WorldWideScience

Sample records for significantly improved precipitable

  1. Numerical simulations of significant orographic precipitation in Madeira island

    Science.gov (United States)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  2. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    Science.gov (United States)

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  3. A test for Improvement of high resolution Quantitative Precipitation Estimation for localized heavy precipitation events

    Science.gov (United States)

    Lee, Jung-Hoon; Roh, Joon-Woo; Park, Jeong-Gyun

    2017-04-01

    Accurate estimation of precipitation is one of the most difficult and significant tasks in the area of weather diagnostic and forecasting. In the Korean Peninsula, heavy precipitations are caused by various physical mechanisms, which are affected by shortwave trough, quasi-stationary moisture convergence zone among varying air masses, and a direct/indirect effect of tropical cyclone. In addition to, various geographical and topographical elements make production of temporal and spatial distribution of precipitation is very complicated. Especially, localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances. In weather radar data with high temporal and spatial resolution, accurate estimation of rain rate from radar reflectivity data is too difficult. Z-R relationship (Marshal and Palmer 1948) have adapted representatively. In addition to, several methods such as support vector machine (SVM), neural network, Fuzzy logic, Kriging were utilized in order to improve the accuracy of rain rate. These methods show the different quantitative precipitation estimation (QPE) and the performances of accuracy are different for heavy precipitation cases. In this study, in order to improve the accuracy of QPE for localized heavy precipitation, ensemble method for Z-R relationship and various techniques was tested. This QPE ensemble method was developed by a concept based on utilizing each advantage of precipitation calibration methods. The ensemble members were produced for a combination of different Z-R coefficient and calibration method.

  4. An Improved Plutonium Trifluoride Precipitation Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  5. An Improved Plutonium Trifluoride Precipitation Flowsheet

    International Nuclear Information System (INIS)

    Harmon, H.D.

    2001-01-01

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process

  6. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  7. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  8. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  9. Biogrout, ground improvement by microbial induced carbonate precipitation

    NARCIS (Netherlands)

    Van Paassen, L.A.

    2009-01-01

    Biogrout is a new ground improvement method based on microbially induced precipitation of calcium carbonate (MICP). When supplied with suitable substrates, micro-organisms can catalyze biochemical conversions in the subsurface resulting in precipitation of inorganic minerals, which change the

  10. Improving Global Precipitation Product Access at the GES DISC

    Science.gov (United States)

    Liu, Z.; Vollmer, B.; Savtchenko, A.; Ostrenga, D.; DeShong, B.; Fang, F.; Albayrak, R,; Sherman, E.; Greene, M.; Li, A.; hide

    2018-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been actively and continually engaged in improving the access to and use of Global Precipitation Measurement (GPM), Tropical Precipitation Measuring Mission (TRMM), and other precipitation data, including the following new services and Ongoing development activities: Updates on GPM products and data services, New features in Giovanni, Ongoing development activities; and Precipitation product and service outreach activities.

  11. Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Stenz, Ronald; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kuligowski, Robert J.

    2016-02-01

    To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.

  12. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2015-07-01

    Full Text Available Topography is a significant factor influencing the spatial distribution of precipitation. This study developed a new methodology to evaluate and calibrate the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA products by merging geographic and topographic information. In the proposed method, firstly, the consistency rule was introduced to evaluate the fitness of satellite rainfall with measurements on the grids with and without ground gauges. Secondly, in order to improve the consistency rate of satellite rainfall, genetic programming was introduced to mine the relationship between the gauge rainfall and location, elevation and TMPA rainfall. The proof experiment and analysis for the mean annual satellite precipitation from 2001–2012, 3B43 (V7 of TMPA rainfall product, was carried out in eight mountainous areas of China. The result shows that the proposed method is significant and efficient both for the assessment and improvement of satellite precipitation. It is found that the satellite rainfall consistency rates in the gauged and ungauged grids are different in the study area. In addition, the mined correlation of location-elevation-TMPA rainfall can noticeably improve the satellite precipitation, both in the context of the new criterion of the consistency rate and the existing criteria such as Bias and RMSD. The proposed method is also efficient for correcting the monthly and mean monthly rainfall of 3B43 and 3B42RT.

  13. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Langelier, B., E-mail: langelb@mcmaster.ca [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Korinek, A. [Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Donnadieu, P. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Esmaeili, S. [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada)

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  14. Improving precipitation simulation from updated surface characteristics in South America

    Science.gov (United States)

    Pereira, Gabriel; Silva, Maria Elisa Siqueira; Moraes, Elisabete Caria; Chiquetto, Júlio Barboza; da Silva Cardozo, Francielle

    2017-07-01

    Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the replacement of tropical rainforest for pasture and agriculture and the replacement of agricultural areas for pasture, scrubland, and deciduous forest.

  15. Improvement of aging kinetics and precipitate size refinement in Mg–Sn alloys by hafnium additions

    Energy Technology Data Exchange (ETDEWEB)

    Behdad, S. [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Zhou, L. [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816 (United States); Henderson, H.B.; Manuel, M.V. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Sohn, Y. [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816 (United States); Agarwal, A. [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Boesl, B., E-mail: bboesl@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-01-10

    Two Mg–Sn alloys were microalloyed by addition of Hafnium and their age-hardening response was studied at 200 °C. Time to reach peak hardness was significantly reduced and improved by Hf addition. TEM study showed Hf clusters in the close vicinity and at the surface of Mg{sub 2}Sn precipitates, which confirms that Hf clusters act as additional nucleation centers for Mg{sub 2}Sn precipitate formation. Our results support the validity of thermokinetic criterion proposed by Mendis for selection of microalloying elements in order to refine precipitate size, accelerate aging kinetics and enhance peak hardness.

  16. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    Science.gov (United States)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated

  17. Flue gas conditioning for improved particle collection in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.

  18. Improving real-time estimation of heavy-to-extreme precipitation using rain gauge data via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Seo, Dong-Jun; Siddique, Ridwan; Zhang, Yu; Kim, Dongsoo

    2014-11-01

    A new technique for gauge-only precipitation analysis for improved estimation of heavy-to-extreme precipitation is described and evaluated. The technique is based on a novel extension of classical optimal linear estimation theory in which, in addition to error variance, Type-II conditional bias (CB) is explicitly minimized. When cast in the form of well-known kriging, the methodology yields a new kriging estimator, referred to as CB-penalized kriging (CBPK). CBPK, however, tends to yield negative estimates in areas of no or light precipitation. To address this, an extension of CBPK, referred to herein as extended conditional bias penalized kriging (ECBPK), has been developed which combines the CBPK estimate with a trivial estimate of zero precipitation. To evaluate ECBPK, we carried out real-world and synthetic experiments in which ECBPK and the gauge-only precipitation analysis procedure used in the NWS's Multisensor Precipitation Estimator (MPE) were compared for estimation of point precipitation and mean areal precipitation (MAP), respectively. The results indicate that ECBPK improves hourly gauge-only estimation of heavy-to-extreme precipitation significantly. The improvement is particularly large for estimation of MAP for a range of combinations of basin size and rain gauge network density. This paper describes the technique, summarizes the results and shares ideas for future research.

  19. Precipitation diagram of calcium carbonate polymorphs: its construction and significance

    International Nuclear Information System (INIS)

    Kawano, Jun; Shimobayashi, Norimasa; Miyake, Akira; Kitamura, Masao

    2009-01-01

    In order to interpret the formation mechanism of calcium carbonate polymorphs, we propose and construct a new 'precipitation diagram', which has two variables: the driving force for nucleation and temperature. The precipitation experiments were carried out by mixing calcium chloride and sodium carbonate aqueous solutions. As a result, a calcite-vaterite co-precipitation zone, a vaterite precipitation zone, a vaterite-aragonite co-precipitation zone and an aragonite precipitation zone can be defined. Theoretical considerations suggest that the steady state nucleation theory can explain well the appearance of these four zones, and the first-order importance of the temperature dependency of surface free energy in the nucleation of aragonite. Furthermore, the addition of an impurity will likely result in the change of these energies, and this precipitation diagram gives a new basis for interpreting the nature of the polymorphs precipitated in both inorganic and biological environments.

  20. Improving precipitation estimates over the western United States using GOES-R precipitation data

    Science.gov (United States)

    Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.

    2017-12-01

    Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.

  1. Merging Satellite Precipitation Products for Improved Streamflow Simulations

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.

    2017-12-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. Therefore, we propose to merge SM2RAIN and the widely used TMPA 3B42RT product across Italy for a 6-year period (2010-2015) at daily/0.25deg temporal/spatial scale. Two conceptually different merging techniques are compared to each other and evaluated in terms of different statistical metrics, including hit bias, threat score, false alarm rates, and missed rainfall volumes. The first is based on the maximization of the temporal correlation with a reference dataset, while the second is based on a Bayesian approach, which provides a probabilistic satellite precipitation estimate derived from the joint probability distribution of observations and satellite estimates. The merged precipitation products show a better performance with respect to the parental satellite-based products in terms of categorical

  2. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Wasson, J.A.; Durham, D.L.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.

  3. The significant reduction of precipitation in Southern China during the Chinese Spring Festival

    Science.gov (United States)

    Zhang, J.; Gong, D.

    2016-12-01

    Long-term observational data from 2001 to 2012 over 339 stations were used to analyze the precipitation in southern China during the Chinese Spring Festival (CSF). It reveals both the precipitation frequency and precipitation intensity have a significant reduction around CSF holiday. From the second day to the sixth day after the Lunar New Year's Day, the daily mean precipitation frequency anomaly is -9%. At the same time, more than 90% stations in the study area have negative anomalies. The precipitation intensity has a continuous reduction from day 2 to day 4, which is up to 2mm in day 3. Other relevant variables, such as relative humidity and sunshine duration, have corresponding results to the precipitation's reduction during CSF. Atmospheric water vapor field's change leads to the reduction phenomenon. We analyzed the circulation configuration using the ERA-interim reanalysis data. It shows the anomalous north wind decrease the vapor and further affects the precipitation during the CSF period. The pollutants' concentration decreased around CSF, which may influence the meteorological field and lead to the anomalous north wind. Based on the S2S (sub-seasonal to seasonal prediction project) data, we calculated the circulation forecast difference to CSF period between clean days and polluted days. The result proves the north wind's existence and suggests that the aerosol decrease because of human activity may be partly responsible for the precipitation reduction during CSF.

  4. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  5. Relative flotation response of zinc sulfide: Mineral and precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.R.; Finch, J.A. [McGill Univ., Montreal, Quebec (Canada). Dept. of Mining and Metallurgical Engineering; Zhou, Z.; Xu, Z. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering

    1998-04-01

    Flotation continues to extend to nonmineral applications, including recycling of materials, soil remediation, and effluent treatment. A study has been conducted to compare the floatability of fine zinc sulfide (ZnS) precipitates and sphalerite particles. The floatability of the precipitates was significantly poorer compared to sphalerite particles when xanthate was used as the collector. The floatability was improved by using dodecylamine as the collector, and the difference in floatability between the precipitates was further improved significantly by incorporating a hydrodynamic cavitation tube in a conventional (mechanical) flotation cell. The improved kinetics was attributed to in-situ gas nucleation on the precipitates.

  6. Improving precipitation measurement

    Science.gov (United States)

    Strangeways, Ian

    2004-09-01

    Although rainfall has been measured for centuries scientifically and in isolated brief episodes over millennia for agriculture, it is still not measured adequately even today for climatology, water resources, and other precise applications. This paper outlines the history of raingauges, their errors, and describes the field testing over 3 years of a first guess design for an aerodynamic rain collector proposed by Folland in 1988. Although shown to have aerodynamic advantage over a standard 5 gauge, the new rain collector was found to suffer from outsplash in heavy rain. To study this problem, and to derive general basic design rules for aerodynamic gauges, its performance was investigated in turbulent, real-world conditions rather than in the controlled and simplified environment of a wind tunnel or mathematical model as in the past. To do this, video records were made using thread tracers to indicate the path of the wind, giving new insight into the complex flow of natural wind around and within raingauges. A new design resulted, and 2 years of field testing have shown that the new gauge has good aerodynamic and evaporative characteristics and minimal outsplash, offering the potential for improved precipitation measurement.

  7. Evaluation of the significance of abrupt changes in precipitation and runoff process in China

    Science.gov (United States)

    Xie, Ping; Wu, Ziyi; Sang, Yan-Fang; Gu, Haiting; Zhao, Yuxi; Singh, Vijay P.

    2018-05-01

    Abrupt changes are an important manifestation of hydrological variability. How to accurately detect the abrupt changes in hydrological time series and evaluate their significance is an important issue, but methods for dealing with them effectively are lacking. In this study, we propose an approach to evaluate the significance of abrupt changes in time series at five levels: no, weak, moderate, strong, and dramatic. The approach was based on an index of correlation coefficient calculated for the original time series and its abrupt change component. A bigger value of correlation coefficient reflects a higher significance level of abrupt change. Results of Monte-Carlo experiments verified the reliability of the proposed approach, and also indicated the great influence of statistical characteristics of time series on the significance level of abrupt change. The approach was derived from the relationship between correlation coefficient index and abrupt change, and can estimate and grade the significance levels of abrupt changes in hydrological time series. Application of the proposed approach to ten major watersheds in China showed that abrupt changes mainly occurred in five watersheds in northern China, which have arid or semi-arid climate and severe shortages of water resources. Runoff processes in northern China were more sensitive to precipitation change than those in southern China. Although annual precipitation and surface water resources amount (SWRA) exhibited a harmonious relationship in most watersheds, abrupt changes in the latter were more significant. Compared with abrupt changes in annual precipitation, human activities contributed much more to the abrupt changes in the corresponding SWRA, except for the Northwest Inland River watershed.

  8. Improving the Regional Applicability of Satellite Precipitation Products by Ensemble Algorithm

    Directory of Open Access Journals (Sweden)

    Waseem Muhammad

    2018-04-01

    Full Text Available Satellite-based precipitation products (e.g., Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG and its predecessor, Tropical Rainfall Measuring Mission (TRMM are a critical source of precipitation estimation, particularly for a region with less, or no, hydrometric networking. However, the inconsistency in the performance of these products has been observed in different climatic and topographic diverse regions, timescales, and precipitation intensities and there is still room for improvement. Hence, using a projected ensemble algorithm, the regional precipitation estimate (RP is introduced here. The RP concept is mainly based on the regional performance weights derived from the Mean Square Error (MSE and the precipitation estimate from the TRMM product, that is, TRMM 3B42 (TR, real-time (late (IT and the research (post-real-time (IR products of IMERG. The overall results of the selected contingency table (e.g., Probability of detection (POD and statistical indices (e.g., Correlation Coefficient (CC signposted that the proposed RP product has shown an overall better potential to capture the gauge observations compared with the TR, IR, and IT in five different climatic regions of Pakistan from January 2015 to December 2016, at a diurnal time scale. The current study could be the first research providing preliminary feedback from Pakistan for global precipitation measurement researchers by highlighting the need for refinement in the IMERG.

  9. Exploring Database Improvements for GPM Constellation Precipitation Retrievals

    Science.gov (United States)

    Ringerud, S.; Kidd, C.; Skofronick Jackson, G.

    2017-12-01

    The Global Precipitation Measurement Mission (GPM) offers an unprecedented opportunity for understanding and mapping of liquid and frozen precipitation on a global scale. GPM mission development of physically based retrieval algorithms, for application consistently across the constellation radiometers, relies on combined active-passive retrievals from the GPM core satellite as a transfer standard. Radiative transfer modeling is then utilized to compute a priori databases at the frequency and footprint geometry of each individual radiometer. The Goddard Profiling Algorithm (GPROF) performs constellation retrievals across the GPM databases in a Bayesian framework, constraining searches using model data on a pixel-by-pixel basis. This work explores how the retrieval might be enhanced with additional information available within the brightness temperature observations themselves. In order to better exploit available information content, model water vapor is replaced with retrieved water vapor. Rather than treating each footprint as a 1D profile alone in space, information regarding Tb variability in the horizontal is added as well as variability in the time dimension. This additional information is tested and evaluated for retrieval improvement in the context of the Bayesian retrieval scheme. Retrieval differences are presented as a function of precipitation and surface type for evaluation of where the added information proves most effective.

  10. Utilizing the Vertical Variability of Precipitation to Improve Radar QPE

    Science.gov (United States)

    Gatlin, Patrick N.; Petersen, Walter A.

    2016-01-01

    Characteristics of the melting layer and raindrop size distribution can be exploited to further improve radar quantitative precipitation estimation (QPE). Using dual-polarimetric radar and disdrometers, we found that the characteristic size of raindrops reaching the ground in stratiform precipitation often varies linearly with the depth of the melting layer. As a result, a radar rainfall estimator was formulated using D(sub m) that can be employed by polarimetric as well as dual-frequency radars (e.g., space-based radars such as the GPM DPR), to lower the bias and uncertainty of conventional single radar parameter rainfall estimates by as much as 20%. Polarimetric radar also suffers from issues associated with sampling the vertical distribution of precipitation. Hence, we characterized the vertical profile of polarimetric parameters (VP3)-a radar manifestation of the evolving size and shape of hydrometeors as they fall to the ground-on dual-polarimetric rainfall estimation. The VP3 revealed that the profile of ZDR in stratiform rainfall can bias dual-polarimetric rainfall estimators by as much as 50%, even after correction for the vertical profile of reflectivity (VPR). The VP3 correction technique that we developed can improve operational dual-polarimetric rainfall estimates by 13% beyond that offered by a VPR correction alone.

  11. Anticipated Improvements in Precipitation Physics and Understanding of Water Cycle from GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late-2007 to early-2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly AS1 in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and

  12. Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments

    Directory of Open Access Journals (Sweden)

    Mateusz Szcześniak

    2015-02-01

    Full Text Available Ground-based precipitation data are still the dominant input type for hydrological models. Spatial variability in precipitation can be represented by spatially interpolating gauge data using various techniques. In this study, the effect of daily precipitation interpolation methods on discharge simulations using the semi-distributed SWAT (Soil and Water Assessment Tool model over a 30-year period is examined. The study was carried out in 11 meso-scale (119–3935 km2 sub-catchments lying in the Sulejów reservoir catchment in central Poland. Four methods were tested: the default SWAT method (Def based on the Nearest Neighbour technique, Thiessen Polygons (TP, Inverse Distance Weighted (IDW and Ordinary Kriging (OK. =The evaluation of methods was performed using a semi-automated calibration program SUFI-2 (Sequential Uncertainty Fitting Procedure Version 2 with two objective functions: Nash-Sutcliffe Efficiency (NSE and the adjusted R2 coefficient (bR2. The results show that: (1 the most complex OK method outperformed other methods in terms of NSE; and (2 OK, IDW, and TP outperformed Def in terms of bR2. The median difference in daily/monthly NSE between OK and Def/TP/IDW calculated across all catchments ranged between 0.05 and 0.15, while the median difference between TP/IDW/OK and Def ranged between 0.05 and 0.07. The differences between pairs of interpolation methods were, however, spatially variable and a part of this variability was attributed to catchment properties: catchments characterised by low station density and low coefficient of variation of daily flows experienced more pronounced improvement resulting from using interpolation methods. Methods providing higher precipitation estimates often resulted in a better model performance. The implication from this study is that appropriate consideration of spatial precipitation variability (often neglected by model users that can be achieved using relatively simple interpolation methods can

  13. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  14. Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    Science.gov (United States)

    Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.

    2018-02-01

    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.

  15. Improvements to the gridding of precipitation data across Europe under the E-OBS scheme

    Science.gov (United States)

    Cornes, Richard; van den Besselaar, Else; Jones, Phil; van der Schrier, Gerard; Verver, Ge

    2016-04-01

    Gridded precipitation data are a valuable resource for analyzing past variations and trends in the hydroclimate. Such data also provide a reference against which model simulations may be driven, compared and/or adjusted. The E-OBS precipitation dataset is widely used for such analyses across Europe, and is particularly valuable since it provides a spatially complete, daily field across the European domain. In this analysis, improvements to the E-OBS precipitation dataset will be presented that aim to provide a more reliable estimate of grid-box precipitation values, particularly in mountainous areas and in regions with a relative sparsity of input station data. The established three-stage E-OBS gridding scheme is retained, whereby monthly precipitation totals are gridded using a thin-plate spline; daily anomalies are gridded using indicator kriging; and the final dataset is produced by multiplying the two grids. The current analysis focuses on improving the monthly thin-plate spline, which has overall control on the final daily dataset. The results from different techniques are compared and the influence on the final daily data is assessed by comparing the data against gridded country-wide datasets produced by various National Meteorological Services

  16. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    Science.gov (United States)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  17. Linking precipitation, evapotranspiration and soil moisture content for the improvement of predictability over land

    Science.gov (United States)

    Catalano, Franco; Alessandri, Andrea; De Felice, Matteo

    2013-04-01

    Climate change scenarios are expected to show an intensification of the hydrological cycle together with modifications of evapotranspiration and soil moisture content. Evapotranspiration changes have been already evidenced for the end of the 20th century. The variance of evapotranspiration has been shown to be strongly related to the variance of precipitation over land. Nevertheless, the feedbacks between evapotranspiration, soil moisture and precipitation have not yet been completely understood at present-day. Furthermore, soil moisture reservoirs are associated to a memory and thus their proper initialization may have a strong influence on predictability. In particular, the linkage between precipitation and soil moisture is modulated by the effects on evapotranspiration. Therefore, the investigation of the coupling between these variables appear to be of primary importance for the improvement of predictability over the continents. The coupled manifold (CM) technique (Navarra and Tribbia 2005) is a method designed to separate the effects of the variability of two variables which are connected. This method has proved to be successful for the analysis of different climate fields, like precipitation, vegetation and sea surface temperature. In particular, the coupled variables reveal patterns that may be connected with specific phenomena, thus providing hints regarding potential predictability. In this study we applied the CM to recent observational datasets of precipitation (from CRU), evapotranspiration (from GIMMS and MODIS satellite-based estimates) and soil moisture content (from ESA) spanning a time period of 23 years (1984-2006) with a monthly frequency. Different data stratification (monthly, seasonal, summer JJA) have been employed to analyze the persistence of the patterns and their characteristical time scales and seasonality. The three variables considered show a significant coupling among each other. Interestingly, most of the signal of the

  18. Effective assimilation of global precipitation: simulation experiments

    Directory of Open Access Journals (Sweden)

    Guo-Yuan Lien

    2013-07-01

    Full Text Available Past attempts to assimilate precipitation by nudging or variational methods have succeeded in forcing the model precipitation to be close to the observed values. However, the model forecasts tend to lose their additional skill after a few forecast hours. In this study, a local ensemble transform Kalman filter (LETKF is used to effectively assimilate precipitation by allowing ensemble members with better precipitation to receive higher weights in the analysis. In addition, two other changes in the precipitation assimilation process are found to alleviate the problems related to the non-Gaussianity of the precipitation variable: (a transform the precipitation variable into a Gaussian distribution based on its climatological distribution (an approach that could also be used in the assimilation of other non-Gaussian observations and (b only assimilate precipitation at the location where at least some ensemble members have precipitation. Unlike many current approaches, both positive and zero rain observations are assimilated effectively. Observing system simulation experiments (OSSEs are conducted using the Simplified Parametrisations, primitivE-Equation DYnamics (SPEEDY model, a simplified but realistic general circulation model. When uniformly and globally distributed observations of precipitation are assimilated in addition to rawinsonde observations, both the analyses and the medium-range forecasts of all model variables, including precipitation, are significantly improved as compared to only assimilating rawinsonde observations. The effect of precipitation assimilation on the analyses is retained on the medium-range forecasts and is larger in the Southern Hemisphere (SH than that in the Northern Hemisphere (NH because the NH analyses are already made more accurate by the denser rawinsonde stations. These improvements are much reduced when only the moisture field is modified by the precipitation observations. Both the Gaussian transformation and

  19. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  20. Evidences of Significant Nonstationarity in Precipitation Extremes over Urbanizing Areas in India

    Science.gov (United States)

    Singh, J.; H, V.; Karmakar, S.; Ghosh, S.

    2014-12-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the analytically perceivable impacts of climate change, urbanization and concomitant land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which inturn effects the policy and decision-making. Past studies provided sufficient evidences on changes in the characteristics of Indian monsoon rainfall extremes and further it has been attributed to climate change and urbanization, which indicates the presence of significant nonstationary in the Indian monsoon extremes. Therefore, a comprehensive nonstationary frequency analysis must be conducted all over India to obtain realistic return periods. The present study aims to conduct a nonstationary frequency analysis of the precipitation extremes over India at 1o resolution for a period of 1901-2004, with the implementation of the Generalized Additive Model for Location, Scale and Shape (GAMLSS) parameters. A cluster of 74 GAMLSS models has been developed by considering nonstationary in different combinations of distribution parameters and regression techniques (families of parametric polynomials and nonparametric/smoothing cubic spline), which overcomes the limitations of the previous studies. Further, for identification of urban, urbanizing and rural grids, an population density data has been utilized. The results showed the significant differences in the stationary and nonstationary return periods for the urbanizing grids, when compared to urbanized and rural grids. The results give implications of presence of nonstationary in the precipitation extremes more prominently in urbanizing areas compare to urbanized and rural areas.

  1. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  2. A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation

    Directory of Open Access Journals (Sweden)

    Sabrina Wahl

    2017-10-01

    Full Text Available Atmospheric reanalyses are a state-of-the-art tool to generate consistent and realistic state estimates of the atmospheric system. They provide a synthesis of various heterogeneous observational systems and model simulations using a physical model together with a data assimilation scheme. Current reanalyses are mainly global, while regional reanalyses are emerging for North America, the polar region, and most recently for Europe. However, deep convection is still parameterized even in the regional reanalyses. A novel convective-scale regional reanalysis system for Central Europe (COSMO-REA2 has been developed by the Hans-Ertel Center for Weather Research – Climate Monitoring Branch. The system is based on the COSMO model and uses observational nudging for regional data assimilation. In addition to conventional observations, radar-derived rain rates are assimilated using latent heat nudging. With a horizontal grid-spacing of 2 km, the model runs without parameterization of deep moist convection. COSMO-REA2 produces horizontal wind fields that represent a realistic energy spectrum for horizontal scales above 14 km. COSMO-REA2 is currently available for seven years from 2007 to 2013.This study illustrates the improved representation of local precipitation over Germany by the convective-scale reanalysis COSMO-REA2 compared to coarser gridded European and global reanalyses. A systematic verification using rain gauge data reveals the added value of high-resolution regional atmospheric reanalyses on different time scales. On monthly to annual time scales, regional reanalyses yield better estimates of the spatial variability of precipitation patterns which can not be provided by coarser gridded global models. On hourly to daily time scales, the convective-scale reanalysis substantially improves the representation of local precipitation in two ways. On the one hand, COSMO-REA2 shows an enhanced representation of observed frequencies of local

  3. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  4. Precipitation Dynamical Downscaling Over the Great Plains

    Science.gov (United States)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  5. Improvements on heap leaching process for a refractory uranium ore and yellow cake precipitation process

    International Nuclear Information System (INIS)

    Feng Jianke

    2013-01-01

    Some problems such as formed harden matrix, ore heap compaction, poor permeability, and agglomeration of absorption resin occur during extracting uranium from a refractory uranium ore by heap leaching process. After some measures were taken, i.e. spraying a new ore heap by low concentration acid, two or more ore heaps in series leaching, turning ores in ore heap, the permeability was improved, acid consumption was reduced. Through precipitate circulation and aging, the yellow cake slurry in amorphous or microlite form was transformed to crystal precipitate, thus uranium content in yellow cake was improved, and water content in yellow cake was lowered with good economic benefits. (author)

  6. Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation

    Science.gov (United States)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker

    2018-04-01

    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as `field' or `global' significance. The block length for the local resampling tests is precisely determined to adequately account for the time series structure. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Daily precipitation climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. While the downscaled precipitation distributions are statistically indistinguishable from the observed ones in most regions in summer, the biases of some distribution characteristics are significant over large areas in winter. WRF-NOAH generates appropriate stationary fine-scale climate features in the daily precipitation field over regions of complex topography in both seasons and appropriate transient fine-scale features almost everywhere in summer. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is

  7. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  8. Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of China

    Science.gov (United States)

    Cai, Yancong; Jin, Changjie; Wang, Anzhi; Guan, Dexin; Wu, Jiabing; Yuan, Fenghui; Xu, Leilei

    2015-01-01

    Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS). This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998–2012. Comparative analysis at three timescales (daily, monthly and annual scale) indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%). Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these data are

  9. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China.

    Directory of Open Access Journals (Sweden)

    Yancong Cai

    Full Text Available Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS. This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998-2012. Comparative analysis at three timescales (daily, monthly and annual scale indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%. Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these

  10. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau

    Science.gov (United States)

    Wang, Li; Zhang, Fan; Zhang, Hongbo; Scott, Christopher A.; Zeng, Chen; Shi, Xiaonan

    2018-01-01

    Precipitation is one of the most critical inputs for models used to improve understanding of hydrological processes. In high mountain areas, it is challenging to generate a reliable precipitation data set capturing the spatial and temporal heterogeneity due to the harsh climate, extreme terrain and the lack of observations. This study conducts intensive observation of precipitation in the Mabengnong catchment in the southeast of the Tibetan Plateau during July to August 2013. Because precipitation is greatly influenced by altitude, the observed data are used to characterize the precipitation gradient (PG) and hourly distribution (HD), showing that the average PG is 0.10, 0.28 and 0.26 mm/d/100 m and the average duration is around 0.1, 0.8 and 5.2 h for trace, light and moderate rain, respectively. A distributed biosphere hydrological model based on water and energy budgets with improved physical process for snow (WEB-DHM-S) is applied to simulate the hydrological processes with gridded precipitation data derived from a lower altitude meteorological station and the PG and HD characterized for the study area. The observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are used for model calibration and validation. Runoff, SCA and LST simulations all show reasonable results. Sensitivity analyses illustrate that runoff is largely underestimated without considering PG, indicating that short-term intensive precipitation observation has the potential to greatly improve hydrological modelling of poorly gauged high mountain catchments.

  11. Assessment of global precipitation measurement satellite products over Saudi Arabia

    Science.gov (United States)

    Mahmoud, Mohammed T.; Al-Zahrani, Muhammad A.; Sharif, Hatim O.

    2018-04-01

    Most hydrological analysis and modeling studies require reliable and accurate precipitation data for successful simulations. However, precipitation measurements should be more representative of the true precipitation distribution. Many approaches and techniques are used to collect precipitation data. Recently, hydrometeorological and climatological applications of satellite precipitation products have experienced a significant improvement with the emergence of the latest satellite products, namely, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) products, which can be utilized to estimate and analyze precipitation data. This study focuses on the validation of the IMERG early, late and final run rainfall products using ground-based rain gauge observations throughout Saudi Arabia for the period from October 2015 to April 2016. The accuracy of each IMERG product is assessed using six statistical performance measures to conduct three main evaluations, namely, regional, event-based and station-based evaluations. The results indicate that the early run product performed well in the middle and eastern parts as well as some of the western parts of the country; meanwhile, the satellite estimates for the other parts fluctuated between an overestimation and an underestimation. The late run product showed an improved accuracy over the southern and western parts; however, over the northern and middle parts, it showed relatively high errors. The final run product revealed significantly improved precipitation estimations and successfully obtained higher accuracies over most parts of the country. This study provides an early assessment of the performance of the GPM satellite products over the Middle East. The study findings can be used as a beneficial reference for the future development of the IMERG algorithms.

  12. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO

    Science.gov (United States)

    Manatsa, Desmond; Mushore, Terrence; Lenouo, Andre

    2017-01-01

    The provision of timely and reliable climate information on which to base management decisions remains a critical component in drought planning for southern Africa. In this observational study, we have not only proposed a forecasting scheme which caters for timeliness and reliability but improved relevance of the climate information by using a novel drought index called the standardised precipitation evapotranspiration index (SPEI), instead of the traditional precipitation only based index, the standardised precipitation index (SPI). The SPEI which includes temperature and other climatic factors in its construction has a more robust connection to ENSO than the SPI. Consequently, the developed ENSO-SPEI prediction scheme can provide quantitative information about the spatial extent and severity of predicted drought conditions in a way that reflects more closely the level of risk in the global warming context of the sub region. However, it is established that the ENSO significant regional impact is restricted only to the period December-March, implying a revisit to the traditional ENSO-based forecast scheme which essentially divides the rainfall season into the two periods, October to December and January to March. Although the prediction of ENSO events has increased with the refinement of numerical models, this work has demonstrated that the prediction of drought impacts related to ENSO is also a reality based only on observations. A large temporal lag is observed between the development of ENSO phenomena (typically in May of the previous year) and the identification of regional SPEI defined drought conditions. It has been shown that using the Southern Africa Regional Climate Outlook Forum's (SARCOF) traditional 3-month averaged Nino 3.4 SST index (June to August) as a predictor does not have an added advantage over using only the May SST index values. In this regard, the extended lead time and improved skill demonstrated in this study could immensely benefit

  13. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  14. Applying an orographic precipitation model to improve mass balance modeling of the Juneau Icefield, AK

    Science.gov (United States)

    Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.

    2017-12-01

    Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with

  15. Stochastic error model corrections to improve the performance of bottom-up precipitation products for hydrologic applications

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Ciabatta, L.; Brocca, L.

    2016-12-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning, and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. However, uncertainties in the SM2RAIN product are still not well known and could represent a limitation in utilizing this dataset for hydrological applications. Therefore, quantifying the uncertainty associated with SM2RAIN is necessary for enabling its use. The study is conducted over the Italian territory for a 5-yr period (2010-2014). A number of satellite precipitation error properties, typically used in error modeling, are investigated and include probability of detection, false alarm rates, missed events, spatial correlation of the error, and hit biases. After this preliminary uncertainty analysis, the potential of applying the stochastic rainfall error model SREM2D to correct SM2RAIN and to improve its performance in hydrologic applications is investigated. The use of SREM2D for

  16. Significance of the air moisture source on the stable isotope composition of the precipitation in Hungary

    Science.gov (United States)

    Czuppon, György; Bottyán, Emese; Krisztina, Krisztina; Weidinger, Tamás; Haszpra, László

    2017-04-01

    In the last few years, the analysis of backward trajectories has become a common use for identifying moisture uptake regions for the precipitation of various regions. Hungary is influenced by meteorological (climatological) conditions of Atlantic, Mediterranean and North/East regions therefore this area is sensitive to detect changes in the atmospheric circulation. In this study we present the result of the investigation about the determination of air moisture source regions for six localities in Hungary for more than four years. To reconstruct the path of the air moisture from the source region, we ran the NOAA HYSPLIT trajectory model using the GDAS database with 1° spatial and 6 hours temporal resolution for every precipitation event, for heights of 500, 1500 and 3000 m. We determined the location where water vapour entered into the atmosphere by calculating specific humidity along the trajectories. Five possible moisture source regions for precipitation were defined: Atlantic, North European, East European, Mediterranean and continental (local/convective). Additionally, this study evaluates the regional differences in stable isotope compositions of precipitation based on hydrogen and oxygen isotope analyses of daily rainwater samples. Stable isotope variations show systematic and significant differences between the regions. The variability of moisture source shows also systematic seasonal and spatial distribution. Interestingly, the most dominant among the identified source regions in all stations is the Mediterranean area; while the second is the Atlantic region. The ratio of the precipitations originated in Eastern and Northern Europe seem to correlate with the geographic position of the meteorological station. Furthermore, the ratios of the different moisture sources show intra annual variability. In each location, the amount weighted d-excess values were calculated for the identified moisture sources. The precipitation originated in the Mediterranean

  17. An Improved Process for Precipitating Cyanide Ions from the Barren Solution at Different pHs

    Science.gov (United States)

    Figueroa, Gabriela V.; Parga, José R.; Valenzuela, Jesus L.; Vázquez, Victor; Valenzuela, Alejandro; Rodriguez, Mario

    2016-02-01

    In recent decades, the use of metal sulfides instead of hydroxide precipitation in hydrometallurgical processes has gained prominence. Some arguments for its preferential use are as follows: a high degree of metal removal at relatively low pH values, the sparingly soluble nature of sulfide precipitates, favorable dewatering characteristics, and the stability of the formed metal sulfides. The Merrill-Crowe zinc-precipitation process has been applied worldwide in a large number of operations for the recovery of gold and silver from cyanide solutions. However, in some larger plants, the quality of this precious precipitate is low because copper, zinc and especially lead are precipitated along with gold and silver. This results in higher consumption of zinc dust and flux during the smelting of the precipitate, the formation of the matte, and a shorter crucible life. The results show that pH has a significant effect on the removal efficiency of zinc and copper cyanide ions. The optimal pH range was determined to be 3-4, and the removal efficiency of zinc and copper cyanide ions was up to 99%.

