregory L.; Fogel, Mark A.; Harris, Matthew A.; Keller, Marc S.

    2015-01-01

    There is an established association between tetralogy of Fallot and partial anomalous pulmonary venous connections. This association is important because surgically repaired tetralogy patients have increased risk of right heart failure. We hypothesize that partial anomalous venous connections increase right ventricular volumes and worsen right ventricular failure. We reviewed cardiac MRI exams performed at a tertiary pediatric hospital from January 2005 to January 2014. We identified patients with repaired tetralogy and unrepaired partial anomalous pulmonary venous connection. We used age- and gender-matched repaired tetralogy patients without partial anomalous pulmonary venous connection as controls. We analyzed the MRI results and surgical course and performed comparative statistics to identify group differences. There were eight patients with repaired tetralogy and unrepaired partial anomalous pulmonary venous connection and 16 controls. In all cases, the partial anomalous pulmonary venous connection was not detected on preoperative echocardiography. There were no significant differences in surgical course and body surface area between the two groups. Repaired tetralogy patients with unrepaired partial anomalous pulmonary venous connection showed significantly higher indexed right ventricular end diastolic volume (149 ± 33 mL/m 2 vs. 118 ± 30 mL/m 2 ), right ventricle to left ventricle size ratios (3.1 ± 1.3 vs. 1.9 ± 0.5) and a higher incidence of reduced right ventricular ejection fraction compared to controls (3/8 vs. 0/16). Repaired tetralogy of Fallot with unrepaired partial anomalous pulmonary venous connection is associated with reduced right ventricular ejection fraction and more significant right ventricular dilation. (orig.)

  20. Repaired tetralogy of Fallot with coexisting unrepaired partial anomalous pulmonary venous connection is associated with diminished right ventricular ejection fraction and more severe right ventricular dilation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Sherwin S. [Children' s Mercy Hospital and Clinics, Department of Radiology, Kansas City, MO (United States); Whitehead, Kevin K.; Kim, Timothy S.; Fu, Gregory L.; Fogel, Mark A.; Harris, Matthew A. [Children' s Hospital of Philadelphia, Department of Cardiology, Philadelphia, PA (United States); Keller, Marc S. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    There is an established association between tetralogy of Fallot and partial anomalous pulmonary venous connections. This association is important because surgically repaired tetralogy patients have increased risk of right heart failure. We hypothesize that partial anomalous venous connections increase right ventricular volumes and worsen right ventricular failure. We reviewed cardiac MRI exams performed at a tertiary pediatric hospital from January 2005 to January 2014. We identified patients with repaired tetralogy and unrepaired partial anomalous pulmonary venous connection. We used age- and gender-matched repaired tetralogy patients without partial anomalous pulmonary venous connection as controls. We analyzed the MRI results and surgical course and performed comparative statistics to identify group differences. There were eight patients with repaired tetralogy and unrepaired partial anomalous pulmonary venous connection and 16 controls. In all cases, the partial anomalous pulmonary venous connection was not detected on preoperative echocardiography. There were no significant differences in surgical course and body surface area between the two groups. Repaired tetralogy patients with unrepaired partial anomalous pulmonary venous connection showed significantly higher indexed right ventricular end diastolic volume (149 ± 33 mL/m{sup 2} vs. 118 ± 30 mL/m{sup 2}), right ventricle to left ventricle size ratios (3.1 ± 1.3 vs. 1.9 ± 0.5) and a higher incidence of reduced right ventricular ejection fraction compared to controls (3/8 vs. 0/16). Repaired tetralogy of Fallot with unrepaired partial anomalous pulmonary venous connection is associated with reduced right ventricular ejection fraction and more significant right ventricular dilation. (orig.)

  1. Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis.

    Science.gov (United States)

    Meijer, Kim A; Eijlers, Anand J C; Geurts, Jeroen J G; Schoonheim, Menno M

    2018-02-01

    Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Sex Commonalities and Differences in Obesity-Related Alterations in Intrinsic Brain Activity and Connectivity.

    Science.gov (United States)

    Gupta, Arpana; Mayer, Emeran A; Labus, Jennifer S; Bhatt, Ravi R; Ju, Tiffany; Love, Aubrey; Bal, Amanat; Tillisch, Kirsten; Naliboff, Bruce; Sanmiguel, Claudia P; Kilpatrick, Lisa A

    2018-02-01

    This study aimed to characterize obesity-related sex differences in the intrinsic activity and connectivity of the brain's reward networks. Eighty-six women (n = 43) and men (n = 43) completed a 10-minute resting functional magnetic resonance imaging scan. Sex differences and commonalities in BMI-related frequency power distribution and reward seed-based connectivity were investigated by using partial least squares analysis. For whole-brain activity in both men and women, increased BMI was associated with increased slow-5 activity in the left globus pallidus (GP) and substantia nigra. In women only, increased BMI was associated with increased slow-4 activity in the right GP and bilateral putamen. For seed-based connectivity in women, increased BMI was associated with reduced slow-5 connectivity between the left GP and putamen and the emotion and cortical regulation regions, but in men, increased BMI was associated with increased connectivity with the medial frontal cortex. In both men and women, increased BMI was associated with increased slow-4 connectivity between the right GP and bilateral putamen and the emotion regulation and sensorimotor-related regions. The stronger relationship between increased BMI and decreased connectivity of core reward network components with cortical and emotion regulation regions in women may be related to the greater prevalence of emotional eating. The present findings suggest the importance of personalized treatments for obesity that consider the sex of the affected individual. © 2017 The Obesity Society.

  3. TCP Throughput Profiles Using Measurements over Dedicated Connections

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL; Sen, Satyabrata [ORNL; Towsley, Don [University of Massachusetts, Amherst; Vardoyan, Gayane [University of Massachusetts, Amherst; Kettimuthu, R. [Argonne National Laboratory (ANL); Foster, Ian [University of Chicago

    2017-06-01

    Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, in stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.

  4. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    Science.gov (United States)

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  5. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study

  6. The vulnerability to suicidal behavior is associated with reduced connectivity strength

    Directory of Open Access Journals (Sweden)

    Stijn eBijttebier

    2015-11-01

    Full Text Available Suicidal behavior constitutes a major public health problem. Based on the stress–diathesis model, biological correlates of a diathesis might help to predict risk after stressor-exposure. Structural changes in cortical and subcortical areas and their connections have increasingly been linked with the diathesis. The current study identified structural network changes associated with a diathesis using a whole-brain approach by examining the structural connectivity between regions in euthymic suicide attempters. In addition, the association between connectivity measures, clinical and genetic characteristics was investigated. We hypothesized that suicide attempters showed lower connectivity strength, associated with an increased severity of general clinical characteristics and an elevated expression of short alleles in serotonin polymorphisms.Thirteen euthymic suicide attempters (SA were compared with fifteen euthymic non-attempters and seventeen healthy controls. Clinical characteristics and three serotonin-related genetic polymorphisms were assessed. Diffusion MRI together with anatomical scans were administered. Preprocessing was performed using Explore DTI. Whole brain tractography of the diffusion-weighted images was followed by a number of streamlines-weighted network analysis using NBS.The network analysis revealed decreased connectivity strength in SA in the connections between the left olfactory cortex and left anterior cingulate gyrus. Furthermore, SA had increased suicidal ideation, hopelessness and self-reported depression, but did not show any differences for the genetic polymorphisms. Finally, lower connectivity strength between the right calcarine fissure and the left middle occipital gyrus was associated with increased trait anxiety severity (rs=-0.78, p<0.01 and hopelessness (rs=-0.76, p<0.01.SA showed differences in white matter network connectivity strength associated with clinical characteristics. Together, these variables could

  7. The effectiveness of community-based cycling promotion: findings from the Cycling Connecting Communities project in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Merom Dafna

    2010-01-01

    Full Text Available Abstract Background Encouraging cycling is an important way to increase physical activity in the community. The Cycling Connecting Communities (CCC Project is a community-based cycling promotion program that included a range of community engagement and social marketing activities, such as organised bike rides and events, cycling skills courses, the distribution of cycling maps of the area and coverage in the local press. The aim of the study was to assess the effectiveness of this program designed to encourage the use of newly completed off-road cycle paths through south west Sydney, Australia. Methods The evaluation used a quasi-experimental design that consisted of a pre- and post-intervention telephone survey (24 months apart of a cohort of residents (n = 909 in the intervention area (n = 520 (Fairfield and Liverpool and a socio-demographically similar comparison area (n = 389 (Bankstown. Both areas had similar bicycle infrastructure. Four bicycle counters were placed on the main bicycle paths in the intervention and comparison areas to monitor daily bicycle use before and after the intervention. Results The telephone survey results showed significantly greater awareness of the Cycling Connecting Communities project (13.5% vs 8.0%, p Conclusion Despite relatively modest resources, the Cycling Connecting Communities project achieved significant increases in bicycle path use, and increased cycling in some sub-groups. However, this community based intervention with limited funding had very limited reach into the community and did not increase population cycling levels.

  8. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    Science.gov (United States)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  9. A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Directory of Open Access Journals (Sweden)

    Gant Timothy W

    2008-06-01

    Full Text Available Abstract Background Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties by gene expression profile. Lamb et al first proposed the Connectivity Map [Lamb et al (2006, Science 313, 1929–1935] to make successful connections among small molecules, genes, and diseases using genomic signatures. Results Here we have built on the principles of the Connectivity Map to present a simpler and more robust method for the construction of reference gene-expression profiles and for the connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with two randomly generated gene signatures and three experimentally derived gene signatures (for HDAC inhibitors, estrogens, and immunosuppressive drugs, respectively. Our testing with this method indicates that it achieves a higher level of specificity and sensitivity and so advances the original method. Conclusion The method presented here not only offers more principled statistical procedures for testing connections, but more importantly it provides effective safeguard against false connections at the same time achieving increased sensitivity. With its robust performance, the method has potential use in the drug development pipeline for the early recognition of pharmacological and toxicological properties in chemicals and new drug candidates, and also more broadly in other 'omics sciences.

  10. International comparison of requirements for connection of wind turbines to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C. [Risoe National Lab., Roskilde (Denmark). Dept. of Wind Energy; Matevosyan, J.; Ackermann, T. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Electrical Engineering; Bolik, S. [Vestas Wind Systems A/S, Ringkoebing (Denmark)

    2005-07-01

    Power production from wind turbines has increased considerably during the last decade. Therefore today's wind turbines, which are typically set up in wind farms, have a significant influence on the operation of power systems. The efficient and secure operation of power systems is supported by grid codes, which are sets of requirements for all network users (suppliers, customers, etc.). In Europe, several transmission network operators have introduced special grid connection requirements for wind farms. These requirements are mainly based on existing grid codes, initially written for conventional power plants usually equipped with synchronous generators. This article presents a comparison of grid connection requirements for wind farms issued, or proposed as a draft, by transmission network operators in Denmark, Sweden, Germany, Scotland and Ireland. (author)

  11. Changes in Neural Connectivity and Memory Following a Yoga Intervention for Older Adults: A Pilot Study.

    Science.gov (United States)

    Eyre, Harris A; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M; Cyr, Natalie St; Narr, Katherine; Baune, Bernhard T; Khalsa, Dharma S; Lavretsky, Helen

    2016-01-01

    No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active "gold-standard" control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies.

  12. Increasing the statistical significance of entanglement detection in experiments.

    Science.gov (United States)

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  13. Durability of adhesive glass-metal connections for structural applications

    NARCIS (Netherlands)

    Van Lancker, B.; Dispersyn, J.; De Corte, W.; Belis, J.

    2016-01-01

    The use of adhesive bonds for structural glass-metal connections in the building envelope has increased in recent years. Despite the multiple advantages compared to more traditional bolted connections, long-term behaviour and durability of the adhesives have to be investigated accurately. Because,

  14. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundBetel quid (BQ is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs.MethodsResting-state functional magnetic resonance imaging (fMRI was obtained from 24 betel quid-dependent (BQD male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA to determine components that represent the brain’s functional networks and their spatial aspects of functional connectivity. Two sample t-tests were used to identify the functional connectivity differences in each network between these two groups.ResultsSeventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t-tests, p < 0.001 uncorrected. We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal (r = 0.39, p = 0.03 while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks (r = −0.35, p = 0.02.DiscussionOur findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  15. How restructuring river connectivity changes freshwater fish biodiversity and biogeography

    Science.gov (United States)

    Lynch, Heather L.; Grant, Evan H. Campbell; Muneepeerakul, Rachata; Arunachalam, Muthukumarasamy; Rodriguez-Iturbe, Ignacio; Fagan, William F.

    2011-01-01

    Interbasin water transfer projects, in which river connectivity is restructured via man-made canals, are an increasingly popular solution to address the spatial mismatch between supply and demand of fresh water. However, the ecological consequences of such restructuring remain largely unexplored, and there are no general theoretical guidelines from which to derive these expectations. River systems provide excellent opportunities to explore how network connectivity shapes habitat occupancy, community dynamics, and biogeographic patterns. We apply a neutral model (which assumes competitive equivalence among species within a stochastic framework) to an empirically derived river network to explore how proposed changes in network connectivity may impact patterns of freshwater fish biodiversity. Without predicting the responses of individual extant species, we find the addition of canals connecting hydrologically isolated river basins facilitates the spread of common species and increases average local species richness without changing the total species richness of the system. These impacts are sensitive to the parameters controlling the spatial scale of fish dispersal, with increased dispersal affording more opportunities for biotic restructuring at the community and landscape scales. Connections between isolated basins have a much larger effect on local species richness than those connecting reaches within a river basin, even when those within-basin reaches are far apart. As a result, interbasin canal projects have the potential for long-term impacts to continental-scale riverine communities.

  16. Modulating transcallosal and intra-hemispheric brain connectivity with tDCS: Implications for interventions in Aphasia.

    Science.gov (United States)

    Zheng, Xin; Dai, Weiying; Alsop, David C; Schlaug, Gottfried

    2016-07-25

    Transcranial direct current stimulation (tDCS) can enhance or diminish cortical excitability levels depending on the polarity of the stimulation. One application of non-invasive brain-stimulation has been to modulate a possible inter-hemispheric disinhibition after a stroke. This disinhibition model has been developed mainly for the upper extremity motor system, but it is not known whether the language/speech-motor system shows a similar inter-hemispheric interaction. We aimed to examine physiological evidence of inter- and intra-hemispheric connectivity changes induced by tDCS of the right inferior frontal gyrus (IFG) using arterial-spin labeling (ASL) MRI. Using an MR-compatible DC-Stimulator, we applied anodal stimulation to the right IFG region of nine healthy adults while undergoing non-invasive cerebral blood flow imaging with arterial-spin labeling (ASL) before, during, and after the stimulation. All ASL images were then normalized and timecourses were extracted in regions of interest (ROIs), which were the left and right IFG regions, and the right supramarginal gyrus (SMG) in the inferior parietal lobule. Two additional ROIs (the right occipital lobe and the left fronto-orbital region) were taken as control regions. Using regional correlation coefficients as a surrogate marker of connectivity, we could show that inter-hemispheric connectivity (right IFG with left IFG) decreased significantly (p < 0.05; r-scores from 0.67 to 0.53) between baseline and post-stimulation, while the intra-hemispheric connectivity (right IFG with right SMG) increased significantly (p < 0.05;r-scores from 0.74 to 0.81). A 2 × 2 ANOVA found a significant main effect of HEMISPHERE (F(8) = 6.83, p < 0.01) and a significant HEMISPHERE-by-TIME interaction (F(8) = 4.24, p < 0.05) in connectivity changes. The correlation scores did not change significantly in the control region pairs (right IFG with right occipital and right IFG with left fronto-orbital) over

  17. Fewer complications with bolt-connected than tunneled external ventricular drainage

    DEFF Research Database (Denmark)

    Jensen, Torben Slott; Carlsen, Jakob Gram; Poulsen, Frantz Rom

    2016-01-01

    BACKGROUND: Ventriculostomy/external ventricular drain (EVD) is a common neurosurgical procedure. Various techniques are used to fixate the drain and the objective of this study was, in a retrospective setting, to compare the incidence of complications when using bolt-connected EVD (BC-EVD) versus...... tunneled EVD (T-EVD). METHODS: All patients subjected to an EVD performed through a new burr hole from 2009 through 2010 at two Depts. of Neurosurgery in Denmark (Odense and Aarhus) were retrospectively identified. Patient files were evaluated for EVD fixation technique (tunneled or bolt-connected EVD...... %), compared to the bolt-connected EVD group (6.5 %). There was no significant difference in infection rates. CONCLUSIONS: Tunneled EVD has a relatively high frequency of complications leading to reinsertion. The use of Bolt-connected EVD technique can lower this frequency significantly. The number needed...

  18. Altered Functional Connectivity of Insular Subregions in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Xingyun Liu

    2018-04-01

    Full Text Available Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer’s disease (AD. However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI data including 32 AD patients and 38 healthy controls (HCs. By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1 an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN; (2 a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN; (3 a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN. In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN, suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients.

  19. Lightning simulation of a combined overhead line/cable connected GIS

    DEFF Research Database (Denmark)

    Kessel, Jakob; Atlason, Vioir; Bak, Claus Leth

    2008-01-01

    performance, compared to a system consisting solely of AIS connected thorugh overhead lines. The main purpose is to investigate whether overvoltage protection is necessary at the GIS busbar. Here, the price for a GIS SA is significantly more expensive than the price for an AIS SA. The analysis is conducted......The paper concerns different investigations of lightning simulation of a combined 170 kV overhead line/cable connected GIS. This is interesting due to the increasing amount of underground cables and GIS in the Danish transmission system. This creates a different system with respect to lightning...... by implementing a simulation model in PSCAD/EMTDC. Simulations are conducted for both SF and BFO where the overvoltage at the transformer are evaluated as this component has the lowest insulation strength. The overvoltages are evaluated for different front imes of the lightning surge, different soil resistivities...

  20. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  1. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    Science.gov (United States)

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The effects of psychosis risk variants on brain connectivity: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Omar eMothersill

    2012-03-01

    Full Text Available In light of observed changes in connectivity in schizophrenia and the highly heritable nature of the disease, neural connectivity may serve as an important intermediate phenotype for schizophrenia. However, how individual variants confer altered connectivity and which measure of brain connectivity is more proximal to the underlying genetic architecture (i.e. functional or structural has not been well delineated. In this review we consider these issues and the relative sensitivity of imaging methodologies to schizophrenia-related changes in connectivity.We searched PubMed for studies considering schizophrenia risk genes AND functional or structural connectivity. Where data was available, summary statistics were used to determine an estimate of effect size (i.e. Cohen’s d. A random-effects meta-analysis was used to consider (1 the largest effect and (2 all significant effects between functional and structural studies. Schizophrenia risk variants involved in neurotransmission, neurodevelopment and myelin function were found to be associated with altered neural connectivity. On average, schizophrenia risk genes had a large effect on functional (mean d=0.76 and structural connectivity (mean d=1.04. The examination of the largest effect size indicated that the outcomes of functional and structural studies were comparable (Q=2.17, p>0.05. Conversely, consideration of effect size estimates for all significant effects suggest that reported effect sizes in structural connectivity studies were more variable than in functional connectivity studies, and that there was a significant lack of homogeneity across the modalities (Q=6.928, p=0.008.Given the more variable profile of effect sizes associated with structural connectivity, these data may suggest that structural imaging methods are more sensitive to a wider range of effects, as opposed to functional studies which may only be able to determine large effects. These conclusions are limited by

  3. The smart/connected city and its implications for connected transportation.

    Science.gov (United States)

    2014-10-14

    This white paper outlines the potential for the emerging connected transportation system to interface with smart/connected cities. Its aim is to lay the foundation for defining steps that the U.S. Department of Transportation (USDOT) Connected Vehicl...

  4. Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery.

    Science.gov (United States)

    Neel, Maile; Tumas, Hayley R; Marsden, Brittany W

    2014-01-01

    network in Erigeron and Acanthoscyphus due to exclusion of peripheral patches, but was slightly increased for Eriogonum. Distances at which networks were sensitive to loss of connectivity due to presence non-redundant connections were affected mostly for Acanthoscyphos. Of most concern was that the range of distances at which lack of redundancy yielded high risk was much greater than in the full network. Through this in-depth example evaluating connectivity using a comprehensive suite of developed graph theoretic metrics, we establish an approach as well as provide sample interpretations of subtle variations in connectivity that conservation managers can incorporate into planning.

  5. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  6. Internet Connection Control based on Idle Time Using User Behavior Pattern Analysis

    Directory of Open Access Journals (Sweden)

    Fadilah Fahrul Hardiansyah

    2014-12-01

    Full Text Available The increase of smartphone ability is rapidly increasing the power consumption. Many methods have been proposed to reduce smartphone power consumption. Most of these methods use the internet connection control based on the availability of the battery power level regardless of when and where a waste of energy occurs. This paper proposes a new approach to control the internet connection based on idle time using user behavior pattern analysis. User behavior patterns are used to predict idle time duration. Internet connection control performed during idle time. During idle time internet connection periodically switched on and off by a certain time interval. This method effectively reduces a waste of energy. Control of the internet connection does not interfere the user because it is implemented on idle time. Keywords: Smartphone, User Behavior, Pattern Recognition, Idle Time, Internet Connection Control

  7. Connectivity of tiger (Panthera tigris) populations in the human-influenced forest mosaic of Central India.

    Science.gov (United States)

    Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma

    2013-01-01

    Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.

  8. Connectivity of tiger (Panthera tigris populations in the human-influenced forest mosaic of Central India.

    Directory of Open Access Journals (Sweden)

    Aditya Joshi

    Full Text Available Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.

  9. Healthcare e-commerce: connecting with patients.

    Science.gov (United States)

    Joslyn, J S

    2001-01-01

    Electronically connecting with patients is a challenging frontier at which technical hurdles are probably exceeded by political, legal, and other barriers. The rise of consumerism, however, compels a response focused more on revenue and strategic advantage than on pure cost savings. Among the difficulties faced by providers is choosing among various models of connectivity and component function. Emerging models include "free-floating" personal medical records largely independent of the office-based physician, systems with compatible and intertwined physician and consumer relationships using an application services provider office practice system, and systems that connect patients and providers through e-mail, office triage, prescription refills, scheduling, and so on. This article discusses these and other combinations of technology that significantly overcome the barriers involved and that may be woven together to provide solutions uniquely suited to various competitive situations.

  10. Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex

    Directory of Open Access Journals (Sweden)

    Cristina Solé-Padullés

    2016-02-01

    Full Text Available There is limited evidence on the effects of age and sex on intrinsic connectivity of networks underlying cognition during childhood and adolescence. Independent component analysis was conducted in 113 subjects aged 7–18; the default mode, executive control, anterior salience, basal ganglia, language and visuospatial networks were identified. The effect of age was examined with multiple regression, while sex and ‘age × sex’ interactions were assessed by dividing the sample according to age (7–12 and 13–18 years. As age increased, connectivity in the dorsal and ventral default mode network became more anterior and posterior, respectively, while in the executive control network, connectivity increased within frontoparietal regions. The basal ganglia network showed increased engagement of striatum, thalami and precuneus. The anterior salience network showed greater connectivity in frontal areas and anterior cingulate, and less connectivity of orbitofrontal, middle cingulate and temporoparietal regions. The language network presented increased connectivity of inferior frontal and decreased connectivity within the right middle frontal and left inferior parietal cortices. The visuospatial network showed greater engagement of inferior parietal and frontal cortices. No effect of sex, nor age by sex interactions was observed. These findings provide evidence of strengthening of cortico-cortical and cortico-subcortical networks across childhood and adolescence.

  11. Developmental changes in brain connectivity assessed using the sleep EEG.

    OpenAIRE

    Tarokh L; Carskadon M A; Achermann P

    2010-01-01

    Adolescence represents a time of significant cortical restructuring. Current theories posit that during this period connections between frequently utilized neural networks are strengthened while underutilized synaptic connections are discarded. The aim of the present study was to examine the developmental evolution of connectivity between brain regions using the sleep EEG. All night sleep EEG recordings in two longitudinal cohorts (children and teens) followed at 1.5 3 year intervals and one ...

  12. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    Science.gov (United States)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  13. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    Science.gov (United States)

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  14. Characterisation of connective tissue from the hypertrophic skeletal muscle of myostatin null mice.

    Science.gov (United States)

    Elashry, Mohamed I; Collins-Hooper, Henry; Vaiyapuri, Sakthivel; Patel, Ketan

    2012-06-01

    Myostatin is a potent inhibitor of muscle development. Genetic deletion of myostatin in mice results in muscle mass increase, with muscles often weighing three times their normal values. Contracting muscle transfers tension to skeletal elements through an elaborate connective tissue network. Therefore, the connective tissue of skeletal muscle is an integral component of the contractile apparatus. Here we examine the connective tissue architecture in myostatin null muscle. We show that the hypertrophic muscle has decreased connective tissue content compared with wild-type muscle. Secondly, we show that the hypertrophic muscle fails to show the normal increase in muscle connective tissue content during ageing. Therefore, genetic deletion of myostatin results in an increase in contractile elements but a decrease in connective tissue content. We propose a model based on the contractile profile of muscle fibres that reconciles this apparent incompatible tissue composition phenotype. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  15. SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity

    Science.gov (United States)

    Crema, Stefano; Cavalli, Marco

    2018-02-01

    There is a growing call, within the scientific community, for solid theoretic frameworks and usable indices/models to assess sediment connectivity. Connectivity plays a significant role in characterizing structural properties of the landscape and, when considered in combination with forcing processes (e.g., rainfall-runoff modelling), can represent a valuable analysis for an improved landscape management. In this work, the authors present the development and application of SedInConnect: a free, open source and stand-alone application for the computation of the Index of Connectivity (IC), as expressed in Cavalli et al. (2013) with the addition of specific innovative features. The tool is intended to have a wide variety of users, both from the scientific community and from the authorities involved in the environmental planning. Thanks to its open source nature, the tool can be adapted and/or integrated according to the users' requirements. Furthermore, presenting an easy-to-use interface and being a stand-alone application, the tool can help management experts in the quantitative assessment of sediment connectivity in the context of hazard and risk assessment. An application to a sample dataset and an overview on up-to-date applications of the approach and of the tool shows the development potential of such analyses. The modelled connectivity, in fact, appears suitable not only to characterize sediment dynamics at the catchment scale but also to integrate prediction models and as a tool for helping geomorphological interpretation.

  16. PDGFRα plays a crucial role in connective tissue remodeling.

    Science.gov (United States)

    Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo

    2015-12-07

    Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.

  17. Blood Flow Changes in Subsynovial Connective Tissue on Contrast-Enhanced Ultrasonography in Patients With Carpal Tunnel Syndrome Before and After Surgical Decompression.

    Science.gov (United States)

    Motomiya, Makoto; Funakoshi, Tadanao; Ishizaka, Kinya; Nishida, Mutsumi; Matsui, Yuichiro; Iwasaki, Norimasa

    2017-11-24

    Although qualitative alteration of the subsynovial connective tissue in the carpal tunnel is considered to be one of the most important factors in the pathophysiologic mechanisms of carpal tunnel syndrome (CTS), little information is available about the microcirculation in the subsynovial connective tissue in patients with CTS. The aims of this study were to use contrast-enhanced ultrasonography (US) to evaluate blood flow in the subsynovial connective tissue proximal to the carpal tunnel in patients with CTS before and after carpal tunnel release. The study included 15 volunteers and 12 patients with CTS. The blood flow in the subsynovial connective tissue and the median nerve was evaluated preoperatively and at 1, 2, and 3 months postoperatively using contrast-enhanced US. The blood flow in the subsynovial connective tissue was higher in the patients with CTS than in the volunteers. In the patients with CTS, there was a significant correlation between the blood flow in the subsynovial connective tissue and the median nerve (P = .01). The blood flow in both the subsynovial connective tissue and the median nerve increased markedly after carpal tunnel release. Our results suggest that increased blood flow in the subsynovial connective tissue may play a role in the alteration of the microcirculation within the median nerve related to the pathophysiologic mechanisms of CTS. The increase in the blood flow in the subsynovial connective tissue during the early postoperative period may contribute to the changes in intraneural circulation, and these changes may lead to neural recovery. © 2017 by the American Institute of Ultrasound in Medicine.

  18. Sex differences in the relationship between white matter connectivity and creativity.

    Science.gov (United States)

    Ryman, Sephira G; van den Heuvel, Martijn P; Yeo, Ronald A; Caprihan, Arvind; Carrasco, Jessica; Vakhtin, Andrei A; Flores, Ranee A; Wertz, Christopher; Jung, Rex E

    2014-11-01

    Creative cognition emerges from a complex network of interacting brain regions. This study investigated the relationship between the structural organization of the human brain and aspects of creative cognition tapped by divergent thinking tasks. Diffusion weighted imaging (DWI) was used to obtain fiber tracts from 83 segmented cortical regions. This information was represented as a network and metrics of connectivity organization, including connectivity strength, clustering and communication efficiency were computed, and their relationship to individual levels of creativity was examined. Permutation testing identified significant sex differences in the relationship between global connectivity and creativity as measured by divergent thinking tests. Females demonstrated significant inverse relationships between global connectivity and creative cognition, whereas there were no significant relationships observed in males. Node specific analyses revealed inverse relationships across measures of connectivity, efficiency, clustering and creative cognition in widespread regions in females. Our findings suggest that females involve more regions of the brain in processing to produce novel ideas to solutions, perhaps at the expense of efficiency (greater path lengths). Males, in contrast, exhibited few, relatively weak positive relationships across these measures. Extending recent observations of sex differences in connectome structure, our findings of sexually dimorphic relationships suggest a unique topological organization of connectivity underlying the generation of novel ideas in males and females. Published by Elsevier Inc.

  19. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  20. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas

    Science.gov (United States)

    Castilho, Camila S.; Hackbart, Vivian C. S.; Pivello, Vânia R.; dos Santos, Rozely F.

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  1. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas.

    Science.gov (United States)

    Castilho, Camila S; Hackbart, Vivian C S; Pivello, Vânia R; dos Santos, Rozely F

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  2. Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder.

    Directory of Open Access Journals (Sweden)

    Luca Passamonti

    Full Text Available Previous research suggested that structural and functional abnormalities within the amygdala and orbitofrontal cortex contribute to the pathophysiology of Conduct Disorder (CD. Here, we investigated whether the integrity of the white-matter pathways connecting these regions is abnormal and thus may represent a putative neurobiological marker for CD.Diffusion Tensor Imaging (DTI was used to investigate white-matter microstructural integrity in male adolescents with childhood-onset CD, compared with healthy controls matched in age, sex, intelligence, and socioeconomic status. Two approaches were employed to analyze DTI data: voxel-based morphometry of fractional anisotropy (FA, an index of white-matter integrity, and virtual dissection of white-matter pathways using tractography.Adolescents with CD displayed higher FA within the right external capsule relative to controls (T = 6.08, P<0.05, Family-Wise Error, whole-brain correction. Tractography analyses showed that FA values within the uncinate fascicle (connecting the amygdala and orbitofrontal cortex were abnormally increased in individuals with CD relative to controls. This was in contrast with the inferior frontal-occipital fascicle, which showed no significant group differences in FA. The finding of increased FA in the uncinate fascicle remained significant when factoring out the contribution of attention-deficit/hyperactivity disorder symptoms. There were no group differences in the number of streamlines in either of these anatomical tracts.These results provide evidence that CD is associated with white-matter microstructural abnormalities in the anatomical tract that connects the amygdala and orbitofrontal cortex, the uncinate fascicle. These results implicate abnormal maturation of white-matter pathways which are fundamental in the regulation of emotional behavior in CD.

  3. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    Science.gov (United States)

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE

  4. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    Science.gov (United States)

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  6. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    Science.gov (United States)

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole

  7. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  8. Today's university students and their need to connect

    Directory of Open Access Journals (Sweden)

    Theresa Janine Russo

    2014-10-01

    Full Text Available Higher education is rapidly changing and university instructors are presented with new types of students for whom technology is a significant influence. They perceive technology as a way of life and express a need to feel connected at all times. With increasingly diverse university classroom, technology integration is both a challenge and an opportunity. Supportive communication is important in the promotion of relationships and essential in a university classroom.  A convenience sample of 390 students was surveyed to investigate the perceived influences of technology on relationships, including preferences, usage and time with technologies. Results indicated that technology makes communication easier, allows students to stay in touch with more people, and have relationships that would otherwise not be possible.  Implications of this study suggest positive influences of technology on academic work, performance and maintenance of relationships, but disadvantages such as increased stress, addictive feelings toward technologies, and increased misunderstandings in relationships and conflict. 

  9. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study

    Directory of Open Access Journals (Sweden)

    Natasha E. Wade, M.S.

    2017-12-01

    Full Text Available Background: Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD. We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC. Materials and methods: For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. Results: After controlling for family-wise error (p = 0.05, there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC, temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. Conclusions: This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence. Keywords: Alcohol dependence, fMRI, Stress task, Functional connectivity, Amygdala

  10. Structural and effective connectivity in focal epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher S. Parker

    2018-01-01

    Full Text Available Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs, which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread.