  18. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  19. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  20. Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System

    Science.gov (United States)

    Demirdjian, L.; Zhou, Y.; Huffman, G. J.

    2016-12-01

    This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.

  1. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    Science.gov (United States)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  2. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  3. Improved Hourly and Sub-Hourly Gauge Data for Assessing Precipitation Extremes in the U.S.

    Science.gov (United States)

    Lawrimore, J. H.; Wuertz, D.; Palecki, M. A.; Kim, D.; Stevens, S. E.; Leeper, R.; Korzeniewski, B.

    2017-12-01

    The NOAA/National Weather Service (NWS) Fischer-Porter (F&P) weighing bucket precipitation gauge network consists of approximately 2000 stations that comprise a subset of the NWS Cooperative Observers Program network. This network has operated since the mid-20th century, providing one of the longest records of hourly and 15-minute precipitation observations in the U.S. The lengthy record of this dataset combined with its relatively high spatial density, provides an important source of data for many hydrological applications including understanding trends and variability in the frequency and intensity of extreme precipitation events. In recent years NOAA's National Centers for Environmental Information initiated an upgrade of its end-to-end processing and quality control system for these data. This involved a change from a largely manual review and edit process to a fully automated system that removes the subjectivity that was previously a necessary part of dataset quality control and processing. An overview of improvements to this dataset is provided along with the results of an analysis of observed variability and trends in U.S. precipitation extremes since the mid-20th century. Multi-decadal trends in many parts of the nation are consistent with model projections of an increase in the frequency and intensity of heavy precipitation in a warming world.

  4. Flue gas conditioning for improved particle collection in electrostatic precipitators. First topical report, Results of laboratory screening of additives

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of {le} 10 {mu}m dia.

  5. STRONTIUM PRECIPITATION

    Science.gov (United States)

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  6. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye Chang [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States); Suslov, Sergey; Kim, Bong Joong; Stach, Eric A. [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2011-02-15

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  7. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    International Nuclear Information System (INIS)

    Ye Chang; Suslov, Sergey; Kim, Bong Joong; Stach, Eric A.; Cheng, Gary J.

    2011-01-01

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  8. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    Science.gov (United States)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  9. Removal of some Fission Products from Low Level Liquid Radioactive Waste by Chemical Precipitation liquid/Co-precipitation / Phosphate Coagulant

    International Nuclear Information System (INIS)

    Borai, E.H.; Attallah, M.F.; Hilal, M.A.; Abo-Aly, M.M.; Shehata, F.A.

    2008-01-01

    In Egypt radioactive waste has been generated from various uses of radioactive materials. Presence of cesium demonstrated a major problem from the removal point of view even by conventional and advanced technologies. Selective chemical precipitation has been oriented for removal of some fission products including 137 Cs from low level liquid radioactive waste (LLLRW). The aim of the present study was focused to investigate the effectiveness of various phosphate compounds that improved the precipitation process and hence the decontamination factor. The results showed that, maximum removal of 137 Cs reaching 46.4 % using di-sodium hydrogen phosphate as a selective coagulant. It was found that significant enhancement of co-precipitation of 137 Cs (62.5 %) was obtained due to presence of Nd 3+ in the LLLRW

  10. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  11. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China

    Directory of Open Access Journals (Sweden)

    Fengrui Chen

    2016-06-01

    Full Text Available As the successor of the Tropical Rainfall Measuring Mission (TRMM, the Global Precipitation Measurement (GPM mission significantly improves the spatial resolution of precipitation estimates from 0.25° to 0.1°. The present study analyzed the error structures of Integrated Multisatellite Retrievals for GPM (IMERG monthly precipitation products over Mainland China from March 2014 to February 2015 using gauge measurements at multiple spatiotemporal scales. Moreover, IMERG products were also compared with TRMM 3B43 products. The results show that: (1 overall, IMERG can capture the spatial patterns of precipitation over China well. It performs a little better than TRMM 3B43 at seasonal and monthly scales; (2 the performance of IMERG varies greatly spatially and temporally. IMERG performs better at low latitudes than at middle latitudes, and shows worse performance in winter than at other times; (3 compared with TRMM 3B43, IMERG significantly improves the estimation accuracy of precipitation over the Xinjiang region and the Qinghai-Tibetan Plateau, especially over the former where IMERG increases Pearson correlation coefficient by 0.18 and decreases root-mean-square error by 54.47 mm for annual precipitation estimates. However, most IMERG products over these areas are unreliable; and (4 IMERG shows poor performance in winter as TRMM 3B43 even if GPM improved its ability to sense frozen precipitation. Most of them over North China are unreliable during this period.

  12. Intercomparison of spaceborne precipitation radars and its applications in examining precipitation-topography relationships in the Tibetan Plateau

    Science.gov (United States)

    Tang, G.; Gao, J.; Long, D.

    2017-12-01

    Precipitation is one of the most important components in the water and energy cycles. Spaceborne radars are considered the most direct technology for observing precipitation from space since 1998. This study compares and evaluates the only three existing spaceborne precipitation radars, i.e., the Ku-band precipitation radar (TRMM PR), the W-band Cloud Profiling Radar (CloudSat CPR), and the Ku/Ka-band Dual-frequency Precipitation Radar (GPM DPR). In addition, TRMM PR and GPM DPR are evaluated against hourly rain gauge data in Mainland China. The Tibetan Plateau (TP) is known as the Earth's third pole where precipitation is affected profoundly by topography. However, ground gauges are extremely sparse in the TP, and spaceborne radars can provide valuable data with relatively high accuracy. The relationships between precipitation and topography over the TP are investigated using 17-year TRMM PR data and 2-year GPM DPR data, in combination with rain gauge data. Results indicate that: (1) DPR and PR agree with each other and correlate very well with gauges in Mainland China. DPR improves light precipitation detectability significantly compared with PR. However, DPR high sensitivity scans (HS) deviates from DPR normal and matched scans (NS and MS) and PR in the comparison based on global coincident events and rain gauges in China; (2) CPR outperforms the other two radars in terms of light precipitation detection. In terms of global snowfall estimation, DPR and CPR show very different global snowfall distributions originating from different frequencies, retrieval algorithms, and sampling characteristics; and (3) Precipitation generally decreases exponentially with increasing elevation in the TP. The precipitation-topography relationships are regressed using exponential fitting in seventeen river basins in the TP with good coefficients of determination. Due to the short time span of GPM DPR, the relationships based on GPM DPR data are less robust than those derived from

  13. Mixing and solid suspension in a stirred precipitator

    International Nuclear Information System (INIS)

    Chang, T.P.

    1986-04-01

    Full-scale mixing and solid suspension studies have been conducted to determine the optimum agitator design for precipitators used in plutonium processing. Design considerations include the geometry of precipitator vessels, feed locations, flow patterns, and product requirements. Evaluations of various agitator designs are based on their capabilities: (1) to achieve uniform mixing of reactants in minimum time, (2) to suspend slurry uniformly throughout the vessel, and (3) to minimize power consumption without inducing air entrainment. Tests of full-scale agitator designs showed that significant improvements in mixing, solid suspension, and energy consumption were achieved

  14. The significance level and repeatability for isotope-temperature coefficient of precipitation in China

    International Nuclear Information System (INIS)

    Wang Dongsheng; Wang Jinglan

    2003-01-01

    The good linear relationship with significance level α = 0.01 exists between isotope in precipitation and surface air temperature with multi-year average in 32 stations of China, and the yearly δD-temperature coefficient = 3.1‰/1℃ and the yearly δ 18 O-temperature coefficient = 0.36‰/1℃, and its determination coefficient R 2 = 0.67 and 0.64 respectively. So the isotope-temperature coefficient with yearly average can serve as the temperature yearly measure. But the monthly average isotope-temperature coefficient in each station is variable according to both of space and time, and its repeatability is determined by the meteorological regimes. According to the monthly isotope-temperature coefficient (B) and the coefficient of determination (R 2 ) and its α, all of China can be zoned the following three belts: (1) In the North Belt, B>O, R 2 ≈ 0.3-0.65, α = 0.01, the relation between monthly isotope in precipitation and surface air temperature (RMIT) belongs to a direct correlation and is closer in 99% probability; (2) In the South Belt, B

  15. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  16. Tests for improvement of decontamination factors on RWTP technological line of precipitation

    International Nuclear Information System (INIS)

    Popovici, C.

    1998-01-01

    Low and intermediate level radioactive wastes are produced from diverse applications of radionuclides and radioactive materials in industry, medicine, agriculture and research. Many of the liquid wastes need treatment for safe management. Chemical precipitation process is well established for the removal of radioactive from LLW and ILW. The precipitation of insoluble compounds is one of the oldest and most used process for the treatment of aqueous waste. The precipitation can be performed either in a simple step or by combined chemical treatment which mainly includes as radioactive carries iron oxo-hydroxides, iron phosphate, calcium phosphate and cooper ferrocyanide. The contaminants are removed from LLW and ILW during precipitation by different mechanisms such as: coagulation and flocculation process, precipitation and co-precipitation, adsorption on the coagulant aid, ion exchange and physical enmeshment by coagulant aid. All these processes are directly dependent on the precipitate properties and its structure which are connected with the initial system composition and the precipitation procedure. Chemical precipitation method for treatment of LLW and ILW by co-precipitation of caesium with cooper ferrocyanide was employed on the real radioactive wastes where the volumes were 3 m 3 , 24 m 3 and 30 m 3 . The percentage removals of Cs-137 from 2285 Bq, 1310 Bq and 1232 Bq per litre of real effluents were 98.8%, 98.9% and 99.1%, respectively. Test runs for removal of Cs-137 from the wastes varied from 90% to 95%. High decontamination factors were observed in the pH range of 9 to 10.5. (author)

  17. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    Science.gov (United States)

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  18. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  19. Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations

    Science.gov (United States)

    Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.

    2017-01-01

    Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.

  20. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    Science.gov (United States)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  1. Two-stage precipitation of plutonium trifluoride

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1984-04-01

    Plutonium trifluoride was precipitated using a two-stage precipitation system. A series of precipitation experiments identified the significant process variables affecting precipitate characteristics. A mathematical precipitation model was developed which was based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter that can be used to control particle characteristics

  2. Augmenting Satellite Precipitation Estimation with Lightning Information

    Energy Technology Data Exchange (ETDEWEB)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, AL; Hsu, Kuo-Lin [University of California, Irvine; Behrangi, Ali [Jet Propulsion Laboratory, Pasadena, CA; Aanstoos, James [Mississippi State University (MSU)

    2013-01-01

    We have used lightning information to augment the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network - Cloud Classification System (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from GOES-12 infrared data, into either electrified (EL) or non-electrified (NEL) patches. A set of features is extracted separately for the EL and NEL cloud patches. The features for the EL cloud patches include new features based on the lightning information. The cloud patches are classified and clustered using self-organizing maps (SOM). Then brightness temperature and rain rate (T-R) relationships are derived for the different clusters. Rain rates are estimated for the cloud patches based on their representative T-R relationship. The Equitable Threat Score (ETS) for daily precipitation estimates is improved by almost 12% for the winter season. In the summer, no significant improvements in ETS are noted.

  3. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  4. Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods

    Directory of Open Access Journals (Sweden)

    Milan Gocic

    2016-01-01

    Full Text Available The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010 in three subregions were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration index (PCI was presented. For the purpose of PCI prediction, three Support Vector Machine (SVM models, namely, SVM coupled with the discrete wavelet transform (SVM-Wavelet, the firefly algorithm (SVM-FFA, and using the radial basis function (SVM-RBF, were developed and used. The estimation and prediction results of these models were compared with each other using three statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI.

  5. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  6. Diagnosis of Moist Vorticity and Moist Divergence for a Heavy Precipitation Event in Southwestern China

    Institute of Scientific and Technical Information of China (English)

    Gang LI; Daoyong YANG; Xiaohua JIANG; Jing PAN; Yanke TAN

    2017-01-01

    A regional heavy precipitation event that occurred over Sichuan Province on 8-9 September 2015 is analyzed based on hourly observed precipitation data obtained from weather stations and NCEP FNL data.Two moist dynamic parameters, i.e., moist vorticity (mζ) and moist divergence (mδ), are used to diagnose this heavy precipitation event.Results show that the topography over southwestern China has a significant impact on the ability of these two parameters to diagnose precipitation.When the impact of topography is weak (i.e., low altitude), mζ cannot exactly depict the location of precipitation in the initial stage of the event.Then, as the precipitation develops, its ability to depict the location improves significantly.In particular, mζ coincides best with the location of precipitation during the peak stage of the event.Besides, the evolution of the mζ center shows high consistency with the evolution of the precipitation center.For mδ,although some false-alarm regions are apparent, it reflects the location of precipitation almost entirely during the precipitation event.However, the mδ center shows inconsistency with the precipitation center.These results suggest that both mζ and mδ have a significant ability to predict the location of precipitation.Moreover, mζ has a stronger ability than mδ in terms of predicting the variability of the precipitation center.However, when the impact of topography is strong (i.e., high altitude), both of these two moist dynamic parameters are unable to depict the location and center of precipitation during the entire precipitation event, suggesting their weak ability to predict precipitation over complex topography.

  7. Phase Behavior Modeling of Asphaltene Precipitation for Heavy Crudes: A Promising Tool Along with Experimental Data

    Science.gov (United States)

    Tavakkoli, M.; Kharrat, R.; Masihi, M.; Ghazanfari, M. H.; Fadaei, S.

    2012-12-01

    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an

  8. Secondary precipitation in an Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K.

    2007-01-01

    Interruption of a conventional T6 heat treatment at 177 deg. C for the Al-Mg-Si-Cu alloy 6061 after a short period of time (20 min), by inserting a dwell period at a lower temperature (e.g. 65 deg. C), promotes secondary precipitation of Guinier-Preston (GP) zones. As a consequence, a much greater number of precursors to the β'' precipitates are produced so that a finer and denser dispersion of this phase is formed when T6 ageing is resumed. This change in microstructure causes significant and simultaneous improvements in tensile properties and fracture toughness. Secondary precipitation of GP zones occurs through a gradual evolution of a large number of Mg-Si(-Cu)-vacancy co-clusters formed during the initial ageing at 177 deg. C. The precise mechanism of secondary precipitation has been revealed by three-dimensional atom probe microscopy supplemented by transmission electron microscopy and differential scanning calorimetry

  9. Bacterial carbonate precipitation improves water absorption of interlocking compressed earth block (ICEB)

    Science.gov (United States)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2017-11-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. The addition of many alternative materials into interlocking block in order to improve the durability has been reported. However there are currently lack of report and evidence on the application of biocalcification or microbiologically induced calcite precipitation (MICP) in improving the engineering properties of ICEB. This paper evaluate the effect of UB in improving the water absorption properties of ICEB. This paper also provide the results on SEM analysis of addition of 1%, 3% and 5% UB in ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the reduction of 14.72% with 5% UB on initial water absorption followed by the results for water absorption by 24-hour soaking which also indicates reduction of 14.68% with 5% UB on 28th days of testing compared to control specimen. It was expected that the reduction of water absorption was due to the plugging of pores by the bacterial calcite which prevent ingression of water in ICEB samples. Therefore this study hopes that the positive results from the UB as improving in water absorption of ICEB will lead to improve others ICEB properties and others construction materials.

  10. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  11. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  12. Variability of Evaporation and Precipitation over the Ocean from Satellite Data

    Science.gov (United States)

    Malinin, V. N.; Gordeeva, S. M.

    2017-12-01

    HOAPS-3 and PMWC satellite archives for 1988-2008 are used to estimate moisture-exchange components between the ocean and atmosphere (evaporation, precipitation, and the difference between them or effective evaporation). Moisture-exchange components for the entire World Ocean and for the North Atlantic Ocean within 30°-60° N are calculated. A strong overestimation of the global values of effective evaporation by HOAPS data (mainly caused by a decrease in precipitation) is shown. In the interannual variability of effective evaporation, there is clearly an overestimated positive trend, which contradicts the real increase in the Global Sea Level. Large systematic errors in moisture-exchange components are revealed for the North Atlantic water area. According to HOAPS data, there is a significant underestimation of evaporation and effective evaporation. According to PMWC data, the amount of precipitation is significantly overestimated and evaporation is underestimated. As a consequence, effective evaporation becomes negative, which is impossible. Low accuracy in the estimation of moisture-exchange components and the need to improve old estimates and develop new evaporation and precipitation databases based on satellite data are noted.

  13. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective

  14. Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    Chih-Chien Tsai

    2014-03-01

    Full Text Available This study develops a Doppler radar data assimilation system, which couples the local ensemble transform Kalman filter with the Weather Research and Forecasting model. The benefits of this system to quantitative precipitation nowcasting (QPN are evaluated with observing system simulation experiments on Typhoon Morakot (2009, which brought record-breaking rainfall and extensive damage to central and southern Taiwan. The results indicate that the assimilation of radial velocity and reflectivity observations improves the three-dimensional winds and rain-mixing ratio most significantly because of the direct relations in the observation operator. The patterns of spiral rainbands become more consistent between different ensemble members after radar data assimilation. The rainfall intensity and distribution during the 6-hour deterministic nowcast are also improved, especially for the first 3 hours. The nowcasts with and without radar data assimilation have similar evolution trends driven by synoptic-scale conditions. Furthermore, we carry out a series of sensitivity experiments to develop proper assimilation strategies, in which a mixed localisation method is proposed for the first time and found to give further QPN improvement in this typhoon case.

  15. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  16. Spatio-temporal variability of several eco-precipitation indicators in China

    Science.gov (United States)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of

  17. Global Precipitation Measurement (GPM) L-6

    Science.gov (United States)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2013-10-01

    The Global Precipitation Measurement (GPM) mission will advance the measurement of global precipitation, making possible high spatial resolution precipitation measurements. GPM will provide the first opportunity to calibrate measurements of global precipitation across tropical, mid-latitude, and polar regions. The GPM mission has the following scientific objectives: (1) Advance precipitation measurement capability from space through combined use of active and passive remote-sensing techniques; (2) Advance understanding of global water/energy cycle variability and fresh water availability; (3) Improve climate prediction by providing the foundation for better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release in the Earth's atmosphere; (4) Advance Numerical Weather Prediction (NWP) skills through more accurate and frequent measurements of instantaneous rain rates; and (5) Improve high impact natural hazard (flood/drought, landslide, and hurricane hazard) prediction capabilities. The GPM mission centers on the deployment of a Core Observatory carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. GPM, jointly led with the Japan Aerospace Exploration Agency (JAXA), involves a partnership with other international space agencies including the French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory is currently being prepared for shipment to Japan for launch. Launch is scheduled for February 2014 from JAXA's Tanegashima Space Center on an H-IIA 202 launch vehicle.

  18. Geographically weighted regression based methods for merging satellite and gauge precipitation

    Science.gov (United States)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  19. Centrifugal washing and recovery as an improved method for obtaining lignin precipitated from South African kraft mill black liquor

    CSIR Research Space (South Africa)

    Namane, M

    2015-10-01

    Full Text Available This study describes centrifugal recovery as an improved method for collection of lignin isolated from black liquor obtained from a South African kraft mill. Precipitation of lignin was achieved by utilising 6 M sulphuric acid. Recovery...

  20. Sea surface salinity and temperature-based predictive modeling of southwestern US winter precipitation: improvements, errors, and potential mechanisms

    Science.gov (United States)

    Liu, T.; Schmitt, R. W.; Li, L.

    2017-12-01

    Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.

  1. Synthetic weather generator SYNTOR: Implementing improvements in precipitation generation

    Science.gov (United States)

    Infrequent high precipitation events produce a disproportionally large amount of the annual surface runoff, soil erosion, nutrient movement, and watershed sediment yield. Numerical simulation of these watershed processes often lack sufficiently long weather data records to adequately capture the sto...

  2. First evaluation of the utility of GPM precipitation in global flood monitoring

    Science.gov (United States)

    Wu, H.; Yan, Y.; Gao, Z.

    2017-12-01

    The Global Flood Monitoring System (GFMS) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations (Wu et al., 2014). It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of the Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (4 hrs) and "late" (12 hrs) products for operational use. Specifically, this study is focused on (1) understanding the difference between the new IMERG products and other existing satellite precipitation products, e.g., TMPA, CMORPH, and ground observations; (2) addressing the challenge in the usage of the IMERG for flood monitoring through hydrologic models, given that only a short period of precipitation data record has been accumulated since the lunch of GPM in 2014; and (3) comparing the statistics of flood simulation based on the DRIVE model with IMERG, TMPA, CMORPH etc. as precipitation inputs respectively. Derivation of a global threshold map is a necessary step to define flood events out of modelling results, which requires a relatively longer historic information. A set of sensitivity tests are conducted by adjusting IMERG's light, moderate, heavy rain to existing precipitation products with long-term records separately, to optimize the strategy of PDF matching. Other aspects are also examined

  3. NWP-Based Adjustment of IMERG Precipitation for Flood-Inducing Complex Terrain Storms: Evaluation over CONUS

    Directory of Open Access Journals (Sweden)

    Xinxuan Zhang

    2018-04-01

    Full Text Available This paper evaluates the use of precipitation forecasts from a numerical weather prediction (NWP model for near-real-time satellite precipitation adjustment based on 81 flood-inducing heavy precipitation events in seven mountainous regions over the conterminous United States. The study is facilitated by the National Center for Atmospheric Research (NCAR real-time ensemble forecasts (called model, the Integrated Multi-satellitE Retrievals for GPM (IMERG near-real-time precipitation product (called raw IMERG and the Stage IV multi-radar/multi-sensor precipitation product (called Stage IV used as a reference. We evaluated four precipitation datasets (the model forecasts, raw IMERG, gauge-adjusted IMERG and model-adjusted IMERG through comparisons against Stage IV at six-hourly and event length scales. The raw IMERG product consistently underestimated heavy precipitation in all study regions, while the domain average rainfall magnitudes exhibited by the model were fairly accurate. The model exhibited error in the locations of intense precipitation over inland regions, however, while the IMERG product generally showed correct spatial precipitation patterns. Overall, the model-adjusted IMERG product performed best over inland regions by taking advantage of the more accurate rainfall magnitude from NWP and the spatial distribution from IMERG. In coastal regions, although model-based adjustment effectively improved the performance of the raw IMERG product, the model forecast performed even better. The IMERG product could benefit from gauge-based adjustment, as well, but the improvement from model-based adjustment was consistently more significant.

  4. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    Science.gov (United States)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  5. Global precipitations and climate change. Proceedings

    International Nuclear Information System (INIS)

    Desbois, M.; Desalmand, F.

    1994-01-01

    The workshop reviewed the present status of knowledge concerning the past and present evolution of the distribution of precipitations at global scale, related to climate evolution at different time scales. This review was intended to assess the availability and quality of data which could help, through validation and initialization of model studies, to improve our understanding of the processes determining these precipitation changes. On another hand, the modelling specialists presented their actual use of precipitation data. Exchanges of views between the modelling and observing communities were thus made possible, leading to a set of recommendations for future studies. Sessions were then devoted to specific themes: 1) Paleoclimatology, 2) data collection, history and statistics, programmes, 3) methodologies and accuracy of large scale estimation of precipitation from conventional data, 4) estimation of precipitation from satellite data, 5) modelling studies. (orig.)

  6. Precipitate strengthening of nanostructured aluminium alloy.

    Science.gov (United States)

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  7. ASSESSMENT OF SATELLITE PRECIPITATION PRODUCTS IN THE PHILIPPINE ARCHIPELAGO

    Directory of Open Access Journals (Sweden)

    M. D. Ramos

    2016-06-01

    Full Text Available Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1 the Tropical Rainfall Measuring Mission (TRMM, (2 the CPC Morphing technique (CMORPH of NOAA and (3 the Global Satellite Mapping of Precipitation (GSMAP and (4 Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN. Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE and Root Mean Square Error (RMSE. In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  8. Assessment of Satellite Precipitation Products in the Philippine Archipelago

    Science.gov (United States)

    Ramos, M. D.; Tendencia, E.; Espana, K.; Sabido, J.; Bagtasa, G.

    2016-06-01

    Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1) the Tropical Rainfall Measuring Mission (TRMM), (2) the CPC Morphing technique (CMORPH) of NOAA and (3) the Global Satellite Mapping of Precipitation (GSMAP) and (4) Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN). Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC) for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN) values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  9. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  10. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

    Science.gov (United States)

    Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

    2018-03-01

    Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

  11. Removal of chromophore in enzymatic hydrolysis by acid precipitation to improve the quality of xylo-oligosaccharides from corn stalk.

    Science.gov (United States)

    Wang, Yue-Hai; Zhang, Jie; Qu, Yong-Shui; Li, Hong-Qiang

    2018-02-01

    As the most representative functional sugar, the application areas and market demands of xylo-oligosaccharides (XOS) have been expanding year by year. Owing to the complex structure of corn stalk (CS), XOS obtained from CS are accompanied by problems such as low purity and high color value, which degrade the product. To improve the quality of XOS from CS, the enzymatic hydrolysis was precipitated by acid; then, the ethanol elution concentration was systematically investigated after optimizing the adsorption conditions. The results showed that the purity of XOS was increased to 87.28% from 67.31%, and the color value was decreased to 1050 from 4682 when the acid precipitation pH was 2. On the basis of acid precipitation, if the corresponding optimal conditions of XOS adsorption and elution were used, the highest purity of XOS was 97.87% obtained, with the lowest color value, 780, which reached the standard of the commercial XOS. Copyright © 2017. Published by Elsevier Ltd.

  12. [Removal of high-abundance proteins in plasma of the obese by improved TCA/acetone precipitation method].

    Science.gov (United States)

    Wang, Jun; Feng, Liru; Yu, Wei; Xu, Jian; Yang, Hui; Liu, Xiaoli

    2013-09-01

    To develop an improved trichloroacetic acid (TCA)/acetone precipitation method for removal of high-abundance proteins in plasma of the obese. Volumes of TCA/acetone solution (1, 3, 4, 5, 6, 8, 10 and 20 times of the sample) and concentrations of TCA (10%, 30%, 50%, 60%, 70% TCA/acetone solution) have been investigated to optimize the conditions of sample preparation. SDS-PAGE were used to separate and tested proteins in the supernatant and sediment. The best concentration of the TCA/acetone solution was first determined by SDS-PAGE. The protein in precipitation from 10% TCA/acetone solution processing and the new determined concentration TCA/acetone solution processing were verified by 2-D-SDS-PAGE. And then the digested products of the protein in precipitation and supernatant by trypsin were analyzed by nano HPLC-Chip-MS/MS to verify which is the best concentration to process the plasma. The best volume of TCA/acetone is four times to sample, which less or more TCA/acetone would reduce the removal efficiency of high-abundance proteins. The concentration of TCA in acetone solution should be 60%, which may remove more high-abundance proteins in plasma than 10%, 30%, 50% TCA in acetone solution. If the TCA concentration is more than 60%, the reproducibility will be much poorer due to fast precipitation of proteins. The results of mass identification showed that human plasma prepared with 60% TCA/acetone (4 times sample volume) could be verified more low-abundance proteins than 10%. The most desirable conditions for removal of high-abundance proteins in plasma is 60% TCA/acetone (4 times sample volume), especially for the plasma of obesity.

  13. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2015-06-01

    Full Text Available This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA, Climate Prediction Center morphing technique (CMORPH, Global Satellite Mapping of Precipitation (GSMaP and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN. All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB (128.17% while GSMaP_Gauge shows consistent high correlation coefficient (CC (>0.8 but RB fluctuates between −57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67. Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%, CSI (less than 45% and relatively high FAR (more than 35%.

  14. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    Science.gov (United States)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  15. Improvement of high floods predictability in the Red River of the North basin using combined remote-sensed, gauge-based and assimilated precipitation data

    Science.gov (United States)

    Semenova, O.; Restrepo, P. J.

    2011-12-01

    precipitation from different sources was used as forcing data to the hydrological model: 1) data of ground meteorological stations; 2) the Snow Data Assimilation System (SNODAS) products containing several variables: snow water equivalent, snow depth, solid and liquid precipitation; 3) MAPX precipitation data which is mean areal precipitation for a watershed calculated using the radar- and gauge-based information. The results demonstrated that in the conditions of high uncertainty of model parameters combining precipitation information from different sources (the SNODAS precipitation in winter with the MAPX precipitation in summer) significantly improves the model performance and predictability of high floods.

  16. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.; Phillips, T. J.

    2014-02-01

    The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails. The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g., western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI values but does not make a significant improvement at high quantiles of precipitation.

  17. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Multisite stochastic simulation of daily precipitation from copula modeling with a gamma marginal distribution

    Science.gov (United States)

    Lee, Taesam

    2018-05-01

    Multisite stochastic simulations of daily precipitation have been widely employed in hydrologic analyses for climate change assessment and agricultural model inputs. Recently, a copula model with a gamma marginal distribution has become one of the common approaches for simulating precipitation at multiple sites. Here, we tested the correlation structure of the copula modeling. The results indicate that there is a significant underestimation of the correlation in the simulated data compared to the observed data. Therefore, we proposed an indirect method for estimating the cross-correlations when simulating precipitation at multiple stations. We used the full relationship between the correlation of the observed data and the normally transformed data. Although this indirect method offers certain improvements in preserving the cross-correlations between sites in the original domain, the method was not reliable in application. Therefore, we further improved a simulation-based method (SBM) that was developed to model the multisite precipitation occurrence. The SBM preserved well the cross-correlations of the original domain. The SBM method provides around 0.2 better cross-correlation than the direct method and around 0.1 degree better than the indirect method. The three models were applied to the stations in the Nakdong River basin, and the SBM was the best alternative for reproducing the historical cross-correlation. The direct method significantly underestimates the correlations among the observed data, and the indirect method appeared to be unreliable.

  19. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    International Nuclear Information System (INIS)

    Ye Baisheng; Yang Daqing; Ma Lijuan

    2012-01-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)

  20. Improvement of the performance of the electrostatic precipitators for coal thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, A. (ENEL, Pisa (IT)); Bogani, V.; Dinelli, G.; Mattachini, F.

    1986-10-01

    Electrostatic precipitators performances are greatly influenced by the physical and chemical characteristics of the particles which are to be collected; a very important role is played by electric resistivity of fly ash: when it is high we have a general increase in the number of discharges within the precipitator ,with a consequent decrease in collection efficiency and an increase in emissions. In order to avoid such a behaviour, a different kind of energization, based on the superposition of narrow voltage pulses to a DC voltage, may be used. A prototype of pulse power supply has been installed on the electrostatic precipitator of a coal burning 320 MWe thermal unit and some tests have been carried out to verify its performance with different operating conditions. Some results of the tests are presented here, together with the plan of the research which will develop on a new experimental electrostatic precipitator.

  1. Validation of a homogeneous 41-year (1961-2001) winter precipitation hindcasted dataset over the Iberian Peninsula: assessment of the regional improvement of global reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sotillo, M.G. [Area de Medio Fisico, Puertos del Estado, Madrid (Spain); Martin, M.L. [Universidad de Valladolid, Dpto. Matematica Aplicada, Escuela Universitaria de Informatica, Campus de Segovia, Segovia (Spain); Valero, F. [Universidad Complutense de Madrid, Dpto. Astrofisica y CC. de la Atmosfera, Facultad de CC Fisicas, Madrid (Spain); Luna, M.Y. [Instituto Nacional de Meteorologia, Madrid (Spain)

    2006-11-15

    A 44-year (1958-2001) homogeneous, Mediterranean, high-resolution atmospheric database was generated through dynamical downscaling within the HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) Project framework. This work attempts to provide a validation of the monthly winter HIPOCAS precipitation over the Iberian Peninsula and the Balearic Islands and to evaluate the potential improvement of these new hindcasted data versus global reanalysis datasets. The validation was performed through the comparative analysis with a precipitation database derived from 4,617 in situ stations located over Iberia and the Balearics. The statistical comparative analysis between the observed and the HIPOCAS fields highlights their very good agreement not only in terms of spatial and time distribution, but also in terms of total amount of precipitation. A principal component analysis is carried out, showing that the patterns derived from the HIPOCAS data largely capture the main characteristics of the observed field. Moreover, it is worth to note that the HIPOCAS patterns reproduce accurately the observed regional characteristics linked to the main orographic features of the study domain. The existence of high correlations between the hindcasted and observed principal component time series gives a measure of the model performance ability. An additional comparative study of the HIPOCAS winter precipitation with global reanalysis data (NCEP and ERA) is performed. This study reveals the important regional improvement in the characterization of the observed precipitation introduced by the HIPOCAS hindcast relative to the above global reanalyses. Such improvement is effective not only in terms of total amount values, but also in the spatial distribution, the observed field being much more realistically reproduced by HIPOCAS than by the global reanalysis data. (orig.)

  2. Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa

    International Nuclear Information System (INIS)

    Shukla, Shraddhanand; Funk, Christopher; Hoell, Andrew

    2014-01-01

    In this study we implement and evaluate a simple ‘hybrid’ forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble’s (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The ‘hybrid approach’ described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45. (letter)

  3. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg

    2003-01-01

    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...... for the absence of observed data from mountainous areas where precipitation is orographically enhanced. In both cases, the runoff simulated by USAFLOW was superior to the runoff simulated within the HIRHAM4 model itself. This was attributed to the rather simplistic description of the water balance in the HIRHAM4...

  4. A spatial approach to the modelling and estimation of areal precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Skaugen, T

    1996-12-31

    In hydroelectric power technology it is important that the mean precipitation that falls in an area can be calculated. This doctoral thesis studies how the morphology of rainfall, described by the spatial statistical parameters, can be used to improve interpolation and estimation procedures. It attempts to formulate a theory which includes the relations between the size of the catchment and the size of the precipitation events in the modelling of areal precipitation. The problem of estimating and modelling areal precipitation can be formulated as the problem of estimating an inhomogeneously distributed flux of a certain spatial extent being measured at points in a randomly placed domain. The information contained in the different morphology of precipitation types is used to improve estimation procedures of areal precipitation, by interpolation (kriging) or by constructing areal reduction factors. A new approach to precipitation modelling is introduced where the analysis of the spatial coverage of precipitation at different intensities plays a key role in the formulation of a stochastic model for extreme areal precipitation and in deriving the probability density function of areal precipitation. 127 refs., 30 figs., 13 tabs.

  5. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Seidman, David N. [Northwestern Univ., Evanston, IL (United States); Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States); Saal, James E. [Northwestern Univ., Evanston, IL (United States); Bocchini, Peter J. [Northwestern Univ., Evanston, IL (United States); Sauza, Daniel J. [Northwestern Univ., Evanston, IL (United States)

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to

  6. Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability

    Science.gov (United States)

    Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert

    2017-11-01

    Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.

  7. Improved infrared precipitation estimation approaches based on k-means clustering: Application to north Algeria using MSG-SEVIRI satellite data

    Science.gov (United States)

    Mokdad, Fatiha; Haddad, Boualem

    2017-06-01

    In this paper, two new infrared precipitation estimation approaches based on the concept of k-means clustering are first proposed, named the NAW-Kmeans and the GPI-Kmeans methods. Then, they are adapted to the southern Mediterranean basin, where the subtropical climate prevails. The infrared data (10.8 μm channel) acquired by MSG-SEVIRI sensor in winter and spring 2012 are used. Tests are carried out in eight areas distributed over northern Algeria: Sebra, El Bordj, Chlef, Blida, Bordj Menael, Sidi Aich, Beni Ourthilane, and Beni Aziz. The validation is performed by a comparison of the estimated rainfalls to rain gauges observations collected by the National Office of Meteorology in Dar El Beida (Algeria). Despite the complexity of the subtropical climate, the obtained results indicate that the NAW-Kmeans and the GPI-Kmeans approaches gave satisfactory results for the considered rain rates. Also, the proposed schemes lead to improvement in precipitation estimation performance when compared to the original algorithms NAW (Nagri, Adler, and Wetzel) and GPI (GOES Precipitation Index).