  11. Longitudinal sediment-connectivity in a dammed river system using fine sediment analyses - a case study in the Kaja river, Lower Austria

    Science.gov (United States)

    Bertsch, R.; Poeppl, R. E.; Glade, T.

    2012-04-01

    In the recent past the concept of connectivity gained increased significance for the understanding of the linkage between different subsystems within river channels and catchments. Based on fine sediment (reservation in this fraction.

  12. Altered causal connectivity of resting state brain networks in amnesic MCI.

    Directory of Open Access Journals (Sweden)

    Peipeng Liang

    Full Text Available Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI have concentrated on functional connectivity (FC based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN, hippocampal cortical memory network (HCMN, dorsal attention network (DAN and fronto-parietal control network (FPCN. Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE, and California verbal learning test (CVLT scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.

  13. Depression: a psychiatric nursing theory of connectivity.

    Science.gov (United States)

    Feely, M; Long, A

    2009-10-01

    This paper presents a theory of connectivity, which was formulated from the findings of a Classical Grounded Theory study that was designed to capture a sample of people's perceptions of living with depression or caring for individuals with depression. Data were collected from: (1) a focus group consisting of people with depression (n = 7), of which five were patients in the community and two were nurses; (2) one-to-one interviews with patients in the community (n = 5) and nurses (n = 5), three of whom had experienced depression from both sides of the caring process; and (3) two 'happy accident' focus groups (n = 25; n = 18) comprising of healthcare workers with a shared understanding of depression. Purposeful sampling was used initially. Thereafter, in keeping with one of the key tenets of grounded theory, theoretical sampling was used until theoretical saturation occurred. Data were analysed using the constant comparative approach together with the NVivo qualitative analysis software package. The core category that emerged was 'connectivity' relating to the connections and disconnections, which people make in their lives. Six key categories emerged all of which were integrated with the core category. Hence, connectivity provided a significant platform for understanding and responding to the life experience of depression. They were: (1) life encounters on the journey to naming; (2) depression: What's in a name? The silent thief; (3) tentative steps to health care; (4) connective encounters and challenges; (5) connecting with self; and (6) self-connection maintenance. Subsequently, a theory, 'Depression: a psychiatric nursing theory of connectivity', surfaced from the overall findings. We argue that this theory of connectivity provides a framework that people working in the field of holistic treatment and care could use to better understand and respond to the life experience of people living with depression.

  14. Increasing the statistical significance of entanglement detection in experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jungnitsch, Bastian; Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Lu, He; Gao, Wei-Bo; Chen, Zeng-Bing [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Chen, Yu-Ao; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Physikalisches Institut, Universitaet Heidelberg (Germany)

    2010-07-01

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. We show this to be the case for an error model in which the variance of an observable is interpreted as its error and for the standard error model in photonic experiments. Specifically, we demonstrate that the Mermin inequality yields a Bell test which is statistically more significant than the Ardehali inequality in the case of a photonic four-qubit state that is close to a GHZ state. Experimentally, we observe this phenomenon in a four-photon experiment, testing the above inequalities for different levels of noise.

  15. Chaos in complex motor networks induced by Newman—Watts small-world connections

    International Nuclear Information System (INIS)

    Wei Du-Qu; Luo Xiao-Shu; Zhang Bo

    2011-01-01

    We investigate how dynamical behaviours of complex motor networks depend on the Newman—Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory. (interdisciplinary physics and related areas of science and technology)

  16. Aberrant functional connectivity of default-mode network in type 2 diabetes patients

    International Nuclear Information System (INIS)

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun

    2015-01-01

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. (orig.)

  17. Aberrant functional connectivity of default-mode network in type 2 diabetes patients

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing, Jiangsu (China)

    2015-11-15

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. (orig.)

  18. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands...

  19. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome.

    Science.gov (United States)

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF-β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF-β1 (p tissue. In addition, a strong positive correlation was found between TGF-β1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF-β1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Micro-generation network connection (renewables)

    Energy Technology Data Exchange (ETDEWEB)

    Thornycroft, J.; Russell, T.; Curran, J.

    2003-07-01

    The drive to reduce emissions of carbon dioxide will result in an increase in the number of small generation units seeking connection to the electric power distribution network. The objectives of this study were to consider connection issues relating to micro-generation from renewables and their integration into the UK distribution network. The document is divided into two sections. The first section describes the present system which includes input from micro-generation, the technical impacts and the financial considerations. The second part discusses technical, financial and governance options for the future. A summary of preferred options and recommendations is given. The study was carried out by the Halcrow Group Ltd under contract to the DTI.

  1. Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects.

    Science.gov (United States)

    Sun, Hui; Luo, Lizhu; Yuan, Xinru; Zhang, Lu; He, Yini; Yao, Shuqiao; Wang, Jiaojian; Xiao, Jing

    2018-08-01

    Cognitive vulnerability to depression (CVD) is a high risk for depressive disorder. Recent studies focus on individuals with CVD to determine the neural basis of major depressive disorder (MDD) neuropathology. However, whether CVD showed specific or similar brain functional activity and connectivity patterns, compared to MDD, remain largely unknown. Here, using resting-state functional magnetic resonance imaging in subjects with CVD, healthy controls (HC) and MDD, regional homogeneity (ReHo) and resting-state functional connectivity (R-FC) analyses were conducted to assess local synchronization and changes in functional connectivity patterns. Significant ReHo differences were found in right posterior lobe of cerebellum (PLC), left lingual gyrus (LG) and precuneus. Compared to HC, CVD subjects showed increased ReHo in the PLC, which was similar to the difference found between MDD and HC. Compared to MDD patients, CVD subjects showed decreased ReHo in PLC, LG, and precuneus. R-FC analyses found increased functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex in CVD compared to both HC and MDD. Moreover, Regional mean ReHo values were positively correlated with Center for Epidemiologic Studies Depression Scale scores. These analyses revealed that PLC and functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex may be a potential marker for CVD. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Island connections: Icelandic spatiality in the wake of worldly linkages

    Directory of Open Access Journals (Sweden)

    David Bjarnason

    2010-11-01

    Full Text Available The notions and materiality of connections, through electronic networks as well as modes of mobility, play an ever-increasing role in how we define, understand, engage and experience the world we live in and the islands we live on. This article presents an account of Icelandic encounters with technologies of telecommunication and explores how electronic connections have participated in formulating a particularly connected, island spatiality. It is argued that an island can be regarded as a kind of connected laboratory suitable for studying how associations form around technologies of connections, which can be traced through various actors. For this purpose, the historical genealogy of connections and telecommunication in Iceland is analyzed, as well as more contemporary ideas and representations of mobile phone usage and network connectivity. It is maintained that connections have fundamentally altered the spatiality as well as representations of Iceland. While still an island in a geographical sense, and in that manner remote and isolated, the social space of the island now denies such connotations in many respects, valorizing the connectivity of Iceland and its people.

  3. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  4. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    In the present paper we consider the allocation of costs in connection networks. Agents have connection demands in form of pairs of locations they want to have connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection...... demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  5. Sex-related differences in amygdala functional connectivity during resting conditions.

    Science.gov (United States)

    Kilpatrick, L A; Zald, D H; Pardo, J V; Cahill, L F

    2006-04-01

    Recent neuroimaging studies have established a sex-related hemispheric lateralization of amygdala involvement in memory for emotionally arousing material. Here, we examine the possibility that sex-related differences in amygdala involvement in memory for emotional material develop from differential patterns of amygdala functional connectivity evident in the resting brain. Seed voxel partial least square analyses of regional cerebral blood flow data revealed significant sex-related differences in amygdala functional connectivity during resting conditions. The right amygdala was associated with greater functional connectivity in men than in women. In contrast, the left amygdala was associated with greater functional connectivity in women than in men. Furthermore, the regions displaying stronger functional connectivity with the right amygdala in males (sensorimotor cortex, striatum, pulvinar) differed from those displaying stronger functional connectivity with the left amygdala in females (subgenual cortex, hypothalamus). These differences in functional connectivity at rest may link to sex-related differences in medical and psychiatric disorders.

  6. Exploring the Associations Between Intrinsic Brain Connectivity and Creative Ability Using Functional Connectivity Strength and Connectome Analysis.

    Science.gov (United States)

    Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-11-01

    The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.

  7. Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity

    Science.gov (United States)

    Loui, Psyche; Li, H. Charles; Hohmann, Anja; Schlaug, Gottfried

    2011-01-01

    Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess…

  8. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    Science.gov (United States)

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  9. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal-thalamus-hippocampus network.

    Science.gov (United States)

    Thielen, Jan-Willem; Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G; Tendolkar, Indira

    2018-06-01

    The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long-term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ-aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face-name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory-related functional connectivity in a medial prefrontal-thalamus-hippocampus network. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Comparison of Marginal Bone Loss Between Implants with Internal and External Connections: A Systematic Review.

    Science.gov (United States)

    Palacios-Garzón, Natalia; Mauri-Obradors, Elisabeth; Roselló-LLabrés, Xavier; Estrugo-Devesa, Albert; Jané-Salas, Enric; López-López, José

    The objective of this systematic review was to compare the loss of marginal bone between implants with internal and external connections by analyzing results reported in studies published after 2010. A literature search in MEDLINE with the keywords "dental implant connections, external internal implant connection, bone loss implant designs, internal and external connection implant studies in humans" was conducted. Clinical trials on human beings, comparing both connections and published in English, from 2010 to 2016 were selected. Their methodologic quality was assessed using the Jadad scale. From the initial search, 415 articles were obtained; 32 were chosen as potentially relevant based on their titles and abstracts. Among them, only 10 finally met the inclusion criteria. A total of 1,523 patients with 3,965 implants were analyzed. Six out of 10 studies observed that internal connections showed significantly less bone loss compared with external connections. The remaining four articles did not find statistically significant differences between the two connections. According to this systematic review and considering its limitation due to the degree of heterogeneity between the included studies, both internal and external connections present high survival rates. To assess whether marginal bone loss differs significantly between the two connections, more homogenous clinical studies are needed with identical implant characteristics, larger samples, and longer follow-up periods. Studies included in this review and characterized by long-term follow-ups showed that the external connection is a reliable connection on a long-term basis.

  11. Numerical Investigation of Slab-Column Connection by Finite Element Method

    International Nuclear Information System (INIS)

    Akram, T.; Shaikh, M.A.; Memon, A.A.

    2007-01-01

    The flat slab-on-column construction subjected to high transverse stresses concentrated at the slab-column connection can lead to a non-ductile, sudden and brittle punching failure and results in the accidental collapse of flat slab buildings. The major parameters affecting the slab-column connection are the concrete strength, slab thickness, slab reinforcement and aspect ratio of column. The application of numerical methods based on the finite element theory for solving practical tasks allow to perform virtual testing of structures and explore their behavior under load and other effects in different conditions taking into account the elastic and plastic behavior of materials, appearance and development of cracks and other damages (disintegrations), and finally to simulate the failure mechanism and its consequences. In this study, the models are developed to carry out the finite element analysis of slab- column connection using ADINA (Automatic Dynamic Incremental Nonlinear Analysis) by varying the slab thickness and slab confining reinforcement and to investigate their effect on the deflection and load carrying capacity. Test results indicate that by increasing the slab thickness, the deflection and the load carrying capacity of slab-column connection increases, more over, by increasing the slab confining reinforcement, the deflection decreases where as the load carrying capacity increases. (author)

  12. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression

    OpenAIRE

    Figueroa, C.A.; Mocking, R.J.T.; Wingen, G.A. van; Martens, S.J.; Ruhe, H.G.; Schene, A.H.

    2017-01-01

    Abstract Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD v...

  13. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    Science.gov (United States)

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Global Functional Connectivity Differences between Sleep-Like States in Urethane Anesthetized Rats Measured by fMRI.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zhurakovskaya

    Full Text Available Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM and non-REM (NREM sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state and corticothalamic connectivity (increased in REM-like state. Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.

  15. Automated and connected vehicle implications and analysis.

    Science.gov (United States)

    2017-05-01

    Automated and connected vehicles (ACV) and, in particular, autonomous vehicles have captured : the interest of the public, industry and transportation authorities. ACVs can significantly reduce : accidents, fuel consumption, pollution and the costs o...

  16. Changes of functional connectivity in the left frontoparietal network following aphasic stroke

    Directory of Open Access Journals (Sweden)

    Dan eZhu

    2014-05-01

    Full Text Available Language is an essential higher cognitive function supported by large-scale brain networks. In this study, we investigated functional connectivity changes in the left frontoparietal network (LFPN, a language-cognition related brain network in aphasic patients. We enrolled thirteen aphasic patients who had undergone a stroke in the left hemisphere and age-, gender-, educational level-matched controls and analyzed the data by integrating independent component analysis (ICA with a network connectivity analysis method. Resting state functional magnetic resonance imaging (fMRI and clinical evaluation of language function were assessed at two stages: one and two months after stroke onset. We found reduced functional connectivity between the LFPN and the right middle frontal cortex, medial frontal cortex and right inferior frontal cortex in aphasic patients as compared to controls. Correlation analysis showed that stronger functional connectivity between the LFPN and the right middle frontal cortex and medial frontal cortex coincided with more preserved language comprehension ability after stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated by the mean network connectivity index of key regions in the LFPN of aphasic patients. The decreased LFPN connectivity in stroke patients was significantly associated with the impairment of language function in their comprehension ability. We also found significant association between recovery of comprehension ability and the mean changes in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence language comprehension by altering functional connectivity between regions and that the patterns of abnormal functional connectivity may contribute to the recovery of language deficits.

  17. Bone and fat connection in aging bone.

    Science.gov (United States)

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  18. Default mode network connectivity in children with a history of preschool onset depression.

    Science.gov (United States)

    Gaffrey, Michael S; Luby, Joan L; Botteron, Kelly; Repovš, Grega; Barch, Deanna M

    2012-09-01

    Atypical Default Mode Network (DMN) functional connectivity has been previously reported in depressed adults. However, there is relatively little data informing the developmental nature of this phenomenon. The current case-control study examined the DMN in a unique prospective sample of school-age children with a previous history of preschool depression. DMN functional connectivity was assessed using resting state functional connectivity magnetic resonance imaging data and the posterior cingulate (PCC) as a seed region of interest. Thirty-nine medication naïve school age children (21 with a history of preschool depression and 18 healthy peers) and their families who were ascertained as preschoolers and prospectively assessed over at least 4 annual waves as part of a federally funded study of preschool depression were included.   Decreased connectivity between the PCC and regions within the middle temporal gyrus (MTG), inferior parietal lobule, and cerebellum was found in children with known depression during the preschool period. Increased connectivity between the PCC and regions within the subgenual and anterior cingulate cortices and anterior MTG bilaterally was also found in these children. Additionally, a clinically relevant 'brain-behavior' relationship between atypical functional connectivity of the PCC and disruptions in emotion regulation was identified. To our knowledge, this is the first study to examine the DMN in children known to have experienced the onset of a clinically significant depressive syndrome during preschool. Results suggest that a history of preschool depression is associated with atypical DMN connectivity. However, longitudinal studies are needed to clarify whether the current findings of atypical DMN connectivity are a precursor or a consequence of preschool depression. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  19. "Chromoseratops Meiosus": A Simple, Two-Phase Exercise to Represent the Connection between Meiosis & Increased Genetic Diversity

    Science.gov (United States)

    Eliyahu, Dorit

    2014-01-01

    I present an activity to help students make the connection between meiosis and genetic variation. The students model meiosis in the first phase of the activity, and by that process they produce gametes of a fictitious reptilobird species, "Chromoseratops meiosus." Later on, they will "mate" their gametes and produce a zygote…

  20. Significant increase of Echinococcus multilocularis prevalencein foxes, but no increased predicted risk for humans

    NARCIS (Netherlands)

    Maas, M.; Dam-Deisz, W.D.C.; Roon, van A.M.; Takumi, K.; Giessen, van der J.W.B.

    2014-01-01

    The emergence of the zoonotic tapeworm Echinococcus multilocularis, causative agent ofalveolar echinococcosis (AE), poses a public health risk. A previously designed risk mapmodel predicted a spread of E. multilocularis and increasing numbers of alveolar echinococ-cosis patients in the province of

  1. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients

    Directory of Open Access Journals (Sweden)

    C. Gallea

    2015-01-01

    Full Text Available Sensorimotor representations of movements are created in the sensorimotor network through repeated practice to support successful and effortless performance. Writer's cramp (WC is a disorder acquired through extensive practice of finger movements, and it is likely associated with the abnormal acquisition of sensorimotor representations. We investigated (i the activation and connectivity changes in the brain network supporting the acquisition of sensorimotor representations of finger sequences in patients with WC and (ii the link between these changes and consolidation of motor performance 24 h after the initial practice. Twenty-two patients with WC and 22 age-matched healthy volunteers practiced a complex sequence with the right (pathological hand during functional MRI recording. Speed and accuracy were measured immediately before and after practice (day 1 and 24 h after practice (day 2. The two groups reached equivalent motor performance on day 1 and day 2. During motor practice, patients with WC had (i reduced hippocampal activation and hippocampal–striatal functional connectivity; and (ii overactivation of premotor–striatal areas, whose connectivity correlated with motor performance after consolidation. These results suggest that patients with WC use alternative networks to reach equiperformance in the acquisition of new motor memories.

  2. Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence.

    Science.gov (United States)

    Herringa, Ryan J; Burghy, Cory A; Stodola, Diane E; Fox, Michelle E; Davidson, Richard J; Essex, Marilyn J

    2016-07-01

    Much research has focused on the deleterious neurobiological effects of childhood adversity that may underlie internalizing disorders. While most youth show emotional adaptation following adversity, the corresponding neural mechanisms remain poorly understood. In this longitudinal community study, we examined the associations among childhood family adversity, adolescent internalizing symptoms, and their interaction on regional brain activation and amygdala/hippocampus functional connectivity during emotion processing in 132 adolescents. Consistent with prior work, childhood adversity predicted heightened amygdala reactivity to negative, but not positive, images in adolescence. However, amygdala reactivity was not related to internalizing symptoms. Furthermore, childhood adversity predicted increased fronto-amygdala connectivity to negative, but not positive, images, yet only in lower internalizing adolescents. Childhood adversity also predicted increased fronto-hippocampal connectivity to negative images, but was not moderated by internalizing. These findings were unrelated to adolescence adversity or externalizing symptoms, suggesting specificity to childhood adversity and adolescent internalizing. Together, these findings suggest that adaptation to childhood adversity is associated with augmentation of fronto-subcortical circuits specifically for negative emotional stimuli. Conversely, insufficient enhancement of fronto-amygdala connectivity, with increasing amygdala reactivity, may represent a neural signature of vulnerability for internalizing by late adolescence. These findings implicate early childhood as a critical period in determining the brain's adaptation to adversity, and suggest that even normative adverse experiences can have significant impact on neurodevelopment and functioning. These results offer potential neural mechanisms of adaptation and vulnerability which could be used in the prediction of risk for psychopathology following childhood

  3. Sex differences in effective fronto-limbic connectivity during negative emotion processing.

    Science.gov (United States)

    Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2015-12-01

    In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Increased risk of hyperthyroidism among patients hospitalized with bipolar disorder

    DEFF Research Database (Denmark)

    Thomsen, Anders F; Kessing, Lars V

    2005-01-01

    OBJECTIVES: Hyperthyroidism has been associated with affective disorder in many cross-sectional studies, but longitudinal studies in this connection are scarce. We assessed whether hospitalization with depressive disorder or bipolar disorder was a risk factor for development of hyperthyroidism....... METHODS: We conducted a historical cohort study using the Danish register data. The observational period was 1977--99. Three study cohorts were identified: all patients with a first hospital admission with resulting index discharge diagnoses of depression, bipolar disorder, or osteoarthritis. The risks...... with depressive disorder did not have an increased risk of hyperthyroidism, whereas patients with bipolar disorder had an increased of risk on the margin of statistical significance, when compared to patients with osteoarthritis. Patients with bipolar disorder had a significantly increased risk of hyperthyroidism...

  5. A review of variables of urban street connectivity for spatial connection

    International Nuclear Information System (INIS)

    Mohamad, W S N W; Said, I

    2014-01-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables

  6. A review of variables of urban street connectivity for spatial connection

    Science.gov (United States)

    Mohamad, W. S. N. W.; Said, I.

    2014-02-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables.

  7. Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method

    Science.gov (United States)

    Hashim, N.; Agarwal, J.

    2018-04-01

    Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.

  8. Connective power: solar electrification and social change in Kenya

    International Nuclear Information System (INIS)

    Jacobson, A.

    2007-01-01

    Market-based rural electrification with solar energy is increasingly common in developing countries. This article revolves around three main claims about solar electrification in Kenya's unsubsidized market: (1) The benefits of solar electrification are captured primarily by the rural middle class. (2) Solar electricity plays a modest role in supporting economically productive and education-related activities, but 'connective' applications such as television, radio, and cellular telephone charging often receive a higher priority. (3) Solar electrification is more closely tied to increased television use, the expansion of markets, more rural-urban communication, and other processes that increase rural-urban connectivity than to poverty alleviation, sustainable development, or the appropriate technology movement. [Author

  9. Hexahedral connection element based on hybrid-stress theory for solid structures

    International Nuclear Information System (INIS)

    Wu, D; Sze, K Y; Lo, S H

    2010-01-01

    For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.

  10. Malaysian Container Seaport-Hinterland Connectivity: Status, Challenges and Strategies

    Directory of Open Access Journals (Sweden)

    Shu-Ling Chen

    2016-09-01

    Full Text Available This paper adopts a qualitative methodology to assess the Malaysian container seaport-hinterland connectivity from the perspective of its physical properties. The findings reveal that although Malaysia's major container seaports are connected to the hinterlands through road and rail transport, they are highly dependent on road. These seaports are also connected to inland freight facilities such as dry ports and ICDs, which are positioned as transit points to help connect exporters and importers in the hinterlands to seaports as well as facilitating regional and cross-border trades. This paper suggests that the quality of hinterland connectivity of Malaysian container seaports could be improved by implementing strategies which tackle the existing challenges including overcoming an extremely imbalanced modal split, insufficient rail capacity and limited train services, increasing road congestion and the limitations of space restriction in some inland facilities.

  11. Functional connectivity changes in second language vocabulary learning.

    Science.gov (United States)

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005). Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment.

    Science.gov (United States)

    Crockett, Rachel A; Hsu, Chun Liang; Best, John R; Liu-Ambrose, Teresa

    2017-01-01

    Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN-FPN and DMN-SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task

  13. [Pulmonary involvement in connective tissue disease].

    Science.gov (United States)

    Bartosiewicz, Małgorzata

    2016-01-01

    The connective tissue diseases are a variable group of autoimmune mediated disorders characterized by multiorgan damage. Pulmonary complications are common, usually occur after the onset of joint symptoms, but can also be initially presenting complaint. The respiratory system may be involved in all its component: airways, vessels, parenchyma, pleura and respiratory muscles. Lung involvement is an increasing cause of morbidity and mortality in the connective tissue diseases. Clinical course is highly variable - can range from mild to rapidly progressive, some processes are reversible, while others are irreversible. Thus, the identification of reversible disease , and separately progressive disease, are important clinical issues. The frequency, clinical presentation, prognosis and responce to therapy are different, depending on the pattern of involvement as well as on specyfic diagnostic method used to identify it. High- resolution computed tompography plays an important role in identifying patients with respiratory involvement. Pulmonary function tests are a sensitive tool detecting interstitial lung disease. In this article, pulmonary lung involvement accompanying most frequently apperaing connective tissue diseases - rheumatoid arthritis, systemic sclerosis, lupus erythematosus, polymyositis/dermatomyositis, Sjögrens syndrome and mixed connective tissue disaese are reviewed.

  14. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    Science.gov (United States)

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  15. Altered intrinsic and extrinsic connectivity in schizophrenia.

    Science.gov (United States)

    Zhou, Yuan; Zeidman, Peter; Wu, Shihao; Razi, Adeel; Chen, Cheng; Yang, Liuqing; Zou, Jilin; Wang, Gaohua; Wang, Huiling; Friston, Karl J

    2018-01-01

    Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.

  16. Sex and disease-related alterations of anterior insula functional connectivity in chronic abdominal pain.

    Science.gov (United States)

    Hong, Jui-Yang; Kilpatrick, Lisa A; Labus, Jennifer S; Gupta, Arpana; Katibian, David; Ashe-McNalley, Cody; Stains, Jean; Heendeniya, Nuwanthi; Smith, Suzanne R; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A

    2014-10-22

    Resting-state functional magnetic resonance imaging has been used to investigate intrinsic brain connectivity in healthy subjects and patients with chronic pain. Sex-related differences in the frequency power distribution within the human insula (INS), a brain region involved in the integration of interoceptive, affective, and cognitive influences, have been reported. Here we aimed to test sex and disease-related alterations in the intrinsic functional connectivity of the dorsal anterior INS. The anterior INS is engaged during goal-directed tasks and modulates the default mode and executive control networks. By comparing functional connectivity of the dorsal anterior INS in age-matched female and male healthy subjects and patients with irritable bowel syndrome (IBS), a common chronic abdominal pain condition, we show evidence for sex and disease-related alterations in the functional connectivity of this region: (1) male patients compared with female patients had increased positive connectivity of the dorsal anterior INS bilaterally with the medial prefrontal cortex (PFC) and dorsal posterior INS; (2) female patients compared with male patients had greater negative connectivity of the left dorsal anterior INS with the left precuneus; (3) disease-related differences in the connectivity between the bilateral dorsal anterior INS and the dorsal medial PFC were observed in female subjects; and (4) clinical characteristics were significantly correlated to the insular connectivity with the dorsal medial PFC in male IBS subjects and with the precuneus in female IBS subjects. These findings are consistent with the INS playing an important role in modulating the intrinsic functional connectivity of major networks in the resting brain and show that this role is influenced by sex and diagnosis. Copyright © 2014 the authors 0270-6474/14/3414252-08$15.00/0.

  17. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    Science.gov (United States)

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  18. Process connectivity in a naturally prograding river delta

    Science.gov (United States)

    Sendrowski, Alicia; Passalacqua, Paola

    2017-03-01

    River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.

  19. Connecting Grammaticalisation

    DEFF Research Database (Denmark)

    Nørgård-Sørensen, Jens; Heltoft, Lars; Schøsler, Lene

    morphological, topological and constructional paradigms often connect to form complex paradigms. The book introduces the concept of connecting grammaticalisation to describe the formation, restructuring and dismantling of such complex paradigms. Drawing primarily on data from Germanic, Romance and Slavic...

  20. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry

    Science.gov (United States)

    Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim

    2013-01-01

    Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374

  1. Current Control and Performance Evaluation of Converter Interfaced Distribution Resources in Grid Connected Mode

    Directory of Open Access Journals (Sweden)

    SINGH Alka

    2012-10-01

    Full Text Available Use of distributed resources is growing in developing countries like India and in developed nations too. The increased acceptance of suchresources is mainly due to their modularity, increased reliability, good power quality and environment friendly operation. These are currently being interfaced to the existing systems using voltage source inverters (VSC’s. The control of such distributed resources is significantly different than the conventional power systems mainly because the VSC’s have no inertia unlike the synchronous generators.This paper deals with the Matlab modeling and design of control aspects of one such distributed source feeding a common load. A grid connected supply is also available. The control algorithm is developed for real and reactive power sharing of the load between thedistributed source and the grid. The developed control scheme is tested for linear (R-L load as well as nonlinear loads. With suitable modifications, the control algorithm can be extended for several distributed resources connected in parallel.

  2. Cluster size statistic and cluster mass statistic: two novel methods for identifying changes in functional connectivity between groups or conditions.

    Science.gov (United States)

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.

  3. Structural connectivity of right frontal hyperactive areas scales with stuttering severity

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor

  4. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing.

    Science.gov (United States)

    Bell, Luke; Yahya, Hanis Nadia; Oloyede, Omobolanle Oluwadamilola; Methven, Lisa; Wagstaff, Carol

    2017-04-15

    Five cultivars of Eruca sativa and a commercial variety of Diplotaxis tenuifolia were grown in the UK (summer) and subjected to commercial growth, harvesting and processing, with subsequent shelf life storage. Glucosinolates (GSL), isothiocyanates (ITC), amino acids (AA), free sugars, and bacterial loads were analysed throughout the supply chain to determine the effects on phytochemical compositions. Bacterial load of leaves increased significantly over time and peaked during shelf life storage. Significant correlations were observed with GSL and AA concentrations, suggesting a previously unknown relationship between plants and endemic leaf bacteria. GSLs, ITCs and AAs increased significantly after processing and during shelf life. The supply chain did not significantly affect glucoraphanin concentrations, and its ITC sulforaphane significantly increased during shelf life in E. sativa cultivars. We hypothesise that commercial processing may increase the nutritional value of the crop, and have added health benefits for the consumer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The Longitudinal Trajectory of Default Mode Network Connectivity in Healthy Older Adults Varies As a Function of Age and Is Associated with Changes in Episodic Memory and Processing Speed.

    Science.gov (United States)

    Staffaroni, Adam M; Brown, Jesse A; Casaletto, Kaitlin B; Elahi, Fanny M; Deng, Jersey; Neuhaus, John; Cobigo, Yann; Mumford, Paige S; Walters, Samantha; Saloner, Rowan; Karydas, Anna; Coppola, Giovanni; Rosen, Howie J; Miller, Bruce L; Seeley, William W; Kramer, Joel H

    2018-03-14

    The default mode network (DMN) supports memory functioning and may be sensitive to preclinical Alzheimer's pathology. Little is known, however, about the longitudinal trajectory of this network's intrinsic functional connectivity (FC). In this study, we evaluated longitudinal FC in 111 cognitively normal older human adults (ages 49-87, 46 women/65 men), 92 of whom had at least three task-free fMRI scans ( n = 353 total scans). Whole-brain FC and three DMN subnetworks were assessed: (1) within-DMN, (2) between anterior and posterior DMN, and (3) between medial temporal lobe network and posterior DMN. Linear mixed-effects models demonstrated significant baseline age × time interactions, indicating a nonlinear trajectory. There was a trend toward increasing FC between ages 50-66 and significantly accelerating declines after age 74. A similar interaction was observed for whole-brain FC. APOE status did not predict baseline connectivity or change in connectivity. After adjusting for network volume, changes in within-DMN connectivity were specifically associated with changes in episodic memory and processing speed but not working memory or executive functions. The relationship with processing speed was attenuated after covarying for white matter hyperintensities (WMH) and whole-brain FC, whereas within-DMN connectivity remained associated with memory above and beyond WMH and whole-brain FC. Whole-brain and DMN FC exhibit a nonlinear trajectory, with more rapid declines in older age and possibly increases in connectivity early in the aging process. Within-DMN connectivity is a marker of episodic memory performance even among cognitively healthy older adults. SIGNIFICANCE STATEMENT Default mode network and whole-brain connectivity, measured using task-free fMRI, changed nonlinearly as a function of age, with some suggestion of early increases in connectivity. For the first time, longitudinal changes in DMN connectivity were shown to correlate with changes in episodic

  6. Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase.

    Science.gov (United States)

    Nakajima, Katsuyuki; Tokita, Yoshiharu; Sakamaki, Koji; Shimomura, Younosuke; Kobayashi, Junji; Kamachi, Keiko; Tanaka, Akira; Stanhope, Kimber L; Havel, Peter J; Wang, Tao; Machida, Tetsuo; Murakami, Masami

    2017-02-01

    Previous large population studies reported that non-fasting plasma triglyceride (TG) reflect a higher risk for cardiovascular disease than TG in the fasting plasma. This is suggestive of the presence of higher concentration of remnant lipoproteins (RLP) in postprandial plasma. TG and RLP-TG together with other lipids, lipoproteins and lipoprotein lipase (LPL) in both fasting and postprandial plasma were determined in generally healthy volunteers and in patients with coronary artery disease (CAD) after consuming a fat load or a more typical moderate meal. RLP-TG/TG ratio (concentration) and RLP-TG/RLP-C ratio (particle size) were significantly increased in the postprandial plasma of both healthy controls and CAD patients compared with those in fasting plasma. LPL/RLP-TG ratio demonstrated the interaction correlation between RLP concentration and LPL activity The increased RLP-TG after fat consumption contributed to approximately 90% of the increased plasma TG, while approximately 60% after a typical meal. Plasma LPL in postprandial plasma was not significantly altered after either type of meal. Concentrations of RLP-TG found in the TG along with its particle size are significantly increased in postprandial plasma compared with fasting plasma. Therefore, non-fasting TG determination better reflects the presence of higher RLP concentrations in plasma. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Default network connectivity as a vulnerability marker for obsessive compulsive disorder.

    Science.gov (United States)

    Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K

    2014-05-01

    Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.