  8. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  9. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN from a Geostationary Satellite.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The prediction of the short-term quantitative precipitation nowcasting (QPN from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC; the Horn-Schunck optical-flow scheme (PHS; and the Pyramid Lucas-Kanade Optical Flow method (PPLK, which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6. The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  10. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  11. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao

    2017-07-19

    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  12. Evaluation of ERA-Interim precipitation data in complex terrain

    Science.gov (United States)

    Gao, Lu; Bernhardt, Matthias; Schulz, Karsten

    2013-04-01

    Precipitation controls a large variety of environmental processes, which is an essential input parameter for land surface models e.g. in hydrology, ecology and climatology. However, rain gauge networks provides the necessary information, are commonly sparse in complex terrains, especially in high mountainous regions. Reanalysis products (e.g. ERA-40 and NCEP-NCAR) as surrogate data are increasing applied in the past years. Although they are improving forward, previous studies showed that these products should be objectively evaluated due to their various uncertainties. In this study, we evaluated the precipitation data from ERA-Interim, which is a latest reanalysis product developed by ECMWF. ERA-Interim daily total precipitation are compared with high resolution gridded observation dataset (E-OBS) at 0.25°×0.25° grids for the period 1979-2010 over central Alps (45.5-48°N, 6.25-11.5°E). Wet or dry day is defined using different threshold values (0.5mm, 1mm, 5mm, 10mm and 20mm). The correspondence ratio (CR) is applied for frequency comparison, which is the ratio of days when precipitation occurs in both ERA-Interim and E-OBS dataset. The result shows that ERA-Interim captures precipitation occurrence very well with a range of CR from 0.80 to 0.97 for 0.5mm to 20mm thresholds. However, the bias of intensity increases with rising thresholds. Mean absolute error (MAE) varies between 4.5 mm day-1 and 9.5 mm day-1 in wet days for whole area. In term of mean annual cycle, ERA-Interim almost has the same standard deviation of the interannual variability of daily precipitation with E-OBS, 1.0 mm day-1. Significant wet biases happened in ERA-Interim throughout warm season (May to August) and dry biases in cold season (November to February). The spatial distribution of mean annual daily precipitation shows that ERA-Interim significant underestimates precipitation intensity in high mountains and northern flank of Alpine chain from November to March while pronounced

  13. Precipitation, temperature and wind in Norway: dynamical downscaling of ERA40

    Energy Technology Data Exchange (ETDEWEB)

    Barstad, I.; Sorteberg, A.; Flatoey, F. [Bjerknes Centre for Climate Research, Bergen (Norway); Deque, M. [Meteo France, EAC/GMGEC/CNRM, Toulouse (France)

    2009-11-15

    A novel downscaling approach of the ERA40 (ECMWF 40-years reanalysis) data set has been taken and results for comparison with observations in Norway are shown. The method applies a nudging technique in a stretched global model, focused in the Norwegian Sea (67 N, 5 W). The effective resolution is three times the one of the ERA40, equivalent to about 30 km grid spacing in the area of focus. Longer waves (precipitation. The comparison to observations incorporate numerous station data points of (1) precipitation (357), (2) temperature (98) and (3) wind (10), and for the period 1961-1990, the downscaled data set shows large improvements over ERA40. The daily precipitation shows considerable reduction in bias (from 50 to 11%), and twofold reduction at the 99.9 percentile (from -59 to -29%). The daily temperature showed a bias reduction of about a degree in most areas, and relative large RMSE reduction (from 7.5 to 5.0 C except winter). The wind comparison showed a slight improvement in bias, and significant improvements in RMSE. (orig.)

  14. Antecedent precipitation index determined from CST estimates of rainfall

    Science.gov (United States)

    Martin, David W.

    1992-01-01

    This paper deals with an experimental calculation of a satellite-based antecedent precipitation index (API). The index is also derived from daily rain images produced from infrared images using an improved version of GSFC's Convective/Stratiform Technique (CST). API is a measure of soil moisture, and is based on the notion that the amount of moisture in the soil at a given time is related to precipitation at earlier times. Four different CST programs as well as the Geostationary Operational Enviroment Satellite (GOES) Precipitation Index developed by Arkin in 1979 are compared to experimental results, for the Mississippi Valley during the month of July. Rain images are shown for the best CST code and the ARK program. Comparisons are made as to the accuracy and detail of the results for the two codes. This project demonstrates the feasibility of running the CST on a synoptic scale. The Mississippi Valley case is well suited for testing the feasibility of monitoring soil moisture by means of CST. Preliminary comparisons of CST and ARK indicate significant differences in estimates of rain amount and distribution.

  15. Spatial variations of summer precipitation trends in South Korea, 1973-2005

    International Nuclear Information System (INIS)

    Chang, Heejun; Kwon, Won-Tae

    2007-01-01

    We have investigated the spatial patterns of trends in summer precipitation amount, intensity, and heavy precipitation for South Korea between 1973 and 2005. All stations show increasing trends in precipitation amount during the summer months, with the highest percentage of significant increase in June precipitation for the northern and central western part of South Korea. There is a significant increase in August precipitation for stations in the southeastern part of South Korea. Only a few stations exhibited significant upward trends in September precipitation. There is a weak to moderate spatial autocorrelation with the highest Moran's I value in June precipitation amount and August precipitation intensity. The number of days with daily precipitation exceeding 50 and 30 mm during the summer has increased at all stations. Observed trends are likely to be associated with changes in large-scale atmospheric circulation, sea surface temperature anomalies, and orography, but detailed causes of these trends need further investigation

  16. Temporal variation of extreme precipitation events in Lithuania

    Directory of Open Access Journals (Sweden)

    Egidijus Rimkus

    2011-05-01

    Full Text Available Heavy precipitation events in Lithuania for the period 1961-2008 were analysed. The spatial distribution and dynamics of precipitation extremes were investigated. Positive tendencies and in some cases statistically significant trends were determined for the whole of Lithuania. Atmospheric circulation processes were derived using Hess & Brezowski's classification of macrocirculation forms. More than one third of heavy precipitation events (37% were observed when the atmospheric circulation was zonal. The location of the central part of a cyclone (WZ weather condition subtype over Lithuania is the most common synoptic situation (27% during heavy precipitation events. Climatic projections according to outputs of the CCLM model are also presented in this research. The analysis shows that the recurrence of heavy precipitation events in the 21st century will increase significantly (by up to 22% in Lithuania.

  17. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    Science.gov (United States)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  18. Combining C- and X-band Weather Radars for Improving Precipitation Estimates over Urban Areas

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk

    of future system state. Accurate and reliable weather radar measurements are, therefore, important for future developments and achievements within urban drainage. This PhD study investigates two types of weather radars. Both systems are in operational use in Denmark today. A network of meteorological C...... individually and owned by local water utility companies. Although the two radar systems use similar working principles, the systems have significant differences regarding technology, temporal resolution, spatial resolution, range and scanning strategy. The focus of the research was to combine the precipitation...

  19. Spatial analysis of precipitation time series over the Upper Indus Basin

    Science.gov (United States)

    Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad

    2018-01-01

    The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.

  20. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have

  1. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra

    2017-01-01

    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  2. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  3. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  4. Examine Precipitation Extremes in Terms of Storm Properties

    Science.gov (United States)

    Jiang, P.; Yu, Z.; Chen, L.; Gautam, M. R.; Acharya, K.

    2017-12-01

    The increasing potential of the extreme precipitation is of significant societal concern. Changes in precipitation extremes have been mostly examined using extreme precipitation indices or Intensity-Duration-Frequency (IDF) analyses, which often fail to reveal the characteristics of an integrated precipitation event. In this study, we will examine the precipitation extremes in terms of storm properties including storm duration, storm intensity, total storm precipitation, and within storm pattern. Single storm event will be identified and storm properties will be determined based on the hourly precipitation time series in the selected locations in southwest United States. Three types of extreme precipitation event will be recognized using the criteria as (1) longest storm duration; (2) Highest storm intensity; and (3) largest total precipitation over a storm. The trend and variation of extreme precipitation events will be discussed for each criterion. Based on the comparisons of the characteristics of extreme precipitation events identified using different criteria, we will provide guidelines for choosing proper criteria for extreme precipitation analysis in specific location.

  5. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    Science.gov (United States)

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  6. Self-organizing map network-based precipitation regionalization for the Tibetan Plateau and regional precipitation variability

    Science.gov (United States)

    Wang, Nini; Yin, Jianchuan

    2017-12-01

    A precipitation-based regionalization for the Tibetan Plateau (TP) was investigated for regional precipitation trend analysis and frequency analysis using data from 1113 grid points covering the period 1900-2014. The results utilizing self-organizing map (SOM) network suggest that four clusters of precipitation coherent zones can be identified, including the southwestern edge, the southern edge, the southeastern region, and the north central region. Regionalization results of the SOM network satisfactorily represent the influences of the atmospheric circulation systems such as the East Asian summer monsoon, the south Asian summer monsoon, and the mid-latitude westerlies. Regionalization results also well display the direct impacts of physical geographical features of the TP such as orography, topography, and land-sea distribution. Regional-scale annual precipitation trend as well as regional differences of annual and seasonal total precipitation were investigated by precipitation index such as precipitation concentration index (PCI) and Standardized Anomaly Index (SAI). Results demonstrate significant negative long-term linear trends in southeastern TP and the north central part of the TP, indicating arid and semi-arid regions in the TP are getting drier. The empirical mode decomposition (EMD) method shows an evolution of the main cycle with 4 and 12 months for all the representative grids of four sub-regions. The cross-wavelet analysis suggests that predominant and effective period of Indian Ocean Dipole (IOD) on monthly precipitation is around ˜12 months, except for the representative grid of the northwestern region.

  7. Improving weapons fallout time series on a global basis using precipitation data

    International Nuclear Information System (INIS)

    Palsson, S.E.; Howard, B.J.; Aoyama, M.

    2004-01-01

    The fallout from the atmospheric weapons tests in the late fifties and early sixties forms the main source of man made radionuclides in the terrestrial environment. It is important to be able to distinguish global fallout from other sources of man-made radioactivity, and therefore to have good methods of quantifying the level of global fallout in areas where it has not previously been measured. Because global fallout was deposited over many years, model validation can require knowledge about deposition time series which are not available through direct measurements. This can be especially important for sparsely populated areas with vulnerable ecosystems, where high transfer of radionuclides, particularly radiocaesium, may occur. The UNSCEAR reports describe the global data and show how the deposition was dependent on latitude. Others have successfully used a model assuming a proportional relationship between deposition and precipitation (e.g. on a regional scale within the AMAP project and on a local scale in some countries, such as Iceland and Sweden). This paper describes a study where different data sets were combined to test, at a local scale to a global scale, how well the proportional relationship between precipitation and deposition holds and to what degree other effects (e.g. dependence on latitude as in the UNSCEAR model) need to be taken into account. It makes use of the Integrated Global Fallout Database of the Meteorological Research Institute of Japan which has been used previously to demonstrate the relationship between precipitation and deposition and subsequently to make an estimate of the total fallout amount of 137 Cs in the mid latitudes of the Northern Hemisphere. The study described in this paper provides a fuller description of global deposition than the latitude or precipitation based studies alone. Applied in a simple model as presented here, this enable better deposition estimation (including time dependency), especially if precipitation

  8. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  9. Trends in total and daily precipitation indices in japan from 1901 to 2000

    OpenAIRE

    Nagata, Rena; Zaiki, Masumi

    2008-01-01

    Long-term trends in seasonal precipitation amount and daily precipitation indices were investigated for spring, summer, autumn, and winter with a daily precipitation dataset for Japan from 1901 to 2000. Heavy precipitation in spring and summer has significantly increased along the west coast of Japan. Such changes in precipitation have resulted in the increased heavy precipitation intensity. For autumn and winter, total precipitation significantly decreased in the Kanto district and central J...

  10. Drought characterisation based on an agriculture-oriented standardised precipitation index

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2018-03-01

    Drought is a major natural hazard with significant effects in the agricultural sector, especially in arid and semi-arid regions. The accurate and timely characterisation of agricultural drought is crucial for devising contingency plans, including the necessary mitigation measures. Many drought indices have been developed during the last decades for drought characterisation and analysis. One of the most widely used indices worldwide is the Standardised Precipitation Index (SPI). Although other comprehensive indices have been introduced over the years, SPI remains the most broadly accepted index due to a number of reasons, the most important of which are its simple structure and the fact that it uses only precipitation data. In this paper, a modified version of SPI is proposed, namely the Agricultural Standardised Precipitation Index (aSPI), based on the substitution of the total precipitation by the effective precipitation, which describes more accurately the amount of water that can be used productively by the plants. Further, the selection of the most suitable reference periods and time steps for agricultural drought identification using aSPI is discussed. This conceptual enhancement of SPI aims at improving the suitability of the index for agricultural drought characterisation, while retaining the advantages of the original index, including its dependence only on precipitation data. The evaluation of the performance of both SPI and aSPI in terms of correlating drought magnitude with crop yield response in four regions of Greece under Mediterranean conditions indicated that aSPI is more robust than the original index in identifying agricultural drought.

  11. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  12. Extreme Precipitation in Poland in the Years 1951-2010

    Science.gov (United States)

    Malinowska, Miroslawa

    2017-12-01

    The characteristics of extreme precipitation, including the dominant trends, were analysed for eight stations located in different parts of Poland for the period 1951-2010. Five indices enabling the assessment of the intensity and frequency of both extremely dry and wet conditions were applied. The indices included the number of days with precipitation ≥10mm·d-1 (R10), maximum number of consecutive dry days (CDD), maximum 5-day precipitation total (R5d), simple daily intensity index (SDII), and the fraction of annual total precipitation due to events exceeding the 95th percentile calculated for the period 1961-1990. Annual trends were calculated using standard linear regression method, while the fit of the model was assessed with the F-test at the 95% confidence level. The analysed changes in extreme precipitation showed mixed patterns. A significant positive trend in the number of days with precipitation ≥10mm·d-1 (R10) was observed in central Poland, while a significant negative one, in south-eastern Poland. Based on the analysis of maximum 5-day precipitation totals (R5d), statistically significant positive trends in north-western, western and eastern parts of the country were detected, while the negative trends were found in the central and northeastern parts. Daily precipitation, expressed as single daily intensity index (SDII), increased over time in northern and central Poland. In southern Poland, the variation of SDII index showed non-significant negative tendencies. Finally, the fraction of annual total precipitation due to the events exceeding the 1961-1990 95th percentile increased at one station only, namely, in Warsaw. The indicator which refers to dry conditions, i.e. maximum number of consecutive dry days (CDD) displayed negative trends throughout the surveyed area, with the exception of Szczecin that is a representative of north-western Poland.

  13. Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme

    KAUST Repository

    Luong, Thang

    2018-01-22

    A commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally mesoscale convective systems. With the use of convective parameterization, high precipitation biases in model simulations are typically observed over the peaks of mountain ranges. To address this issue, the Kain–Fritsch (KF) cumulus parameterization scheme has been modified with new diagnostic equations to compute the updraft velocity, the convective available potential energy closure assumption, and the convective trigger function. The scheme has been adapted for use in the Weather Research and Forecasting (WRF). A numerical weather prediction-type simulation is conducted for the North American Monsoon Experiment Intensive Observing Period 2 and a regional climate simulation is performed, by dynamically downscaling. In both of these applications, there are notable improvements in the WRF model-simulated precipitation due to the better representation of organized, propagating convection. The use of the modified KF scheme for atmospheric model simulations may provide a more computationally economical alternative to improve the representation of organized convection, as compared to convective-permitting simulations at the kilometer scale or a super-parameterization approach.

  14. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  15. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  16. Improving Radar Quantitative Precipitation Estimation over Complex Terrain in the San Francisco Bay Area

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.

    2017-12-01

    A recent study by the State of California's Department of Water Resources has emphasized that the San Francisco Bay Area is at risk of catastrophic flooding. Therefore, accurate quantitative precipitation estimation (QPE) and forecast (QPF) are critical for protecting life and property in this region. Compared to rain gauge and meteorological satellite, ground based radar has shown great advantages for high-resolution precipitation observations in both space and time domain. In addition, the polarization diversity shows great potential to characterize precipitation microphysics through identification of different hydrometeor types and their size and shape information. Currently, all the radars comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) network are operating in dual-polarization mode. Enhancement of QPE is one of the main considerations of the dual-polarization upgrade. The San Francisco Bay Area is covered by two S-band WSR-88D radars, namely, KMUX and KDAX. However, in complex terrain like the Bay Area, it is still challenging to obtain an optimal rainfall algorithm for a given set of dual-polarization measurements. In addition, the accuracy of rain rate estimates is contingent on additional factors such as bright band contamination, vertical profile of reflectivity (VPR) correction, and partial beam blockages. This presentation aims to improve radar QPE for the Bay area using advanced dual-polarization rainfall methodologies. The benefit brought by the dual-polarization upgrade of operational radar network is assessed. In addition, a pilot study of gap fill X-band radar performance is conducted in support of regional QPE system development. This paper also presents a detailed comparison between the dual-polarization radar-derived rainfall products with various operational products including the NSSL's Multi-Radar/Multi-Sensor (MRMS) system. Quantitative evaluation of various rainfall products is achieved

  17. Precipitable water and vapor flux between Belem and Manaus

    International Nuclear Information System (INIS)

    Marques, J.

    1977-01-01

    The water vapor flux and precipitable water was computated over the natural Amazon forest in the stretch between Belem and Manaus for 1972. The atmospheric branch of hidrological cycle theory was applied and the most significant conclusions on an annual basis are: Atlantic Ocean water vapor contributes 52% to the regional precipitation and is significant the role played by local evapotranspiration in the precipitation in the area; there were signs of the phenomenon of water vapor recycling nearly throughout the year. Evapotranspiration contributes to 48% of the precipitations in the area studied. The real evapotranspiration estimated by this method was 1,000mm year - 1 [pt

  18. The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-11-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z - R) and radar reflectivity-specific attenuation (Z - k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  19. Precipitation Behavior of Magnesium Alloys Containing Neodymium and Yttrium

    Science.gov (United States)

    Solomon, Ellen L. S.

    Magnesium is the lightest of the structural metals and has great potential for reducing the weight of transportation systems, which in turn reduces harmful emissions and improves fuel economy. Due to the inherent softness of Mg, other elements are typically added in order to form a fine distribution of precipitates during aging, which improves the strength by acting as barriers to moving dislocations. Mg-RE alloys are unique among other Mg alloys because they form precipitates that lie parallel to the prismatic planes of the Mg matrix, which is an ideal orientation to hinder dislocation slip. However, RE elements are expensive and impractical for many commercial applications, motivating the rapid design of alternative alloy compositions with comparable mechanical properties. Yet in order to design new alloys reproducing some of the beneficial properties of Mg-RE alloys, we must first fully understand precipitation in these systems. Therefore, the main objectives of this thesis are to identify the roles of specific RE elements (Nd and Y) on precipitation and to relate the precipitate microstructure to the alloy strength. The alloys investigated in this thesis are the Mg-Nd, Mg-Y, and Mg-Y-Nd systems, which contain the main alloying elements of commercial WE series alloys (Y and Nd). In all three alloy systems, a sequence of metastable phases forms upon aging. Precipitate composition, atomic structure, morphology, and spatial distribution are strongly controlled by the elastic strain energy originating from the misfitting coherent precipitates. The dominating role that strain energy plays in these alloy systems gives rise to very unique microstructures. The evolution of the hardness and precipitate microstructure with aging revealed that metastable phases are the primary strengthening phases of these alloys, and interact with dislocations by shearing. Our understanding of precipitation mechanisms and commonalities among the Mg-RE alloys provide future avenues to

  20. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-03-01

    Full Text Available Satellite precipitation products from the Global Precipitation Measurement (GPM mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG final run and the TRMM Multi-satellite Precipitation Analysis 3B42V7 precipitation products, and their feasibility in streamflow simulations in the Chindwin River basin, Myanmar, from April 2014 to December 2015 was also assessed. Results show that, although IMERG and 3B42V7 can potentially capture the spatiotemporal patterns of historical precipitation, the two products contain considerable errors. Compared with 3B42V7, no significant improvements were found in IMERG. Moreover, 3B42V7 outperformed IMERG at daily and monthly scales and in heavy rain detections at four out of five gauges. The large errors in IMERG and 3B42V7 distinctly propagated to streamflow simulations via the Xinanjiang hydrological model, with a significant underestimation of total runoff and high flows. The bias correction of the satellite precipitation effectively improved the streamflow simulations. The 3B42V7-based streamflow simulations performed better than the gauge-based simulations. In general, IMERG and 3B42V7 are feasible for use in streamflow simulations in the study area, although 3B42V7 is better suited than IMERG.

  1. The Canadian Precipitation Analysis (CaPA): Evaluation of the statistical interpolation scheme

    Science.gov (United States)

    Evans, Andrea; Rasmussen, Peter; Fortin, Vincent

    2013-04-01

    CaPA (Canadian Precipitation Analysis) is a data assimilation system which employs statistical interpolation to combine observed precipitation with gridded precipitation fields produced by Environment Canada's Global Environmental Multiscale (GEM) climate model into a final gridded precipitation analysis. Precipitation is important in many fields and applications, including agricultural water management projects, flood control programs, and hydroelectric power generation planning. Precipitation is a key input to hydrological models, and there is a desire to have access to the best available information about precipitation in time and space. The principal goal of CaPA is to produce this type of information. In order to perform the necessary statistical interpolation, CaPA requires the estimation of a semi-variogram. This semi-variogram is used to describe the spatial correlations between precipitation innovations, defined as the observed precipitation amounts minus the GEM forecasted amounts predicted at the observation locations. Currently, CaPA uses a single isotropic variogram across the entire analysis domain. The present project investigates the implications of this choice by first conducting a basic variographic analysis of precipitation innovation data across the Canadian prairies, with specific interest in identifying and quantifying potential anisotropy within the domain. This focus is further expanded by identifying the effect of storm type on the variogram. The ultimate goal of the variographic analysis is to develop improved semi-variograms for CaPA that better capture the spatial complexities of precipitation over the Canadian prairies. CaPA presently applies a Box-Cox data transformation to both the observations and the GEM data, prior to the calculation of the innovations. The data transformation is necessary to satisfy the normal distribution assumption, but introduces a significant bias. The second part of the investigation aims at devising a bias

  2. Calibration Plans for the Global Precipitation Measurement (GPM)

    Science.gov (United States)

    Bidwell, S. W.; Flaming, G. M.; Adams, W. J.; Everett, D. F.; Mendelsohn, C. R.; Smith, E. A.; Turk, J.

    2002-01-01

    The Global Precipitation Measurement (GPM) is an international effort led by the National Aeronautics and Space Administration (NASA) of the U.S.A. and the National Space Development Agency of Japan (NASDA) for the purpose of improving research into the global water and energy cycle. GPM will improve climate, weather, and hydrological forecasts through more frequent and more accurate measurement of precipitation world-wide. Comprised of U.S. domestic and international partners, GPM will incorporate and assimilate data streams from many spacecraft with varied orbital characteristics and instrument capabilities. Two of the satellites will be provided directly by GPM, the core satellite and a constellation member. The core satellite, at the heart of GPM, is scheduled for launch in November 2007. The core will carry a conical scanning microwave radiometer, the GPM Microwave Imager (GMI), and a two-frequency cross-track-scanning radar, the Dual-frequency Precipitation Radar (DPR). The passive microwave channels and the two radar frequencies of the core are carefully chosen for investigating the varying character of precipitation over ocean and land, and from the tropics to the high-latitudes. The DPR will enable microphysical characterization and three-dimensional profiling of precipitation. The GPM-provided constellation spacecraft will carry a GMI radiometer identical to that on the core spacecraft. This paper presents calibration plans for the GPM, including on-board instrument calibration, external calibration methods, and the role of ground validation. Particular emphasis is on plans for inter-satellite calibration of the GPM constellation. With its Unique instrument capabilities, the core spacecraft will serve as a calibration transfer standard to the GPM constellation. In particular the Dual-frequency Precipitation Radar aboard the core will check the accuracy of retrievals from the GMI radiometer and will enable improvement of the radiometer retrievals

  3. Future changes of precipitation characteristics in China

    Science.gov (United States)

    Wu, S.; Wu, Y.; Wen, J.

    2017-12-01

    Global warming has the potential to alter the hydrological cycle, with significant impacts on the human society, the environment and ecosystems. This study provides a detailed assessment of potential changes in precipitation characteristics in China using a suite of 12 high-resolution CMIP5 climate models under a medium and a high Representative Concentration Pathways: RCP4.5 and RCP8.5. We examine future changes over the entire distribution of precipitation, and identify any shift in the shape and/or scale of the distribution. In addition, we use extreme-value theory to evaluate the change in probability and magnitude for extreme precipitation events. Overall, China is going to experience an increase in total precipitation (by 8% under RCP4.5 and 12% under RCP8.5). This increase is uneven spatially, with more increase in the west and less increase in the east. Precipitation frequency is projected to increase in the west and decrease in the east. Under RCP4.5, the overall precipitation frequency for the entire China remains largely unchanged (0.08%). However, RCP8.5 projects a more significant decrease in frequency for large part of China, resulting in an overall decrease of 2.08%. Precipitation intensity is likely increase more uniformly, with an overall increase of 11% for RCP4.5 and 19% for RCP8.5. Precipitation increases for all parts of the distribution, but the increase is more for higher quantiles, i.e. strong events. The relative contribution of small quantiles is likely to decrease, whereas contribution from heavy events is likely to increase. Extreme precipitation increase at much higher rates than average precipitation, and high rates of increase are expected for more extreme events. 1-year events are likely to increase by 15%, but 20-year events are going to increase by 21% under RCP4.5, 26% and 40% respectively under RCP8.5. The increase of extreme events is likely to be more spatially uniform.

  4. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  5. CLIMATIC CHARACTERISTICS OF TYPHOON PRECIPITATION OVER CHINA

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-mei; REN Fu-min; LI Wei-jing; WANG Xiao-ling

    2008-01-01

    The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually decreases from the southeastern coastal regions to the northwestern mainland. The maximum annual typhoon precipitation exceeds 700 mm in central-eastern Taiwan and part of Hainan, while the minimum annual typhoon precipitation occurs in parts of Inner Mongolia, Shanxi, Shaanxi and Sichuan, with values less than 10 mm. Generally, typhoons produce precipitation over China during April - December with a peak in August. The annual typhoon precipitation time series for observation stations are examined for long-term trends. The results show that decreasing trends exist in most of the stations from 1957 to 2004 and are statistically significant in parts of Taiwan, Hainan, coastal Southeast China and southern Northeast China. The anomaly of typhoon precipitation mainly results from that of the general circulation over Asia and the Walker Cell circulation over the equatorial central and eastern Pacific. Typhoon torrential rain is one of the extreme rainfall events in the southeastern coastal regions and parts of central mainland. In these regions, torrential rains are mostly caused by typhoons.

  6. Precipitate microstructure evolution in exposed IN738LC superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Strunz, Pavel, E-mail: strunz@ujf.cas.cz [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic); Petrenec, Martin [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Gasser, Urs [Laboratory for Neutron Scattering, PSI, CH-5232 Villigen (Switzerland); Tobiáš, Jiří; Polák, Jaroslav [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Šaroun, Jan [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic)

    2014-03-15

    Highlights: • Evolution of γ′-phase morphology in IN738LC Ni-base superalloy was examined by SANS. • In situ tests at high temperatures revealed trimodal precipitate distribution. • Formation, dissolution and (slow) kinetics of small γ′ precipitates was determined. • Equilibrium volume fraction of γ′ phase is significantly higher than 45%. • The small γ′ precipitates arise regardless the application of the mechanical load. -- Abstract: Nickel base superalloy IN738LC has been studied after low-cycle fatigue by Small Angle Neutron Scattering (SANS). Samples subjected to high-temperature low-cycle fatigue were annealed at various temperatures to change the size and the distribution of precipitates. Ex and in situ SANS and TEM studies were performed. It was found that additional precipitates are formed either during slow cooling from high temperatures or after reheating above 570 °C. Their size and distribution were evaluated. The precipitates arise regardless the application of the mechanical load. Nevertheless, these small precipitates influence low-cycle fatigue resistance. From the SANS data, it can be also deduced that the equilibrium volume fraction of γ′-precipitates at temperatures from room temperature to 825 °C is significantly higher than 45%. The kinetics of formation of small and medium-size γ′ precipitates at 700 and 800 °C was determined as well.

  7. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  8. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  9. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  10. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  11. The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel

    International Nuclear Information System (INIS)

    Hamano, R.

    1993-01-01

    The effect of the coexistence of coherent and incoherent precipitates, such as M 2 C and NiAl, on the ductility and plane strain fracture toughness of 5 wt pct Ni-2 wt pct Al-based high-strength steels was studied. In order to disperse coherent and incoherent precipitates, the heat treatments were carried out as follows: (a) austenitizing at 1373 K, (b) tempering at 1023 or 923 K for dispersing the incoherent precipitates of M 2 C and NiAl, and then (c) aging at 843 K for 2.4 ks to disperse the coherent precipitate of NiAl into the matrix, which contains incoherent precipitates, such as M 2 C and NiAl. The results were obtained as follows: (a) when the strengthening precipitates consist of coherent ones, such as M 2 C and/or NiAl, the ductility and toughness are extremely low, and (b) when the strengthening precipitates consist of coherent and incoherent precipitates, such as M 2 C and NiAl, the ductility and fracture toughness significantly increase with no loss in strength. It is shown that the coexistence of coherent and incoherent precipitates increases homogeneous deformation, thus preventing local strain concentration and early cleavage cracking. Accordingly, the actions of coherent precipitates in strengthening the matrix and of incoherent precipitates in promoting, homogeneous deformation can be expected to increase both the strength and toughness of the material

  12. Regional improvement of global reanalyses by means of a new long-term Mediterranean hindcasted precipitation dataset: a first study over the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. G. Sotillo

    2006-01-01

    Full Text Available Generation of a Mediterranean long-term (1958-2001 homogeneous high resolution environmental database constituted the main objective whitin the HIPOCAS Project. The high number of parameters included in this database allows a complete characterization of Mediterranean storms. In this paper, the HIPOCAS precipitation reliability over the Iberian Peninsula and the Balearic Islands is evaluated against long-term in-situ observations from Iberia. In order to provide a more complete study, comparisons of the HIPOCAS field with NCEP/NCAR and ERA global reanalysis show the important improvement in the characterisation of the observed precipitation introduced by the HIPOCAS hindcast.

  13. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.; Ben Boubaker, H.; Ghaffour, NorEddine; Elfil, Hamza

    2013-01-01

    of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic

  14. Microbially induced carbonate precipitation (MICP) by denitrification as ground improvement method - Process control in sand column experiments

    Science.gov (United States)

    Pham, Vinh; van Paassen, Leon; Nakano, Akiko; Kanayama, Motohei; Heimovaara, Timo

    2013-04-01

    Calcite precipitation induced by microbes has been proven to be efficient in stabilizing granular soils, especially with urea hydrolysis, as it has been successfully demonstrated in a pilot application 2010. However, as a byproduct highly concentrated ammonium chloride (NH4Cl) solution is produced, which has to be removed and disposed and forms a significant disadvantage of the technique that makes an alternative process like denitrification preferred. The proof of principle of microbially induced calcite precipitation (MICP) by denitrification has been demonstrated by Van Paassen et al (2010) who suggested that instead of producing waste as a byproduct, different pre-treated waste streams could be used as substrates for in situ growth of denitrifying bacteria and simultaneous cementation without producing waste to be removed. In this study sand column experiments are performed in which calcium carbonate was successfully precipitated by indigenous denitrifying micro-organisms, which were supplied weekly with a pulse of a substrate solution containing calcium acetate and calcium nitrate. Besides the production of calcite and the growth of bacteria in biofilms, the reduction of nitrate resulted in the production of (nitrogen) gas. It was observed that this gas partly fills up the pore space and consequently contributed to a reduction of the permeability of the treated sand. The presence of gas in the pore space affected the flow of the injected substrates and influenced to the distribution of calcium carbonate. The effect of the mean particle size (D50) on the flow and transport of solutes and gas in the porous media has been evaluated by treating several columns with varying grain size distribution and comparing the change in permeability after each incubation period and analyzing the distribution of the gas throughout the columns using X-ray computed tomography (CT) scanning. The present results show that there is a considerable decrease of permeability - a

  15. Recent advances in precipitation-bias correction and application

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.

  16. Controlling calcium precipitation in an integrated anaerobic-aerobic treatment system of a "zero-discharge" paper mill.

    Science.gov (United States)

    van Lier, J B; Boncz, M A

    2002-01-01

    The pulp and paper industry uses significant amounts of water and energy for the paper production process. Closing the water cycles in this industry, therefore, promises large benefits for the environment and has the potential of huge cost savings for the industry. Closing the water cycle on the other hand also introduces problems with process water quality, quality of the end-product and scaling, owing to increased water contamination. An inline treatment system is discussed in which anaerobic-aerobic bioreactors perform a central role for removing both organic and inorganic pollutants from the process water cycle. In the proposed set-up, the organic compounds are converted to methane gas and reused for energy supply, while sulphur compounds are stripped from the process cycle and calcium carbonate is removed by precipitation. Improved control of the treatment system will direct the inorganic precipitates to a location where it does not adversely affect paper production and process water treatment. A simulation program for triggering and controlling CaCO3 precipitation was developed that takes both biological conversions and all relevant chemical equilibria in the system into account. Simulation results are in good agreement with data gathered in a full-scale "zero-emission" paper plant and indicate that control of CaCO3 precipitation can be improved, e.g. in the aerobic post-treatment. Alternatively, a separate precipitation unit could be considered.

  17. Key drivers of precipitation isotopes in Windhoek, Namibia (2012-2016)

    Science.gov (United States)

    Kaseke, K. F.; Wang, L.; Wanke, H.

    2017-12-01

    Southern African climate is characterized by large variability with precipitation model estimates varying by as much as 70% during summer. This difference between model estimates is partly because most models associate precipitation over Southern Africa with moisture inputs from the Indian Ocean while excluding inputs from the Atlantic Ocean. However, growing evidence suggests that the Atlantic Ocean may also contribute significant amounts of moisture to the region. This four-year (2012-2016) study investigates the isotopic composition (δ18O, δ2H and δ17O) of event-scale precipitation events, the key drivers of isotope variations and the origins of precipitation experienced in Windhoek, Namibia. Results indicate large storm-to-storm isotopic variability δ18O (25‰), δ2H (180‰) and δ17O (13‰) over the study period. Univariate analysis showed significant correlations between event precipitation isotopes and local meteorological parameters; lifted condensation level, relative humidity (RH), precipitation amount, average wind speed, surface and air temperature (p < 0.05). The number of significant correlations between local meteorological parameters and monthly isotopes was much lower suggesting loss of information through data aggregation. Nonetheless, the most significant isotope driver at both event and monthly scales was RH, consistent with the semi-arid classification of the site. Multiple linear regression analysis suggested RH, precipitation amount and air temperature were the most significant local drivers of precipitation isotopes accounting for about 50% of the variation implying that about 50% could be attributed to source origins. HYSLPIT trajectories indicated that 78% of precipitation originated from the Indian Ocean while 21% originated from the Atlantic Ocean. Given that three of the four study years were droughts while two of the three drought years were El Niño related, our data also suggests that δ'17O-δ'18O could be a useful tool to

  18. Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology for characterizing climate-related risk

    International Nuclear Information System (INIS)

    Kim, Jong-Suk; Jain, Shaleen

    2011-01-01

    Typhoons originating in the west Pacific are major contributors to climate-related risk over the Korean peninsula. The current perspective regarding improved characterization of climatic risk and the projected increases in the intensity, frequency, duration, and power dissipation of typhoons during the 21st century in the western North Pacific region motivated a reappraisal of historical trends in precipitation. In this study, trends in the magnitude and frequency of seasonal precipitation in the five major river basins in Korea are analyzed on the basis of a separation analysis, with recognition of moisture sources (typhoon and non-typhoon). Over the 1966-2007 period, typhoons accounted for 21-26% of seasonal precipitation, with the largest values in the Nakdong River Basin. Typhoon-related precipitation events have increased significantly over portions of Han, Nakdong, and Geum River Basins. Alongside broad patterns toward increases in the magnitude and frequency of precipitation, distinct patterns of trends in the upper and lower quartiles (corresponding to changes in extreme events) are evident. A trend typology-spatially resolved characterization of the combination of shifts in the upper and lower tails of the precipitation distribution-shows that a number of sub-basins have undergone significant changes in one or both of the tails of the precipitation distribution. This broader characterization of trends illuminates the relative role of causal climatic factors and an identification of 'hot spots' likely to experience high exposure to typhoon-related climatic extremes in the future.