  8. Abnormal Functional Connectivity Between Default and Salience Networks in Pediatric Bipolar Disorder.

    Science.gov (United States)

    Lopez-Larson, Melissa P; Shah, Lubdha M; Weeks, Howard R; King, Jace B; Mallik, Atul K; Yurgelun-Todd, Deborah A; Anderson, Jeffrey S

    2017-01-01

    Pediatric bipolar disorder (PBD) (occurring prior to 18 years of age) is a developmental brain disorder that is among the most severe and disabling psychiatric conditions affecting youth. Despite increasing evidence that brain connectivity is atypical in adults with bipolar disorder, it is not clear how brain connectivity may be altered in youths with PBD. This cross-sectional resting-state functional magnetic resonance imaging study included 80 participants recruited over 4 years: 32 youths with PBD, currently euthymic (13 males; 15.1 years old), and 48 healthy control (HC) subjects (27 males; 14.5 years old). Functional connectivity between eight major intrinsic connectivity networks, along with connectivity measurements between 333 brain regions, was compared between PBD and HC subjects. Additionally, connectivity differences were evaluated between PBD and HC samples in negatively correlated connections, as defined by 839 subjects of the Human Connectome Project dataset. We found increased inter- but not intranetwork functional connectivity in PBD between the default mode and salience networks (p = .0017). Throughout the brain, atypical connections showed failure to develop anticorrelation with age during adolescence in PBD but not HC samples among connections that exhibit negative correlation in adulthood. Youths with PBD demonstrate reduced anticorrelation between default mode and salience networks. Further evaluation of the interaction between these networks is needed in development and with other mood states such as depression and mania to clarify if this atypical connectivity is a PBD trait biomarker. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Quantifying Riverscape Connectivity with Graph Theory

    Science.gov (United States)

    Carbonneau, P.; Milledge, D.; Sinha, R.; Tandon, S. K.

    2013-12-01

    Fluvial catchments convey fluxes of water, sediment, nutrients and aquatic biota. At continental scales, crustal topography defines the overall path of channels whilst at local scales depositional and/or erosional features generally determine the exact path of a channel. Furthermore, constructions such as dams, for either water abstraction or hydropower, often have a significant impact on channel networks.The concept of ';connectivity' is commonly invoked when conceptualising the structure of a river network.This concept is easy to grasp but there have been uneven efforts across the environmental sciences to actually quantify connectivity. Currently there have only been a few studies reporting quantitative indices of connectivity in river sciences, notably, in the study of avulsion processes. However, the majority of current work describing some form of environmental connectivity in a quantitative manner is in the field of landscape ecology. Driven by the need to quantify habitat fragmentation, landscape ecologists have returned to graph theory. Within this formal setting, landscape ecologists have successfully developed a range of indices which can model connectivity loss. Such formal connectivity metrics are currently needed for a range of applications in fluvial sciences. One of the most urgent needs relates to dam construction. In the developed world, hydropower development has generally slowed and in many countries, dams are actually being removed. However, this is not the case in the developing world where hydropower is seen as a key element to low-emissions power-security. For example, several dam projects are envisaged in Himalayan catchments in the next 2 decades. This region is already under severe pressure from climate change and urbanisation, and a better understanding of the network fragmentation which can be expected in this system is urgently needed. In this paper, we apply and adapt connectivity metrics from landscape ecology. We then examine the

  10. Connecting Palau's marine protected areas: a population genetic approach to conservation

    Science.gov (United States)

    Cros, Annick; Toonen, Robert J.; Donahue, Megan J.; Karl, Stephen A.

    2017-09-01

    Bleaching events are becoming more frequent and are projected to become annual in Micronesia by 2040. To prepare for this threat, the Government of Palau is reviewing its marine protected area network to increase the resilience of the reefs by integrating connectivity into the network design. To support their effort, we used high-throughput sequencing of microsatellites to create genotypes of colonies of the coral Acropora hyacinthus to characterize population genetic structure and dispersal patterns that led to the recovery of Palau's reefs from a 1998 bleaching event. We found no evidence of a founder effect or refugium where colonies may have survived to recolonize the reef. Instead, we found significant pairwise F' st values, indicating population structure and low connectivity among most of the 25 sites around Palau. We used kinship to measure genetic differences at the individual level among sites and found that differences were best explained by the degree of exposure to the ocean [ F 1,20 = 3.015, Pr(> F) = 0.01], but with little of the total variation explained. A permutation test of the pairwise kinship coefficients revealed that there was self-seeding within sites. Overall, the data point to the population of A. hyacinthus in Palau recovering from a handful of surviving colonies with population growth primarily from self-seeding and little exchange among sites. This finding has significant implications for the management strategies for the reefs of Palau, and we recommend increasing the number and distribution of management areas around Palau to capture the genetic architecture and increase the chances of protecting potential refuges in the future.

  11. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover.

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I E; Pedro, Liliana D; Powell, Jonathan J

    2015-06-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than

  12. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover☆

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I.E.; Pedro, Liliana D.; Powell, Jonathan J.

    2015-01-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague–Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n = 8–10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2–6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague–Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially

  13. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2018-01-01

    Full Text Available Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right and received the higher inflow (left among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

  14. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available BACKGROUND: Abnormalities in large-scale, structural and functional brain connectivity have been increasingly reported in patients with major depressive disorder (MDD. However, MDD-related alterations in functional interaction between the cerebral hemispheres are still not well understood. Resting state fMRI, which reveals spontaneous neural fluctuations in blood oxygen level dependent signals, provides a means to detect interhemispheric functional coherence. We examined the resting state functional connectivity (RSFC between the two hemispheres and its relationships with clinical characteristics in MDD patients using a recently proposed measurement named "voxel-mirrored homotopic connectivity (VMHC". METHODOLOGY/PRINCIPAL FINDINGS: We compared the interhemispheric RSFC, computed using the VMHC approach, of seventeen first-episode drug-naive patients with MDD and seventeen healthy controls. Compared to the controls, MDD patients showed significant VMHC decreases in the medial orbitofrontal gyrus, parahippocampal gyrus, fusiform gyrus, and occipital regions including the middle occipital gyrus and cuneus. In MDD patients, a negative correlation was found between VMHC of the fusiform gyrus and illness duration. Moreover, there were several regions whose VMHC showed significant negative correlations with the severity of cognitive disturbance, including the prefrontal regions, such as middle and inferior frontal gyri, and two regions in the cereballar crus. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the functional coordination between homotopic brain regions is impaired in MDD patients, thereby providing new evidence supporting the interhemispheric connectivity deficits of MDD. The significant correlations between the VMHC and clinical characteristics in MDD patients suggest potential clinical implication of VMHC measures for MDD. Interhemispheric RSFC may serve as a useful screening method for evaluating MDD where neural connectivity is

  15. Social network of an internationally connected nurse leader.

    Science.gov (United States)

    Benton, David

    2016-03-01

    Over the past decade, there has been a proliferation of social media sites offering the opportunity for colleagues to connect with each other locally, nationally and internationally. Meanwhile, nurses have been increasingly using social network analytical techniques to look at team functioning and communication pathways. This article uses the author's LinkedIn social network to illustrate how analysis can offer insights into the connections, and how the results can be used to professional advantage.

  16. Evaluation of connected vehicle impact on mobility and mode choice

    Directory of Open Access Journals (Sweden)

    Simon Minelli

    2015-10-01

    Full Text Available Connected vehicle is emerging as a solution to exacerbating congestion problems in urban areas. It is important to understand the impacts of connected vehicle on network and travel behavior of road users. The main objective of this paper is to evaluate the impact of connected vehicle on the mode choice and mobility of transportation networks. An iterative methodology was used in this paper where demands for various modes were modified based on the changes in travel time between each origin-destination (OD pair caused by introduction of connected vehicle. Then a traffic assignment was performed in a micro-simulation model, which was able to accurately simulate vehicle-to-vehicle communication. It is assumed that vehicles are equipped with a dynamic route guidance technology to choose their own route using real-time traffic information obtained through communication. The travel times obtained from the micro-simulation model were compared with a base scenario with no connected vehicle. The methodology was tested for a portion of Downtown Toronto, Ontario, Canada. In order to quantify changes in mode share with changes in travel time associated with each OD pair, mode choice models were developed for auto, transit, cycling and pedestrians using data mainly from the Transportation Tomorrow Survey. The impact of connected vehicle on mode choice was evaluated for different market penetrations of connected vehicle. The results of this study show that average travel times for the whole auto mode will generally increase, with the largest increase from connected vehicles. This causes an overall move away from the auto mode for high market penetrations if a dynamic route guidance algorithm is implemented.

  17. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder.

    Science.gov (United States)

    Ajram, L A; Horder, J; Mendez, M A; Galanopoulos, A; Brennan, L P; Wichers, R H; Robertson, D M; Murphy, C M; Zinkstok, J; Ivin, G; Heasman, M; Meek, D; Tricklebank, M D; Barker, G J; Lythgoe, D J; Edden, R A E; Williams, S C; Murphy, D G M; McAlonan, G M

    2017-05-23

    Currently, there are no effective pharmacologic treatments for the core symptoms of autism spectrum disorder (ASD). There is, nevertheless, potential for progress. For example, recent evidence suggests that the excitatory (E) glutamate and inhibitory (I) GABA systems may be altered in ASD. However, no prior studies of ASD have examined the 'responsivity' of the E-I system to pharmacologic challenge; or whether E-I modulation alters abnormalities in functional connectivity of brain regions implicated in the disorder. Therefore, we used magnetic resonance spectroscopy ([1H]MRS) to measure prefrontal E-I flux in response to the glutamate and GABA acting drug riluzole in adult men with and without ASD. We compared the change in prefrontal 'Inhibitory Index'-the GABA fraction within the pool of glutamate plus GABA metabolites-post riluzole challenge; and the impact of riluzole on differences in resting-state functional connectivity. Despite no baseline differences in E-I balance, there was a significant group difference in response to pharmacologic challenge. Riluzole increased the prefrontal cortex inhibitory index in ASD but decreased it in controls. There was also a significant group difference in prefrontal functional connectivity at baseline, which was abolished by riluzole within the ASD group. Our results also show, for we believe the first time in ASD, that E-I flux can be 'shifted' with a pharmacologic challenge, but that responsivity is significantly different from controls. Further, our initial evidence suggests that abnormalities in functional connectivity can be 'normalised' by targeting E-I, even in adults.

  18. Connective tissue growth factor immunohistochemical expression is associated with gallbladder cancer progression.

    Science.gov (United States)

    Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C

    2013-02-01

    Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.

  19. Quick connect fastener

    Science.gov (United States)

    Weddendorf, Bruce

    1994-01-01

    A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.

  20. Sensitivity of marine protected area network connectivity to atmospheric variability.

    Science.gov (United States)

    Fox, Alan D; Henry, Lea-Anne; Corne, David W; Roberts, J Murray

    2016-11-01

    International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.

  1. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank

    2017-02-01

    Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Effects of Early and Late Bilingualism on Resting-State Functional Connectivity.

    Science.gov (United States)

    Berken, Jonathan A; Chai, Xiaoqian; Chen, Jen-Kai; Gracco, Vincent L; Klein, Denise

    2016-01-27

    Of current interest is how variations in early language experience shape patterns of functional connectivity in the human brain. In the present study, we compared simultaneous (two languages from birth) and sequential (second language learned after age 5 years) bilinguals using a seed-based resting-state MRI approach. We focused on the inferior frontal gyrus (IFG) as our ROI, as recent studies have demonstrated both neurofunctional and neurostructural changes related to age of second language acquisition in bilinguals in this cortical area. Stronger functional connectivity was observed for simultaneous bilinguals between the left and right IFG, as well as between the inferior frontal gyrus and brain areas involved in language control, including the dorsolateral prefrontal cortex, inferior parietal lobule, and cerebellum. Functional connectivity between the left IFG and the right IFG and right inferior parietal lobule was also significantly correlated with age of acquisition for sequential bilinguals; the earlier the second language was acquired, the stronger was the functional connectivity. In addition, greater functional connectivity between homologous regions of the inferior frontal gyrus was associated with reduced neural activation in the left IFG during speech production. The increased connectivity at rest and reduced neural activation during task performance suggests enhanced neural efficiency in this important brain area involved in both speech production and domain-general cognitive processing. Together, our findings highlight how the brain's intrinsic functional patterns are influenced by the developmental timeline in which second language acquisition occurs. Of current interest is how early life experience leaves its footprint on brain structure and function. In this regard, bilingualism provides an optimal way to determine the effects of the timing of language learning because a second language can be learned from birth or later in life. We used resting

  3. Connected Car: Quantified Self becomes Quantified Car

    Directory of Open Access Journals (Sweden)

    Melanie Swan

    2015-02-01

    Full Text Available The automotive industry could be facing a situation of profound change and opportunity in the coming decades. There are a number of influencing factors such as increasing urban and aging populations, self-driving cars, 3D parts printing, energy innovation, and new models of transportation service delivery (Zipcar, Uber. The connected car means that vehicles are now part of the connected world, continuously Internet-connected, generating and transmitting data, which on the one hand can be helpfully integrated into applications, like real-time traffic alerts broadcast to smartwatches, but also raises security and privacy concerns. This paper explores the automotive connected world, and describes five killer QS (Quantified Self-auto sensor applications that link quantified-self sensors (sensors that measure the personal biometrics of individuals like heart rate and automotive sensors (sensors that measure driver and passenger biometrics or quantitative automotive performance metrics like speed and braking activity. The applications are fatigue detection, real-time assistance for parking and accidents, anger management and stress reduction, keyless authentication and digital identity verification, and DIY diagnostics. These kinds of applications help to demonstrate the benefit of connected world data streams in the automotive industry and beyond where, more fundamentally for human progress, the automation of both physical and now cognitive tasks is underway.

  4. From capture to simulation: connecting forward and inverse problems in fluids

    KAUST Repository

    Gregson, James; Ihrke, Ivo; Thuerey, Nils; Heidrich, Wolfgang

    2014-01-01

    We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.

  5. From capture to simulation: connecting forward and inverse problems in fluids

    KAUST Repository

    Gregson, James

    2014-07-27

    We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.

  6. Aberrant resting-state corticostriatal functional connectivity in cirrhotic patients with hyperintense globus pallidus on T1-weighted MR imaging.

    Directory of Open Access Journals (Sweden)

    Xi-Qi Zhu

    Full Text Available Neurobiological and neuroimaging studies have emphasized the structural and functional alterations in the striatum of cirrhotic patients, but alterations in the functional connections between the striatum and other brain regions have not yet been explored. Of note, manganese accumulation in the nervous system, frequently reflected by hyperintensity at the bilateral globus pallidus (GP on T1-weighted imaging, has been considered a factor affecting the striatal and cortical functions in hepatic decompensation. We employed resting-state functional magnetic resonance imaging to analyze the temporal correlation between the striatum and the remaining brain regions using seed-based correlation analyses. The two-sample t-test was conducted to detect the differences in corticostriatal connectivity between 44 cirrhotic patients with hyperintensity at the bilateral GP and 20 healthy controls. Decreased connectivity of the caudate was detected in the anterior/middle cingulate gyrus, and increased connectivity of the caudate was found in the left motor cortex. A reduction in functional connectivity was found between the putamen and several regions, including the anterior cingulate gyrus, right insular lobe, inferior frontal gyrus, left parahippocampal gyrus, and anterior lobe of the right cerebellum; increased connectivity was detected between the putamen and right middle temporal gyrus. There were significant correlations between the corticostriatal connectivity and neuropsychological performances in the patient group, but not between the striatal connectivity and GP signal intensity. These alterations in the corticostriatal functional connectivity suggested the abnormalities in the intrinsic brain functional organiztion among the cirrhotic patients with manganese deposition, and may be associated with development of metabolic encephalopathy. The manganese deposition in nervous system, however, can not be an independent factor predicting the resting

  7. Social marketing campaign significantly associated with increases in syphilis testing among gay and bisexual men in San Francisco.

    Science.gov (United States)

    Montoya, Jorge A; Kent, Charlotte K; Rotblatt, Harlan; McCright, Jacque; Kerndt, Peter R; Klausner, Jeffrey D

    2005-07-01

    Between 1999 and 2002, San Francisco experienced a sharp increase in early syphilis among gay and bisexual men. In response, the San Francisco Department of Public Health launched a social marketing campaign to increase testing for syphilis, and awareness and knowledge about syphilis among gay and bisexual men. A convenience sample of 244 gay and bisexual men (18-60 years of age) were surveyed to evaluate the effectiveness of the campaign. Respondents were interviewed to elicit unaided and aided awareness about the campaign, knowledge about syphilis, recent sexual behaviors, and syphilis testing behavior. After controlling for other potential confounders, unaided campaign awareness was a significant correlate of having a syphilis test in the last 6 months (odds ratio, 3.21; 95% confidence interval, 1.30-7.97) compared with no awareness of the campaign. A comparison of respondents aware of the campaign with those not aware also revealed significant increases in awareness and knowledge about syphilis. The Healthy Penis 2002 campaign achieved its primary objective of increasing syphilis testing, and awareness and knowledge about syphilis among gay and bisexual men in San Francisco.

  8. The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases.

    Science.gov (United States)

    Yang, Haixiu; Shang, Desi; Xu, Yanjun; Zhang, Chunlong; Feng, Li; Sun, Zeguo; Shi, Xinrui; Zhang, Yunpeng; Han, Junwei; Su, Fei; Li, Chunquan; Li, Xia

    2017-07-27

    Well characterized the connections among diseases, long non-coding RNAs (lncRNAs) and drugs are important for elucidating the key roles of lncRNAs in biological mechanisms in various biological states. In this study, we constructed a database called LNCmap (LncRNA Connectivity Map), available at http://www.bio-bigdata.com/LNCmap/ , to establish the correlations among diseases, physiological processes, and the action of small molecule therapeutics by attempting to describe all biological states in terms of lncRNA signatures. By reannotating the microarray data from the Connectivity Map database, the LNCmap obtained 237 lncRNA signatures of 5916 instances corresponding to 1262 small molecular drugs. We provided a user-friendly interface for the convenient browsing, retrieval and download of the database, including detailed information and the associations of drugs and corresponding affected lncRNAs. Additionally, we developed two enrichment analysis methods for users to identify candidate drugs for a particular disease by inputting the corresponding lncRNA expression profiles or an associated lncRNA list and then comparing them to the lncRNA signatures in our database. Overall, LNCmap could significantly improve our understanding of the biological roles of lncRNAs and provide a unique resource to reveal the connections among drugs, lncRNAs and diseases.

  9. Default Mode Network Connectivity in Stroke Patients.

    Science.gov (United States)

    Tuladhar, Anil Man; Snaphaan, Liselore; Shumskaya, Elena; Rijpkema, Mark; Fernandez, Guillén; Norris, David G; de Leeuw, Frank-Erik

    2013-01-01

    The pathophysiology of episodic memory dysfunction after infarction is not completely understood. It has been suggested that infarctions located anywhere in the brain can induce widespread effects causing disruption of functional networks of the cortical regions. The default mode network, which includes the medial temporal lobe, is a functional network that is associated with episodic memory processing. We investigated whether the default mode network activity is reduced in stroke patients compared to healthy control subjects in the resting state condition. We assessed the whole brain network properties during resting state functional MRI in 21 control subjects and 20 'first-ever' stroke patients. Patients were scanned 9-12 weeks after stroke onset. Stroke lesions were located in various parts of the brain. Independent component analyses were conducted to identify the default mode network and to compare the group differences of the default mode network. Furthermore, region-of-interest based analysis was performed to explore the functional connectivity between the regions of the default mode network. Stroke patients performed significantly worse than control subjects on the delayed recall score on California verbal learning test. We found decreased functional connectivity in the left medial temporal lobe, posterior cingulate and medial prefrontal cortical areas within the default mode network and reduced functional connectivity between these regions in stroke patients compared with controls. There were no significant volumetric differences between the groups. These results demonstrate that connectivity within the default mode network is reduced in 'first-ever' stroke patients compared to control subjects. This phenomenon might explain the occurrence of post-stroke cognitive dysfunction in stroke patients.

  10. Functional connectivity in cortical regions in dementia with Lewy bodies and Alzheimer's disease.

    Science.gov (United States)

    Kenny, Eva R; Blamire, Andrew M; Firbank, Michael J; O'Brien, John T

    2012-02-01

    Using resting-state functional magnetic resonance imaging, spontaneous low-frequency fluctuations in the blood oxygenation level-dependent signal were measured to investigate connectivity between key brain regions hypothesized to be differentially affected in dementia with Lewy bodies compared with Alzheimer's disease and healthy controls. These included connections of the hippocampus, because of its role in learning, and parietal and occipital areas involved in memory, attention and visual processing. Connectivity was investigated in 47 subjects aged 60 years and over: 15 subjects with dementia with Lewy bodies, 16 subjects with Alzheimer's disease and 16 control subjects. Subjects were scanned using a 3 Tesla magnetic resonance imaging system. The mean blood oxygenation level-dependent signal time series was extracted from seed regions in the hippocampus, posterior cingulate cortex, precuneus and primary visual cortex and correlated with all other brain voxels to determine functional connectivity. Both subjects with dementia with Lewy bodies and Alzheimer's disease showed greater connectivity than control subjects. Compared with controls, the dementia with Lewy bodies group had greater connectivity between the right posterior cingulate cortex and other brain areas. In dementia with Lewy bodies, there were no significant differences in hippocampal connectivity compared with controls, but in Alzheimer's disease left hippocampal connectivity was greater compared with controls. There were no significant differences between groups for precuneus or primary visual cortex connectivity. No seed regions showed significantly less connectivity in subjects with dementia with Lewy bodies or Alzheimer's disease compared with controls. We found greater connectivity with the posterior cingulate in dementia with Lewy bodies and with the hippocampus in Alzheimer's disease. Consistent with the known relative preservation of memory in dementia with Lewy bodies compared with Alzheimer

  11. Pushback: Expressions of resistance to the “evertime” of constant online connectivity

    OpenAIRE

    Morrison, Stacey L.; Gomez, Ricardo

    2014-01-01

    As a result of the widespread connectivity provided by smartphones, laptops, and tablets, technology users can and often are continuously connected to the Internet and its communication services, a phenomenon some start to call “evertime.” However, many users who first embraced constant connectivity are now pushing back, looking for ways to resist being permanently connected and contactable. This pushback behavior is increasingly visible in the popular press, in personal blogs, and in a small...

  12. BIOCOMPATIBILITY OF AZITROMICYN ON CONNECTIVE TISSUE

    Directory of Open Access Journals (Sweden)

    Shafira Kurnia

    2011-01-01

    Full Text Available Background: periodontal disease is commonly caused by bacteria, especially actinomyces actinomycetemcomitans and porphyromonas gingivalis have an abilty enter epithelial cells objectives: to investigate systemic azithromycin as the antibiotic of choice for periodontal disease based on biocomptability test in connective tissue. Material and Methods: BHK 21 cell lines were exposed to 0.025%, 0.050%, 0.075%, and 0.1% azithromycin solution for seven times. Samples were put in incubator for 24 hours. Result: Azitrromycin 0.050%-0.1% showed significant difference between life cells percentage and control, however, azithromycin 0.025% revealed insignificant difference with control. Conclusion: 0.025% azithromycin was considered biocompatible with connective tissue and 0.050% was not.

  13. Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds

    Science.gov (United States)

    Gooseff, Michael N.; Wlostowski, Adam; McKnight, Diane M.; Jaros, Chris

    2017-01-01

    Hydrologic connectivity has received great attention recently as our conceptual models of watersheds and water quality have evolved in the past several decades. However, the structural complexity of most temperate watersheds (i.e. connections among shallow soils, deep aquifers, the atmosphere and streams) and the dynamic seasonal changes that occur within them (i.e., plant senescence which impacts evapotranspiration) create significant challenges to characterizing or quantifying hydrologic connectivity. The McMurdo Dry Valleys, a polar desert in Antarctica, provide a unique opportunity to study hydrologic connectivity because there is no vegetative cover (and therefore no transpiration), and no deep aquifers connected to surface soils or streams. Glacier melt provides stream flow to well-established channels and closed-basin, ice-covered lakes on the valley floor. Streams are also connected to shallow hyporheic zones along their lengths, which are bounded at 75 cm depth by ice-cemented permafrost. These hydrologic features and connections provide water for and underpin biological communities. Hence, exchange of water among them provides a vector for exchange of energy and dissolved solutes. Connectivity is dynamic on timescales of a day to a flow season (6-12 weeks), as streamflow varies over these timescales. The timescales over which these connections occur is also dynamic. Exchanges between streams and hyporheic zones, for example, have been estimated to be as short as hours to as long as several weeks. These exchanges have significant implications for the biogeochemistry of these systems and the biotic communities in each feature. Here we evaluate the lessons we can learn about hydrologic connectivity in the MDV watersheds that are simplified in the context of processes occurring and water reservoirs included in the landscape, yet are sensitive to climate controls and contain substantial physical heterogeneity. We specifically explore several metrics that are

  14. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  15. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    Science.gov (United States)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  16. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI.

    Science.gov (United States)

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2014-06-10

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.

  17. Detecting Functional Connectivity During Audiovisual Integration with MEG: A Comparison of Connectivity Metrics.

    Science.gov (United States)

    Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard

    2015-08-01

    In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.

  18. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.

    Science.gov (United States)

    Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi

    2014-12-01

    To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.

  19. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.

    Science.gov (United States)

    Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S

    2003-01-01

    Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.

  20. Connectivities and synchronous firing in cortical neuronal networks

    International Nuclear Information System (INIS)

    Jia, L.C.; Sano, M.; Lai, P.-Y.; Chan, C.K.

    2004-01-01

    Network connectivities (k-bar) of cortical neural cultures are studied by synchronized firing and determined from measured correlations between fluorescence intensities of firing neurons. The bursting frequency (f) during synchronized firing of the networks is found to be an increasing function of k-bar. With f taken to be proportional to k-bar, a simple random model with a k-bar dependent connection probability p(k-bar) has been constructed to explain our experimental findings successfully

  1. Default network connectivity during a working memory task.

    Science.gov (United States)

    Bluhm, Robyn L; Clark, C Richard; McFarlane, Alexander C; Moores, Kathryn A; Shaw, Marnie E; Lanius, Ruth A

    2011-07-01

    The default network exhibits correlated activity at rest and has shown decreased activation during performance of cognitive tasks. There has been little investigation of changes in connectivity of this network during task performance. In this study, we examined task-related modulation of connectivity between two seed regions from the default network posterior cingulated cortex (PCC) and medial prefrontal cortex (mPFC) and the rest of the brain in 12 healthy adults. The purpose was to determine (1) whether connectivity within the default network differs between a resting state and performance of a cognitive (working memory) task and (2) whether connectivity differs between these nodes of the default network and other brain regions, particularly those implicated in cognitive tasks. There was little change in connectivity with the other main areas of the default network for either seed region, but moderate task-related changes in connectivity occurred between seed regions and regions outside the default network. For example, connectivity of the mPFC with the right insula and the right superior frontal gyrus decreased during task performance. Increased connectivity during the working memory task occurred between the PCC and bilateral inferior frontal gyri, and between the mPFC and the left inferior frontal gyrus, cuneus, superior parietal lobule, middle temporal gyrus and cerebellum. Overall, the areas showing greater correlation with the default network seed regions during task than at rest have been previously implicated in working memory tasks. These changes may reflect a decrease in the negative correlations occurring between the default and task-positive networks at rest. Copyright © 2010 Wiley-Liss, Inc.

  2. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder.

    Science.gov (United States)

    Ecker, Christine; Ronan, Lisa; Feng, Yue; Daly, Eileen; Murphy, Clodagh; Ginestet, Cedric E; Brammer, Michael; Fletcher, Paul C; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Williams, Steve; Loth, Eva; Murphy, Declan G M

    2013-08-06

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.

  3. Finite Element analysis of jar connections

    DEFF Research Database (Denmark)

    Kristensen, A.; Toor, Kashif; Solem, Sigurd

    2005-01-01

    A new tool joint system is considered. Traditionally these rotary connections have been designed with only one shoulder geometry. However, in order to increase the torque rating of the tool joint, a new design is introduced using two shoulders. This design allow reduced tool joint dimensions...

  4. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Qi, Rongfeng; Zhang, Long Jiang; Zhong, Jianhui; Zhang, Zhiqiang; Ni, Ling; Zheng, Gang; Lu, Guang Ming

    2013-01-01

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  5. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: kevinzhanglongjiang@yahoo.com.cn [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)

    2013-05-15

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  6. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  7. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  8. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.

    Science.gov (United States)

    Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in

  9. Experimental study on the connection property of full-scale composite member

    Science.gov (United States)

    Panpan, Cao; Qing, Sun

    2018-01-01

    The excellent properties of composite result in its increasingly application in electric power construction, however there are less experimental studies on full-scale composite member connection property. Full-scale experiments of the connection property between E-glass fiber/epoxy reinforced polymer member and steel casing in practical engineering have been conducted. Based on the axial compression test of the designed specimens, the failure process and failure characteristics were observed, the load-displacement curves and strain distribution of the specimens were obtained. The finite element analysis was used to get the tensile connection strength of the component. The connection property of the components was analyzed to provide basis of the casing connection of GFRP application in practical engineering.

  10. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  11. Investigation of asphalt core-plinth connection in embankment dams

    Directory of Open Access Journals (Sweden)

    Weibiao Wang

    2017-12-01

    Full Text Available The asphalt core itself is a no-joint water barrier in embankment dams and is connected to the concrete plinth on the bottom of the core. A reliable asphalt core-plinth connection is crucial and must remain watertight when the core deforms due to deformations in the embankment and foundation and due to reservoir water pressure. A large number of tension tests were conducted to determine the best ratios, joint thickness and suitable additives for the sandy asphalt mastic (SAM mix used for the connection. With the ratios of bitumen to filler to sand of 20%:35%:45% and by adding 4% SBS in the bitumen, one got a very suitable composition for the asphalt core-plinth connection in tensile conditions. Model tests were conducted to study the connection behavior when subjected to large shear displacements and high water pressure. The joint model test results indicate that the plane-surface plinth, curved-surface plinth, and plinth with or without copper water-stop showed no significant difference for the connection in the joint shear behavior. However, plinth with copper water-stop is suggested to enhance its tensile and shear behavior.

  12. Inferring the physical connectivity of complex networks from their functional dynamics

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2010-05-01

    Full Text Available Abstract Background Biological networks, such as protein-protein interactions, metabolic, signalling, transcription-regulatory networks and neural synapses, are representations of large-scale dynamic systems. The relationship between the network structure and functions remains one of the central problems in current multidisciplinary research. Significant progress has been made toward understanding the implication of topological features for the network dynamics and functions, especially in biological networks. Given observations of a network system's behaviours or measurements of its functional dynamics, what can we conclude of the details of physical connectivity of the underlying structure? Results We modelled the network system by employing a scale-free network of coupled phase oscillators. Pairwise phase coherence (PPC was calculated for all the pairs of oscillators to present functional dynamics induced by the system. At the regime of global incoherence, we observed a Significant pairwise synchronization only between two nodes that are physically connected. Right after the onset of global synchronization, disconnected nodes begin to oscillate in a correlated fashion and the PPC of two nodes, either connected or disconnected, depends on their degrees. Based on the observation of PPCs, we built a weighted network of synchronization (WNS, an all-to-all functionally connected network where each link is weighted by the PPC of two oscillators at the ends of the link. In the regime of strong coupling, we observed a Significant similarity in the organization of WNSs induced by systems sharing the same substrate network but different configurations of initial phases and intrinsic frequencies of oscillators. We reconstruct physical network from the WNS by choosing the links whose weights are higher than a given threshold. We observed an optimal reconstruction just before the onset of global synchronization. Finally, we correlated the topology of the

  13. Religious and spiritual importance moderate relation between default mode network connectivity and familial risk for depression.

    Science.gov (United States)

    Svob, Connie; Wang, Zhishun; Weissman, Myrna M; Wickramaratne, Priya; Posner, Jonathan

    2016-11-10

    Individuals at high risk for depression have increased default mode network (DMN) connectivity, as well as reduced inverse connectivity between the DMN and the central executive network (CEN) [8]. Other studies have indicated that the belief in the importance of religion/spirituality (R/S) is protective against depression in high risk individuals [5]. Given these findings, we hypothesized that R/S importance would moderate DMN connectivity, potentially reducing DMN connectivity or increasing DMN-CEN inverse connectivity in individuals at high risk for depression. Using resting-state functional connectivity MRI (rs-fcMRI) in a sample of 104 individuals (aged 11-60) at high and low risk for familial depression, we previously reported increased DMN connectivity and reduced DMN-CEN inverse connectivity in high risk individuals. Here, we found that this effect was moderated by self-report measures of R/S importance. Greater R/S importance in the high risk group was associated with decreased DMN connectivity. These results may represent a protective neural adaptation in the DMN of individuals at high risk for depression, and may have implications for other meditation-based therapies for depression. Published by Elsevier Ireland Ltd.