  19. Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions

    International Nuclear Information System (INIS)

    Zandbergen, M.W.; Cerezo, A.; Smith, G.D.W.

    2015-01-01

    Atom probe tomography (APT) analysis and hardness measurements have been used to characterise the early stages of precipitation in three Al–Mg–Si alloys with different Cu contents (Al–0.51 at.%Mg–0.94 at.%Si, with 0.01 at.%, 0.06 at.%, or 0.34 at.% Cu). A range of single and multi- stage heat treatments were chosen to evaluate the changes in precipitation processes. Three ageing temperatures were investigated, 298 K (natural ageing), 353 K (pre-ageing) and 453 K (automotive paint-bake conditions). The Cu content had significant effects on the microstructural evolution within the alloy. Formation of clusters which can act as precursors of elongated precipitates during paint-baking was found to be enhanced with increasing Cu content. This improved the paint-bake hardening response and mitigated the deleterious effects of natural ageing. Cu was present in all precipitates in the highest Cu-containing alloy. These precipitates were believed to be precursors to the Q′ phase. Mechanisms for the effects of Cu on precipitation kinetics are proposed.

  20. Characteristics of people with self-reported stress-precipitated seizures.

    Science.gov (United States)

    Privitera, Michael; Walters, Michael; Lee, Ikjae; Polak, Emily; Fleck, Adrienne; Schwieterman, Donna; Haut, Sheryl R

    2014-12-01

    Stress is the most common patient-reported seizure precipitant. We aimed to determine mood and epilepsy characteristics of people who report stress-precipitated seizures. Sequential patients at a tertiary epilepsy center were surveyed about stress as a seizure precipitant. We asked whether acute (lasting minutes-hours) or chronic (lasting days-months) stress was a seizure precipitant, whether stress reduction had been tried, and what effect stress reduction had on seizure frequency. We collected information on antiepileptic drugs, history of depression and anxiety disorder, prior or current treatment for depression or anxiety, and scores on the Neurological Disorders Depression Inventory (NDDI-E) and Generalized Anxiety Disorders-7 (GAD-7) instruments, which are administered at every visit in our Epilepsy Center. We also asked whether respondents thought that they could predict their seizures to determine if stress as a seizure precipitant was correlated with seizure self-prediction. Two hundred sixty-six subjects were included: 219 endorsed stress as a seizure precipitant [STRESS (+)] and 47 did not [STRESS (-)]. Among STRESS (+) subjects, 85% endorsed chronic stress as a seizure precipitant, and 68% endorsed acute stress as a seizure precipitant. In STRESS (+) subjects, 57% had used some type of relaxation or stress reduction method (most commonly yoga, exercise and meditation), and, of those who tried, 88% thought that these methods improved seizures. Among STRESS (-) subjects, 25% had tried relaxation or stress reduction, and 71% thought that seizures improved. Although univariate analysis showed multiple associations with stress as a seizure precipitant, in the multivariable logistic regression, only the GAD-7 score was associated with STRESS (+) (OR = 1.18 [1.03-1.35], p = 0.017). Subjects who reported stress as a seizure precipitant were more likely to report an ability to self-predict seizures (p < 0.001). Stress-precipitated seizures are commonly reported

  1. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  2. Influence of aerosol on regional precipitation in North China

    Institute of Scientific and Technical Information of China (English)

    DUAN Jing; MAO JieTai

    2009-01-01

    The possible anthropogenic aerosol effect on regional precipitation is analyzed based on the historical data of precipitation and visibility of North China. At first, the precipitation amounts from 1960 to 1979 are considered as natural background values in our study for relatively less intensive industrial activi-ties and light air pollution during that period of time, then the region is divided into different subregions by applying the clustering method including the significance test of station rainfall correlations to the time series of 10-day mean rainfall amounts in this period. Based on the rule that the precipitation characteristics are similar in the same clustering region, the correlation of precipitation amounts among all stations in each region is thus established. Secondly, for the period from 1990 to 2005, during which, the economy had experienced a rapid development in this region, the variations of visibility at each station are analyzed. The stations with the absolute change in visibility less than 0.1 km/a are used as the reference stations, at which it is assumed that precipitation has not been seriously influ-enced by anthropogenic aerosols. Then the rainfall amounts of reference stations are used to estimate the natural precipitation values of the other stations in each clustering region. The difference between estimated precipitation and measured precipitation amount is thought to result from changes in an-thropogenic aerosols. These changes in precipitation amounts caused by anthropogenic aerosols at each station are calculated using the 10-day mean rainfall values from 1990 to 2005. The analysis re-suits obtained with this method are remarkable if it passes the significance test, and therefore, the suppression of regional precipitation over the region by anthropogenic aerosol is proved. It is found that this effect is most remarkable in summer. The influence of anthropogenic aerosols on convective precipitation possibly plays an important

  3. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  4. Investigating precipitation changes of anthropic origin: data and methodological issues

    Science.gov (United States)

    de Lima, Isabel; Lovejoy, Shaun

    2017-04-01

    There is much concern about the social, environmental and economic impacts of climate change that could result directly from changes in temperature and precipitation. For temperature, the situation is better understood; but despite the many studies that have been already dedicated to precipitation, change in this process - that could be associated to the transition to the Anthropocene - has not yet been convincingly proven. A large fraction of those studies have been exploring temporal (linear) trends in local precipitation, sometimes using records over only a few decades; other fewer studies have been dedicated to investigating global precipitation change. Overall, precipitation change of anthropic origin has showed to be difficult to establish with high statistical significance and, moreover, different data and products have displayed important discrepancies; this is valid even for global precipitation. We argue that the inadequate resolution and length of the data commonly used, as well as methodological issues, are among the main factors limiting the ability to identify the signature of change in precipitation. We propose several ways in which one can hope to improve the situation - or at least - clarify the difficulties. From the point of view of statistical analysis, the problem is one of detecting a low frequency anthropogenic signal in the presence of "noise" - the natural variability (the latter includes both internal dynamics and responses to volcanic, solar or other natural forcings). A consequence is that as one moves to longer and longer time scales, fluctuations are increasingly averaged and at some point, the anthropogenic signal will stand out above the natural variability noise. This approach can be systematized using scaling fluctuation analysis to characterizing different precipitation scaling regimes: weather, macroweather, climate - from higher to lower frequencies; in the anthropocene, the macroweather regime covers the range of time scales

  5. Global Precipitation Measurement Mission: Architecture and Mission Concept

    Science.gov (United States)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  6. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  7. Scaling and clustering effects of extreme precipitation distributions

    Science.gov (United States)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Li, Jianfeng

    2012-08-01

    SummaryOne of the impacts of climate change and human activities on the hydrological cycle is the change in the precipitation structure. Closely related to the precipitation structure are two characteristics: the volume (m) of wet periods (WPs) and the time interval between WPs or waiting time (t). Using daily precipitation data for a period of 1960-2005 from 590 rain gauge stations in China, these two characteristics are analyzed, involving scaling and clustering of precipitation episodes. Our findings indicate that m and t follow similar probability distribution curves, implying that precipitation processes are controlled by similar underlying thermo-dynamics. Analysis of conditional probability distributions shows a significant dependence of m and t on their previous values of similar volumes, and the dependence tends to be stronger when m is larger or t is longer. It indicates that a higher probability can be expected when high-intensity precipitation is followed by precipitation episodes with similar precipitation intensity and longer waiting time between WPs is followed by the waiting time of similar duration. This result indicates the clustering of extreme precipitation episodes and severe droughts or floods are apt to occur in groups.

  8. Memory and Trend of Precipitation in China during 1966-2013

    Science.gov (United States)

    Du, M.; Sun, F.; Liu, W.

    2017-12-01

    As climate change has had a significant impact on water cycle, the characteristic and variation of precipitation under climate change turned into a hotspot in hydrology. This study aims to analyze the trend and memory (both short-term and long-term) of precipitation in China. To do that, we apply statistical tests (including Mann-Kendall test, Ljung-Box test and Hurst exponent) to annual precipitation (P), frequency of rainy day (λ) and mean daily rainfall in days when precipitation occurs (α) in China (1966-2013). We also use a resampling approach to determine the field significance. From there, we evaluate the spatial distribution and percentages of stations with significant memory or trend. We find that the percentages of significant downtrends for λ and significant uptrends for α are significantly larger than the critical values at 95% field significance level, probably caused by the global warming. From these results, we conclude that extra care is necessary when significant results are obtained using statistical tests. This is because the null hypothesis could be rejected by chance and this situation is more likely to occur if spatial correlation is ignored according to the results of the resampling approach.

  9. Evaluation of gridded precipitation data for driving SWAT model in area upstream of Three Gorges Reservoir.

    Science.gov (United States)

    Yang, Yan; Wang, Guoqiang; Wang, Lijing; Yu, Jingshan; Xu, Zongxue

    2014-01-01

    Gridded precipitation data are becoming an important source for driving hydrologic models to achieve stable and valid simulation results in different regions. Thus, evaluating different sources of precipitation data is important for improving the applicability of gridded data. In this study, we used three gridded rainfall datasets: 1) National Centers for Environmental Prediction-Climate Forecast System Reanalysis (NCEP-CFSR); 2) Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE); and 3) China trend-surface reanalysis (trend surface) data. These are compared with monitoring precipitation data for driving the Soil and Water Assessment Tool in two basins upstream of Three Gorges Reservoir (TGR) in China. The results of one test basin with significant topographic influence indicates that all the gridded data have poor abilities in reproducing hydrologic processes with the topographic influence on precipitation quantity and distribution. However, in a relatively flat test basin, the APHRODITE and trend surface data can give stable and desirable results. The results of this study suggest that precipitation data for future applications should be considered comprehensively in the TGR area, including the influence of data density and topography.

  10. Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir

    Science.gov (United States)

    Yang, Yan; Wang, Guoqiang; Wang, Lijing; Yu, Jingshan; Xu, Zongxue

    2014-01-01

    Gridded precipitation data are becoming an important source for driving hydrologic models to achieve stable and valid simulation results in different regions. Thus, evaluating different sources of precipitation data is important for improving the applicability of gridded data. In this study, we used three gridded rainfall datasets: 1) National Centers for Environmental Prediction - Climate Forecast System Reanalysis (NCEP-CFSR); 2) Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE); and 3) China trend - surface reanalysis (trend surface) data. These are compared with monitoring precipitation data for driving the Soil and Water Assessment Tool in two basins upstream of Three Gorges Reservoir (TGR) in China. The results of one test basin with significant topographic influence indicates that all the gridded data have poor abilities in reproducing hydrologic processes with the topographic influence on precipitation quantity and distribution. However, in a relatively flat test basin, the APHRODITE and trend surface data can give stable and desirable results. The results of this study suggest that precipitation data for future applications should be considered comprehensively in the TGR area, including the influence of data density and topography. PMID:25409467

  11. Flood triggering in Switzerland: the role of daily to monthly preceding precipitation

    Science.gov (United States)

    Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O.

    2015-09-01

    Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. In this study, catchment-averaged daily precipitation time series are analyzed prior to annual peak discharge events (floods) in Switzerland. The high number of floods considered - more than 4000 events from 101 catchments have been analyzed - allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, a new separation of flood-related precipitation periods is proposed: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to 1 month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g., a stationary low-pressure system). A precise separation of "antecedent" and "peak-triggering" precipitation is not attempted. Instead, the strict definition of antecedent precipitation periods permits a direct comparison of all catchments. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at

  12. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  13. Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hurk, Bart van den; Camargo, Helio [Royal Netherlands Meteorological Institute, KNMI, PO Box 201, AE De Bilt (Netherlands); Doblas-Reyes, Francisco [Catalan Institute of Climate Sciences (IC3), Barcelona (Spain); European Centre for Medium-range Weather Forecasts (ECMWF), Reading (United Kingdom); Balsamo, Gianpaolo [European Centre for Medium-range Weather Forecasts (ECMWF), Reading (United Kingdom); Koster, Randal D. [NASA/Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD (United States); Seneviratne, Sonia I. [Institute for Atmospheric and Climate Science, Zurich (Switzerland)

    2012-01-15

    The Second Global Land Atmosphere Coupling Experiment (GLACE2) is designed to explore the improvement of forecast skill of summertime temperature and precipitation up to 8 weeks ahead by using realistic soil moisture initialization. For the European continent, we show in this study that for temperature the skill does indeed increase up to 6 weeks, but areas with (statistically significant) lower skill also exist at longer lead times. The skill improvement is smaller than shown earlier for the US, partly because of a lower potential predictability of the European climate at seasonal time scales. Selection of extreme soil moisture conditions or a subset of models with similar initial soil moisture conditions does improve the forecast skill, and sporadic positive effects are also demonstrated for precipitation. Using realistic initial soil moisture data increases the interannual variability of temperature compared to the control simulations in the South-Central European area at longer lead times. This leads to better temperature forecasts in a remote area in Western Europe. However, the covered range of forecast dates (1986-1995) is too short to isolate a clear physical mechanism for this remote correlation. (orig.)

  14. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.

    Science.gov (United States)

    Oh, Pyung Chun; Koh, Kwang Kon; Sakuma, Ichiro; Lim, Soo; Lee, Yonghee; Lee, Seungik; Lee, Kyounghoon; Han, Seung Hwan; Shin, Eak Kyun

    2014-10-20

    Experimental studies demonstrate that higher intake of omega-3 fatty acids (n-3 FA) improves insulin sensitivity, however, we reported that n-3 FA 2g therapy, most commonly used dosage did not significantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated the effects of different dosages of n-3 FA in patients with hypertriglyceridemia. This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients (about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n-3 FA 1 (O1), 2 (O2), or 4 g (O4), respectively daily for 2 months. n-3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cholesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n-3 FA therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, compared with placebo. O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 significantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with placebo, each n-3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the metabolic syndrome. n-3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation. Nonetheless, n-3 FA therapy did not significantly improve acute-phase reactants and insulin sensitivity in patients with hypertriglyceridemia, regardless of dosages. Copyright © 2014. Published by Elsevier Ireland Ltd.

  15. Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Yuxiang He

    2018-01-01

    Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.

  16. Nucleation during gibbsites precipitation with seeds from sodium aluminate solution processed under ultrasound

    Institute of Scientific and Technical Information of China (English)

    陈国辉; 陈启元; 尹周澜; 张斌

    2004-01-01

    The secondary nucleation during gibbsite precipitation with seeds from sodium aluminate solution processed by ultrasound was examined by particle size distribution(PSD) analyses. Experiments indicate that at low temperature(<65 ℃ ) and with low frequency ultrasound, the precipitation efficiency and also the secondary nucleation can be improved. Solution processed by low frequency ultrasound has more nuclei than common liquor does at low temperature. At 55 ℃, precipitation efficiency can he improved by 5.31 %, and the effect promoted by low frequency ultrasound decreases with the increase of temperature.

  17. Detection of the relationship between peak temperature and extreme precipitation

    Science.gov (United States)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  18. Precipitation variability inferred from the annual growth and isotopic composition of tropical trees

    Science.gov (United States)

    Ballantyne, A. P.; Baker, P. A.; Chambers, J. Q.; Villalba, R.

    2005-12-01

    Here we demonstrate that annual growth and isotopic ratios in tropical trees are responsive to seasonal and annual precipitation variability. We identify several regions of tropical South America characterized by significant relationships between oxygen isotopic ratios (δ 18O) in precipitation and precipitation amount (r = -0.82). Many of these regions are also sensitive to inter-annual variability in the South American Monsoon modulated by the El Niño Southern Oscillation (ENSO). The effectiveness of δ 18O and annual growth of tropical trees as a precipitation proxy is validated by high-resolution sampling of a Tachigali vermelho tree growing near Manaus, Brazil (3.1° S, 60.0° S). Growth in Tachigali spp. was highly correlated with both precipitation and cellulose δ 18O (r = 0.60) and precipitation amount was significantly correlated with δ 18O at a lag of approximately one month (r = 0.56). We also report a multi-proxy record spanning 180 years from Cedrela odorata growing in the Peruvian Amazon near Puerto Maldonado (12.6° S, 69.2° W) revealing a significant relationship between cellulose and monsoon precipitation over the region (r = -0.33). A 150-year record obtained from Polylepis tarapacana growing at Volcan Granada in Northern Argentina (22.0° S, 66.0° W) is also reported with a significant relationship between local monsoon precipitation and a regionally derived ring width index (r = 0.38). Although no significant relationship was revealed between cellulose δ 18O and precipitation in this taxa at this location, separate radii within the same tree revealed a significantly coherent δ 18O signal (r = 0.38). We compared our proxy chronologies with monsoon precipitation reanalysis data for tropical South America, which revealed key features of the South American Monsoon and their sensitivity to ENSO variability.

  19. Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan

    2017-10-01

    Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.

  20. Effects of Rare Earth on Behavior of Precipitation and Properties in Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    林勤; 陈邦文; 唐历; 李联生; 朱兴元; 王怀斌

    2003-01-01

    The influence of rare earths on the behavior of precipitation of 14MnNb,X60 and 10MnV steels was studied by STEM, XRD, ICP and thermal simulation method. The main carbonitride precipitates are Nb(C, N),(Nb, Ti)(C, N)and V(C, N). In austenite RE delays the beginning of precipitation, and decreases the rate of precipitation. In ferrite RE promotes precipitation and increases the amount of equilibrium carbonitride precipitation. RE can make precipitates fine, globular and dispersed in the microalloyed steels. With the increase of the amount of RE in steel, the amount of precipitation increases. The promotion effect is weakened with excessive RE. RE has only little influence on the strength of microalloyed steel, but it can improve impact toughness effectively.

  1. Precipitation-strengthening effects in iron-aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; McKamey, C.G.; Goodwin, G.M. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this work is to produce precipitation to improve both high-temperature strength and room-temperature ductibility in FeAl-type(B2 phase) iron-aluminides. Previous work has focused on primarily wrought products, but stable precipitates can also refine the grain size and affect the properties of as-cast and/or welded material as well. New work began in FY 1994 on the properties of these weldable, strong FeAl alloys in the as-cast condition. Because the end product of this project is components for industry testing, simpler and better (cheaper, near-net-shape) processing methods must be developed for industrial applications of FeAl alloys.

  2. APFIM and TEM investigations of precipitation in rapidly solidified 316 stainless steel

    International Nuclear Information System (INIS)

    Wisutmethangoon, S.; Kelly, T.F.; Flinn, J.E.; Camus, P.P.

    1998-01-01

    316 stainless steel has been rapid solidification-processed (RSP) by gas atomization and hot extrusion of the powder with the intent of improving the mechanical properties through fine-scale precipitation. Vanadium, nitrogen and oxygen have been introduced intentionally as alloying elements for this purpose. The yield strength after solution heat treatment of the RSP alloy is 450 MPa. By ageing at 600 C for 1000 h, the yield strength increases to 615 MPa with little loss of ductility (53% reduction of area). The ultimate tensile strength after cold work and ageing is 922 MPa. The morphology and composition of the precipitates in this steel have been investigated using APFIM and TEM techniques in order understand the origin of the high strength. A high numbered density (∼2 x 10 21 m -3 ) of 25 nm plate-like precipitates was observed with TEM in an aged specimen. The composition of these precipitates was analyzed using APFIM techniques, and was found to be a complex nitride of Cr, V, Fe, Ni and Mo. This nitride precipitate was not found in an unaged specimen of this alloy. These precipitates are responsible for improving mechanical properties by dispersion strengthening. (orig.)

  3. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  4. Stord Orographic Precipitation Experiment (STOPEX: an overview of phase I

    Directory of Open Access Journals (Sweden)

    A. Sandvik

    2007-04-01

    Full Text Available STOPEX (Stord Orographic Precipitation Experiment is a research project of the Geophysical Institute, University of Bergen, Norway, dedicated to the investigation of orographic effects on fine scale precipitation patterns by a combination of numerical modelling and tailored measurement campaigns. Between 24 September and 16 November 2005 the first field campaign STOPEX I has been performed at and around the island of Stord at the west coast of Norway, about 50 km south of Bergen. 12 rain gauges and 3 autonomous weather stations have been installed to measure the variability of precipitation and the corresponding meteorological conditions. This paper gives an overview of the projects motivation, a description of the campaign and a presentation of the precipitation measurements performed. In addition, the extreme precipitation event around 14 November with precipitation amounts up to 240 mm in less than 24 h, is described and briefly discussed. In this context preliminary results of corresponding MM5 simulations are presented, that indicate the problems as well as potential improvement strategies with respect to modelling of fine scale orographic precipitation.

  5. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    Science.gov (United States)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV

  6. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    Directory of Open Access Journals (Sweden)

    S. Stisen

    2012-11-01

    Full Text Available Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM and the time–space variable (TSV correction, resulted in different winter precipitation rates for the period 1990–2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model, revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests

  7. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  8. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    Science.gov (United States)

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  9. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent

    Science.gov (United States)

    Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.

    2017-08-01

    Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.

  10. Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets.

    Science.gov (United States)

    Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M

    2017-09-01

    The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.

  11. Precipitation Nowcast using Deep Recurrent Neural Network

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  12. Changes in precipitation recycling over arid regions in the Northern Hemisphere

    Science.gov (United States)

    Li, Ruolin; Wang, Chenghai; Wu, Di

    2018-01-01

    Changes of precipitation recycling (PR) in Northern Hemisphere from 1981 to 2010 are investigated using a water recycling model. The temporal and spatial characteristics of recycling in arid regions are analyzed. The results show that the regional precipitation recycling ratio (PRR) in arid regions is larger than in wet regions. PRR in arid regions has obvious seasonal variation, ranging from more than 25 % to less than 1 %. Furthermore, in arid regions, PRR is significantly negatively correlated with precipitation (correlation coefficient r = -0.5, exceeding the 99 % significance level). Moreover, the trend of PRR is related to changes in precipitation in two ways. PRR decreases with increasing precipitation in North Africa, which implies that less locally evaporated vapor converts into actual precipitation. However, in Asian arid regions, the PRR increases as precipitation reduces, which implies that more locally evaporated vapor converts into rainfall. Further, as PRR mainly depends on evapotranspiration, the PRR trend in Asian arid regions develops as temperature increases and more evaporated vapor enters the atmosphere to offset the reduced rainfall.

  13. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Nieh, T.G. [Department of Materials Science and Engineering, the University of Tennessee, Knoxville, TN 37996 (United States); Lu, Z.P., E-mail: luzhaoping@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-02-16

    In this work, we systematically investigated flow behavior of a high entropy alloy (HEA) strengthened by coherent γ′ precipitates in the temperature range of 1023–1173 K. In contrast to the single-phase FeCoNiCrMn HEA, this precipitate-hardened alloy, i.e., (FeCoNiCr){sub 94}Ti{sub 2}Al{sub 4}, exhibited large reduction of the steady-state strain rate (by ~2 orders of magnitude) or drastic enhancement in flow stress, indicating significant improvement in high-temperature properties. Our results showed that the deformation could be divided into two regimes. At temperatures below 1123 K, coherent γ′ precipitates effectively blocked the dislocation motion, thus resulted in a threshold stress effect. Above 1123 K, however, γ′ particles dissolved and the deformation was controlled by the ordinary dislocation climb mechanism. In addition, we conducted transmission electron microscopy to characterize dislocation-precipitate interaction to provide microstructural evidences to support our conclusion of the specific deformation mechanisms in the two temperature regimes.

  14. Training directionally selective motion pathways can significantly improve reading efficiency

    Science.gov (United States)

    Lawton, Teri

    2004-06-01

    This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.

  15. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  16. Linkages between Icelandic Low position and SE Greenland winter precipitation

    Science.gov (United States)

    Berdahl, M.; Rennermalm, A. K.; Hammann, A. C.; Mioduszewski, J.; Hameed, S.; Tedesco, M.; Stroeve, J. C.; Mote, T. L.

    2015-12-01

    Greenland's largest flux of precipitation occurs in its Southeast (SE) region. An understanding of the mechanisms controlling precipitation in this region is lacking despite its disproportionate importance in the mass balance of Greenland and the consequent contributions to sea level rise. We use weather station data from the Danish Meteorological Institute to reveal the governing influences on precipitation in SE Greenland during the winter and fall. We find that precipitation in the fall is significantly correlated to the longitude of the Icelandic Low and the NAO. Winter precipitation is correlated with the strength and longitude of the Icelandic Low, as well as the NAO. We show that in years of extreme high precipitation, onshore winds dominate, thereby advecting more moisture inland. In low precipitation years, winds are more westerly, approaching the stations from land. Understanding the controls of SE Greenland precipitation will help us predict how future precipitation in this key region may change in a warming climate.

  17. A New Inter-Hemispheric Teleconnection Increases Predictability of Winter Precipitation in Southwestern US

    Science.gov (United States)

    Mamalakis, A.; Yu, J. Y.; Randerson, J. T.; AghaKouchak, A.; Foufoula-Georgiou, E.

    2017-12-01

    Early and reliable prediction of seasonal precipitation in the southwestern US (SWUS) remains a challenge with significant implications for the economy, water security and ecosystem management of the region. Traditional drivers of winter precipitation in the SWUS have been linked to the El Niño-Southern Oscillation (ENSO), decadal/multidecadal oscillations of the sea surface temperature in northern Pacific and Atlantic oceans, and persistent high-pressure ridges over the Gulf of Alaska. However, ENSO as well as other climate modes exhibit weak statistical relationships with precipitation and low predictability as lead time increases. Grounded on the hypothesis that still undiscovered relationships between large-scale atmosphere-ocean dynamics and SWUS precipitation might exist, here we followed a diagnostic approach by which instead of restricting ourselves to the established teleconnections, we analyzed systematically the correlation of global sea surface temperature (SST) and geopotential height (GPH) with winter precipitation amounts in all climatic divisions in the SWUS, for 1950-2015. Our results show that late-summer persistent SST and GPH anomalies in the subtropical southwestern Pacific are strongly connected with winter precipitation in most climatic divisions, exhibiting higher correlation values than ENSO, and thus increasing the potential for earlier and more accurate precipitation prediction. Cross validation and 30-year running average analysis starting in 1950 suggest an amplification of the detected teleconnections over the past three to four decades. The latter is most likely a result of the reported expansion of the tropics, which has started after the 1980s, and allows SST or GPH variability at lower latitudes to affect the meridional atmospheric circulation. Our work highlights the need to understand the dynamic nature of the coupled atmosphere-ocean system in a changing climate for improving future predictions of regional precipitation.

  18. Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data

    Science.gov (United States)

    Liu, N.; Liu, C.

    2017-12-01

    Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.

  19. Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China

    Directory of Open Access Journals (Sweden)

    Xinyang Yu

    2017-05-01

    Full Text Available Precipitation data from nine meteorological stations in arid oases of Hexi Corridor, northwest China during 1970–2012 were analyzed to detect trends in precipitation and Standardized Precipitation Index (SPI at multiple time scales using linear regression, Mann–Kendall and Spearman’s Rho tests. The results found that annual precipitation in the observed stations was rare and fell into the arid region category according to the aridity index analysis. The monthly analysis of precipitation found that three stations showed significant increasing trends in different months, while on the annual level, only Yongchang station had a significant increasing trend. The analysis of SPI-12 found three main drought intervals, i.e., 1984–1987, 1991–1992 and 2008–2011, and an extremely dry year among the stations was recorded in 1986; the southeast and middle portions of the study area are expected to have more precipitation and less dry conditions.

  20. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.

    2014-01-01

    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  1. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  2. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  3. The impact of precipitation regimes on forest fires in Yunnan Province, southwest China.

    Science.gov (United States)

    Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei

    2014-01-01

    The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982-1988 and 1989-2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I-III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.

  4. Precipitation Mechanism of Sigma Phase in Super Duplex Stainless Steels

    Science.gov (United States)

    Nakade, Katsuyuki; Kuroda, Toshio

    The influence of alloying elements on the precipitation behavior of sigma (σ) phase was investigated for conventional SAF2205 and SAF2507 super duplex stainless steel. Time-Temperature-Precipitation (T-T-P) diagram of sigma phase of SAF2507 were shifted toward to shorter times compared to SAF2205. The precipitation of sigma phase was accelerated with increasing Cr and Mo concentration. According to the microstructure observation, the sigma phase began to precipitate at ferrite (α) ⁄ austenite (γ) phase boundaries and grew into ferrite for SAF2507 and SAF2205 steel. In the as-received condition, Cr and Mo concentration in ferrite was clearly higher than that in austenite. Especially, it was found that Mo concentration in ferrite of SAF2507 was higher than that in ferrite of SAF2205. The result of EPMA-measurement showed that sigma phase was mainly Fe-Cr-Mo intermetallic compound and Mo was significantly enriched into sigma phase. The difference of Mo concentration in ferrite significantly affected to the sigma phase precipitation. The secondary austenite formation was also induced by sigma phase precipitation. Cr and Mo were ejected to the remained ferrite ⁄ austenite phase boundaries by secondary austenite formation. Consequently, sigma phase precipitation was more accelerated by the reheating.

  5. Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2017-01-01

    Full Text Available Precipitation is the main water source for vegetation survival in arid and semi-arid areas. However, previous studies always focus on the effects of precipitation in different time scales, but ignore the effects of precipitation in different spatial scales. To further study the effects of precipitation fluctuation in different spatial scales, we used the wavelet analysis method to analyze its temporal and spatial change based on data from eighteen meteorological stations during 1961–2015 in Horqin region. Results showed that: (1 from the overall tendency of precipitation changes, the precipitation inter-annual variations in Horqin region had the tendency of gradually decreasing from the southeast (District IV to the northwest; (2 the precipitation anomalies of District I–IV between 1960 and 1980 were small and approximate to the normal value; (3 in the time scale of 23–32 years, the cyclical fluctuations were very significant and the annual precipitation underwent two cyclical fluctuations from a period of low precipitation to a period of high precipitation; and (4 as results of analyzing the spatial wavelet variance of sub-region, the main cycle of precipitation in District I, District II and District III was between 10 and 11 years, while the main cycle of precipitation in District IV was 25 years. The main conclusions include the following. (1 This region tended to be arid, and the precipitation gradually decreased from the southeast (District IV to northwest (District I. (2 The influence of spatial differentiation characteristics on precipitation fluctuation in this region was cyclical fluctuation, which gradually decreased from the southeast to the northwest. The length of the cyclical change period gradually shortened. In the first main cycle, whose annual precipitation changes were most significant, the changing characteristic was District IV and District I decreased from 25 years to 10 years. (3 Predicated from the cyclical

  6. Evaluation of operational parameters on the precipitation of endoglucanase and xylanase produced by solid state fermentation of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    C. S. Farinas

    2011-03-01

    Full Text Available In order to develop cost effective processes for converting biomass into biofuels, it is essential to improve enzyme production yields, stability and specific activity. In this context, the aim of this work was to evaluate the concentration of two enzymes involved in the hydrolysis of biomass, endoglucanase and xylanase, through precipitation. Statistical experimental design was used to evaluate the influence of precipitant agent concentration (ammonium sulfate and ethanol, aging time, and temperature on enzyme activity recovery. Precipitant agent concentration and aging time showed a statistically significant effect at the 95% confidence level, on both enzyme activity recoveries. The recovery of endoglucanase with ammonium sulfate and ethanol reached values up to 65 and 61%, respectively. For xylanase, the recovery rates were lower, 27 and 25% with ammonium sulfate and ethanol, respectively. The results obtained allowed the selection of the variables relevant to improving enzyme activity recovery within operational conditions suitable for industrial applications.

  7. Magnetite precipitation and characterisation

    International Nuclear Information System (INIS)

    Joyce, A.; Garside, J.; Ivens, R.

    1988-06-01

    Magnetite (Fe 3 O 4 ) precipitation was investigated as a possible alternative treatment process to the conventional ferric hydroxide for removal of actinides from radioactive effluents. This offered the possibility of improved dewatering of filtered residues. Whilst a poor quality magnetite could be produced from deoxygenated ferrous/ferric solutions, all attempts to prepare magnetite from effluent simulates were unsuccessful. The failure was attributed to the presence of high nitrate and other interfering ions. (author)

  8. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  9. Do climate model predictions agree with long-term precipitation trends in the arid southwestern United States?

    Science.gov (United States)

    Elias, E.; Rango, A.; James, D.; Maxwell, C.; Anderson, J.; Abatzoglou, J. T.

    2016-12-01

    Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based upon a multimodel mean of 20 Coupled Model Intercomparison Project 5 models using a business-as-usual (Representative Concentration Pathway 8.5) trajectory, midcentury precipitation is projected to increase slightly during the monsoonal time period (July-September; 6%) and decrease slightly during the remainder of the year (October-June; -4%). We use observed long-term (1915-2015) monthly precipitation records from 16 weather stations to investigate how well measured trends corroborate climate model predictions during the monsoonal and non-monsoonal timeframe. Running trend analysis using the Mann-Kendall test for 15 to 101 year moving windows reveals that half the stations showed significant (p≤0.1), albeit small, increasing trends based on the longest term record. Trends based on shorter-term records reveal a period of significant precipitation decline at all stations representing the 1950s drought. Trends from 1930 to 2015 reveal significant annual, monsoonal and non-monsoonal increases in precipitation (Fig 1). The 1960 to 2015 time window shows no significant precipitation trends. The more recent time window (1980 to 2015) shows a slight, but not significant, increase in monsoonal precipitation and a larger, significant decline in non-monsoonal precipitation. GCM precipitation projections are consistent with more recent trends for the region. Running trends from the most recent time window (mid-1990s to 2015) at all stations show increasing monsoonal precipitation and decreasing Oct-Jun precipitation, with significant trends at 6 of 16 stations. Running trend analysis revealed that the long-term trends were not persistent throughout the series length, but depended

  10. Observed precipitation trends in the Yangtze river catchment from 1951 to 2002

    Institute of Scientific and Technical Information of China (English)

    SUBuda; JIANGTong; SHIYafeng; StefanBECKER; MracoGEMMER

    2004-01-01

    The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.

  11. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer. This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal suppression.

  12. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  13. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States

    Directory of Open Access Journals (Sweden)

    Brian F. Thomas

    2016-03-01

    Full Text Available Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate.

  14. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    Science.gov (United States)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  15. Trends in extreme temperature and precipitation in Muscat, Oman

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2014-09-01

    Full Text Available Changes in frequency and intensity of weather events often result in more frequent and intensive disasters such as flash floods and persistent droughts. In Oman, changes in precipitation and temperature have already been detected, although a comprehensive analysis to determine long-term trends is yet to be conducted. We analysed daily precipitation and temperature records in Muscat, the capital city of Oman, mainly focusing on extremes. A set of climate indices, defined in the RClimDex software package, were derived from the longest available daily series (precipitation over the period 1977–2011 and temperature over the period 1986–2011. Results showed significant changes in temperature extremes associated with cooling. Annual maximum value of daily maximum temperature (TX, on average, decreased by 1°C (0.42°C/10 year. Similarly, the annual minimum value of daily minimum temperature (TN decreased by 1.5°C (0.61°C/10 year, which, on average, cooled at a faster rate than the maximum temperature. Consequently, the annual count of days when TX > 45°C (98th percentile decreased from 8 to 3, by 5 days. Similarly, the annual count of days when TN < 15°C (2nd percentile increased from 5 to 15, by 10 days. Annual total precipitation averaged over the period 1977–2011 is 81 mm, which shows a tendency toward wetter conditions with a 6 mm/10 year rate. There is also a significant tendency for stronger precipitation extremes according to many indices. The contribution from very wet days to the annual precipitation totals steadily increases with significance at 75% level. When The General Extreme Value (GEV probability distribution is fitted to annual maximum 1-day precipitation, the return level of a 10-year return period in 1995–2011 was estimated to be 95 mm. This return level in the recent decade is about 70% higher than the return level for the period of 1977–1994. These results indicate that the long-term wetting signal apparent in total

  16. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  17. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Directory of Open Access Journals (Sweden)

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  18. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions

    Science.gov (United States)

    Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson

    2017-03-01

    Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.

  19. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  20. Controlling Factors of Mercury Wet Deposition and Precipitation Concentrations in Upstate New York

    Science.gov (United States)

    Ye, Z.; Mao, H.; Driscoll, C. T.

    2017-12-01

    Observations from the Mercury Deposition Network (MDN) at Huntington Wildlife Forest (HWF) suggested that a significant decline in Hg concentrations in precipitation was linked to Hg emission decreases in the United States, especially in the Northeast and Midwest, and yet Hg wet deposition has remained fairly constant over the past two decades. The present study was aimed to investigate how climatic, terrestrial, and anthropogenic factors had influenced the Hg wet deposition flux in upstate New York (NY). To achieve this, an improved Community Multiscale Air Quality (CMAQ) model was employed, which included state-of-the-art Hg and halogen chemistry mechanisms. A base simulation and five sensitivity simulations were conducted. The base simulation used 2010 meteorology, U.S. EPA NEI 2011, and GEOS-Chem output as initial and boundary conditions (ICs and BCs). The five sensitivity runs each changed one condition at the time as follows: 1-3) 2004, 2005, and 2007 meteorology instead of 2010, 4) NEI 2005 Hg anthropogenic emission out of NYS instead of NEI 2011, and 5) no in-state Hg anthropogenic emission. The study period of all the simulations was March - November 2010, and the domain covered the northeastern United States at 12 km resolution. As a result, compared with rural areas in NYS, Hg wet deposition and ambient Hg concentrations in urban areas were affected more significantly by in-state anthropogenic Hg emission. The in-state anthropogenic Hg emissions contributed up to 20% of Hg wet deposition at urban sites and cloud height, precipitation, wind speed and direction, and relative humidity, among which precipitation had the largest effects in most areas. Diluting effects were found in non-convective precipitation, which contributed 31-48% to changes in Hg concentration in precipitation.

  1. Electrostatic precipitators for coal thermal power plants energized by means of narrow pulse voltage

    Energy Technology Data Exchange (ETDEWEB)

    Dinelli, G.; Mattachini, F.; Bogani, V.; Baldacci, A.; Tarli, R. (ENEL-CRTN, Direzione Studi e Ricerche, Milan (Italy) ENEL, VDT Settore Tecnico, Direzione Produzione e Trasmissione, Rome (Italy))

    1990-09-01

    The efficiency of electrostatic precipitators, widely used in thermal power plants to clean flue gases from solid particulate, is strongly dependent both on the way particles are electrically charged and on the characteristics of the electric field within the interelectrodic space of the precipitator. Such operating may become inadequate under varying particle characteristics and operating conditions of the thermal plant, therefore bringing to a reduction in the precipitator collection efficiency. An innovative technique, by generating a pulsed corona in the precipitator, allows a substantial improvement of both the particle charging and the collection processes and an increase in the operation flexibility of the electrostatic precipitator. The narrow pulse voltage energization has been extensively tested at a coal thermal unit having the electrostatic precipitators equipped with both conventional and pulse power sets. The long duration tests confirmed the following results: 1) high reliability of the pulse power sets and a considerable improvement in the precipitator collection efficiency; 2) a decrease in the particulate emissions, with coals whose ashes are of difficult collection, ranging between 75% and 85% of those with conventional energization; 3) a reduction by a factor of about 5 in the consumption of electric power by the electrostatic precipitation process.

  2. Precipitated iron. A limit on gettering efficacy in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fenning, D.P.; Hofstetter, J.; Bertoni, M.I.; Buonassisi, T. [Massachusetts Institute of Technology MIT, Cambridge, Massachusetts 02139 (United States); Coletti, G. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Lai, B. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Del Canizo, C. [Instituto de Energia Solar, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2013-01-31

    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

  3. Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula

    Science.gov (United States)

    Garaboa-Paz, Daniel; Lorenzo, Nieves; Pérez-Muñuzuri, Vicente

    2017-05-01

    Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean-atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.

  4. Changes and Attribution of Extreme Precipitation in Climate Models: Subdaily and Daily Scales

    Science.gov (United States)

    Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G. A.

    2017-12-01

    Extreme precipitation events are responsible for numerous hazards, including flooding, soil erosion, and landslides. Because of their significant socio-economic impacts, the attribution and projection of these events is of crucial importance to improve our response, mitigation and adaptation strategies. Here we present results from our ongoing work.In terms of attribution, we use idealized experiments [pre-industrial control experiment (PI) and 1% per year increase (1%CO2) in atmospheric CO2] from ten general circulation models produced under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the fraction of attributable risk to examine the CO2 effects on extreme precipitation at the sub-daily and daily scales. We find that the increased CO2 concentration substantially increases the odds of the occurrence of sub-daily precipitation extremes compared to the daily scale in most areas of the world, with the exception of some regions in the sub-tropics, likely in relation to the subsidence of the Hadley Cell. These results point to the large role that atmospheric CO2 plays in extreme precipitation under an idealized framework. Furthermore, we investigate the changes in extreme precipitation events with the Community Earth System Model (CESM) climate experiments using the scenarios consistent with the 1.5°C and 2°C temperature targets. We find that the frequency of annual extreme precipitation at a global scale increases in both 1.5°C and 2°C scenarios until around 2070, after which the magnitudes of the trend become much weaker or even negative. Overall, the frequency of global annual extreme precipitation is similar between 1.5°C and 2°C for the period 2006-2035, and the changes in extreme precipitation in individual seasons are consistent with those for the entire year. The frequency of extreme precipitation in the 2°C experiments is higher than for the 1.5°C experiment after the late 2030s, particularly for the period 2071-2100.

  5. On the performance of satellite precipitation products in riverine flood modeling: A review

    Science.gov (United States)

    Maggioni, Viviana; Massari, Christian

    2018-03-01

    This work is meant to summarize lessons learned on using satellite precipitation products for riverine flood modeling and to propose future directions in this field of research. Firstly, the most common satellite precipitation products (SPPs) during the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) eras are reviewed. Secondly, we discuss the main errors and uncertainty sources in these datasets that have the potential to affect streamflow and runoff model simulations. Thirdly, past studies that focused on using SPPs for predicting streamflow and runoff are analyzed. As the impact of floods depends not only on the characteristics of the flood itself, but also on the characteristics of the region (population density, land use, geophysical and climatic factors), a regional analysis is required to assess the performance of hydrologic models in monitoring and predicting floods. The performance of SPP-forced hydrological models was shown to largely depend on several factors, including precipitation type, seasonality, hydrological model formulation, topography. Across several basins around the world, the bias in SPPs was recognized as a major issue and bias correction methods of different complexity were shown to significantly reduce streamflow errors. Model re-calibration was also raised as a viable option to improve SPP-forced streamflow simulations, but caution is necessary when recalibrating models with SPP, which may result in unrealistic parameter values. From a general standpoint, there is significant potential for using satellite observations in flood forecasting, but the performance of SPP in hydrological modeling is still inadequate for operational purposes.

  6. Sulphate deposition by precipitation into Lake Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R W; Whelpdale, D M

    1973-01-01

    Measurements of sulphate concentration in precipitation from individual snow storms of several hours duration in the western Lake Ontario region indicate that approximately 9-66 mg/M/sub 2/ of SO/sub 4//sup 2 -/ is being deposited into the lake per storm. This amount is up to several times more than daily average values over long periods found by other workers. Using a mean sulphate concentration of 4 mg/l and an annual accumulation of precipitation of 760 mm, the yearly sulphate deposition by precipitation is about 0.1% of the total mass of sulphate in the lake; however, more significantly, it is of the same order of magnitude as that discharged directly into the lake by industry.

  7. Analysis of Precipitation Characteristics during 1957-2012 in the Semi-Arid Loess Plateau, China.

    Directory of Open Access Journals (Sweden)

    Weijun Zhao

    Full Text Available Precipitation is the only water supply and most important factor affecting vegetation growth on the slopes of semi-arid Loess Plateau of China. Based on precipitation data from 7 synoptic stations in the study area over the period 1957-2012, the trends of precipitation and standardized precipitation index (SPI were analyzed by using linear regression, Mann-Kendall, and Spearman's Rho tests at the 5% significance level. The results show that (1 the precipitation fluctuation of monthly precipitation was intense (coefficients of variation> 100%, and the drier years were recorded as 1965 and 1995 at all stations. (2 The significant change trend of different stations varied on different time scales: the Changwu station had a significant decreasing trend in April (-0.488 mm/year and November (-0.249 mm/year, while Luochuan station was in April (-0.457 mm/year; Changwu station displayed a significant increasing trends in winter (0.220 mm/year and a significant decreasing trends in spring (-0.770 mm/year. The significant decreasing trends in annual precipitation were detected at the Suide (-2.034 mm/year and Yan'an (-2.129 mm/year stations. (3 The SPI-12 series analysis suggests that the drought degree of Yulin and Changwu was the lowest and that of Hengshan was the highest among the 7 synoptic stations.

  8. California Wintertime Precipitation in Regional and Global Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  9. Production of Micro- and Nanoscale Lignin from Wheat Straw Using Different Precipitation Setups.

    Science.gov (United States)

    Beisl, Stefan; Loidolt, Petra; Miltner, Angela; Harasek, Michael; Friedl, Anton

    2018-03-11

    Micro- and nanosize lignin has recently gained interest due to its improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. Applications for lignin in micro- to nanoscale however, ranging from improvement of mechanical properties of polymer nanocomposites, have bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. This research represents a whole biorefinery process chain and compares different precipitation setups to produce submicron lignin particles from lignin containing an organosolv pretreatment extract from wheat straw. A batch precipitation in a stirred vessel was compared with continuous mixing of extract and antisolvent in a T-fitting and mixing in a T-fitting followed by a static mixer. The precipitation in the combination of T-fitting and static mixer with improved precipitation parameters yields the smallest particle size of around 100 nm. Furthermore, drying of particles did not influence the particle sizes negatively by showing decreased particle diameters after the separation process.

  10. Effect of high-temperature pre-precipitation on microstructure and properties of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The near-solvus pre-precipitation following higher temperature solution treatment was performed on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transmission electron microscopy results show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance of aged 7055 alloys could be improved with non-deteriorated strength and plasticity via the pre-precipitation.

  11. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  12. [Effects of increased precipitation on the water use of Nitraira tangutorum at southeast edge of Baddain Jaran Desert in China].

    Science.gov (United States)

    Zhu, Ya-Juan; Lu, Qi; Wu, Bo; Li, Yong-Hua; Yao, Bin; Zhang, Jin-Xin

    2013-01-01

    This paper studied the threshold value of the water use of Nitraria tanturorum shrubs at the southeast edge of Baddain Jiran Desert. From the early May to late September in 2009, an irrigation simulating increased precipitation was conducted once every month. Three ratios of increased precipitation (0, 50% and 100%) were designed, based on the local mean annual precipitation (115 mm). On the 1 day before irrigation and the 1, 3 and 7 days after irrigation in May, July and September, the deltaD in the xylem water of N. tangutorum, the soil water at the depths 10 and 30 cm, and the well water and natural rainfall, and the variations of the soil water content were measured. Under natural condition, the N. tangutorum mainly utilize ground water in May and September, and utilize the soil water at the depths 10 and 30 cm in July. After irrigation, the ground water use rate of the N. tangutorum decreased, while the soil water use rate increased. In the treatment of 100% increased precipitation, the deltaD ratio of the water in N. tangutorum xylem was affected significantly, and the water use of the N. tangutorum in May, July and September increased. In the treatment of 50% increased precipitation, the soil water condition in May and July was improved, but the water use rate had little improvement. Only when the increased precipitation reached 100% of the local mean annual precipitation, could the water use rate of the N. tangutorum have an obvious increase.

  13. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  14. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  15. Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF – a performance test

    Directory of Open Access Journals (Sweden)

    Hans-Stefan Bauer

    2015-04-01

    Full Text Available Quantitative precipitation estimation and forecasting (QPE and QPF are among the most challenging tasks in atmospheric sciences. In this work, QPE based on numerical modelling and data assimilation is investigated. Key components are the Weather Research and Forecasting (WRF model in combination with its 3D variational assimilation scheme, applied on the convection-permitting scale with sophisticated model physics over central Europe. The system is operated in a 1-hour rapid update cycle and processes a large set of in situ observations, data from French radar systems, the European GPS network and satellite sensors. Additionally, a free forecast driven by the ECMWF operational analysis is included as a reference run representing current operational precipitation forecasting. The verification is done both qualitatively and quantitatively by comparisons of reflectivity, accumulated precipitation fields and derived verification scores for a complex synoptic situation that developed on 26 and 27 September 2012. The investigation shows that even the downscaling from ECMWF represents the synoptic situation reasonably well. However, significant improvements are seen in the results of the WRF QPE setup, especially when the French radar data are assimilated. The frontal structure is more defined and the timing of the frontal movement is improved compared with observations. Even mesoscale band-like precipitation structures on the rear side of the cold front are reproduced, as seen by radar. The improvement in performance is also confirmed by a quantitative comparison of the 24-hourly accumulated precipitation over Germany. The mean correlation of the model simulations with observations improved from 0.2 in the downscaling experiment and 0.29 in the assimilation experiment without radar data to 0.56 in the WRF QPE experiment including the assimilation of French radar data.

  16. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prather, K. [Scripps Institution of Oceanography, La Jolla, CA (United States); Ralph, R. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Rosenfeld, D. [The Hebrew University of Jerusalem (Israel); Spackman, R. [Science and Technology Corporation (STC), Hampton, VA (United States); DeMott, P. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Fan, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagos, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, M. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Long, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutledge, S. [Colorado State Univ., Fort Collins, CO (United States); Waliser, D. [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Wang, H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  17. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  18. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  19. Precipitation characteristics in tropical Africa using satellite and in situ observations

    Science.gov (United States)

    Dezfuli, A. K.; Ichoku, I.; Huffman, G. J.; Mohr, K. I.

    2017-12-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region have not been well-understood, despite their crucial role in regional and global circulation. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) ground-based gauge network to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product based on satellite observations from the Global Precipitation Measurement (GPM) constellation. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TRMM Multi-Satellite Precipitation Analysis (TMPA), and provide higher resolution data, continent-wide comparisons are made between these two products. Due to its improved temporal resolution, IMERG shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  20. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region

    Science.gov (United States)

    Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.

    2017-10-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  1. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    Science.gov (United States)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2018-02-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  2. A MODIFIED CUMULUS PARAMETERIZATION SCHEME AND ITS APPLICATION IN THE SIMULATIONS OF THE HEAVY PRECIPITATION CASES

    Institute of Scientific and Technical Information of China (English)

    PING Fan; TANG Xi-ba; YIN Lei

    2016-01-01

    According to the characteristics of organized cumulus convective precipitation in China,a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified.The Kain-Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes.A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain-Fristch scheme.Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme,and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons,as well as the distribution of Mei-yu front precipitation.

  3. Regional climate scenarios - A study on precipitation

    International Nuclear Information System (INIS)

    Hesselbjerg Christensen, J.; Boessing Christensen, O.

    2001-01-01

    A set of nested climate change simulations for the Nordic region and Denmark has been revisited. In the present work we have re-examined the results of CCMB and MBC with special emphasis on precipitation intensity frequencies, in particular the more extreme part of the frequency distribution. It has been demonstrated that the role of extreme precipitation events appears to be more realistically described in a high-resolution model, in terms of numerical agreement as well as seasonal variation. This is mainly due to a better simulation of deep low-pressure systems and mesoscale circulation. Generally, the analysis has confirmed the results from CCMB, but furthermore a resolution effect has been identified which seems essential to the understanding of climate change effects on the extreme end of the precipitation intensity distribution. In order to analyse the role of the model resolution we have aggregated both the nested model data and observational records to the GCM grid from the driving AOGCM. It was found that, in spite of changes in absolute numbers, the seasonal behaviour of decay constants does not change appreciably because of the aggregation. The RCM results show a seasonal behaviour very similar to an observed data set. It is therefore concluded that the GCM has an unrealistic simulation of the dependence of heavy precipitation on climate, as manifested in seasonal variation. In contrast, the regional simulations remain close to observation in this respect. Furthermore, they agree on a conclusion that extreme precipitation generally scales with average precipitation (no significant change in decay constants were detected), but that crucial summer season may be an exception, exhibiting an anomalous increase in heavy precipitation due to the anthropogenic greenhouse effect. The analysis has only been performed over Denmark due to lack of daily observational data for other regions. It is, however, necessary to extend the work to other areas, for instance

  4. Data Analysis of GPM Constellation Satellites-IMERG and ERA-Interim precipitation products over West of Iran

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2016-04-01

    Precipitation is a critical component of the Earth's hydrological cycle. The primary requirement in precipitation measurement is to know where and how much precipitation is falling at any given time. Especially in data sparse regions with insufficient radar coverage, satellite information can provide a spatial and temporal context. Nonetheless, evaluation of satellite precipitation is essential prior to operational use. This is why many previous studies are devoted to the validation of satellite estimation. Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards. In situ observations over mountainous areas are mostly limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. One of the newest and blended methods that use multi-satellites and multi-sensors has been developed for estimating global precipitation. The considered data set known as Integrated Multi-satellitE Retrievals (IMERG) for GPM (Global Precipitation Measurement) is routinely produced by the GPM constellation satellites. Moreover, recent efforts have been put into the improvement of the precipitation products derived from reanalysis systems, which has led to significant progress. One of the best and a worldwide used model is developed by the European Centre for Medium Range Weather Forecasts (ECMWF). They have produced global reanalysis daily precipitation, known as ERA-Interim. This study has evaluated one year of precipitation data from the GPM-IMERG and ERA-Interim reanalysis daily time series over West of Iran. IMERG and ERA-Interim yield underestimate the observed values while IMERG underestimated slightly and performed better when precipitation is greater than 10mm. Furthermore, with respect to evaluation of probability of detection (POD), threat score (TS), false alarm ratio (FAR) and probability

  5. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  6. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  7. CCN and IN Effects on Cloud Properties and Precipitation - Case Studies from CalWater 2011

    Science.gov (United States)

    Fan, J.; Leung, L.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosols in the atmosphere can serve as cloud condensation nuclei (CCN) and ice nuclei (IN) to modify cloud microphysical processes, which could potentially change the location, intensity, and type of precipitation. Dust aerosols are often observed over California in the Sierra Nevada Mountains in winter/spring, associated with long-range transport from Asia. Although anthropogenic pollution has been postulated to contribute to reduction of precipitation in the Sierra Nevada Mountains, the effects of dust aerosols on the winter clouds and precipitation has not been examined in detail particularly with model simulations. We incorporate recent progress in ice nucleation parameterizations to link dust with ice crystal formation in a spectral-bin cloud microphysical model coupled with WRF, to exclusively look into how dust can possibly affect cloud properties and precipitation type and intensity. Simulations are carried out for two cases under different environmental conditions with atmospheric river (AR) and Sierra barrier jet (SBJ) from the CalWater 2011 field campaign. It is shown that increasing IN concentrations or adding a dust layer at 4-6 km as IN enhances surface rain and snow due to enhanced production of ice and snow in clouds. However, increasing CCN suppresses surface rain and snow, and significantly redistributes surface precipitation upwind and downwind of the mountains, with important implication to improving our understanding of the impacts of aerosols on orographic precipitation and water supply in the region.

  8. Characterization and structure of precipitates in 6xxx Aluminium Alloys

    International Nuclear Information System (INIS)

    Holmestad, Randi; Bjørge, Ruben; Ehlers, Flemming J H; Torsæter, Malin; Marioara, Calin D; Andersen, Sigmund J

    2012-01-01

    Solute atom nanoscale precipitates are responsible for the favourable mechanical properties of heat treatable aluminium alloys such as Al-Mg-Si (6xxx). The shape, structure and strengthening properties of age-hardening precipitates depend on alloy composition and thermo-mechanical history. We seek an improved understanding of the physics related to nucleation and precipitation on the atomistic level in these alloys. Once these mechanisms are sufficiently well described and understood, the hope is that 'alloy design' simulations can assist tailoring of materials with desired properties. In pure Al-Mg-Si we have determined the structure of nearly all the known metastable precipitate phases, by combining advanced TEM techniques (such as high resolution TEM and nano-beam diffraction) with atom probe tomography and density functional theory. We are now studying effects of additions /substitutions of Cu, Ag and/or Ge that promote formation of more disordered precipitates, employing aberration corrected high angle annular dark field scanning TEM. We find that all metastable precipitates contain variations of a widely spaced 'Si/Ge network'. In spite of disorder or defects, this network is surprisingly well ordered, with hexagonal projected sub-cell dimensions a = b ≅ 0.4 nm and c (along the fully coherent precipitate main growth direction) equal to 0.405 nm or a multiple of it.

  9. Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds

    OpenAIRE

    Berezovskaya, Svetlana; Yang, Daqing; Kane, Douglas L.

    2004-01-01

    The consistency of long-term yearly precipitation and runoff trends over the largest Arctic watersheds (Ob, Yenisei and Lena Rivers) is examined. Three gridded precipitation datasets (Climatic Research Unit, University of Delaware, NCEP) are used for comparative analyses with runoff data collected at basin outlets. The results generally demonstrate inconsistency in long-term changes of basin precipitation and runoff. The Yenisei River runoff increases significantly, while precipitation data s...

  10. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    Science.gov (United States)

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  11. Stable Isotopes of Precipitation During Tropical Sumatra Squalls in Singapore

    Science.gov (United States)

    He, Shaoneng; Goodkin, Nathalie F.; Kurita, Naoyuki; Wang, Xianfeng; Rubin, Charles Martin

    2018-04-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems during the intermonsoon and southwest monsoon seasons in Singapore. To understand how they affect precipitation isotopes, we monitored the δ value of precipitation daily and continuously (every second and integrated over 30 s) during all squalls in 2015. We found that precipitation δ18O values mainly exhibit a "V"-shape pattern and less commonly a "W"-shape pattern. Variation in δ18O values during a single event is about 1 to 6‰ with the lowest values mostly observed in the stratiform zone, which agrees with previous observations and modeling simulations. Reevaporation can significantly affect δ values, especially in the last stage of the stratiform zone. Daily precipitation is characterized by periodic negative shifts in δ value, largely associated with the squalls rather than moisture source change. The shifts can be more than 10‰, larger than intraevent variation. Initial δ18O values of events are highly variable, and those with the lowest values also have the lowest initial values. Therefore, past convective activities in the upwind area can significantly affect the δ18O, and convection at the sampling site has limited contribution to isotopic variability. A significant correlation between precipitation δ18O value and regional outgoing longwave radiation and rainfall in the Asian monsoon region and western Pacific suggests that regional organized convection probably drives stable isotopic compositions of precipitation. A drop in the frequency of the squalls in 2015 is related to weak organized convection in the region caused by El Niño.

  12. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying; Stein, Michael L.

    2016-01-01

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  13. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying

    2016-01-28

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  14. Dynamic simulation of the in-tank precipitation process

    International Nuclear Information System (INIS)

    Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

    1993-01-01

    As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP TM software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP TM simulation This paper summarizes the model development and initial results of the simulation study

  15. Inhaler Reminders Significantly Improve Asthma Patients' Use of Controller Medications

    Science.gov (United States)

    ... controller medications Share | Inhaler reminders significantly improve asthma patients’ use of controller medications Published Online: July 22, ... the burden and risk of asthma, but many patients do not use them regularly. This poor adherence ...

  16. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    Science.gov (United States)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and

  17. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu

    2006-01-01

    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  18. Aerosol Effects on Instability, Circulations, Clouds, and Precipitation

    Directory of Open Access Journals (Sweden)

    Seoung-Soo Lee

    2014-01-01

    Full Text Available It is well known that increasing aerosol and associated changes in aerosol-cloud interactions and precipitation since industrialization have been playing an important role in climate change, but this role has not been well understood. This prevents us from predicting future climate with a good confidence. This review paper presents recent studies on the changes in the aerosol-cloud interactions and precipitation particularly in deep convective clouds. In addition, this review paper discusses how to improve our understanding of these changes by considering feedbacks among aerosol, cloud dynamics, cloud and its embedded circulations, and microphysics. Environmental instability basically determines the dynamic intensity of clouds and thus acts as one of the most important controls on these feedbacks. As a first step to the improvement of the understanding, this paper specifically elaborates on how to link the instability to the feedbacks.

  19. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    Institute of Scientific and Technical Information of China (English)

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  20. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Li, Han; Zhang, Lili; Yin, Xiaozhe; Liu, Yi

    2018-04-01

    Changes in precipitation have a large effect on human society and are of primary importance for many scientific fields such as hydrology, agriculture and eco-environmental sciences. The present study intended to investigate the spatio-temporal characteristics of precipitation in Beijing-Tianjin-Hebei (BTH) region by using 316 meteorological stations during the period 1965-2014. Geographical Weighted Regression (GWR) method and High Accuracy Surface Modeling (HASM) method were applied to produce the precipitation patterns at different time scales. Mann-Kendall (MK) statistical test was applied to analyze the precipitation temporal variations. Results indicated that annual precipitation over the past 50 years appeared to be a non-periodic oscillation phenomenon; the number of wet years was approximately the same as that of dry years; significant positive trends were observed in spring during 1978-2014 and summer during 1996-2014; on the whole, precipitation in May, June, September, and December showed increasing trends at the 95% confidence level; and significant positive trends were also identified in July during 2000-2013 and August during 1997-2010, while slight decreasing trends were observed in February and November. Summer (June, July, and August) was the wettest season, accounting for 68.73% of annual totals in BTH. In general, northeastern BTH received the highest range of precipitation while northwestern area had the lowest. It was found that precipitation variation in this region had been closely linked to latitude, Digital Elevation Model (DEM), distance to the sea, and urbanization rate. In addition, land use played an important role in the decadal precipitation changes in BTH.

  1. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    Science.gov (United States)

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  2. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K

    2017-04-07

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.

  3. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  4. Investigation of wax precipitation in crude oil: Experimental and modeling

    Directory of Open Access Journals (Sweden)

    Taraneh Jafari Behbahani

    2015-09-01

    Full Text Available In this work, a series of experiments were carried to investigation of rheological behavior of crude oil using waxy crude oil sample in the absence/presence of flow improver such as ethylene-vinyl acetate copolymer. The rheological data covered the temperature range of 5–30 °C. The results indicated that the performance of flow improver was dependent on its molecular weight. Addition of small quantities of flow improver, can improve viscosity and pour point of crude oil. Also, an Artificial Neural Network (ANN model using Multi-Layer Perceptron (MLP topology has been developed to account wax appearance temperature and the amount of precipitated wax and the model was verified using experimental data given in this work and reported in the literature. In order to compare the performance of the proposed model based on Artificial Neural Network, the wax precipitation experimental data at different temperatures were predicted using solid solution model and multi-solid phase model. The results showed that the developed model based on Artificial Neural Network can predict more accurately the wax precipitation experimental data in comparison to the previous models such as solid solution and multi-solid phase model with AADs less than 0.5%. Furthermore, the number of parameters required for the Artificial Neural Network (ANN model is less than the studied thermodynamic models.

  5. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  6. Investigation of Neptunium Precipitator Cleanout Options

    International Nuclear Information System (INIS)

    Hill, B.C.

    2003-01-01

    Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern

  7. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    Science.gov (United States)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  8. Novel method for concentrating and drying polymeric nanoparticles: hydrogen bonding coacervate precipitation.

    Science.gov (United States)

    D'Addio, Suzanne M; Kafka, Concepcion; Akbulut, Mustafa; Beattie, Patrick; Saad, Walid; Herrera, Margarita; Kennedy, Michael T; Prud'homme, Robert K

    2010-04-05

    Nanoparticles have significant potential in therapeutic applications to improve the bioavailability and efficacy of active drug compounds. However, the retention of nanometer sizes during concentrating or drying steps presents a significant problem. We report on a new concentrating and drying process for poly(ethylene glycol) (PEG) stabilized nanoparticles, which relies upon the unique pH sensitive hydrogen bonding interaction between PEG and polyacid species. In the hydrogen bonding coacervate precipitation (HBCP) process, PEG protected nanoparticles rapidly aggregate into an easily filterable precipitate upon the addition various polyacids. When the resulting solid is neutralized, the ionization of the acid groups eliminates the hydrogen bonded structure and the approximately 100 nm particles redisperse back to within 10% of their original size when poly(acrylic acid) and citric acid are used and 45% when poly(aspartic acid) is used. While polyacid concentrations of 1-5 wt % were used to form the precipitates, the incorporation of the acid into the PEG layer is approximately 1:1 (acid residue):(ethylene oxide unit) in the final dried precipitate. The redispersion of dried beta-carotene nanoparticles protected with PEG-b-poly(lactide-co-glycolide) polymers dried by HBCP was compared with the redispersion of particles dried by freeze-drying with sucrose as a cryprotectant, spray freeze-drying, and normal drying. Freeze-drying with 0, 2, and 12 wt % sucrose solutions resulted in size increases of 350%, 50%, and 6%, respectively. Spray freeze-drying resulted in particles with increased sizes of 50%, but no cryoprotectant and only moderate redispersion energy was required. Conventional drying resulted in solids that could not be redispersed back to nanometer size. The new HBCP process offers a promising and efficient way to concentrate or convert nanoparticle dispersions into a stable dry powder form.

  9. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Science.gov (United States)

    Richter, Ingo; Xie, Shang-Ping; Wittenberg, Andrew T.; Masumoto, Yukio

    2012-03-01

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.

  10. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [Research Institute for Global Change, JAMSTEC, Yokohama (Japan); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); Wittenberg, Andrew T. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2012-03-15

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role. (orig.)

  11. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment.

    Science.gov (United States)

    Hui, Dafeng; Yu, Chih-Li; Deng, Qi; Dzantor, E Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L; Fay, Philip A; Shen, Weijun; Luo, Yiqi

    2018-01-01

    Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo's growth and biomass, and that high precipitation stimulates its photosynthesis and growth.

  12. Acidic precipitation: considerations for an air-quality standard

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Hendrey, G.R.; Stensland, G.J.; Johnson, D.W.; Francis, A.J.

    1980-01-01

    Acidic precipitation, wet or frozen deposition with a hydrogen ion concentration greatern than 2.5 ..mu..eq l/sup -1/ is a significant air pollution problem in the United States. The chief anions accounting for the hydrogen ions in rainfall are nitrate and sulfate. Agricultural systems are more likely to derive net nutritional benefits from increasing inputs of acidic rain than are forest systems when soils alone are considered. Agricultural soils may benefit because of the high N and S requirements of agricultural plants. Detrimental effects to forest soils may result if atmospheric H/sup +/ inputs significantly add to or exceed H/sup +/ production by soils. Acidification of fresh waters of southern Scandinavia, southwestern Scotland, southeastern Canada, and northeastern United States is caused by acid deposition. Areas of these regions in which this acidification occurs have in common, highly acidic precipitation with volume weighted mean annual H/sup +/ concentrations of 25 ..mu..eq l/sup -1/ or higher and slow weathering granitic or precambrian bedrock with thin soils deficient in minerals which would provide buffer capacity. Biological effects of acidification of fresh waters are detectable below pH 6.0. As lake and stream pH levels decrease below pH. 6.0, many species of plants, invertebrates, and vertebrates are progressively eliminated. Generally, fisheries are impacted below pH 5.0 and are completely destroyed below pH 4.8. There are few studies that document effects of acidic precipitation on terrestrial vegetation to establish an air quality standard. It must be demonstrated that current levels of precipitation acidity alone significantly injure terrestrial vegetation. In terms of documented damanges, current research indicates that establishing a standard for precipitation for the volume weighted annual H/sup +/ concentration at 25 ..mu..eq l/sup -1/ may protect the most sensitive areas from permanent lake acidification.

  13. Influence of precipitation on the Portevin-Le Chatelier effect in Al-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the alloy with solute content higher than the limiting solubility,the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations.In this study, the Portevin-Le Chatelier(PLC) effects in annealed 5456 and 5052 aluminum alloys with different precipitation contents have been investigated under different applied strain rates.The results suggest that precipitations have significant effect on the PLC effect and the more the precipitations are, the greater the ...

  14. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic.

    Science.gov (United States)

    Trigo, Ricardo M; Valente, Maria A; Trigo, Isabel F; Miranda, Pedro M A; Ramos, Alexandre M; Paredes, Daniel; García-Herrera, Ricardo

    2008-12-01

    An analysis of the frequency of cyclones and surface wind velocity for the Euro-Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low-pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October-March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January-March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50 degrees N up to -3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large-scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.

  15. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  16. Precipitating and relieving factors of migraine versus tension type headache

    Directory of Open Access Journals (Sweden)

    Haque Badrul

    2012-08-01

    Full Text Available Abstract Background To determine the differences of precipitating and relieving factors between migraine and tension type headache. Methods This is a cross sectional study. We retrospectively reviewed the records of 250 migraine patients and 250 patients diagnosed as tension type headache from the specialized headache clinic in Dept. of Neurology, Dhaka Medical College Hospital. Data were collected through a predesigned questionnaire containing information on age, sex, social status and a predetermined list of precipitating and relieving factors. Results In this study, the female patients predominated (67%. Most of the patients were within 21–30 years age group (58.6%. About 58% of them belonged to middle class families. The common precipitating factors like stress, anxiety, activity, journey, reading, cold and warm were well distributed among both the migraine and tension type headache (TTH patients. But significant difference was demonstrated for fatigue (p  Conclusion The most frequent precipitating factors for headache appear to be identical for both migraine and TTH patients. Even though some factors like fatigue, sleep deprivation, sunlight and food significantly precipitate migraine and drug, massage are effective maneuver for relieving pain among migrianeurs.

  17. Interannual variation of annual precipitation and urban effect on precipitation in the Beijing region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The large scale character of the interannual variation of precipitation and the urban effect on local annual precipitation anomaly are investigated in this paper based on the 1960-2000 annual precipitation observations at 20 stations in the Beijing region. The results show that: the annual precipitation in the Beijing region possesses the large scale variation character with the linear trend of - 1.197/10 yr, which corresponds to a total reduction of 27.82 mm in annual precipitation in the 41 years; the local annual precipitation anomalies (percent of the normal 1960-2000) show a positive center near the urban area, i.e. urban precipitation island (UPI), whose intensity increases with the linear trend of 0. 6621%/10 yr, opposite to the interannual trend of large scale precipitation over the Beijing region; changes in the UPI are also associated with the intensity of synoptic processes of precipitation, and when the synoptic processes are strong (wet years), the intensity of UPI strengthens, while the synoptic processes are weak (dry years), and the UPI disappears in the Beijing region.

  18. Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690

    International Nuclear Information System (INIS)

    Sarver, J.M.; Crum, J.R.; Mankins, W.L.

    1987-01-01

    Intergranular carbide precipitation reactions have been shown to affect the stress corrosion cracking (SCC) resistance of nickel-chromium-iron alloys in environments relative to nuclear steam generators. Carbon solubility curves, time-temperature-sensitization plots and other carbide precipitation data are presented for alloy 690 as an aid in developing heat treatments for improved SCC resistance

  19. Participation of the Pennsylvania State University in the MAP3S precipitation chemistry network

    International Nuclear Information System (INIS)

    Lamb, D.; de Pena, R.G.