  14. Beyond the Arcuate Fasciculus: Consensus and Controversy in the Connectional Anatomy of Language

    Science.gov (United States)

    Dick, Anthony Steven; Tremblay, Pascale

    2012-01-01

    The growing consensus that language is distributed into large-scale cortical and subcortical networks has brought with it an increasing focus on the connectional anatomy of language, or how particular fibre pathways connect regions within the language network. Understanding connectivity of the language network could provide critical insights into…

  15. Examining Neuronal Connectivity and Its Role in Learning and Memory

    Science.gov (United States)

    Gala, Rohan

    Learning and long-term memory formation are accompanied with changes in the patterns and weights of synaptic connections in the underlying neuronal network. However, the fundamental rules that drive connectivity changes, and the precise structure-function relationships within neuronal networks remain elusive. Technological improvements over the last few decades have enabled the observation of large but specific subsets of neurons and their connections in unprecedented detail. Devising robust and automated computational methods is critical to distill information from ever-increasing volumes of raw experimental data. Moreover, statistical models and theoretical frameworks are required to interpret the data and assemble evidence into understanding of brain function. In this thesis, I first describe computational methods to reconstruct connectivity based on light microscopy imaging experiments. Next, I use these methods to quantify structural changes in connectivity based on in vivo time-lapse imaging experiments. Finally, I present a theoretical model of associative learning that can explain many stereotypical features of experimentally observed connectivity.

  16. Age-related decline in functional connectivity of the vestibular cortical network.

    Science.gov (United States)

    Cyran, Carolin Anna Maria; Boegle, Rainer; Stephan, Thomas; Dieterich, Marianne; Glasauer, Stefan

    2016-04-01

    In the elderly, major complaints include dizziness and an increasing number of falls, possibly related to an altered processing of vestibular sensory input. In this study, we therefore investigate age-related changes induced by processing of vestibular sensory stimulation. While previous functional imaging studies of healthy aging have investigated brain function during task performance or at rest, we used galvanic vestibular stimulation during functional MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on central vestibular processing, which might only become apparent during stimulation processing. Since aging may affect signatures of brain function beyond the BOLD-signal amplitude-such as functional connectivity or temporal signal variability--we employed independent component analysis and partial least squares analysis of temporal signal variability. We tested for age-associated changes unrelated to vestibular processing, using a motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to control for general age-related modifications, possibly originating from vascular, atrophic or structural connectivity changes. Age-correlated decreases of functional connectivity and increases of BOLD--signal variability were associated with multisensory vestibular networks. In contrast, no age-related functional connectivity changes were detected in somatosensory networks or during the motor paradigm. The functional connectivity decrease was not due to structural changes but to a decrease in response amplitude. In synopsis, our data suggest that both the age-dependent functional connectivity decrease and the variability increase may be due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal vestibular integration of sensory inputs.

  17. Income change alters default mode network connectivity for adolescents in poverty

    Directory of Open Access Journals (Sweden)

    David G. Weissman

    2018-04-01

    Full Text Available Experiencing poverty during childhood and adolescence may affect brain function. However, income is dynamic, and studies have not addressed whether income change relates to brain function. In the present study, we investigated whether intrinsic functional connectivity of default mode network (DMN regions was influenced by mean family income and family income change. Parents of 68 Mexican-origin adolescents (35 females reported family income annually when adolescents were 10–16 years old. Intercept and slope of income at each of these ages were calculated for each participant. At age 16 years, adolescents completed a resting state functional neuroimaging scan. Adolescents from high and low income families did not differ in their functional connectivity, but for adolescents in families with lower incomes, their connectivity patterns depended on their income slope. Low-income adolescents whose income increased demonstrated greater connectivity between the posterior cingulate cortex (PCC and the medial prefrontal cortex (mPFC, both DMN regions, and between the PCC and the right inferior frontal gyrus. Increases in income were associated with greater connectivity of the mPFC with the right inferior frontal gyrus and the left superior parietal lobule regardless of mean income. Increases in income, especially among adolescents in poverty, may alleviate stressors, influencing the development of brain networks. Keywords: Adversity, Brain, fMRI, Resting state, Socio-economic status, Youth

  18. Income change alters default mode network connectivity for adolescents in poverty.

    Science.gov (United States)

    Weissman, David G; Conger, Rand D; Robins, Richard W; Hastings, Paul D; Guyer, Amanda E

    2018-04-01

    Experiencing poverty during childhood and adolescence may affect brain function. However, income is dynamic, and studies have not addressed whether income change relates to brain function. In the present study, we investigated whether intrinsic functional connectivity of default mode network (DMN) regions was influenced by mean family income and family income change. Parents of 68 Mexican-origin adolescents (35 females) reported family income annually when adolescents were 10-16 years old. Intercept and slope of income at each of these ages were calculated for each participant. At age 16 years, adolescents completed a resting state functional neuroimaging scan. Adolescents from high and low income families did not differ in their functional connectivity, but for adolescents in families with lower incomes, their connectivity patterns depended on their income slope. Low-income adolescents whose income increased demonstrated greater connectivity between the posterior cingulate cortex (PCC) and the medial prefrontal cortex (mPFC), both DMN regions, and between the PCC and the right inferior frontal gyrus. Increases in income were associated with greater connectivity of the mPFC with the right inferior frontal gyrus and the left superior parietal lobule regardless of mean income. Increases in income, especially among adolescents in poverty, may alleviate stressors, influencing the development of brain networks. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Making Connections

    Science.gov (United States)

    Pien, Cheng Lu; Dongsheng, Zhao

    2011-01-01

    Effective teaching includes enabling learners to make connections within mathematics. It is easy to accord with this statement, but how often is it a reality in the mathematics classroom? This article describes an approach in "connecting equivalent" fractions and whole number operations. The authors illustrate how a teacher can combine a common…

  20. Family Connections: Building Connections among Home, School, and Community

    Science.gov (United States)

    Dikkers, Amy Garrett

    2013-01-01

    Recent research on parental involvement has explored connections between parental involvement in school and children's academic achievement. While many schools have active parent organizations and a base of parents who offer additional support, others struggle to make connections with their parents or community members. Even in places with active…

  1. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  2. On the history of the connectivity index: from the connectivity index to the exact solution of the protein alignment problem.

    Science.gov (United States)

    Randić, M

    2015-01-01

    We briefly review the history of the connectivity index from 1975 to date. We hope to throw some light on why this unique, by its design, graph theoretical molecular descriptor continues to be of interest in QSAR, having wide use in applications in structure-property and structure-activity studies. We will elaborate on its generalizations and the insights it offered on applications in Multiple Regression Analysis (MRA). Going beyond the connectivity index we will outline several related developments in the development of molecular descriptors used in MRA, including molecular ID numbers (1986), the variable connectivity index (1991), orthogonal regression (1991), irrelevance of co-linearity of descriptors (1997), anti-connectivity (2006), and high discriminatory descriptors characterizing molecular similarity (2015). We will comment on beauty in QSAR and recent progress in searching for similarity of DNA, proteins and the proteome. This review reports on several results which are little known to the structure-property-activity community, the significance of which may surprise those unfamiliar with the application of discrete mathematics to chemistry. It tells the reader many unknown stories about the connectivity index, which may help the reader to better understand the meaning of this index. Readers are not required to be familiar with graph theory.

  3. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Directory of Open Access Journals (Sweden)

    Yuichi Kitaura

    Full Text Available Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”. Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography. Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more

  4. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression.

    Science.gov (United States)

    Figueroa, Caroline A; Mocking, Roel J T; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G; Schene, Aart H

    2017-11-01

    Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD vs controls. Moreover, DMN-connectivity studies in remitted-MDD were previously confounded by antidepressant-use. Sixty-two MDD-patients remitted from ≥2 episodes, psychotropic-medication free, and 41 controls, participated in two 5-min neutral and sad mood-inductions by autobiographical-recall and neutral/sad music, each followed by 8-min resting-state fMRI-scanning. We identified DMN-components using Independent Component Analysis and entered subject- and sessions-specific components into a repeated measures analysis of variance. Connectivity-differences were extracted and correlated with baseline cognitive reactivity and rumination as measures of vulnerability for recurrence. After sad vs neutral mood-induction, controls, but not remitted-MDD, showed an increase in connectivity between the posterior-DMN and a cluster consisting mostly of the hippocampus (P = 0.006). Less posterior-DMN-hippocampal connectivity was associated with higher cognitive reactivity (r = -0.21, P = 0.046) and rumination (r = -0.27, P = 0.017). After recalling sad autobiographical-memories, aberrant posterior-DMN-hippocampal connectivity, associated with cognitive reactivity and rumination, remains a neural vulnerability in MDD-remission. © The Author (2017). Published by Oxford University Press.

  6. Intrinsic connectivity networks within cerebellum and beyond in eating disorders.

    Science.gov (United States)

    Amianto, F; D'Agata, F; Lavagnino, L; Caroppo, P; Abbate-Daga, G; Righi, D; Scarone, S; Bergui, M; Mortara, P; Fassino, S

    2013-10-01

    Cerebellum seems to have a role both in feeding behavior and emotion regulation; therefore, it is a region that warrants further neuroimaging studies in eating disorders, severe conditions that determine a significant impairment in the physical and psychological domain. The aim of this study was to examine the cerebellum intrinsic connectivity during functional magnetic resonance imaging resting state in anorexia nervosa (AN), bulimia nervosa (BN), and healthy controls (CN). Resting state brain activity was decomposed into intrinsic connectivity networks (ICNs) using group spatial independent component analysis on the resting blood oxygenation level dependent time courses of 12 AN, 12 BN, and 10 CN. We extracted the cerebellar ICN and compared it between groups. Intrinsic connectivity within the cerebellar network showed some common alterations in eating disordered compared to healthy subjects (e.g., a greater connectivity with insulae, vermis, and paravermis and a lesser connectivity with parietal lobe); AN and BN patients were characterized by some peculiar alterations in connectivity patterns (e.g., greater connectivity with the insulae in AN compared to BN, greater connectivity with anterior cingulate cortex in BN compared to AN). Our data are consistent with the presence of different alterations in the cerebellar network in AN and BN patients that could be related to psychopathologic dimensions of eating disorders.

  7. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  8. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    Science.gov (United States)

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This

  9. The nature and quality of the mathematical connections teachers make

    Directory of Open Access Journals (Sweden)

    Michael K. Mhlolo

    2012-05-01

    Full Text Available Current reforms in mathematics education emphasise the need for pedagogy because it offers learners opportunities to develop their proficiency with complex high-level cognitive processes. One has always associated the ability to make mathematical connections, together with the teacher’s role in teaching them, with deep mathematical understanding. This article examines the nature and quality of the mathematical connections that the teachers’ representations of those connections enabled or constrained. The researchers made video recordings of four Grade 11 teachers as they taught a series of five lessons on algebra-related topics. The results showed that the teachers’ representations of mathematical connections were either faulty or superficial in most cases. It compromised the learners’ opportunities for making meaningful mathematical connections. The researchers concluded by suggesting that helping teachers to build their representation repertoires could increase the effectiveness of their instructional practices.

  10. Connectivity: Performance Portable Algorithms for graph connectivity v. 0.1

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-21

    Graphs occur in several places in real world from road networks, social networks and scientific simulations. Connectivity is a graph analysis software to graph connectivity in modern architectures like multicore CPUs, Xeon Phi and GPUs.

  11. The Politics of Medicaid: Most Americans Are Connected to the Program, Support Its Expansion, and Do Not View It as Stigmatizing.

    Science.gov (United States)

    Grogan, Colleen M; Park, Sunggeun Ethan

    2017-12-01

    Policy Points: More than half of Americans are connected to the Medicaid program-either through their own coverage or that of a family member or close friend-and are significantly more likely to view Medicaid as important and to support increases in spending, even among conservatives. This finding helps explain why Affordable Care Act repeal efforts faced (and will continue to face) strong public backlash. Policymakers should be aware that although renaming programs within Medicaid may have increased enrollment take-up, this destigmatization effort might have also increased program confusion and reduced support for Medicaid even among enrollees who say the program is important to them. Since the 1980s, Medicaid enrollment has expanded so dramatically that by 2015 two-thirds of Americans had some connection to the program in which either they themselves, a family member, or a close friend is currently or was previously enrolled. Utilizing a nationally representative survey-the Kaiser Family Foundation Poll: Medicare and Medicaid at 50 (n = 1,849)-and employing ordinal and logistic regression analyses, our study examines 3 questions: (1) are individuals with a connection to Medicaid more likely to view the program as important, (2) are they more likely to support an increase in Medicaid spending, and (3) are they more likely to support adoption of the Medicaid expansion offered under the Affordable Care Act? For each of these questions we examine whether partisanship and views of stigma also impact support for Medicaid and, if so, whether these factors overwhelm the impact of connection to the program. Controlling for the strong effect of partisanship, people with any connection to the Medicaid program are more likely to view the program as important than those with no connection. However, when it comes to increasing spending or expanding the program, the type of connection to the program matters. In particular, adults with current and previous Medicaid coverage and

  12. Connections between population density, energy use, and GHG emissions in water networks

    Energy Technology Data Exchange (ETDEWEB)

    Filion, Y.R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2007-07-01

    There is a growing concern that urban sprawl and highly dispersed urban infrastructure in cities is posing significant environmental impacts. However, there is no agreement on the suitability of interventions such as population intensification on reducing environmental impacts. This paper investigated the connection between population intensification and environmental impact in water distribution networks. Specifically, it examined the relationship between population density, annual per capita energy use, and annual per capita greenhouse gas (GHG) emissions in water distribution networks. It also examined which population densities produce low levels of annual per capita energy use and GHG emissions. An analytical model of a trunk main was developed to connect population density to energy use and GHG emissions. The model considered energy use in five life activities of the trunk main, namely pipe fabrication, pipe repair, water pumping, and pipe recycling and/or disposal. The energy use model was combined with emission factors and electricity fuel-source mixtures from four Canadian regions (Atlantic Provinces, Quebec, Ontario, and Alberta) to compute representative levels of annual per capita GHGs emitted by the trunk main. It was concluded that increasing population density from 10 ca/ha to 150 ca/ha reduced energy use and GHG emissions by 67per cent and that increasing population density beyond 150 ca/ha produces no significant decrease in annual per capita energy use and GHG emissions. Further analysis on looped networks is required to verify these preliminary findings. 10 refs., 3 tabs., 2 figs.

  13. Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment

    Directory of Open Access Journals (Sweden)

    Tu Peichi

    2010-11-01

    Full Text Available Abstract Background Electroacupuncture (EA is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI, has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA. Results Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode's functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex (PCC, and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between different contrasts of the two expectancy levels. Conclusions Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain

  14. Chimera states in networks of logistic maps with hierarchical connectivities

    Science.gov (United States)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  15. White-Matter Structural Connectivity Underlying Human Laughter-Related Traits Processing.

    Science.gov (United States)

    Wu, Ching-Lin; Zhong, Suyu; Chan, Yu-Chen; Chen, Hsueh-Chih; Gong, Gaolang; He, Yong; Li, Ping

    2016-01-01

    Most research into the neural mechanisms of humor has not explicitly focused on the association between emotion and humor on the brain white matter networks mediating this connection. However, this connection is especially salient in gelotophobia (the fear of being laughed at), which is regarded as the presentation of humorlessness, and two related traits, gelotophilia (the enjoyment of being laughed at) and katagelasticism (the enjoyment of laughing at others). Here, we explored whether the topological properties of white matter networks can account for the individual differences in the laughter-related traits of 31 healthy adults. We observed a significant negative correlation between gelotophobia scores and the clustering coefficient, local efficiency and global efficiency, but a positive association between gelotophobia scores and path length in the brain's white matter network. Moreover, the current study revealed that with increasing individual fear of being laughed at, the linking efficiencies in superior frontal gyrus, anterior cingulate cortex, parahippocampal gyrus, and middle temporal gyrus decreased. However, there were no significant correlations between either gelotophilia or katagelasticism scores or the topological properties of the brain white matter network. These findings suggest that the fear of being laughed at is directly related to the level of local and global information processing of the brain network, which might provide new insights into the neural mechanisms of the humor information processing.

  16. Internet services for planning distributed generation connections

    Energy Technology Data Exchange (ETDEWEB)

    Curry, D.; Morgan, A.; Barbier, C.; Reay, P.