    1991-04-01

    The Meteorology Department of the Pennsylvania State University collected precipitation in central Pennsylvania for more than 14 years on behalf of the Multistate Atmospheric Power Production Pollution Study (MAP3S). The MAP3S protocol, based on the sampling of precipitation from individual meteorological events over a long period of time, has allowed both for the development of a chemical climatology of precipitation in the eastern region of the United States and for a vastly improved understanding of the atmospheric processes responsible for wet acidic deposition. The precipitation chemistry data from the Penn State MAP3S site provide evidence of links to the anthropogenic emissions of sulfur dioxide and oxidant precursors. There is now little doubt that the free acidity in the precipitation of the region is due to the presence of unneutralized sulfate in the aqueous phase. In the absence of significant sources of this sulfur species and in view of supplemental enrichment studies, it is concluded that the sulfate enters cloud and rain water primarily through the aqueous-phase oxidation of sulfur dioxide emitted into the air within the geographical region of deposition. Within the source region the local abundances of sulfur dioxide often exceed those of the oxidants, so the depositions of sulfate and free acidity tend to be modulated by the availability of the strong oxidants. As a consequence, the deposition of sulfate exhibits a very strong seasonal dependence and little response to changes in the emissions of sulfur dioxide

  20. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  1. Is southwestern China experiencing more frequent precipitation extremes?

    International Nuclear Information System (INIS)

    Liu, Meixian; Xu, Xianli; Wang, Kelin; Sun, Alexander Y; Liu, Wen; Zhang, Xiaoyan

    2014-01-01

    Climate extremes have and will continue to cause severe damages to buildings and natural environments around the world. A full knowledge of the probability of the climate extremes is important for the management and mitigation of natural hazards. Based on Mann–Kendall trend test and copulas, this study investigated the characteristics of precipitation extremes as well as their implications in southwestern China (Yunnan, Guangxi and Guizhou Province), through analyzing the changing trends and probabilistic characteristics of six indices, including the consecutive dry days, consecutive wet days, annual total wet day precipitation, heavy precipitation days (R25), max 5 day precipitation amount (Rx5) and the rainy days (RDs). Results showed that the study area had generally become drier (regional mean annual precipitation decreased by 11.4 mm per decade) and experienced enhanced precipitation extremes in the past 60 years. Relatively higher risk of drought in Yuanan and flood in Guangxi was observed, respectively. However, the changing trends of the precipitation extremes were not spatially uniform: increasing risk of extreme wet events for Guangxi and Guizhou, and increasing probability of concurrent extreme wet and dry events for Yunnan. Meanwhile, trend analyses of the 10 year return levels of the selected indices implied that the severity of droughts decreased in Yunnan but increased significantly in Guangxi and Guizhou, and the severity of floods increased in Yunnan and Guangxi in the past decades. Hence, the policy-makers need to be aware of the different characterizations and the spatial heterogeneity of the precipitation extremes. (letters)

  2. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  3. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  4. Statistical and Hydrological Evaluation of TRMM-Based Multi-Satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the Latest Satellite Precipitation Products 3B42V7 Ready for Use in Ungauged Basins?

    Science.gov (United States)

    Xue, Xianwu; Hong, Yang; Limaye, Ashutosh S.; Gourley, Jonathan; Huffman, George J.; Khan, Sadiq Ibrahim; Dorji, Chhimi; Chen, Sheng

    2013-01-01

    The objective of this study is to quantitatively evaluate the successive Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products and further to explore the improvements and error propagation of the latest 3B42V7 algorithm relative to its predecessor 3B42V6 using the Coupled Routing and Excess Storage (CREST) hydrologic model in the mountainous Wangchu Basin of Bhutan. First, the comparison to a decade-long (2001-2010) daily rain gauge dataset reveals that: 1) 3B42V7 generally improves upon 3B42V6s underestimation both for the whole basin (bias from -41.15 to -8.38) and for a 0.250.25 grid cell with high-density gauges (bias from -40.25 to 0.04), though with modest enhancement of correlation coefficients (CC) (from 0.36 to 0.40 for basin-wide and from 0.37 to 0.41 for grid); and 2) 3B42V7 also improves its occurrence frequency across the rain intensity spectrum. Using the CREST model that has been calibrated with rain gauge inputs, the 3B42V6-based simulation shows limited hydrologic prediction NSCE skill (0.23 in daily scale and 0.25 in monthly scale) while 3B42V7 performs fairly well (0.66 in daily scale and 0.77 in monthly scale), a comparable skill score with the gauge rainfall simulations. After recalibrating the model with the respective TMPA data, significant improvements are observed for 3B42V6 across all categories, but not as much enhancement for the already well-performing 3B42V7 except for a reduction in bias (from -26.98 to -4.81). In summary, the latest 3B42V7 algorithm reveals a significant upgrade from 3B42V6 both in precipitation accuracy (i.e., correcting the underestimation) thus improving its potential hydrological utility. Forcing the model with 3B42V7 rainfall yields comparable skill scores with in-situ gauges even without recalibration of the hydrological model by the satellite precipitation, a compensating approach often used but not favored by the hydrology community, particularly in ungauged basins.

  5. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    Science.gov (United States)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-05-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  6. Sources of uncertainty in future changes in local precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, David P. [Met Office Hadley Centre, Exeter (United Kingdom)

    2012-10-15

    This study considers the large uncertainty in projected changes in local precipitation. It aims to map, and begin to understand, the relative roles of uncertain modelling and natural variability, using 20-year mean data from four perturbed physics or multi-model ensembles. The largest - 280-member - ensemble illustrates a rich pattern in the varying contribution of modelling uncertainty, with similar features found using a CMIP3 ensemble (despite its limited sample size, which restricts it value in this context). The contribution of modelling uncertainty to the total uncertainty in local precipitation change is found to be highest in the deep tropics, particularly over South America, Africa, the east and central Pacific, and the Atlantic. In the moist maritime tropics, the highly uncertain modelling of sea-surface temperature changes is transmitted to a large uncertain modelling of local rainfall changes. Over tropical land and summer mid-latitude continents (and to a lesser extent, the tropical oceans), uncertain modelling of atmospheric processes, land surface processes and the terrestrial carbon cycle all appear to play an additional substantial role in driving the uncertainty of local rainfall changes. In polar regions, inter-model variability of anomalous sea ice drives an uncertain precipitation response, particularly in winter. In all these regions, there is therefore the potential to reduce the uncertainty of local precipitation changes through targeted model improvements and observational constraints. In contrast, over much of the arid subtropical and mid-latitude oceans, over Australia, and over the Sahara in winter, internal atmospheric variability dominates the uncertainty in projected precipitation changes. Here, model improvements and observational constraints will have little impact on the uncertainty of time means shorter than at least 20 years. Last, a supplementary application of the metric developed here is that it can be interpreted as a measure

  7. Evaluation of CMIP5 models for projection of future precipitation change in Bornean tropical rainforests

    Science.gov (United States)

    Hussain, Mubasher; Yusof, Khamaruzaman Wan; Mustafa, Muhammad Raza Ul; Mahmood, Rashid; Jia, Shaofeng

    2017-10-01

    We present the climate change impact on the annual and seasonal precipitation over Rajang River Basin (RRB) in Sarawak by employing a set of models from Coupled Model Intercomparison Project Phase 5 (CMIP5). Based on the capability to simulate the historical precipitation, we selected the three most suitable GCMs (i.e. ACCESS1.0, ACCESS1.3, and GFDL-ESM2M) and their mean ensemble (B3MMM) was used to project the future precipitation over the RRB. Historical (1976-2005) and future (2011-2100) precipitation ensembles of B3MMM were used to perturb the stochastically generated future precipitation over 25 rainfall stations in the river basin. The B3MMM exhibited a significant increase in precipitation during 2080s, up to 12 and 8% increase in annual precipitation over upper and lower RRB, respectively, under RCP8.5, and up to 7% increase in annual precipitation under RCP4.5. On the seasonal scale, Mann-Kendal trend test estimated statistically significant positive trend in the future precipitation during all seasons; except September to November when we only noted significant positive trend for the lower RRB under RCP4.5. Overall, at the end of the twenty-first century, an increase in annual precipitation is noteworthy in the whole RRB, with 7 and 10% increase in annual precipitation under the RCP4.5 and the RCP8.5, respectively.

  8. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  9. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  10. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  11. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    Science.gov (United States)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  12. Systematical estimation of GPM-based global satellite mapping of precipitation products over China

    Science.gov (United States)

    Zhao, Haigen; Yang, Bogang; Yang, Shengtian; Huang, Yingchun; Dong, Guotao; Bai, Juan; Wang, Zhiwei

    2018-03-01

    As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, new version 6 products for Global Satellite Mapping of Precipitation (GSMaP) have been released. However, few studies have systematically evaluated the GSMaP products over mainland China. This study quantitatively evaluated three GPM-based GSMaP version 6 precipitation products for China and eight subregions referring to the Chinese daily Precipitation Analysis Product (CPAP). The GSMaP products included near-real-time (GSMaP_NRT), microwave-infrared reanalyzed (GSMaP_MVK), and gauge-adjusted (GSMaP_Gau) data. Additionally, the gauge-adjusted Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (IMERG_Gau) was also assessed and compared with GSMaP_Gau. The analyses of the selected daily products were carried out at spatiotemporal resolutions of 1/4° for the period of March 2014 to December 2015 in consideration of the resolution of CPAP and the consistency of the coverage periods of the satellite products. The results indicated that GSMaP_MVK and GSMaP_NRT performed comparably and underdetected light rainfall events (Pearson linear correlation coefficient (CC), fractional standard error (FSE), and root-mean-square error (RMSE) metrics during the summer. Compared with GSMaP_NRT and GSMaP_MVK, GSMaP_Gau possessed significantly improved metrics over mainland China and the eight subregions and performed better in terms of CC, RMSE, and FSE but underestimated precipitation to a greater degree than IMERG_Gau. As a quantitative assessment of the GPM-era GSMaP products, these validation results will supply helpful references for both end users and algorithm developers. However, the study findings need to be confirmed over a longer future study period when the longer-period IMERG retrospectively-processed data are available.

  13. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  14. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  15. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.

    Science.gov (United States)

    Jeong, Jin-Hoon; Jo, Yoon-Soo; Park, Chang-Seon; Kang, Chang-Ho; So, Jae-Seong

    2017-07-28

    In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.

  16. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions

    International Nuclear Information System (INIS)

    Cao Xinde; Harris, Willie G.; Josan, Manohardeep S.; Nair, Vimala D.

    2007-01-01

    Precipitation of Ca phosphates plays an important role in controlling P activity and availability in environmental systems. The purpose of this study was to determine inhibitory effects on Ca phosphate precipitation by Mg 2+ , SO 4 2- , CO 3 2- , humic acid, oxalic acid, biogenic Si, and Si-rich soil clay commonly found in soils, sediments, and waste streams. Precipitation rates were determined by measuring decrease of P concentration in solutions during the first 60 min; and precipitated solid phases identified using X-ray diffraction and electron microscopy. Poorly-crystalline hydroxyapatite (HAP: Ca 5 (PO 4 ) 3 OH) formed in control solutions over the experiment period of 24 h, following a second-order dependence on P concentration. Humic acid and Mg 2+ significantly inhibited formation of HAP, allowing formation of a more soluble amorphous Ca phosphate phase (ACP), and thus reducing the precipitation rate constants by 94-96%. Inhibition caused by Mg 2+ results from its incorporation into Ca phosphate precipitates, preventing formation of a well-crystalline phase. Humic acid likely suppressed Ca phosphate precipitation by adsorbing onto the newly-formed nuclei. Presence of oxalic acid resulted in almost complete inhibition of HAP precipitation due to preemptive Ca-oxalate formation. Carbonate substituted for phosphate, decreasing the crystallinity of HAP and thus reducing precipitation rate constant by 44%. Sulfate and Si-rich solids had less impact on formation of HAP; while they reduced precipitation in the early stage, they did not differ from the control after 24 h. Results indicate that components (e.g., Mg 2+ , humic acid) producing relatively soluble ACP are more likely to reduce P stability and precipitation rate of Ca phosphate in soils and sediments than are components (e.g., SO 4 2- , Si) that have less effect on the crystallinity

  17. Reconstruction of March-June precipitation from tree rings in central Liaoning, China

    Science.gov (United States)

    Wang, Yanchao; Liu, Yu

    2017-11-01

    A dendrochronological profile was generated from Chinese pines ( Pinus tabulaeformis Carr.) in the Qianshan Mountains in northeastern China. Based on correlation analyses, the pattern of precipitation from March to June ( P 36 ) was reconstructed using a simple linear model, which explained 42.7% of the total variance in observed precipitation from 1951 to 2012. The reconstructed P 36 series revealed a consistently increasing trend in precipitation during the twentieth century in the Qianshan Mountains. The reconstructed data showed trends that were similar to those in the variation in trends for March-June precipitation observed at the Shenyang station, the reconstructed January-May precipitation trends in Shenyang City, and the reconstructed average June-September relative humidity for Yiwulü Mountain. The reconstructed data also showed good agreement with the droughts reported in historical documents and recorded by meteorological stations in Liaoning. Spatial correlation analyses show that the reconstructed data reflect the variability in precipitation that occurs over much of northeastern China. In addition, our reconstruction showed a significant periodicity. The significant correlations between the reconstructed P 36 and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and sunspot numbers indicate that precipitation variability in the Qianshan Mountain region is probably driven by extensive atmosphere-sea interactions and solar activities.

  18. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  19. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  20. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  1. Quantitative precipitation climatology over the Himalayas by using Precipitation Radar on Tropical Rainfall Measuring Mission (TRMM) and a dense network of rain-gauges

    Science.gov (United States)

    Yatagai, A.

    2010-09-01

    Quantified grid observation data at a reasonable resolution are indispensable for environmental monitoring as well as for predicting future change of mountain environment. However quantified datasets have not been available for the Himalayan region. Hence we evaluate climatological precipitation data around the Himalayas by using Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation. To validate and adjust these patterns, we used a dense network of rain gauges collected by the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE Water Resources) project (http://www.chikyu.ac.jp/precip/). We used more than 2600 stations which have more than 10-year monthly precipitation over the Himalayan region (75E-105E, 20-36N) including country data of Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. The region we studied is so topographically complicated that horizontal patterns are not uniform. Therefore, every path data of PR2A25 (near-surface rain) was averaged in a 0.05-degree grid and a 10-year monthly average was computed (hereafter we call PR). On the other hand, for rain-gauge, we first computed cell averages if each 0.05-degree grid cell has 10 years observation or more. Here we refer to the 0.05-degree rain-gauge climatology data as RG data. On the basis of comparisons between the RG and PR composite values, we defined the parameters of the regressions to correct the monthly climatology value based on the rain gauge observations. Compared with the RG, the PR systematically underestimated precipitation by 28-38% in summer (July-September). Significant correlation between TRMM/PR and rain-gauge data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in

  2. Precipitation in partially stabilized zirconia

    International Nuclear Information System (INIS)

    Bansal, G.K.

    1975-01-01

    Transmission electron microscopy was used to study the substructure of partially stabilized ZrO 2 (PSZ) samples, i.e., 2-phase systems containing both cubic and monoclinic modifications of zirconia, after various heat treatments. Monoclinic ZrO 2 exists as (1) isolated grains within the polycrystalline aggregate (a grain- boundary phase) and (2) small plate-like particles within cubic grains. These intragranular precipitates are believed to contribute to the useful properties of PSZ via a form of precipitation hardening. These precipitates initially form as tetragonal ZrO 2 , with a habit plane parallel to the brace 100 brace matrix planes. The orientation relations between the tetragonal precipitates and the cubic matrix are brace 100 brace/sub matrix/ 2 parallel brace 100 brace /sub precipitate/ or (001)/sub precipitate/ and broken bracket 100 broken bracket/sub matrix/ 2 parallel broken bracket 100 broken bracket/sub precipitate/ or [001]/sub precipitate/. (U.S.)

  3. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  4. Total Dust Deposition Flux During Precipitation in Toyama, Japan, in the Spring of 2009: A Sensitivity Analysis with the NASA GEOS-5 Model

    Science.gov (United States)

    Yasunari, Teppei J.; Colarco, Peter R.; Lau, William K. M.; Osada, Kazuo; Kido, Mizuka; Mahanama, Sarith P. P.; Kim, Kyu-Myong; Da Silva, Arlindo M.

    2015-01-01

    We compared the observed total dust deposition fluxes during precipitation (TDP) mainly at Toyama in Japan during the period January - April 2009 with results available from four NASA GEOS-5 global model experiments. The modeled results were obtained from three previous experiments and carried out in one experiment, which were all driven by assimilated meteorology and simulating aerosol distributions for the time period. We focus mainly on the observations of two distinct TDP events, which were reported in Osada et al. (2011), at Toyama, Japan, in February (Event B) and March 2009 (Event C). Although all of our GEOS-5 simulations captured aspects of the observed TDP, we found that our low horizontal spatial resolution control experiment performed generally the worst. The other three experiments were run at a higher spatial resolution, with the first differing only in that respect from the control, the second adding imposed a prescribed corrected precipitation product, and the final experiment adding as well assimilation of aerosol optical depth based on MODIS observations. During Event C, the increased horizontal resolution could increase TDP with precipitation increase. There was no significant improvement, however, due to the imposition of the corrected precipitation product. The simulation that incorporated aerosol data assimilation performed was by far the best for this event, but even so could only reproduce less than half of the observed TDP despite the significantly increased atmospheric dust mass concentrations. All three of the high spatial resolution experiments had higher simulated precipitation at Toyama than was observed and that in the lower resolution control run. During Event B, the aerosol data assimilation run did not perform appreciably better than the other higher resolution simulations, suggesting that upstream conditions (i.e., upstream cloudiness), or vertical or horizontal misplacement of the dust plume did not allow for significant

  5. Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow.

    Science.gov (United States)

    Zhang, Fangyue; Quan, Quan; Song, Bing; Sun, Jian; Chen, Youjun; Zhou, Qingping; Niu, Shuli

    2017-11-09

    The dynamics of net primary productivity (NPP) and its partitioning to the aboveground versus belowground are of fundamental importance to understand carbon cycling and its feedback to climate change. However, the responses of NPP and its partitioning to precipitation gradient are poorly understood. We conducted a manipulative field experiment with six precipitation treatments (1/12 P, 1/4 P, 1/2 P, 3/4 P, P, and 5/4 P, P is annual precipitation) in an alpine meadow to examine aboveground and belowground NPP (ANPP and BNPP) in response to precipitation gradient in 2015 and 2016. We found that changes in precipitation had no significant impact on ANPP or belowground biomass in 2015. Compared with control, only the extremely drought treatment (1/12 P) significantly reduced ANPP by 37.68% and increased BNPP at the depth of 20-40 cm by 80.59% in 2016. Across the gradient, ANPP showed a nonlinear response to precipitation amount in 2016. Neither BNPP nor NPP had significant relationship with precipitation changes. The variance in ANPP were mostly due to forbs production, which was ultimately caused by altering soil water content and soil inorganic nitrogen concentration. The nonlinear precipitation-ANPP relationship indicates that future precipitation changes especially extreme drought will dramatically decrease ANPP and push this ecosystem beyond threshold.

  6. Bedtime Blood Pressure Chronotherapy Significantly Improves Hypertension Management.

    Science.gov (United States)

    Hermida, Ramón C; Ayala, Diana E; Fernández, José R; Mojón, Artemio; Crespo, Juan J; Ríos, María T; Smolensky, Michael H

    2017-10-01

    Consistent evidence of numerous studies substantiates the asleep blood pressure (BP) mean derived from ambulatory BP monitoring (ABPM) is both an independent and a stronger predictor of cardiovascular disease (CVD) risk than are daytime clinic BP measurements or the ABPM-determined awake or 24-hour BP means. Hence, cost-effective adequate control of sleep-time BP is of marked clinical relevance. Ingestion time, according to circadian rhythms, of hypertension medications of 6 different classes and their combinations significantly improves BP control, particularly sleep-time BP, and reduces adverse effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Multifractal Detrended Fluctuation Analysis of Regional Precipitation Sequences Based on the CEEMDAN-WPT

    Science.gov (United States)

    Liu, Dong; Cheng, Chen; Fu, Qiang; Liu, Chunlei; Li, Mo; Faiz, Muhammad Abrar; Li, Tianxiao; Khan, Muhammad Imran; Cui, Song

    2018-03-01

    In this paper, the complete ensemble empirical mode decomposition with the adaptive noise (CEEMDAN) algorithm is introduced into the complexity research of precipitation systems to improve the traditional complexity measure method specific to the mode mixing of the Empirical Mode Decomposition (EMD) and incomplete decomposition of the ensemble empirical mode decomposition (EEMD). We combined the CEEMDAN with the wavelet packet transform (WPT) and multifractal detrended fluctuation analysis (MF-DFA) to create the CEEMDAN-WPT-MFDFA, and used it to measure the complexity of the monthly precipitation sequence of 12 sub-regions in Harbin, Heilongjiang Province, China. The results show that there are significant differences in the monthly precipitation complexity of each sub-region in Harbin. The complexity of the northwest area of Harbin is the lowest and its predictability is the best. The complexity and predictability of the middle and Midwest areas of Harbin are about average. The complexity of the southeast area of Harbin is higher than that of the northwest, middle, and Midwest areas of Harbin and its predictability is worse. The complexity of Shuangcheng is the highest and its predictability is the worst of all the studied sub-regions. We used terrain and human activity as factors to analyze the causes of the complexity of the local precipitation. The results showed that the correlations between the precipitation complexity and terrain are obvious, and the correlations between the precipitation complexity and human influence factors vary. The distribution of the precipitation complexity in this area may be generated by the superposition effect of human activities and natural factors such as terrain, general atmospheric circulation, land and sea location, and ocean currents. To evaluate the stability of the algorithm, the CEEMDAN-WPT-MFDFA was compared with the equal probability coarse graining LZC algorithm, fuzzy entropy, and wavelet entropy. The results show

  8. National Emergency Preparedness and Response: Improving for Incidents of National Significance

    National Research Council Canada - National Science Library

    Clayton, Christopher M

    2006-01-01

    The national emergency management system has need of significant improvement in its contingency planning and early consolidation of effort and coordination between federal, state, and local agencies...

  9. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    Science.gov (United States)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2018-06-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  10. Exploring the correlation between annual precipitation and potential evaporation

    Science.gov (United States)

    Chen, X.; Buchberger, S. G.

    2017-12-01

    The interdependence between precipitation and potential evaporation is closely related to the classic Budyko framework. In this study, a systematic investigation of the correlation between precipitation and potential evaporation at the annual time step is conducted at both point scale and watershed scale. The point scale precipitation and potential evaporation data over the period of 1984-2015 are collected from 259 weather stations across the United States. The watershed scale precipitation data of 203 watersheds across the United States are obtained from the Model Parameter Estimation Experiment (MOPEX) dataset from 1983 to 2002; and potential evaporation data of these 203 watersheds in the same period are obtained from a remote-sensing algorithm. The results show that majority of the weather stations (77%) and watersheds (79%) exhibit a statistically significant negative correlation between annual precipitation and annual potential evaporation. The aggregated data cloud of precipitation versus potential evaporation follows a curve based on the combination of the Budyko-type equation and Bouchet's complementary relationship. Our result suggests that annual precipitation and potential evaporation are not independent when both Budyko's hypothesis and Bouchet's hypothesis are valid. Furthermore, we find that the wet surface evaporation, which is controlled primarily by short wave radiation as defined in Bouchet's hypothesis, exhibits less dependence on precipitation than the potential evaporation. As a result, we suggest that wet surface evaporation is a better representation of energy supply than potential evaporation in the Budyko framework.

  11. Error Analysis and Evaluation of the Latest GSMap and IMERG Precipitation Products over Eastern China

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2017-01-01

    Full Text Available The present study comprehensively analyzes error characteristics and performance of the two latest GPM-era satellite precipitation products over eastern China from April 2014 to March 2016. Analysis results indicate that the two products have totally different spatial distributions of total bias. Many of the underestimations for the GSMap-gauged could be traced to significant hit bias, with a secondary contribution from missed precipitation. For IMERG, total bias illustrates significant overestimation over most of the eastern part of China, except upper reaches of Yangtze and Yellow River basins. GSMap-gauged tends to overestimate light precipitation (<16 mm/day and underestimate precipitation with rain rate larger than 16 mm/day; however, IMERG underestimates precipitation at rain rate between 8 and 64 mm/day and overestimates precipitation at rain rate more than 64 mm/day. IMERG overestimates extreme precipitation indices (RR99P and R20TOT, with relative bias values of 17.9% and 11.5%, respectively. But GSMap-gauged shows significant underestimation of these indices. In addition, both products performed well in the Huaihe, Liaohe, and Yangtze River basins for extreme precipitation detection. At basin scale comparisons, the GSMap-gauged data has a relatively higher accuracy than IMERG, especially at the Haihe, Huaihe, Liaohe, and Yellow River basins.

  12. The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

    Science.gov (United States)

    de Bruine, Marco; Krol, Maarten; van Noije, Twan; Le Sager, Philippe; Röckmann, Thomas

    2018-04-01

    The representation of aerosol-cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by -3.0 to -8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a -10 to -11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by -11 to -19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP

  13. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  14. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    Science.gov (United States)

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  15. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Science.gov (United States)

    Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F. G.; Wanner, H.; Luterbacher, J.

    2010-05-01

    We present an analysis of daily extreme precipitation events for the extended winter season (October-March) at 20 Mediterranean coastal sites covering the period 1950-2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions

  16. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    A. Toreti

    2010-05-01

    Full Text Available We present an analysis of daily extreme precipitation events for the extended winter season (October–March at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series. Three stations (one in the western Mediterranean and the others in the eastern basin have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous

  17. Precipitation of {gamma}' phase in {delta}-precipitated Alloy 718 during deformation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nalawade, S.A. [Structural Metallurgy Section, Mechanical Metallurgy Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sundararaman, M., E-mail: msraman@barc.gov.in [Structural Metallurgy Section, Mechanical Metallurgy Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, J.B.; Verma, A.; Kishore, R. [Structural Metallurgy Section, Mechanical Metallurgy Section, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2010-05-15

    Alloy 718 samples aged to precipitate only {delta} particles (with maximum volume fraction) when tensile deformed to fracture at elevated temperatures revealed precipitation of {gamma}' and {gamma}'' phases. The {gamma}' precipitation was found to precede the {gamma}'' phase precipitation unlike in the case of specimens subjected to standard ageing treatment where both the {gamma}' and the {gamma}'' phases precipitate simultaneously. This sequence is explained on the basis of the relative concentration of Al, Ti and Nb in the matrix of {delta} precipitated Alloy 718 microstructure. The precipitation sequence was consistent with the Cozar and Pineau's model that predicts such sequences on the basis of (Al + Ti) to Nb atom ratios.

  18. Characterization of increased persistence and intensity of precipitation in the northeastern United States

    Science.gov (United States)

    Guilbert, Justin; Betts, Alan K.; Rizzo, Donna M.; Beckage, Brian; Bomblies, Arne

    2015-03-01

    We present evidence of increasing persistence in daily precipitation in the northeastern United States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade. We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.

  19. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator

    International Nuclear Information System (INIS)

    Silvestre de Ferron, A; Reess, T; Pecastaing, L; Pignolet, P; Lemont, F

    2009-01-01

    The authors investigated and improved the filtration efficiency of an electrostatic precipitator (ESP). A laboratory-scale pilot unit was developed to allow experimentation under conditions approaching those of the industrial ESPs used by the CEA at Marcoule (France). After elucidating the electrical phenomena and optically analysing the physical processes occurring inside the precipitator, a specific electrode was developed for use with a hybrid power supply. The experiments were based on analysing the variation over time of the electric charge injected into the particle separator, the particle mass collected at the ground electrode and the charges quantity measured on a grid in the airstream after the electrode unit. Photos were also taken under different electrical discharge conditions. The results show that combining a multipoint electrode and a hybrid generator (30 kV dc and 30 kV, 1 kHz) improves the process efficiency and significantly extends the time frame (more than 10 h) during which the process operates at optimum efficiency.

  20. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre de Ferron, A; Reess, T; Pecastaing, L; Pignolet, P [LGE, Universite de Pau, 2 avenue Angot, 64000 Pau (France); Lemont, F [CEA Marcoule, Centre de la Vallee du Rhone, 30200 Bagnols-sur-Ceze (France)

    2009-05-21

    The authors investigated and improved the filtration efficiency of an electrostatic precipitator (ESP). A laboratory-scale pilot unit was developed to allow experimentation under conditions approaching those of the industrial ESPs used by the CEA at Marcoule (France). After elucidating the electrical phenomena and optically analysing the physical processes occurring inside the precipitator, a specific electrode was developed for use with a hybrid power supply. The experiments were based on analysing the variation over time of the electric charge injected into the particle separator, the particle mass collected at the ground electrode and the charges quantity measured on a grid in the airstream after the electrode unit. Photos were also taken under different electrical discharge conditions. The results show that combining a multipoint electrode and a hybrid generator (30 kV dc and 30 kV, 1 kHz) improves the process efficiency and significantly extends the time frame (more than 10 h) during which the process operates at optimum efficiency.

  1. Precipitation and ice core isotopes from the Asian Summer Monsoon region reflect coherent ENSO variability

    Science.gov (United States)

    Cai, Z.; Tian, L.; Bowen, G. J.

    2017-12-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  2. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  3. Projections of the Ganges-Brahmaputra precipitation: downscaled from GCM predictors

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2014-01-01

    Downscaling Global Climate Model (GCM) projections of future climate is critical for impact studies. Downscaling enables use of GCM experiments for regional scale impact studies by generating regionally specific forecasts connecting global scale predictions and regional scale dynamics. We employed the Statistical Downscaling Model (SDSM) to downscale 21st century precipitation for two data-sparse hydrologically challenging river basins in South Asia—the Ganges and the Brahmaputra. We used CGCM3.1 by Canadian Center for Climate Modeling and Analysis version 3.1 predictors in downscaling the precipitation. Downscaling was performed on the basis of established relationships between historical Global Summary of Day observed precipitation records from 43 stations and National Center for Environmental Prediction re-analysis large scale atmospheric predictors. Although the selection of predictors was challenging during the set-up of SDSM, they were found to be indicative of important physical forcings in the basins. The precipitation of both basins was largely influenced by geopotential height: the Ganges precipitation was modulated by the U component of the wind and specific humidity at 500 and 1000 h Pa pressure levels; whereas, the Brahmaputra precipitation was modulated by the V component of the wind at 850 and 1000 h Pa pressure levels. The evaluation of the SDSM performance indicated that model accuracy for reproducing precipitation at the monthly scale was acceptable, but at the daily scale the model inadequately simulated some daily extreme precipitation events. Therefore, while the downscaled precipitation may not be the suitable input to analyze future extreme flooding or drought events, it could be adequate for analysis of future freshwater availability. Analysis of the CGCM3.1 downscaled precipitation projection with respect to observed precipitation reveals that the precipitation regime in each basin may be significantly impacted by climate change

  4. DEGREE OF ACIDIFICATION OF PRECIPITATION IN BIELSKO-BIAŁA REGION

    Directory of Open Access Journals (Sweden)

    Henryk Kasza

    2014-10-01

    Full Text Available In the paper results of long-term studies on acidification of water precipitation conducted in seven research points located near Bielsko-Biała were introduced. In each point period of study lasted ca. 1 year. The research was performed in the years 2002-2010. The range of pH of precipitation varied between 3.35 to 7.22. Majority of precipitation samples, because approximately 86% had pH < 5.6 i.e. lower than natural level, which indicated the presence of acidifying substances. Amongst samples of precipitation 47.6% were significantly and strongly acidic i.e. pH < 4.5. The rainwater with pH < 5.6 was more frequent than in more industrialized part of Silesian voivodship. In the investigated area pH of precipitation is mainly under influence of pollution flowing from west and southern-west and local sources of its emission.

  5. Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship.

    Science.gov (United States)

    Estiarte, Marc; Vicca, Sara; Peñuelas, Josep; Bahn, Michael; Beier, Claus; Emmett, Bridget A; Fay, Philip A; Hanson, Paul J; Hasibeder, Roland; Kigel, Jaime; Kröel-Dulay, Gyorgy; Larsen, Klaus Steenberg; Lellei-Kovács, Eszter; Limousin, Jean-Marc; Ogaya, Romà; Ourcival, Jean-Marc; Reinsch, Sabine; Sala, Osvaldo E; Schmidt, Inger Kappel; Sternberg, Marcelo; Tielbörger, Katja; Tietema, Albert; Janssens, Ivan A

    2016-07-01

    Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with

  6. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  7. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  8. Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.

    Science.gov (United States)

    Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.

    2017-12-01

    Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency

  9. A subgrid parameterization scheme for precipitation

    Directory of Open Access Journals (Sweden)

    S. Turner

    2012-04-01

    Full Text Available With increasing computing power, the horizontal resolution of numerical weather prediction (NWP models is improving and today reaches 1 to 5 km. Nevertheless, clouds and precipitation formation are still subgrid scale processes for most cloud types, such as cumulus and stratocumulus. Subgrid scale parameterizations for water vapor condensation have been in use for many years and are based on a prescribed probability density function (PDF of relative humidity spatial variability within the model grid box, thus providing a diagnosis of the cloud fraction. A similar scheme is developed and tested here. It is based on a prescribed PDF of cloud water variability and a threshold value of liquid water content for droplet collection to derive a rain fraction within the model grid. Precipitation of rainwater raises additional concerns relative to the overlap of cloud and rain fractions, however. The scheme is developed following an analysis of data collected during field campaigns in stratocumulus (DYCOMS-II and fair weather cumulus (RICO and tested in a 1-D framework against large eddy simulations of these observed cases. The new parameterization is then implemented in a 3-D NWP model with a horizontal resolution of 2.5 km to simulate real cases of precipitating cloud systems over France.

  10. Lake Baikal isotope records of Holocene Central Asian precipitation

    Science.gov (United States)

    Swann, George E. A.; Mackay, Anson W.; Vologina, Elena; Jones, Matthew D.; Panizzo, Virginia N.; Leng, Melanie J.; Sloane, Hilary J.; Snelling, Andrea M.; Sturm, Michael

    2018-06-01

    Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change.

  11. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  12. Detecting Variation Trends of Temperature and Precipitation for the Dadu River Basin, China

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.

  13. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation

    Directory of Open Access Journals (Sweden)

    Danica Ciric

    2018-04-01

    Full Text Available Moisture transport from its sources to surrounding continents is one of the most relevant topics in hydrology, and its role in extreme events is crucial for understanding several processes such as intense precipitation and flooding. In this study, we considered the Mediterranean Sea as the main water source and estimated its contribution to the monthly climatological and extreme precipitation events over the surrounding continental areas. To assess the effect of the Mediterranean Sea on precipitation, we used the Multi-Source Weighted-Ensemble Precipitation (MSWEP database to characterize precipitation. The Lagrangian dispersion model known as FLEXPART was used to estimate the moisture contribution of this source. This contribution was estimated by tracking particles that leave the Mediterranean basin monthly and then calculating water loss (E − P < 0 over the continental region, which was modelled by FLEXPART. The analysis was conducted using data from 1980 to 2015 with a spatial resolution of 0.25°. The results showed that, in general, the spatial pattern of the Mediterranean source’s contribution to precipitation, unlike climatology, is similar during extreme precipitation years in the regions under study. However, while the Mediterranean Sea is usually not an important source of climatological precipitation for some European regions, it is a significant source during extreme precipitation years.

  14. Seasonal prediction of precipitation over Nigeria | Adeniyi | Journal ...

    African Journals Online (AJOL)

    While for the training and verification periods of 1986-2012, correlations are not gener-ally significant although some were found to be above the significant level of 5%. For the recon-structed seasonal precipitation, correlations of ten stations were found to be significant at 5 %, but at 10 % level, their number increased to 13.

  15. Probability of occurrence of monthly and seasonal winter precipitation over Northwest India based on antecedent-monthly precipitation

    Science.gov (United States)

    Nageswararao, M. M.; Mohanty, U. C.; Dimri, A. P.; Osuri, Krishna K.

    2018-05-01

    Winter (December, January, and February (DJF)) precipitation over northwest India (NWI) is mainly associated with the eastward moving mid-latitude synoptic systems, western disturbances (WDs), embedded within the subtropical westerly jet (SWJ), and is crucial for Rabi (DJF) crops. In this study, the role of winter precipitation at seasonal and monthly scale over NWI and its nine meteorological subdivisions has been analyzed. High-resolution (0.25° × 0.25°) gridded precipitation data set of India Meteorological Department (IMD) for the period of 1901-2013 is used. Results indicated that the seasonal precipitation over NWI is below (above) the long-term mean in most of the years, when precipitation in any of the month (December/January/February) is in deficit (excess). The contribution of December precipitation (15-20%) to the seasonal (DJF) precipitation is lesser than January (35-40%) and February (35-50%) over all the subdivisions. December (0.60), January (0.57), and February (0.69) precipitation is in-phase (correlation) with the corresponding winter season precipitation. However, January precipitation is not in-phase with the corresponding December (0.083) and February (-0.03) precipitation, while December is in-phase with the February (0.21). When monthly precipitation (December or January or December-January or February) at subdivision level over NWI is excess (deficit); then, the probability of occurrence of seasonal excess (deficit) precipitation is high (almost nil). When antecedent-monthly precipitation is a deficit or excess, the probability of monthly (January or February or January + February) precipitation to be a normal category is >60% over all the subdivisions. This study concludes that the December precipitation is a good indicator to estimate the performance of January, February, January-February, and the seasonal (DJF) precipitation.

  16. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    Directory of Open Access Journals (Sweden)

    W. Nijland

    2011-05-01

    Full Text Available Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  17. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  18. Connecting Urbanization to Precipitation: the case of Mexico City

    Science.gov (United States)

    Georgescu, Matei

    2017-04-01

    Considerable evidence exists illustrating the influence of urban environments on precipitation. We revisit this theme of significant interest to a broad spectrum of disciplines ranging from urban planning to engineering to urban numerical modeling and climate, by detailing the simulated effect of Mexico City's built environment on regional precipitation. Utilizing the Weather Research and Forecasting (WRF) system to determine spatiotemporal changes in near-surface air temperature, precipitation, and boundary layer conditions induced by the modern-day urban landscape relative to presettlement conditions, I mechanistically link the built environment-induced increase in air temperature to simulated increases in rainfall during the evening hours. This simulated increase in precipitation is in agreement with historical observations documenting observed rainfall increase. These results have important implications for understanding the meteorological conditions leading to the widespread and recurrent urban flooding that continues to plague the Mexico City Metropolitan Area.

  19. Fuzzy-logic-based power control system for multifield electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Grass, N. [Siemens AG, Erlangen (Germany)

    2002-10-01

    The power consumption of large precipitators can be in the range of 1 MW and above. Depending on the dust load properties, the electrical power may be reduced by up to 50% by applying fuzzy logic, without significantly increasing the dust emissions. The new approach uses fuzzy logic for optimization of existing electrostatic precipitators. The software runs on a standard personal computer platform under the, Windows NT operating system. The controllers of the electrostatic precipitator power supplies are linked to the personal computer via an industrial network (e.g., PROFIBUS). The system determines online the differentials of emission versus electrical power of each field. This measurement is difficult because of overlaid events in the other zones, and process changes. The long response time of the resultant dust emission due to electrical power changes in the precipitator is an additional complication. Rules were defined for a coarse, but fast-response power adaptation of all zones. Fine tuning the running system after the coarse optimization increased the accuracy and reliability. When installed on a 4 x 5 zone precipitator in a power station, significant results were obtained. The power savings over three months of operation were in the range of 40%-60% depending on the load and fuel characteristics. Data were recorded over the test period of three months. The results are presented.

  20. Characterization Of Mg(OH)2 Precipitation On MSF Desalination Process

    International Nuclear Information System (INIS)

    Sumijanto

    2000-01-01

    The experiment of Mg(OH) sub.2 precipitation has been carry out. Experiment took please by heating sea water simulation with consist of 142 ppm bicarbonate and magnesium ion at temperature 40, 50, 60, 70, 80, 90, 100, 110, and 120 exp.oC respectively by using autoclave. Sampling has been done periodical for 30 minute in interval 300 minute for each temperature. The calculation of Mg(OH) sub.2 precipitation through the decreasing of magnesium concentration with analysis by AAS. From experiment data have the information that Mg(OH) sub.2 precipitation have been formed since 40 exp.oC. From time variable have been the information that the precipitation formed at 30th minute rapidly. Whether at further time the increasing of precipitation are not significant. This phenomena can explained that at each heating step from 40 exp.oC bicarbonate ion be come decomposition with the result carbonate and hydroxide ion and react with magnesium form Mg(OH) sub.2

  1. Short-range quantitative precipitation forecasting using Deep Learning approaches

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  2. Quantification of Linkages between Large-Scale Climate Patterns and Annual Precipitation for the Colorado River Basin

    Science.gov (United States)

    Kalra, A.; Ahmad, S.

    2010-12-01

    Precipitation is regarded as one of the key variables driving various hydrologic processes and the future precipitation information can be useful to better understand the long-term climate dynamics. In this paper, a simple, robust, and parsimonious precipitation forecast model, Support Vector Machine (SVM) is proposed which uses large-scale climate information and predict annual precipitation 1-year in advance. SVM’s are a novel class of neural networks (NNs) which are based on the statistical learning theory. The SVM’s has three main advantages over the traditional NNs: 1) better generalization ability, 2) the architecture and weights of SVM’s are guaranteed to be unique and globally optimum, and 3) SVM’s are trained more rapidly than the corresponding NN. With these advantages, an application of SVM incorporating large-scale climate information is developed and applied to seventeen climate divisions encompassing the Colorado River Basin in the western United States. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1900-2007 are used to generate annual precipitation estimates with 1-year lead time. The results from the present study indicate that long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of NAO and ENSO indices whereas coupling PDO and AMO results in improved precipitation predictions for the Lower Colorado River Basin. Precipitation predictions from the SVM model are found to be better when compared with the predictions obtained from feed-forward back propagation Artificial Neural Network and Multivariate Linear Regression models. The overall results of this study revealed that the annual precipitation of the Colorado River Basin was significantly influenced by oceanic-atmospheric oscillations and the proposed SVM

  3. Spatial Distribution of Stable Isotopes of Precipitation in Kumamoto, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Anoue, M. T.; Shimada, J. [Graduate School of Science and Technology, Kumamoto University (Japan); Ichiyanagi, K. [Graduate School of Science and Technology, Kumamoto University and Japan Agency for Marine-Earth Science and Technology (Japan)

    2013-07-15

    To understand the spatial distribution of stable isotopic compositions in precipitation, precipitation samples were collected every two weeks from november 2009 to december 2010 at 6 points in Kumamoto, Japan. The {delta}{sup 18}O and {delta}{sup 2}H of precipitation samples were measured by isotope ratio mass spectrometry (Delta-S) with CO{sub 2}/H2{sub O} equivalent method for {delta}{sup 18}O and the chromium reduction method for {delta}2H. The range of {delta}{sup 18}O and d-excess (= {delta}{sup 2}H - 8 {delta}{sup 18}O) in precipitation is from -13.4 per mille to -3.5 per mille and from 2.6 per mille to 35.6 per mille , respectively. Seasonal variability of {delta}{sup 18}O (d-excess) in precipitation was low (high) in winter and high (low) in summer. The seasonal wind of this study area was dominated by south-westerly in summer (from June to August) and north-westerly in winter (from December to February). These wind regimes indicate seasonal variabilities of the water vapour pathway from the origin. In this paper the trend of inland effect to the {delta}{sup 18}O for both south-westerly and north-westerly are also considered. As a result, significant correlation between distances from the coastal line at south-westerly or north-westerly and {delta}{sup 18}O in precipitation was recognized, particularly from 18 February to 7 March and from 29 September to 19 October in 2010 (statistically significant with 5% level). Furthermore, in order to evaluate the course of precipitation, the column total of water vapour flux was considered in the whole period by using JRA-25 and JCDAS. It is interesting that the inland effect corresponded to the column total of water vapour flux at south-westerly (north-westerly). Hence, it is conceivable that the spatial distribution of {delta}{sup 18}O in precipitation was controlled by a column total of water vapour flux in this area. (author)

  4. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    Science.gov (United States)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  5. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden

    Science.gov (United States)

    Hellström, Cecilia; Chen, Deliang

    2003-11-01

    A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.

  6. Hydrologic Response to Climate Change: Missing Precipitation Data Matters for Computed Timing Trends

    Science.gov (United States)

    Daniels, B.

    2016-12-01

    This work demonstrates the derivation of climate timing statistics and applying them to determine resulting hydroclimate impacts. Long-term daily precipitation observations from 50 California stations were used to compute climate trends of precipitation event Intensity, event Duration and Pause between events. Each precipitation event trend was then applied as input to a PRMS hydrology model which showed hydrology changes to recharge, baseflow, streamflow, etc. An important concern was precipitation uncertainty induced by missing observation values and causing errors in quantification of precipitation trends. Many standard statistical techniques such as ARIMA and simple endogenous or even exogenous imputation were applied but failed to help resolve these uncertainties. What helped resolve these uncertainties was use of multiple imputation techniques. This involved fitting of Weibull probability distributions to multiple imputed values for the three precipitation trends.Permutation resampling techniques using Monte Carlo processing were then applied to the multiple imputation values to derive significance p-values for each trend. Significance at the 95% level for Intensity was found for 11 of the 50 stations, Duration from 16 of the 50, and Pause from 19, of which 12 were 99% significant. The significance weighted trends for California are Intensity -4.61% per decade, Duration +3.49% per decade, and Pause +3.58% per decade. Two California basins with PRMS hydrologic models were studied: Feather River in the northern Sierra Nevada mountains and the central coast Soquel-Aptos. Each local trend was changed without changing the other trends or the total precipitation. Feather River Basin's critical supply to Lake Oroville and the State Water Project benefited from a total streamflow increase of 1.5%. The Soquel-Aptos Basin water supply was impacted by a total groundwater recharge decrease of -7.5% and streamflow decrease of -3.2%.

  7. CHARACTERISTICS OF MEI-YU PRECIPITATION AND SVD ANALYSIS OF PRECIPITATION OVER THE YANGTZE-HUAIHE RIVERS VALLEYS AND THE SEA SURFACE TEMPERATURE IN THE NORTHERN PACIFIC OCEAN

    Institute of Scientific and Technical Information of China (English)

    MAO Wen-shu; WANG Qian-qian; PENG Jun; LI Yong-hua

    2008-01-01

    Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal function (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.

  8. Solids precipitation in crude oils, gas-to-liquids and their blends

    Science.gov (United States)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  9. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat

    International Nuclear Information System (INIS)

    Rapp, Anita D; Lebsock, Matthew; L’Ecuyer, Tristan

    2013-01-01

    A climatology of low cloud surface precipitation occurrence and intensity from the new CloudSat 2C-RAIN-PROFILE algorithm is presented from June 2006 through December 2010 for the southeastern Pacific region of marine stratocumulus. Results show that over 70% of low cloud precipitation falls as drizzle. Application of an empirical evaporation model suggests that 50–80% of the precipitation evaporates before it reaches the surface. Segregation of the CloudSat ascending and descending overpasses shows that the majority of precipitation occurs at night. Examination of the seasonal cycle shows that the precipitation is most frequent during the austral winter and spring; however there is considerable regional variability. Conditional rain rates increase from east to west with a maximum occurring in the region influenced by the South Pacific Convergence Zone. Area average rain rates are highest in the region where precipitation rates are moderate, but most frequent. The area average surface rain rate for low cloud precipitation for this region is ∼0.22 mm d −1 , in good agreement with in situ estimates, and is greatly improved over earlier CloudSat precipitation products. These results provide a much-needed quantification of surface precipitation in a region that is currently underestimated in existing satellite-based precipitation climatologies. (letter)

  10. The precipitation behavior of superalloy ATI Allvac 718Plus

    Energy Technology Data Exchange (ETDEWEB)

    Zickler, Gerald A.; Schnitzer, Ronald; Leitner, Harald [Department of Physical Metallurgy and Materials Testing, Christian Doppler Laboratory Early Stages of Precipitation, Montanuniversitaet Leoben (Austria); Radis, Rene [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Institute for Materials Science and Welding, Graz University of Technology (Austria); Kozeschnik, Ernst [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co. KG., Kapfenberg (Austria)

    2010-03-15

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace gas turbines. The precipitation kinetics of the intermetallic {delta} (Ni{sub 3}Nb) and {gamma}' (Ni{sub 3}(Al,Ti)) phases in this alloy are of scientific as well as technological interest because of their significant influence on the mechanical properties. Important parameters like grain size are controlled by coarse {delta} precipitates located at grain boundaries, whereas small {gamma}' precipitates are responsible for strengthening by precipitation hardening. In the present study, the microstructure is investigated by three-dimensional atom probe tomography and simulated by computer modeling using the thermo-kinetic software MatCalc. The results of numerical simulations and experimental data are compared and critically discussed. It is shown that the chemical compositions of the phases change during isothermal aging, and the precipitation kinetics of {delta} and {gamma}' phases interact with each other as shown in a time temperature precipitation (TTP) plot. The TTP plot shows C-shaped curves with characteristic discontinuities in the temperature range, where simultaneous and concurrent precipitation of the {delta} and {gamma}' phases occurs. This leads to a competition in the diffusion of Nb and Al, which are partly present in both phases. Thus, the present study gives important information on heat treatments for ATI Allvac 718Plus in order to achieve the desired microstructure and mechanical properties. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Terrestrial precipitation and soil moisture: A case study over southern Arizona and data development

    Science.gov (United States)

    Stillman, Susan

    reanalyses. We show that while WGEW is small compared to the grid size of many of the evaluated products, unlike scaling from point to area, the effect of scaling from smaller to larger area is small. Finally, we focus on global precipitation. Global monthly gauge based precipitation data has become widely available in recent years and is necessary for analyzing the climatological and anomaly precipitation fields as well as for calibrating and evaluating other gridded products such as satellite-based and modeled precipitation. However, frequency and intensity of precipitation are also important in the partitioning of water and energy fluxes. Therefore, because daily and sub-daily observed precipitation is limited to recent years, the number of raining days per month (N) is needed. We show that the only currently available long-term N product, developed by the Climate Research Unit (CRU), is deficient in certain areas, particularly where CRU gauge data is sparse. We then develop a new global 110-year N product, which shows significant improvement over CRU using three regional daily precipitation products with far more gauges than are used in CRU.

  12. Precipitation Sedimentation and Advection in GFS

    Science.gov (United States)

    Sun, R.; Tallapragada, V.

    2016-12-01

    Zhao and Carr microphysics scheme as implemented in the NCEP Global Forecasting System (GFS) predicts only the total cloud condensate (cloud water or ice). The precipitation generated in the column fall to the ground instantly. This mean precipitation sedimentation and advection are not considered. As resolution increases the lack of the two physical processes creates problems. The slowly falling precipitation (snow) falls to the wrong surface grid box, which may have led to the observed spotty-precipitation pattern. To solve the problem two prognositic variables, snow and rain, are added. Addition of the two precipitation variable allows their advection. The corresponding sedimentation process are also added. In this study we examine the effect of precipitation advection and sedimentation on the precipitation pattern, associated precipitation skills and clouds.

  13. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    Science.gov (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  14. Precipitation Characteristics in Tropical Africa Using Satellite and In-Situ Observations

    Science.gov (United States)

    Dezfuli, Amin; Ichoku, Charles; Huffman, George; Mohr, Karen

    2017-01-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region, despite their crucial role in regional and global circulation, have not been well-understood. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data, continent-wide comparisons are made between these two products. IMERG, due to its improved temporal resolution, shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  15. Long term precipitation trends and variability within the Mediterranean region

    Directory of Open Access Journals (Sweden)

    C. M. Philandras

    2011-12-01

    Full Text Available In this study, the trends and variability of annual precipitation totals and annual rain days over land within the Mediterranean region are analyzed. Long term ground-based observations concerning, on one hand, monthly precipitation totals (1900–2010 and rain days (1965–2010 from 40 meteorological stations within the Mediterranean region were obtained from the Hellenic National Meteorological Service and the World Climate Data and Monitoring Programme (WCDMP of the World Meteorological Organization. On the other hand, high spatial resolution (0.5° × 0.5° gridded monthly data CRU TS 3.1 were acquired from the Climatic Research Unit, University of East Anglia, for the period 1901–2009. The two datasets were compared by means of trends and variability, while the influence of the North Atlantic Oscillation (NAO in the Mediterranean precipitation was examined. In the process, the climatic changes in the precipitation regime between the period 1961–1990 (reference period and the period 2071–2100 (future climate were presented using climate model simulations (RACMO2.1/KNMI. The future climate projections were based on SRES A1B.

    The findings of the analysis showed that statistically significant (95% confidence level negative trends of the annual precipitation totals exist in the majority of Mediterranean regions during the period 1901–2009, with an exception of northern Africa, southern Italy and western Iberian peninsula, where slight positive trends (not statistically significant at 95% CL appear. Concerning the annual number of rain days, a pronounced decrease of 20 %, statistically significant (95% confidence level, appears in representative meteorological stations of east Mediterranean, while the trends are insignificant for west and central Mediterranean. Additionally, NAO index was found to be anticorrelated with the precipitation totals and the number of rain days mainly in Spain, southern France, Italy and Greece. These

  16. Precipitation increases the occurrence of sporadic legionnaires' disease in Taiwan.

    Directory of Open Access Journals (Sweden)

    Nai-Tzu Chen

    Full Text Available Legionnaires' disease (LD is an acute form of pneumonia, and changing weather is considered a plausible risk factor. Yet, the relationship between weather and LD has rarely been investigated, especially using long-term daily data. In this study, daily data was used to evaluate the impacts of precipitation, temperature, and relative humidity on LD occurrence in Taiwan from 1995-2011. A time-stratified 2:1 matched-period case-crossover design was used to compare each case with self-controlled data using a conditional logistic regression analysis, and odds ratios (ORs for LD occurrence was estimated. The city, gender and age were defined as a stratum for each matched set to modify the effects. For lag day- 0 to 15, the precipitation at lag day-11 significantly affected LD occurrence (p0.05. In conclusion, in warm, humid regions, an increase of daily precipitation is likely to be a critical weather factor triggering LD occurrence where the risk is found particularly significant at an 11-day lag. Additionally, precipitation at 21-40 and 61-80 mm might make LD occurrence more likely.

  17. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.

    2018-01-01

    may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.

  18. Effect of microalloying on precipitate evolution in ferritic welds and implications for toughness

    International Nuclear Information System (INIS)

    Narayanan, Badri K.; Kovarik, L.; Sarosi, Peter M.; Quintana, Marie A.; Mills, M.J.

    2010-01-01

    Ferritic weld metal deposited with a self-shielded arc-welding process has intentional additions of aluminum, magnesium, titanium and zirconium. This results in a complex precipitation process that has been characterized with a combination of electron microscopy techniques. This work indicates that the formation of a spinel oxide is critical for the nucleation of nitrides of zirconium and titanium and prevents the agglomeration of aluminum rich oxides and the formation of large aluminum nitrides. High-resolution transmission electron microscopy has been used to characterize the core/shell structure of the precipitates with microalloying additions. Thermodynamic modeling of the precipitate formation during solidification is consistent with the microstructural observations. The evolution of precipitate formation is critical to limit large inclusions and improve weld metal toughness.

  19. An underestimated role of precipitation frequency in regulating summer soil moisture

    International Nuclear Information System (INIS)

    Wu Chaoyang; Chen, Jing M; Pumpanen, Jukka; Cescatti, Alessandro; Marcolla, Barbara; Blanken, Peter D; Ardö, Jonas; Tang, Yanhong; Magliulo, Vincenzo; Georgiadis, Teodoro; Soegaard, Henrik; Cook, David R; Harding, Richard J

    2012-01-01

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 and 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions. (letter)

  20. Ranch profitability given increased precipitation variability and flexible stocking

    Science.gov (United States)

    Forage and cattle performance relationships with spring precipitation, combined with cattle market price variability, were incorporated into a ranch level model to determine if addition of a yearling enterprise to the base cow-calf herd would improve profitability with increasing (25% and 50% greate...

  1. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    Science.gov (United States)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  2. Detection of non-stationarity in precipitation extremes using a max-stable process model

    Science.gov (United States)

    Westra, S.; Sisson, S.

    2011-12-01

    The question of how extreme precipitation will change under a future climate represents an urgent research problem, not least because of the significant societal impacts that would result from an increase in precipitation-induced flooding. To better constrain future projections, an important line of evidence comes from statistical assessments of change to extreme precipitation in the observational record, as a significant amount of warming since pre-industrial times has already taken place. In this study we address this problem by applying a max-stable process model to evaluate whether extreme precipitation at sub-daily and daily timescales has changed at various locations around Australia. This max-stable process approach, which was developed to simulate spatial fields comprising observations from multiple point locations, significantly increases the precision of a statistical inference compared to standard univariate methods. Applying the technique to a field of annual maxima derived from 30 sub-daily gauges in east Australia from 1965 to 2005, we find a statistically significant increase of 18% for 6-minute rainfall over this period, with smaller increases for longer duration events. We also find an increase of 5.6% and 22.5% per degree of Australian land surface temperature and global sea surface temperature at 6-minute durations, respectively, again with smaller scaling relationships for longer durations. In contrast, limited change could be observed in daily rainfall at most locations, with the exception of a statistically significant decline of 7.4% per degree land surface temperature in southwest Western Australia. These results suggest both the importance of better understanding changes to precipitation at the sub-daily timescale, as well as the need to more precisely simulate temporal variability by accounting for the spatial nature of precipitation in any statistical model.

  3. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  4. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  5. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    International Nuclear Information System (INIS)

    Sheng, Fei; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H.

    2014-01-01

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound

  6. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fei, E-mail: shengf@ices.a-star.edu.sg; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H., E-mail: reginald.tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences (Singapore)

    2014-12-15

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound.

  7. Spatial interpolation of hourly precipitation and dew point temperature for the identification of precipitation phase and hydrologic response in a mountainous catchment

    Science.gov (United States)

    Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.

    2012-12-01

    In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing

  8. The linkage between geopotential height and monthly precipitation in Iran

    Science.gov (United States)

    Shirvani, Amin; Fadaei, Amir Sabetan; Landman, Willem A.

    2018-04-01

    This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968-2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall's tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.

  9. A simple and effective method for detecting precipitated proteins in MALDI-TOF MS.

    Science.gov (United States)

    Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio

    2018-04-01

    MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins. Copyright © 2018. Published by Elsevier Inc.

  10. [Improvement of Phi bodies stain and its clinical significance].

    Science.gov (United States)

    Gong, Xu-Bo; Lu, Xing-Guo; Yan, Li-Juan; Xiao, Xi-Bin; Wu, Dong; Xu, Gen-Bo; Zhang, Xiao-Hong; Zhao, Xiao-Ying

    2009-02-01

    The aim of this study was to improve the dyeing method of hydroperoxidase (HPO), to analyze the morphologic features of Phi bodies and to evaluate the clinical application of this method. 128 bone marrow or peripheral blood smears from patients with myeloid and lymphoid malignancies were stained by improved HPO staining. The Phi bodies were observed with detection rate of Phi bodies in different leukemias. 69 acute myeloid leukemia (AML) specimens were chosen randomly, the positive rate and the number of Phi bodies between the improved HPO and POX stain based on the same substrate of 3, 3'diaminobenzidine were compared. The results showed that the shape of bundle-like Phi bodies was variable, long or short. while the nubbly Phi bodies often presented oval and smooth. Club-like Phi bodies were found in M(3). The detection rates of bundle-like Phi bodies in AML M(1)-M(5) were 42.9% (6/14), 83.3% (15/18), 92.0% (23/25), 52.3% (11/21), 33.3% (5/15) respectively, and those of nubbly Phi bodies were 28.6% (4/14), 66.7% (12/18), 11.1% (3/25), 33.3% (7/21), 20.0% (3/15) respectively. The detection rate of bundle-like Phi bodies in M(3) was significantly higher than that in (M(1) + M(2)) or (M(4) + M(5)) groups. The detection rate of nubbly Phi bodies in (M(1) + M(2)) group was higher than that in M(3) group. In conclusion, after improvement of staining method, the HPO stain becomes simple, the detection rate of Phi bodies is higher than that by the previous method, the positive granules are more obvious, and the results become stable. This improved method plays an important role in differentiating AML from ALL, subtyping AML, and evaluating the therapeutic results.

  11. Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes

    Science.gov (United States)

    Pegram, G. G. S.; Bardossy, A.

    2016-12-01

    Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and

  12. Negative corona discharges modelling. Application to the electrostatic precipitation

    International Nuclear Information System (INIS)

    Gaychet, S.

    2010-01-01

    Electrostatic precipitation presents many advantages from the nuclear wastes treatment's point of view. Indeed, this kind of process can capture submicron particles without producing secondary wastes (no filter media) and without pressure looses in the exhaust circuit. The work presented in this thesis concerns the study of negative corona discharges in air at atmospheric pressure occurring in an electrostatic precipitator (ESP) developed by the CEA (Atomic Energy Committee). The aim of this study is to determine how the electrostatic precipitation dedicated phenomena, especially the specific high voltage generator, the gas temperature and the fact that particles are flowing through the gap then collapsing on the electrodes, modify the discharge to improve the efficiency of ESPs. This work is based on a fundamental experimental study of the negative corona discharge and on numerical simulations of this discharge under conditions close to those of the lab scale ESP developed by the CEA. (author) [fr

  13. Wet milling versus co-precipitation in magnetite ferrofluid preparation

    Directory of Open Access Journals (Sweden)

    Almásy László

    2015-01-01

    Full Text Available Various uses of ferrofluids for technical applications continuously raise the interest in improvement and optimization of preparation methods. This paper deals with preparation of finely granulated magnetite particles coated with oleic acid in hydrocarbon suspensions following either chemical co-precipitation from iron salt precursors or wet milling of micron size magnetite powder with the goal to compare the benefits and disadvantages of each method. Microstructural measurements showed that both methods gave similar magnetite particle size of 10-15 nm. Higher saturation magnetization was achieved for the wet-milled magnetite suspension compared to relatively rapid co-precipitation synthesis. Different efficacies of ferrophase incorporation into kerosene could be related to the different mechanisms of oleic acid bonding to nanoparticle surface. The comparative data show that wet milling represents a practicable alternative to the traditional co-precipitation since despite of longer processing time, chemicals impact on environment can be avoided as well as the remnant water in the final product.

  14. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  15. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  16. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  17. Interdecadal Change in Extreme Precipitation over South China and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    NING Liang; QIAN Yongfu

    2009-01-01

    Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the possible mechanism connected with the anomalies of the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula are examined. The results show that both the annual and summer extreme precipitation events have obvious interdecadal variations and have increased significantly since the early 1990s. Moreover, the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula also have obvious interdecadal variations consistent with that of the extreme precipitation, and influence different months' extreme precipitation, respectively. Their effects are achieved by the interdecadal increases of the strengthening convection over South China through the South China Sea Summer Monsoon.

  18. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    OpenAIRE

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields, as simulations at higher spatial resolution are more capable of resolving the interaction between the topography and the atmosphere. However, most physics par...

  19. Climate variability from isotope records in precipitation

    International Nuclear Information System (INIS)

    Grassl, H.; Latif, M.; Schotterer, U.; Gourcy, L.

    2002-01-01

    Selected time series from the Global Network for Isotopes in Precipitation (GNIP) revealed a close relationship to climate variability phenomena like El Nino - Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) although the precipitation anomaly in the case studies of Manaus (Brazil) and Groningen (The Netherlands) is rather weak. For a sound understanding of this relationship especially in the case of Manaus, the data should include major events like the 1997/98 El Nino, however, the time series are interrupted frequently or important stations are even closed. Improvements are only possible if existing key stations and new ones (placed at 'hot spots' derived from model experiments) are supported continuously. A close link of GNIP to important scientific programmes like CLIVAR, the Climate Variability and Predictability Programme seems to be indispensable for a successful continuation. (author)

  20. 348-YEAR PRECIPITATION RECONSTRUCTION FROM TREE-RINGS FOR THE NORTH SLOPE OF THE MIDDLE TIANSHAN MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    袁玉江; 李江风; 张家宝

    2001-01-01

    Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant, and the best single correlation coefficient is 0.74, with significance level of 0. 0001.Using two residual chronologies collected from west Baiyanggou and Boerqingou, precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains, its explained variance is 62%. According to much verification from independent precipitation data, historical climate records, glacier and other data, it shows that the reconstructed precipitation series of 348 years is reliable. Analysis of precipitation features indicates that there were three wet periods occurring during 1671 (?) -1692, 1716-1794 and 1825-1866 and three dry periods during 1693 - 1715, 1795- 1824 and 1867- 1969. Two wet periods, during 1716- 1794 and 1825 - 1866,correspond to the times of the second and the third glacial terminal moraine formation, which is in front of No. 1 glacier in Urumqi River source. According to computation, corresponding annual precipitation amounts are 59 mm and 30 mm more than now. The reconstructed precipitation series has a significant drying trend from 1716 to 1969, and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.

  1. Kinetics of cadmium hydroxide precipitation

    International Nuclear Information System (INIS)

    Patterson, J.W.; Marani, D.; Luo, B.; Swenson, P.

    1987-01-01

    This paper presents some preliminary results on the kinetics of Cd(OH)/sub 2/ precipitation, both in the absence and the presence of citric acid as an inhibiting agent. Batch and continuous stirred tank reactor (CSTR) precipitation studies are performed by mixing equal volumes of NaOH and Cd(NO/sub 3/)/sub 2/ solutions, in order to avoid localized supersaturation conditions. The rate of metal removal from the soluble phase is calculated from the mass balance for the CSTR precipitation tests. In addition, precipitation kinetics are studied in terms of nucleation and crystal growth rates, by means of a particle counter that allows a population balance analysis for the precipitation reactor at steady state conditions

  2. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils

    International Nuclear Information System (INIS)

    Thørring, H.; Skuterud, L.; Steinnes, E.

    2014-01-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m −2 per column, results indicate that acidic precipitation increased the mobility of 134 Cs added during the experiment. However, depth distribution of already present Chernobyl fallout 137 Cs was not significantly affected by the chemical composition of precipitation. - Highlights: • Mobility of freshly added Cs-134 was higher in soil receiving acidic precipitation. • Depth penetration of Cs-134 was higher in soil profiles with a thicker humus layer. • Depth distribution of Chernobyl Cs-137 was not affected by precipitation type

  3. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  4. Implications of a decrease in the precipitation area for the past and the future

    Science.gov (United States)

    Benestad, Rasmus E.

    2018-04-01

    The total area with 24 hrs precipitation has shrunk by 7% between 50°S–50°N over the period 1998–2016, according to the satellite-based Tropical Rain Measurement Mission data. A decrease in the daily precipitation area is an indication of profound changes in the hydrological cycle, where the global rate of precipitation is balanced by the global rate of evaporation. This decrease was accompanied by increases in total precipitation, evaporation, and wet-day mean precipitation. If these trends are real, then they suggest increased drought frequencies and more intense rainfall. Satellite records, however, may be inhomogeneous because they are synthesised from a number of individual missions with improved technology over time. A linear dependency was also found between the global mean temperature and the 50°S–50°N daily precipitation area with a slope value of ‑17 × 106 km 2/°C. This dependency was used with climate model simulations to make future projections which suggested a continued decrease that will strengthen in the future. The precipitation area evolves differently when the precipitation is accumulated over short and long time scales, however, and there has been a slight increase in the monthly precipitation area while the daily precipitation area decreased. An increase on monthly scale may indicate more pronounced variations in the rainfall patterns due to migrating rain-producing phenomena.

  5. Precipitation interpolation in mountainous areas

    Science.gov (United States)

    Kolberg, Sjur

    2015-04-01

    Different precipitation interpolation techniques as well as external drift covariates are tested and compared in a 26000 km2 mountainous area in Norway, using daily data from 60 stations. The main method of assessment is cross-validation. Annual precipitation in the area varies from below 500 mm to more than 2000 mm. The data were corrected for wind-driven undercatch according to operational standards. While temporal evaluation produce seemingly acceptable at-station correlation values (on average around 0.6), the average daily spatial correlation is less than 0.1. Penalising also bias, Nash-Sutcliffe R2 values are negative for spatial correspondence, and around 0.15 for temporal. Despite largely violated assumptions, plain Kriging produces better results than simple inverse distance weighting. More surprisingly, the presumably 'worst-case' benchmark of no interpolation at all, simply averaging all 60 stations for each day, actually outperformed the standard interpolation techniques. For logistic reasons, high altitudes are under-represented in the gauge network. The possible effect of this was investigated by a) fitting a precipitation lapse rate as an external drift, and b) applying a linear model of orographic enhancement (Smith and Barstad, 2004). These techniques improved the results only marginally. The gauge density in the region is one for each 433 km2; higher than the overall density of the Norwegian national network. Admittedly the cross-validation technique reduces the gauge density, still the results suggest that we are far from able to provide hydrological models with adequate data for the main driving force.

  6. Are climate-related changes to the character of global-mean precipitation predictable?

    International Nuclear Information System (INIS)

    Stephens, Graeme L; Hu, Yongxiang

    2010-01-01

    The physical basis for the change in global-mean precipitation projected to occur with the warming associated with increased greenhouse gases is discussed. The expected increases to column water vapor W control the rate of increase of global precipitation accumulation through its affect on the planet's energy balance. The key role played by changes to downward longwave radiation controlled by this changing water vapor is emphasized. The basic properties of molecular absorption by water vapor dictate that the fractional rate of increase of global-mean precipitation must be significantly less that the fractional rate of increase in water vapor and it is further argued that this reduced rate of precipitation increase implies that the timescale for water re-cycling is increased in the global mean. This further implies less frequent precipitation over a fixed period of time, and the intensity of these less frequent precipitating events must subsequently increase in the mean to realize the increased global accumulation. These changes to the character of global-mean precipitation, predictable consequences of equally predictable changes to W, apply only to the global-mean state and not to the regional or local scale changes in precipitation.

  7. Evaluation of performance of seasonal precipitation prediction at regional scale over India

    Science.gov (United States)

    Mohanty, U. C.; Nageswararao, M. M.; Sinha, P.; Nair, A.; Singh, A.; Rai, R. K.; Kar, S. C.; Ramesh, K. J.; Singh, K. K.; Ghosh, K.; Rathore, L. S.; Sharma, R.; Kumar, A.; Dhekale, B. S.; Maurya, R. K. S.; Sahoo, R. K.; Dash, G. P.

    2018-03-01

    The seasonal scale precipitation amount is an important ingredient in planning most of the agricultural practices (such as a type of crops, and showing and harvesting schedules). India being an agroeconomic country, the seasonal scale prediction of precipitation is directly linked to the socioeconomic growth of the nation. At present, seasonal precipitation prediction at regional scale is a challenging task for the scientific community. In the present study, an attempt is made to develop multi-model dynamical-statistical approach for seasonal precipitation prediction at the regional scale (meteorological subdivisions) over India for four prominent seasons which are winter (from December to February; DJF), pre-monsoon (from March to May; MAM), summer monsoon (from June to September; JJAS), and post-monsoon (from October to December; OND). The present prediction approach is referred as extended range forecast system (ERFS). For this purpose, precipitation predictions from ten general circulation models (GCMs) are used along with the India Meteorological Department (IMD) rainfall analysis data from 1982 to 2008 for evaluation of the performance of the GCMs, bias correction of the model results, and development of the ERFS. An extensive evaluation of the performance of the ERFS is carried out with dependent data (1982-2008) as well as independent predictions for the period 2009-2014. In general, the skill of the ERFS is reasonably better and consistent for all the seasons and different regions over India as compared to the GCMs and their simple mean. The GCM products failed to explain the extreme precipitation years, whereas the bias-corrected GCM mean and the ERFS improved the prediction and well represented the extremes in the hindcast period. The peak intensity, as well as regions of maximum precipitation, is better represented by the ERFS than the individual GCMs. The study highlights the improvement of forecast skill of the ERFS over 34 meteorological subdivisions

  8. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Goldstein, Leah; Kraft, Nathan

    2010-01-01

    Patterns of precipitation are likely to change significantly in the coming century, with important but poorly understood consequences for plant communities. Experimental and correlative studies may provide insight into expected changes, but little research has addressed the degree of concordance...... between these approaches. We synthesized results from four experimental water addition studies with a correlative analysis of community changes across a large natural precipitation gradient in the United States. We investigated whether community composition, summarized with plant functional traits......, responded similarly to increasing precipitation among studies and sites. In field experiments, increased precipitation favored species with small seed size,short leaf life span and high leaf nitrogen (N) concentration. However, with increasing precipitation along the natural gradient, community composition...