    2005-07-01

    The required publication by distributed network operators (DNOs) of details of the current state of their network systems and future planned developments in the form of Long Term Development Statements (LTDS) are discussed. This project aims to increase the usefulness of the information in the LTDS by making it available on the internet and by providing an initial assessment of connection opportunities and the possibility of viewing existing renewable generation projects. The services developed covered data loading, data visualisation, security, connection assessment, reporting, and generation site registration. The benefits of an electronic version of the LTDS are highlighted.

  17. Street connectivity and obesity in Glasgow, Scotland: impact of age, sex and socioeconomic position.

    Science.gov (United States)

    Ball, Kylie; Lamb, Karen; Travaglini, Noemi; Ellaway, Anne

    2012-11-01

    This study investigated associations of street connectivity with body mass index (BMI), and whether these associations varied by sex, age and socioeconomic position, amongst adults in Glasgow, Scotland. Data on socio-demographic variables, height and weight were collected from 1062 participants in the Greater Glasgow Health and Well-being Study, and linked with neighbourhood-level census and geo-referenced data on area level deprivation and street connectivity. Results of multilevel models showed that, after adjustment for individual level covariates, street connectivity was not significantly associated with either BMI or BMI category; nor were there any significant interactions between age, sex or socioeconomic position and street connectivity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Increasing connectivity between metapopulation ecology and landscape ecology.

    Science.gov (United States)

    Howell, Paige E; Muths, Erin; Hossack, Blake R; Sigafus, Brent H; Chandler, Richard B

    2018-05-01

    Metapopulation ecology and landscape ecology aim to understand how spatial structure influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process. © 2018 by the Ecological Society of America.

  19. Connectivity features for identifying cognitive impairment in presymptomatic carotid stenosis.

    Directory of Open Access Journals (Sweden)

    Chun-Jen Lin

    Full Text Available Severe asymptomatic stenosis of the internal carotid artery (ICA leads to increased incidence of mild cognitive impairment (MCI likely through silent embolic infarcts and/or chronic hypoperfusion, but the brain dysfunction is poorly understood and difficult to diagnose. Thirty cognitively intact subjects with asymptomatic, severe (≥ 70%, unilateral stenosis of the ICA were compared with 30 healthy controls, matched for age, sex, cardiovascular risk factors and education level, on a battery of neuropsychiatric tests, voxel-based morphometry of magnetic resonance imaging (MRI, diffusion tensor imaging and brain-wise, seed-based analysis of resting-state functional MRI. Multivariate regression models and multivariate pattern classification (support vector machines were computed to assess the relationship between connectivity measures and neurocognitive performance. The patients had worse dizziness scores and poorer verbal memory, executive function and complex visuo-spatial performance than controls. Twelve out of the 30 patients (40% were considered to have MCI. Nonetheless, the leukoaraiosis Sheltens scores, hippocampal and brain volumes were not different between groups. Their whole-brain mean fractional anisotropy (FA was significantly reduced and regional functional connectivity (Fc was significantly impaired in the dorsal attention network (DAN, frontoparietal network, sensorimotor network and default mode network. In particular, the Fc strength at the insula of the DAN and the mean FA were linearly related with attention performance and dizziness severity, respectively. The multivariate pattern classification gave over 90% predictive accuracy of individuals with MCI or severe dizziness. Cognitive decline in stroke-free individuals with severe carotid stenosis may arise from nonselective widespread disconnections of long-range, predominantly interhemispheric non-hippocampal pathways. Connectivity measures may serve as both predictors for

  20. Characteristics of flow in turbine-condenser connections

    International Nuclear Information System (INIS)

    Yasugahira, Norio; Sato, Takeshi; Mukai, Yasuteru; Otake, Katsumoto; Miyai, Masahiko

    1981-01-01

    It is important to save energy in thermal and nuclear power plants, and Hitachi Ltd. has exerted efforts on this subject. The performance of condensers depends largely on the condition of steam flow into the tube nests, and is affected by the state of steam flow in the connecting parts between LP turbines and the condensers. It is desirable to give turbines low exhaust pressure by minimizing the resistance of the obstacles in the diffuser paths and increasing the restoration of static pressure. But in the connecting parts, feed water heaters, bleeding pipes and stiffeners are placed, and if these re arranged inadequately, the performance of condensers and the efficiency of turbines are lowered by pressure loss. In this study, the flow in the connecting parts was reproduced with models, and the detailed state of internal flow was grasped. Also the influence of the form of the connecting parts, feed water heaters and bleeding pipes on pressure loss was examined, and the measures to reduce the pressure loss were sought. The cases of the connecting parts containing one feed water heater and four feed water heaters were examined. The experimental setup, the structure of the tested models, and the test results are reported. The velocity distribution and flow pattern of the internal flow were obtained, and the arrangement of feed water heaters which reduces pressure loss was clarified. (Kako, I.)

  1. Preservice Teachers Connecting Mathematics and Drumming

    Science.gov (United States)

    Marshall, Anne Marie

    2014-01-01

    Increasingly, elementary classroom teachers are being called to teach a myriad of subjects, including visual art, dance, and music. Preservice teachers must be prepared to teach and integrate multiple subjects. To that end, preservice teachers will need experiences in their preparation that help them to see connections across content areas and…

  2. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.

    Directory of Open Access Journals (Sweden)

    Benjamin T Dunkley

    Full Text Available Post-traumatic stress disorder (PTSD is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18 versus a military control (all males, mean age = 33.05, n = 19 group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.

  3. Preclinical cerebral network connectivity evidence of deficits in mild white matter lesions

    Directory of Open Access Journals (Sweden)

    Ying eLiang

    2016-02-01

    Full Text Available White matter lesions (WMLs are notable for their high prevalence and have been demonstrated to be a potential neuroimaging biomarker of early diagnosis of Alzheimer’s disease. This study aimed to identify the brain functional and structural mechanisms underlying cognitive decline observed in mild WMLs. Multi-domain cognitive tests, as well as resting-state, diffusion tensor and structural images were obtained on 42 mild WMLs and 42 age/sex-matched healthy controls. For each participant, we examined the functional connectivity of three resting-state networks related to the changed cognitive domains: the default mode network (DMN and the bilateral fronto-parietal network (FPN. We also performed voxel-based morphometry analysis to compare whole-brain gray matter volume, atlas-based quantification of the white matter tracts interconnecting the RSNs, and the relationship between functional connectivity and structural connectivity. We observed functional connectivity alterations in the DMN and the right FPN combined with related white matter integrity disruption in mild WMLs. However, no significant gray matter atrophy difference was found. Furthermore, the right precuneus functional connectivity in the DMN exhibited a significantly negative correlation with the memory test scores. Our study suggests that in mild WMLs, dysfunction of RSNs might be a consequence of decreased white matter structural connectivity, which further affects cognitive performance.

  4. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  5. TENTube: A Video-based Connection Tool Supporting Competence Development

    Directory of Open Access Journals (Sweden)

    Albert A Angehrn

    2008-07-01

    Full Text Available The vast majority of knowledge management initiatives fail because they do not take sufficiently into account the emotional, psychological and social needs of individuals. Only if users see real value for themselves will they actively use and contribute their own knowledge to the system, and engage with other users. Connection dynamics can make this easier, and even enjoyable, by connecting people and bringing them closer through shared experiences such as playing a game together. A higher connectedness of people to other people, and to relevant knowledge assets, will motivate them to participate more actively and increase system usage. In this paper, we describe the design of TENTube, a video-based connection tool we are developing to support competence development. TENTube integrates rich profiling and network visualization and navigation with agent-enhanced game-like connection dynamics.

  6. Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs

    Directory of Open Access Journals (Sweden)

    Woo-Yong Choi

    2009-01-01

    Full Text Available We propose the efficient reliable multicast MAC protocol based on the connectivity information among the recipients. Enhancing the BMMM (Batch Mode Multicast MAC protocol, the reliable multicast MAC protocol significantly reduces the RAK (Request for ACK frame transmissions in a reasonable computational time and enhances the MAC performance. By the analytical performance analysis, the throughputs of the BMMM protocol and our proposed MAC protocol are derived. Numerical examples show that our proposed MAC protocol increases the reliable multicast MAC performance for IEEE 802.11 wireless LANs.

  7. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    Science.gov (United States)

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These

  8. Memories of attachment hamper EEG cortical connectivity in dissociative patients.

    Science.gov (United States)

    Farina, Benedetto; Speranza, Anna Maria; Dittoni, Serena; Gnoni, Valentina; Trentini, Cristina; Vergano, Carola Maggiora; Liotti, Giovanni; Brunetti, Riccardo; Testani, Elisa; Della Marca, Giacomo

    2014-08-01

    In this study, we evaluated cortical connectivity modifications by electroencephalography (EEG) lagged coherence analysis, in subjects with dissociative disorders and in controls, after retrieval of attachment memories. We asked thirteen patients with dissociative disorders and thirteen age- and sex-matched healthy controls to retrieve personal attachment-related autobiographical memories through adult attachment interviews (AAI). EEG was recorded in the closed eyes resting state before and after the AAI. EEG lagged coherence before and after AAI was compared in all subjects. In the control group, memories of attachment promoted a widespread increase in EEG connectivity, in particular in the high-frequency EEG bands. Compared to controls, dissociative patients did not show an increase in EEG connectivity after the AAI. Conclusions: These results shed light on the neurophysiology of the disintegrative effect of retrieval of traumatic attachment memories in dissociative patients.

  9. Understanding the effect of pulsed electric fields on thermostability of connective tissue isolated from beef pectoralis muscle using a model system.

    Science.gov (United States)

    Alahakoon, A U; Oey, I; Silcock, P; Bremer, P

    2017-10-01

    Brisket is a low value/tough meat cut that contains a large amount of connective tissue. Conversion of collagen into gelatin during heating reduces the toughness of the connective tissue however this conversion is slow at low cooking temperatures (around 60°C). The objective of this project was to determine the ability of pulsed electric field (PEF) processing to reduce the thermal stability of connective tissue. To achieve this, a novel model system was designed in which connective tissue obtained from beef deep pectotalis muscle (brisket) was exposed to PEF at combinations of electric field strength (1.0 and 1.5kV/cm) and specific energy (50 and 100kJ/kg) within an agar matrix at electrical conductivities representing the electrical conductivity found in brisket. Differential scanning calorimetry showed that PEF treatment significantly (pconnective tissue compared to untreated samples. Increasing electric field strength and the specific energy increased the Ringer soluble collagen fraction. PEF treated samples showed higher solubilization compared to the untreated samples at both 60°C and 70°C in heat solubility test. SEM examination of PEF treated (at 1.5kV/cm and 100kJ/kg) and untreated samples revealed that PEF appeared to increase the porosity of the connective tissue structure. These finding suggest that PEF processing is a technology that could be used to improve the tenderness and decrease the cooking time of collagen rich, meat cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  11. Diffusion tensor image registration using hybrid connectivity and tensor features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-07-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.

  12. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  13. Altered thalamic connectivity during spontaneous attacks of migraine without aura

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano

    2017-01-01

    ,-58,-30) and cerebellum lobule VI (right, 34,-42,-36 and left, -32,-42,-36). Results We found increased functional connectivity between the right thalamus and several contralateral brain regions (superior parietal lobule, insular cortex, primary motor cortex, supplementary motor area and orbitofrontal cortex...... and the headache-free days. Functional connectivity was assessed in four different networks using seed-based analysis. The chosen seeds were in the thalamus (MNI coordinates x,y,z: right, 22,-24,0 and left, -22,-28,6), pons (right, 8,-24,-32 and left, -8,-24,-32), cerebellum crus I (right, 46,-58,-30 and left, -46......). There was decreased functional connectivity between the right thalamus and three ipsilateral brain areas (primary somatosensory cortex and premotor cortex). We found no change in functional connectivity in the pontine or the cerebellar networks. Conclusions The study indicates that network connectivity between...

  14. Connectivity as a multiple: In, with and as "nature".

    Science.gov (United States)

    Hodgetts, Timothy

    2018-03-01

    Connectivity is a central concept in contemporary geographies of nature, but the concept is often understood and utilised in plural ways. This is problematic because of the separation, rather than the confusion, of these different approaches. While the various understandings of connectivity are rarely considered as working together, the connections between them have significant implications. This paper thus proposes re-thinking connectivity as a "multiple". It develops a taxonomy of existing connectivity concepts from the fields of biogeography and landscape ecology, conservation biology, socio-economic systems theory, political ecology and more-than-human geography. It then considers how these various understandings might be re-thought not as separate concerns, but (following Annemarie Mol) as "more than one, but less than many". The implications of using the connectivity multiple as an analytic for understanding conservation practices are demonstrated through considering the creation of wildlife corridors in conservation practice. The multiple does not just serve to highlight the practical and theoretical linkages between ecological theories, social inequities and affectual relationships in more-than-human worlds. It is also suggestive of a normative approach to environmental management that does not give temporal priority to biological theories, but considers these as always already situated in these social, often unequal, always more-than-human ecologies.

  15. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    Science.gov (United States)

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Landscape-level analysis of mountain goat population connectivity in Washington and southern British Columbia

    Science.gov (United States)

    Leslie C. Parks; David O. Wallin; Samuel A. Cushman; Brad H. McRae

    2015-01-01

    Habitat fragmentation and habitat loss diminish population connectivity, reducing genetic diversity and increasing extinction risk over time. Improving connectivity is widely recommended to preserve the long-term viability of populations, but this requires accurate knowledge of how landscapes influence connectivity. Detectability of landscape effects on gene...

  17. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Directory of Open Access Journals (Sweden)

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  18. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    Science.gov (United States)

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  19. A Framework to Assess Where and How Children Connect to Nature

    Science.gov (United States)

    Giusti, Matteo; Svane, Ulrika; Raymond, Christopher M.; Beery, Thomas H.

    2018-01-01

    The design of the green infrastructure in urban areas largely ignores how people's relation to nature, or human-nature connection (HNC), can be nurtured. One practical reason for this is the lack of a framework to guide the assessment of where people, and more importantly children, experience significant nature situations and establish nature routines. This paper develops such a framework. We employed a mixed-method approach to understand what qualities of nature situations connect children to nature (RQ1), what constitutes children's HNC (RQ2), and how significant nature situations and children's HNC relate to each other over time (RQ3). We first interviewed professionals in the field of connecting children to nature (N = 26), performed inductive thematic analysis of these interviews, and then further examined the inductive findings by surveying specialists (N = 275). We identified 16 qualities of significant nature situations (e.g., “awe,” “engagement of senses,” “involvement of mentors”) and 10 abilities that constitute children's HNC (e.g., “feeling comfortable in natural spaces,” “feeling attached to natural spaces,” “taking care of nature”). We elaborated three principles to answer our research questions: (1) significant nature situations are various and with differing consequences for children's HNC; (2) children's HNC is a complex embodied ability; (3) children's HNC progresses over time through diverse nature routines. Together, these findings form the Assessment framework for Children's Human Nature Situations (ACHUNAS). ACHUNAS is a comprehensive framework that outlines what to quantify or qualify when assessing “child-nature connecting” environments. It guides the assessment of where and how children connect to nature, stimulating both the design of nature-connecting human habitats as well as pedagogical approaches to HNC. PMID:29354088

  20. A Framework to Assess Where and How Children Connect to Nature

    Directory of Open Access Journals (Sweden)

    Matteo Giusti

    2018-01-01

    Full Text Available The design of the green infrastructure in urban areas largely ignores how people's relation to nature, or human-nature connection (HNC, can be nurtured. One practical reason for this is the lack of a framework to guide the assessment of where people, and more importantly children, experience significant nature situations and establish nature routines. This paper develops such a framework. We employed a mixed-method approach to understand what qualities of nature situations connect children to nature (RQ1, what constitutes children's HNC (RQ2, and how significant nature situations and children's HNC relate to each other over time (RQ3. We first interviewed professionals in the field of connecting children to nature (N = 26, performed inductive thematic analysis of these interviews, and then further examined the inductive findings by surveying specialists (N = 275. We identified 16 qualities of significant nature situations (e.g., “awe,” “engagement of senses,” “involvement of mentors” and 10 abilities that constitute children's HNC (e.g., “feeling comfortable in natural spaces,” “feeling attached to natural spaces,” “taking care of nature”. We elaborated three principles to answer our research questions: (1 significant nature situations are various and with differing consequences for children's HNC; (2 children's HNC is a complex embodied ability; (3 children's HNC progresses over time through diverse nature routines. Together, these findings form the Assessment framework for Children's Human Nature Situations (ACHUNAS. ACHUNAS is a comprehensive framework that outlines what to quantify or qualify when assessing “child-nature connecting” environments. It guides the assessment of where and how children connect to nature, stimulating both the design of nature-connecting human habitats as well as pedagogical approaches to HNC.