  9. Late-Eighteenth-Century Precipitation Reconstructions from James Madison's Montpelier Plantation.

    Science.gov (United States)

    Druckenbrod, Daniel L.; Mann, Michael E.; Stahle, David W.; Cleaveland, Malcolm K.; Therrell, Matthew D.; Shugart, Herman H.

    2003-01-01

    This study presents two independent reconstructions of precipitation from James Madison's Montpelier plantation at the end of the eighteenth century. The first is transcribed directly from meteorological diaries recorded by the Madison family for 17 years and reflects the scientific interests of James Madison and Thomas Jefferson. In his most active period as a scientist, Madison assisted Jefferson by observing the climate and fauna in Virginia to counter the contemporary scientific view that the humid, cold climate of the New World decreased the size and number of its species. The second reconstruction is generated using tree rings from a forest in the Montpelier plantation and connects Madison's era to the modern instrumental precipitation record. These trees provide a significant reconstruction of both early summer and prior fall precipitation. Comparison of the dendroclimatic and diary reconstructions suggests a delay in the seasonality of precipitation from Madison's era to the mid-twentieth century. Furthermore, the dendroclimatic reconstructions of early summer and prior fall precipitation appear to track this shift in seasonality.

  10. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  11. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes

    International Nuclear Information System (INIS)

    Lin, Yongjie; Zheng, Mianping; Ye, Chuanyong

    2017-01-01

    The mineral hydromagnesite, Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O, is a common form of hydrated Mg-carbonate in alkaline lakes, yet the processes involved in its formation are not well understood. This study focuses on Dujiali Lake, in the central Qinghai-Tibetan Plateau (QTP), which is one of the few environments on the earth's surface with extensive Holocene precipitation of hydromagnesite. The hydrogeochemistry of surface waters, and the mineralogical, stable isotope (δ 13 C and δ 18 O), and radiogenic isotope content of hydromagnesite deposits were analyzed to investigate formation mechanisms. The chemical composition of surface water around Dujiali Lake evolved from the rock-weathering-type waters of T1 (Ca−Mg−HCO 3 water type) to more concentrated sodic waters of T2 (Na−SO 4 −Cl water type) due to evaporation. XRD results show that the mineralogical composition of samples is pure hydromagnesite. Analysis of oxygen isotopes in the hydromagnesite indicates that supergene formation with authigenic carbonate crystallization from evaporation water is the dominant precipitation process. Combined carbon-oxygen isotope analysis suggests atmospheric CO 2 provided a carbon source for the precipitation of hydromagnesite. These findings suggest that hydromagnesite precipitation at Lake Dujiali is mainly inorganic in nature, and the greenhouse gas, CO 2 , is trapped and stored in the hydromagnesite directly from the atmosphere. AMS radiocarbon dating of samples indicates CO 2 was sequestered between 5845 ± 30 to 6090 ± 25 cal a BP in the Dujiali Lake hydromagnesite deposit. The study contributes to improved understanding of hydromagnesite formation in modern and ancient playas. - Highlights: • The stable isotopes, radiogenic isotope data are firstly obtained from the hydromagnesite deposits of Lake Dujiali in QTP. • Hydromagnesite precipitation at Lake Dujiali is mainly inorganic. • δ 18 O indicates supergene formation with authigenic carbonate

  12. Magnesite dissolution and precipitation rates at hydrothermal conditions

    International Nuclear Information System (INIS)

    Saldi, Giuseppe

    2009-01-01

    complexation model originally developed at 25 deg. C. The decrease of dissolution rates observed from 150 to 200 deg. C can be explained by the increasing carbonation and hydrolysis of the rate controlling >MgOH 2 + sites. As a result of the decreasing rates of dissolution, the achievement of alkaline conditions and temperatures higher than 100 deg. C by CO 2 -rich fluids represents a favorable condition for CO 2 sequestration as dissolved alkalinity in deep aquifers where carbonate minerals are major constituting phases. The use of a hydrogen electrode concentration cell (HECC) corroborates the kinetic data obtained at close to equilibrium conditions by the precise determination of magnesite solubility product as a function of temperature (50-200 deg. C). These measurements allowed generating the thermodynamic properties of this phase and comparing them with those obtained from calorimetric measurements and phase equilibria experiments. The results of this study significantly improve our understanding of the kinetic behaviour of carbonate minerals in hydrothermal systems and provide an essential database for the future study of dissolution/precipitation reactions of carbonate minerals in complex systems. This work also provides important kinetic constraints for the geochemical modeling of CO 2 sequestration processes and will help the evaluation of impact and risks connected to a long-term storage. (author) [fr

  13. Amphibian recovery after a decrease in acidic precipitation.

    Science.gov (United States)

    Dolmen, Dag; Finstad, Anders Gravbrøt; Skei, Jon Kristian

    2018-04-01

    We here report the first sign of amphibian recovery after a strong decline due to acidic precipitation over many decades and peaking around 1980-90. In 2010, the pH level of ponds and small lakes in two heavily acidified areas in southwestern Scandinavia (Aust-Agder and Østfold in Norway) had risen significantly at an (arithmetic) average of 0.14 since 1988-89. Parallel with the general rise in pH, amphibians (Rana temporaria, R. arvalis, Bufo bufo, Lissotriton vulgaris, and Triturus cristatus) had become significantly more common: the frequency of amphibian localities rose from 33% to 49% (n = 115), and the average number of amphibian species per locality had risen from 0.51 to 0.88. In two other (reference) areas, one with better buffering capacity (Telemark, n = 21) and the other with much less input of acidic precipitation (Nord-Trøndelag, n = 106), there were no significant changes in pH or amphibians.

  14. Effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model output

    Science.gov (United States)

    Jacquin, A. P.

    2012-04-01

    goodness of fit of the model realizations. GLUE-type uncertainty bounds during the verification period are derived at the probability levels p=85%, 90% and 95%. Results indicate that, as expected, prediction uncertainty bounds indeed change if precipitation factors FPi are estimated a priori rather than being allowed to vary, but that this change is not dramatic. Firstly, the width of the uncertainty bounds at the same probability level only slightly reduces compared to the case where precipitation factors are allowed to vary. Secondly, the ability to enclose the observations improves, but the decrease in the fraction of outliers is not significant. These results are probably due to the narrow range of variability allowed to the precipitation factors FPi in the first experiment, which implies that although they indicate the shape of the functional relationship between precipitation and height, the magnitude of precipitation estimates were mainly determined by the magnitude of the observations at the available raingauge. It is probable that the situation where no prior information is available on the realistic ranges of variation of the precipitation factors, and the inclusion of precipitation data uncertainty, would have led to a different conclusion. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.

  15. Innovative precipitation in emulsion process: toward a non-nuclear industrial application

    International Nuclear Information System (INIS)

    Ollivier, M.; Borda, G.; Charton, S.; Flouret, J.

    2016-01-01

    A precipitation in emulsion process has been proposed by Borda et al. in 2008 for the continuous precipitation of lanthanides or actinides as oxalate, in order to either increase the production capacity or allow the precipitation of long-life radioactive elements under optimum safety conditions. During research/development tests, a strong correlation between the emulsion's properties and those of the particles produced have been evidenced, thus enabling the size and morphology of the powder to be tuned by varying the droplets properties, the latter being controlled by the column operating conditions. This process thus appears as an attractive alternative to conventional processes for the synthesis of high-value precipitates; as it offers interesting intensification capabilities. In this context, the feasibility of the precipitation of bismuth subnitrate (BSN), for which the emulsion route for precipitation seems to be particularly attractive, has been studied. Indeed, the division of the reacting volume into droplets may allow efficient temperature regulation of the exothermic reaction. In addition, an improvement of the product appearance is expected. This first phase of the feasibility study focused on the choice of the organic phase and the sensitivity of the droplets and solid particles properties to the operating conditions. Following the encouraging results observed in stirred-tank reactor, we successfully tested the implementation in a pulsed column, at lab-scale. (authors)

  16. Innovative precipitation in emulsion process: toward a non-nuclear industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Ollivier, M.; Borda, G.; Charton, S. [CEA, Centre de Marcoule, DEN,DTEC,SGCS, F-30207 Bagnols-sur-Ceze (France); Flouret, J. [OCM, ZI Quai Jean Jaures, 197 Avenue Marie Curie, 07800 La Voulte-sur-Rhone (France)

    2016-07-01

    A precipitation in emulsion process has been proposed by Borda et al. in 2008 for the continuous precipitation of lanthanides or actinides as oxalate, in order to either increase the production capacity or allow the precipitation of long-life radioactive elements under optimum safety conditions. During research/development tests, a strong correlation between the emulsion's properties and those of the particles produced have been evidenced, thus enabling the size and morphology of the powder to be tuned by varying the droplets properties, the latter being controlled by the column operating conditions. This process thus appears as an attractive alternative to conventional processes for the synthesis of high-value precipitates; as it offers interesting intensification capabilities. In this context, the feasibility of the precipitation of bismuth subnitrate (BSN), for which the emulsion route for precipitation seems to be particularly attractive, has been studied. Indeed, the division of the reacting volume into droplets may allow efficient temperature regulation of the exothermic reaction. In addition, an improvement of the product appearance is expected. This first phase of the feasibility study focused on the choice of the organic phase and the sensitivity of the droplets and solid particles properties to the operating conditions. Following the encouraging results observed in stirred-tank reactor, we successfully tested the implementation in a pulsed column, at lab-scale. (authors)

  17. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  18. Predicting Precipitation in Darwin: An Experiment with Markov Chains

    Science.gov (United States)

    Boncek, John; Harden, Sig

    2009-01-01

    As teachers of first-year college mathematics and science students, the authors are constantly on the lookout for simple classroom exercises that improve their students' analytical and computational skills. In this article, the authors outline a project entitled "Predicting Precipitation in Darwin." In this project, students: (1) analyze…

  19. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  20. Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO.sub.2 to SO.sub.3

    Science.gov (United States)

    Huang, Hann-Sheng; Gorski, Anthony J.

    1999-01-01

    An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.

  1. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  2. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  3. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China

    International Nuclear Information System (INIS)

    Li Weibiao; Chen Sheng; Wen Zhiping; Wang Baomin; Chen Guixing; Sha Weimin; Luo Cong; Feng Yerong

    2011-01-01

    We assess the issues of urban effects on the precipitation over the Pearl River Delta (PRD) metropolitan regions of China. The spatial and temporal variations of strong versus weak precipitation over the PRD and surrounding nonurban areas are investigated. The results show that the urbanization signatures in strong precipitation are significantly different from those in weak precipitation over the urban areas. The PRD experiences more strong precipitation but less weak precipitation compared to surrounding nonurban regions. In addition, the strong precipitation over the PRD displays a pronounced seasonal variation. The seasonality of weak precipitation, however, is much weaker over the PRD compared to the surrounding nonurban regions. Moreover, a strengthening in the precipitation intensity, a reduction in the rainfall frequency and an increase in the convective precipitation as well as the afternoon precipitation are found over the urban areas, which are probably associated with the abundance in strong precipitation and the deficit in weak precipitation over the PRD.

  4. On the effects of wildfires on precipitation in Southern Africa

    Science.gov (United States)

    De Sales, Fernando; Okin, Gregory S.; Xue, Yongkang; Dintwe, Kebonye

    2018-03-01

    This study investigates the impact of wildfire on the climate of Southern Africa. Moderate resolution imaging spectroradiometer derived burned area fraction data was implemented in a set of simulations to assess primarily the role of wildfire-induced surface changes on monthly precipitation. Two post-fire scenarios are examined namely non-recovering and recovering vegetation scenarios. In the former, burned vegetation fraction remains burned until the end of the simulations, whereas in the latter it is allowed to regrow following a recovery period. Control simulations revealed that the model can dependably capture the monthly precipitation and surface temperature averages in Southern Africa thus providing a reasonable basis against which to assess the impacts of wildfire. In general, both wildfire scenarios have a negative impact on springtime precipitation. September and October were the only months with statistically significant precipitation changes. During these months, precipitation in the region decreases by approximately 13 and 9% in the non-recovering vegetation scenario, and by about 10 and 6% in the recovering vegetation wildfire scenario, respectively. The primary cause of precipitation deficit is the decrease in evapotranspiration resulting from a reduction in surface net radiation. Areas impacted by the precipitation reduction includes the Luanda, Kinshasa, and Brazzaville metropolitan areas, The Angolan Highlands, which are the source of the Okavango Rive, and the Okavango Delta region. This study suggests that a probable intensification in wildfire frequency and extent resulting from projected population increase and global warming in Southern Africa could potentially exacerbate the impacts of wildfires in the region's seasonal precipitation.

  5. Precipitation behavior and grain refinement of burnishing Al-Zn-Mg alloy

    Directory of Open Access Journals (Sweden)

    Ce Pang

    2018-02-01

    Full Text Available Burnishing is a unique strengthening approach to improve the strength of surface layer and remains the ductility of the interior of metallic materials. In this work, burnishing treatment was employed to improve the surface microstructure of naturally aged Al-Zn-Mg alloys after solid solution. Transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction and nano-indentation were used to characterize the effects of the burnishing on the microstructures of surface layer and Guinier-Preston (GP zones. It was indicated that GP zones uniformly distributed and dispersed in the matrix before burnishing, and the amount of GP zones decreased dramatically after burnishing processing. Additionally, the grains in the surficial layer were refined into nano-crystals with an average grain size of 78 nm. Burnishing treatment not only led to formation of large number of dislocation substructures in the sub-surface and near-matrix surface, but also promoted the precipitation of metastable η' phase at grain boundaries. The synergistic effects of the grain refinement, dislocation multiplication and the precipitation of η' phase strengthen the burnished layer of Al-Zn-Mg alloy. Keywords: Al-Zn-Mg alloy, Burnishing, Nano-crystal, Precipitation, Grain refinement

  6. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    Science.gov (United States)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  7. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Science.gov (United States)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Powers, Jordan G.; Manning, Kevin W.; Masson-Delmotte, Valérie; Valt, Mauro; Cagnati, Anselmo; Grigioni, Paolo; Scarchilli, Claudio

    2017-10-01

    The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome

  8. Precipitates in irradiated Zircaloy

    International Nuclear Information System (INIS)

    Chung, H.M.

    1985-10-01

    Precipitates in high-burnup (>20 MWd/kg U) Zircaloy spent-fuel cladding discharged from commercial boiling- and pressurized-water reactors have been characterized by TEM-HVEM. Three classes of primary precipitates were observed in the irradiated Zircaloys: Zr 3 O (2 to 6 nm), cubic-ZrO 2 (greater than or equal to 10 nm), and delta-hydride (35 to 100 nm). The former two precipitations appears to be irradiation induced in nature. Zr(Fe/sub x/Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/Ni/sub 1-x/) intermetallics, which are the primary precipitates in unirradiated Zircaloys, were largely dissolved after the high burnup. It seems, therefore, that the influence of the size and distribution of the intermetallics on the corrosion behavior may be quite different for the irradiated Zircaloys

  9. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  10. PRECIPITATION OF PROTACTINIUM

    Science.gov (United States)

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  11. Temporal-spatial variation and the influence factors of precipitation in Sichuan Province, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precipitation is a key factor in the water cycle.At the same time,precipitation is the focus of study in meteorology and climatology,ecological environmental assessment,non-point source pollution and so on.Understanding the temporal-spatial variation and the corresponding factors of precipitation has become the object of hydrology and environmentology.Based on the annual precipitation data,we analyzed the spatial distribution of precipitation in Sichuan Province in China as well as the temporal-spatial variation and the corresponding influence factors involved.The results show that the amount of precipitation was abundant,but the spatial distribution was not consistent with it and the amount of precipitation gradually declined from the south-east to the north-west in Sichuan Province,China.Moreover,the spatial distribution was different throughout the years.The result of correlation analysis indicated that elevation,temperature and air pressure were three key factors affecting the amount and distribution of precipitation,and the correlation coefficients were -0.56,0.38 and 0.45 respectively.Notably,the relationship between the slope of topography and precipitation were significantly negative and the average correlation coefficient was -0.28.

  12. Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat1.

    Science.gov (United States)

    Zhao, X; Xing, T; Chen, X; Han, M-Y; Li, X; Xu, X-L; Zhou, G-H

    2017-05-01

    Pale, soft, exudative (PSE)-like chicken breast is considered deteriorated raw material in the poultry meat industry that has inferior processing ability. The chemical and gelation properties of PSE-like chicken breast meat paste were studied. These pastes were prepared by the pH adjustment method and protein isolation using the isoelectric solubilization/precipitation (ISP) process from PSE-like chicken meat. The ISP-isolated samples were solubilized at pH 11.0 and recovered at pH 5.5 and 6.2. The ultimate pH of the ISP-isolated protein and meat paste was adjusted to 6.2 and 7.0. The ultimate pH in this article referred to the final pH of the extracted protein and meat paste. Higher reactive sulfhydryl content and surface hydrophobicity were found in the precipitation at pH 6.2 than at pH 5.5. However, various ultimate pH values showed no significant influence on the surface hydrophobicity. The hardness of gel, as measured by textural profile analysis, was improved using 6.2 as the precipitation pH compared with pH 5.5. The viscoelastic modulus (G΄) of gel pastes prior to the thermal gelation was higher with ISP treatment. However, lower G΄ was seen after thermal gelation compared with the control. Dynamic rheological measurement demonstrated a different gel-forming mechanism for protein precipitated at pH values of 5.5 and 6.2 compared with the meat paste. The cooking loss showed that the recovered protein failed to form a gel with good water-retention capacity unless the ultimate pH was adjusted to 7.0. Gels made from protein extracted by the ISP method had higher yellowness and lower redness values, probably due to protein denaturation. Precipitation at pH 6.2 formed a harder gel with lower water-retention ability than that at pH 5.5, and this result was possibly due to higher surface hydrophobicity and S-S bridge formation. Overall, network characteristics of ISP-treated protein gels were strongly dependent on precipitation pH and ultimate pH. © 2016

  13. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    Science.gov (United States)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  14. Do competitors modulate rare plant response to precipitation change?

    Science.gov (United States)

    Levine, J.M.; Kathryn, Mceachern A.; Cowan, C.

    2010-01-01

    Ecologists increasingly suspect that climate change will directly impact species physiology, demography, and phenology, but also indirectly affect these measures via changes to the surrounding community. Unfortunately, few studies examine both the direct and indirect pathways of impact. Doing so is important because altered competitive pressures can reduce or magnify the direct responses of a focal species to climate change. Here, we examine the effects of changing rainfall on three rare annual plant species in the presence and absence of competition on the California Channel Islands. We used rain-out shelters and hand watering to exclude and augment early, late, and season-long rainfall, spanning the wide range of precipitation change forecast for the region. In the absence of competition, droughts reduced the population growth rates of two of three focal annuals, while increased rainfall was only sometimes beneficial, As compared to the focal species, the dominant competitors were more sensitive to the precipitation treatments, benefiting from increased season-long precipitation and harmed by droughts. Importantly, the response of two of three competitors to the precipitation treatments tended to be positively correlated with those of the focal annuals. Although this leads to the expectation that increased competition will counter the direct benefits of favorable conditions, such indirect effects of precipitation change proved weak to nonexistent in our experiment. Competitors had little influence on the precipitation response of two focal species, due to their low sensitivity to competition and highly variable precipitation responses. Competition did affect how our third focal species responded to precipitation change, but this effect only approached significance, and whether it truly resulted from competitor response to precipitation change was unclear. Our work suggests that even when competitors respond to climate change, these responses may have little

  15. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  16. Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2006-12-01

    Full Text Available In this study, optimal parameter estimations are performed for both physical and computational parameters in a mesoscale meteorological model, and their impacts on the quantitative precipitation forecasting (QPF are assessed for a heavy rainfall case occurred at the Korean Peninsula in June 2005. Experiments are carried out using the PSU/NCAR MM5 model and the genetic algorithm (GA for two parameters: the reduction rate of the convective available potential energy in the Kain-Fritsch (KF scheme for cumulus parameterization, and the Asselin filter parameter for numerical stability. The fitness function is defined based on a QPF skill score. It turns out that each optimized parameter significantly improves the QPF skill. Such improvement is maximized when the two optimized parameters are used simultaneously. Our results indicate that optimizations of computational parameters as well as physical parameters and their adequate applications are essential in improving model performance.

  17. A study on selective precipitation of U(VI) by hydrophilic cyclic urea derivatives for development of a reprocessing system based on precipitation method

    International Nuclear Information System (INIS)

    Suzuki, Tomoya; Takao, Koichiro; Kawasaki, Takeshi; Harada, Masayuki; Ikeda, Yasuhisa; Nogami, Masanobu

    2014-01-01

    Selective precipitation ability of 2-imidazolidone (EU) and tetrahydro-2-pyrimidinone (PU) for U(VI) species in HNO 3 solutions containing U(VI), U(IV) (simulant of Pu(IV)), and simulated fission products (FPs) was investigated. As a result, it was found that these compounds precipitate almost quantitatively U(VI) as UO 2 (NO 3 ) 2 L 2 (L = EU, PU) from 3.0 M HNO 3 solution. In contrast, these urea derivatives form neither solid precipitates nor oily products with U(IV) in HNO 3 solutions containing only U(IV) species and even in U(VI)-U(IV) admixture system. Therefore, the separation of U(VI) from U(IV) was demonstrated to be achieved in use of EU and PU. Furthermore, EU and PU are capable to remove most of simulated FPs[Sr(II), Ru(III), Rh(III), Re(VII) La(III), Ce(III), Pr(III), Nd(III), and Sm(III)] from U(VI) to give their decontamination factors (DFs) higher than 100, while those values of Zr(IV), Mo(VI), Pd(II), and Ba(II) are necessary to be improved in both systems. From these results, it is expected that EU and PU are the promising precipitants for selective separation of U(VI) from HNO 3 solutions dissolving spent FBR fuels. (author)

  18. Development of precipitator of fluid film type

    International Nuclear Information System (INIS)

    Liu Yupu

    1987-01-01

    The precipitator of fluid film type is developed for the determination of fuel element cladding failure of water-cooled reactor. It integrates the scrubber, precipitator and detector. The jet of element cooling water automatically circulates carrier gas and the flow water film transfers precipitates onto the surface of centre electrode. Three different types are designed. On the special test loop, the uranium sample pellets of simulating cladding failure is measured. The sensitivity of precipitators, saturated precipitation voltage, incremental speed of signal, speed of driving out precipitates and the contents of the precipitates are determined. The test shows that the precipitators are highly sensitive, reliable, cheap and easy to operate

  19. Optimization of thorium oxalate precipitation conditions relative to thorium oxide sinterability

    International Nuclear Information System (INIS)

    White, G.D.; Bray, L.A.; Hart, P.E.

    1980-01-01

    The effect of thorium oxalate precipitation conditions on derived oxide sinterability was investigated with the objective of producing ThO 2 powder that could be sintered to high density without premilling. Precipitation conditions examined were temperature, digestion time and agitation method which were employed in a two-level factorial experimental design to delineate their effects. The two levels for each of the factors, respectively, were 10 0 C and 70 0 C, 15 min and 360 min, and mechanical stirrer and a homogenizer that imparted both mechanical and ultrasonic agitation. The ThO 2 derived from each of the precipitation trials was characterized with respect to morphology, surface area, and crystallite size as well as sinterability. Only precipitation temperature had a significant effect upon all the properties of the derived oxide powders

  20. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    Science.gov (United States)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  1. Simulation of precipitation and strengthening in MG-RE alloys

    OpenAIRE

    Liu, Hong

    2017-01-01

    Magnesium - rare earth (Mg-RE) alloys have received considerable attention in the past decades for wider applications in the aerospace industry due to their relatively high strength and excellent creep resistance. Most rare-earth containing magnesium alloys, such as Mg-Y, Mg-Gd, and Mg-Y-Nd, are precipitation hardenable. A technical barrier to the wider applications of such alloys is the lack of a sufficiently large age hardening response. To further improve this response, an improved underst...

  2. Neural network based daily precipitation generator (NNGEN-P)

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Paris (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Penalba, Olga [University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Daily weather generators are used in many applications and risk analyses. The present paper explores the potential of neural network architectures to design daily weather generator models. Focusing this first paper on precipitation, we design a collection of neural networks (multi-layer perceptrons in the present case), which are trained so as to approximate the empirical cumulative distribution (CDF) function for the occurrence of wet and dry spells and for the precipitation amounts. This approach contributes to correct some of the biases of the usual two-step weather generator models. As compared to a rainfall occurrence Markov model, NNGEN-P represents fairly well the mean and standard deviation of the number of wet days per month, and it significantly improves the simulation of the longest dry and wet periods. Then, we compared NNGEN-P to three parametric distribution functions usually applied to fit rainfall cumulative distribution functions (Gamma, Weibull and double-exponential). A data set of 19 Argentine stations was used. Also, data corresponding to stations in the United States, in Europe and in the Tropics were included to confirm the results. One of the advantages of NNGEN-P is that it is non-parametric. Unlike other parametric function, which adapt to certain types of climate regimes, NNGEN-P is fully adaptive to the observed cumulative distribution functions, which, on some occasions, may present complex shapes. On-going works will soon produce an extended version of NNGEN to temperature and radiation. (orig.)

  3. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Kashiwar, A.; Vennela, N. Phani; Kamath, S.L.; Khatirkar, R.K.

    2012-01-01

    In the present study, effect of solution annealing temperature (1050 °C and 1100 °C) and isothermal ageing (700 °C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel (∼ 45% ferrite and ∼ 55% austenite) undergoes a series of metallurgical transformations during ageing—formation of secondary austenite (γ 2 ) and precipitation of Cr and Mo rich intermetallic (chi-χ and sigma-σ) phases. For solution annealing at 1050 °C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 °C. χ Phase precipitated after the precipitation of carbides—preferentially at the ferrite–ferrite and also at the ferrite–austenite boundaries. σ Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 °C was found to be carbides → χ → σ. On the contrary, for samples solution annealed at 1100 °C, the precipitation of χ phase was negligible. χ Phase precipitated before σ phase, preferentially along the ferrite–ferrite grain boundaries and was later consumed in the σ phase precipitation. The σ phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite γ 2 and σ phase in the ferrite and along the ferrite–austenite grain boundaries. An increase in the volume fraction of γ 2 and σ phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights: ► Effect of solution annealing temperature on microstructural evolution is studied. ► χ Phase precipitated preferentially in the samples solution annealed at

  4. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwar, A., E-mail: akashiwar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur-440010, Maharashtra (India); Vennela, N. Phani, E-mail: phanivennela@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur-440010, Maharashtra (India); Kamath, S.L., E-mail: kamath@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai-400076, Maharashtra (India); Khatirkar, R.K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur-440010, Maharashtra (India)

    2012-12-15

    In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation of secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights

  5. Will the warmer temperature bring the more intensity precipitation?

    Science.gov (United States)

    Yutong, Z., II; Wang, T.

    2017-12-01

    Will the warmer temperature bring the more intensity precipitation?Over the past several decades, changes in climate are amplified over the Tibetan Plateau(TP), with warming trend almost being twice as large as the global average. In sharp contrast, there is a large spatial discrepancy of the variations in precipitation extremes, with increasing trends found in the southern and decreasing trends in central TP. These features motivate are urgent need for an observation-based understanding of how precipitation extremes respond to climate change. Here we examine the relation between precipitation intensity with atmospheric temperature, dew point temperature (Td) and convective available potential energy (CAPE) in Tibet Plateau. Owing to the influences of the westerlies and Indian monsoon on Tibetan climate, the stations can be divided into three sub-regions in TP: the westerlies region (north of 35°N, N = 28), the monsoon region (south of 30°N in TP, N = 31), and the transition region (located between 30°N and 35°N, N = 48). We found that the intensity precipitation does not follow the C-C relation and there is a mix of positive and negative slope. To better understand why different scaling occurs with temperature in district region, using the dew point temperature replace the temperature, although there is significant variability in relative humidity values, at most stations, there appears to be a general increase in relative humidity associated. It is likely that the observed rise in relative humidity can assist in explaining the negative scaling of extreme precipitation at westerlies domain and monsoon domain, with the primary reason why precipitation extremes expected to increase follows from the fact that a warmer atmosphere can "hold" more moisture. This suggests that not only on how much the moisture the atmosphere can hold, but on how much moisture exits in atmosphere. To understand the role of dynamic on extreme precipitation, we repeat the precipitation

  6. Precipitating factors and The Outcome of fepatic encephalopathy in liver cirrhosis

    International Nuclear Information System (INIS)

    Mumtaz, K.; Ahmed, U.S.; Abid, S.; Baig, N.; Hamid, S.; Jafri, W.

    2010-01-01

    To determine precipitants of hepatic encephalopathy (HE) and their impact on hospital stay and mortality. Consecutive patients admitted with different grades of HE were evaluated between January 2005 and December 2007. The precipitants of HE were correlated with the different grades of HE, and length of hospital stay and mortality. Chi-square test was used to compare the proportion of precipitating factors versus hospital stay and grade with significance at p < 0.05. Of the 404 patients 252 (62%) were males. Hepatitis C virus was the cause of cirrhosis in 283 (70%); Child Turcotte Pugh (CTP) class C was present in 317 (78%) patients. On presentation, 17% patients had grade 1 HE while 44%, 29% and 10% had grades 2, 3 and 4 respectively. The most common precipitant of HE was spontaneous bacterial peritonitis in 83 (20.5%), constipation in 74 (18.3%) and urinary tract infection in 62 (15.3%). One hundred and forty (35%) patients had is less than or equal to 2 precipitating factors while no precipitant was noted in 50 (12%) patients. Mean hospital stay was 4 +- 3 days. The lesser the number of precipitants, shorter was the length of stay (p < 0.01) and lesser was the grade of HE (p=0.025). Complete reversal of HE was noted in 366 patients (91%) while the remaining had grade 1 HE on discharge. Nine (2.2%) patients died during the hospital stay. No mortality was noted in patients without precipitants. Patients presenting with is less than or equal to 2 precipitating factors and advanced grade of HE had a prolonged hospital stay. Moreover, patients without precipitants had better outcomes. (author)

  7. Precipitation observations for operational flood forecasting in Scotland: Data availability, limitations and the impact of observational uncertainty

    Science.gov (United States)

    Parry, Louise; Neely, Ryan, III; Bennett, Lindsay; Collier, Chris; Dufton, David

    2017-04-01

    point estimates of precipitation as well as catchment average estimates generated using different spatial averaging methods, including the operationally applied Thiessen polygons. In addition, the QPEs were applied to operational PDM models to compare the effect on the simulated runoff. The results highlight the hydrological significance of uncertainty in observed rainfall. Recommendations for future investigations are to improve the estimate of radar QPEs through improvement of the correction for orography and the correction for different precipitation types, as well as to analyse the benefits of the UK Met Office radar-raingauge merged product. In addition, we need to quantity the cost-benefit of deploying more radars in Scotland in light of the problems posed by the orography.

  8. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  9. An assessment of historical Antarctic precipitation and temperature trend using CMIP5 models and reanalysis datasets

    Science.gov (United States)

    Tang, Malcolm S. Y.; Chenoli, Sheeba Nettukandy; Samah, Azizan Abu; Hai, Ooi See

    2018-03-01

    The study of Antarctic precipitation has attracted a lot of attention recently. The reliability of climate models in simulating Antarctic precipitation, however, is still debatable. This work assess the precipitation and surface air temperature (SAT) of Antarctica (90 oS to 60 oS) using 49 Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models and the European Centre for Medium-range Weather Forecasts "Interim" reanalysis (ERA-Interim); the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR); the Japan Meteorological Agency 55-year Reanalysis (JRA-55); and the Modern Era Retrospective-analysis for Research and Applications (MERRA) datasets for 1979-2005 (27 years). For precipitation, the time series show that the MERRA and JRA-55 have significantly increased from 1979 to 2005, while the ERA-Int and CFSR have insignificant changes. The reanalyses also have low correlation with one another (generally less than +0.69). 37 CMIP5 models show increasing trend, 18 of which are significant. The resulting CMIP5 MMM also has a significant increasing trend of 0.29 ± 0.06 mm year-1. For SAT, the reanalyses show insignificant changes and have high correlation with one another, while the CMIP5 MMM shows a significant increasing trend. Nonetheless, the variability of precipitation and SAT of MMM could affect the significance of its trend. One of the many reasons for the large differences of precipitation is the CMIP5 models' resolution.

  10. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    Science.gov (United States)

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for

  11. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Directory of Open Access Journals (Sweden)

    T. Tang

    2018-06-01

    Full Text Available Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs. Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC forcing than to well-mixed greenhouse gases (WMGHGs or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17 % of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and

  12. Reassessing the role of temperature in precipitation oxygen isotopes across the eastern and central United States through weekly precipitation-day data

    Science.gov (United States)

    Akers, Pete D.; Welker, Jeffrey M.; Brook, George A.

    2017-09-01

    Air temperature is correlated with precipitation oxygen isotope (δ18Oprcp) variability for much of the eastern and central United States, but the nature of this δ18Oprcp-temperature relationship is largely based on data coarsely aggregated at a monthly resolution. We constructed a database of 6177 weeks of isotope and precipitation-day air temperature data from 25 sites to determine how more precise data change our understanding of this classic relationship. Because the δ18Oprcp-temperature relationship is not perfectly linear, trends in the regression residuals suggest the influence of additional environmental factors such as moisture recycling and extratropical cyclone interactions. Additionally, the temporal relationships between δ18Oprcp and temperature observed in the weekly data at individual sites can explain broader spatial patterns observed across the study region. For 20 of 25 sites, the δ18Oprcp-temperature relationship slope is higher for colder precipitation than for warmer precipitation. Accordingly, northern and western sites with relatively more cold precipitation events have steeper overall relationships with higher slope values than southeastern sites that have more warm precipitation events. Although the magnitude of δ18Oprcp variability increases to the north and west, the fraction of δ18Oprcp variability explained by temperature increases due to wider annual temperature ranges, producing stronger relationships in these regions. When our δ18Oprcp-temperature data are grouped by month, we observe significant variations in the relationship from month to month. This argues against a principal causative role for temperature and suggests the existence of an alternative environmental control on δ18Oprcp values that simply covaries seasonally with temperature.

  13. Stable Isotopes in Precipitation over Indonesia Maritime Continent

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, K. [Graduate School of Science and Technology, Kumamoto University, and Japan Agency for Marine-Earth Science and Technology (JAMSTEC) (Japan); Suwarman, R. [Graduate School of Science and Technology, Kumamoto University (Japan); Yamanaka, M. D. [Japan Agency for Marine-Earth Science and Technology (JAMSTEC) (Japan)

    2013-07-15

    Daily variability of stable isotopes in precipitation was observed at 6 stations in the Indonesian Maritime Continent from 2000 to 2006. The annual mean {delta}{sup 18}O at Bukit Kototabang (GAW), Jambi, and Makassar are heavier than those for others. The precipitation amount effect was observed only at Denpasar and Makassar. There are 2 groups resulting from the local Meteoric Water line; (1) slope is nearly 7.0 and high d-excess more than 10 at GAW, Denpasar, and Manado, (2) slope is around 7.4 and low d-excess less than 7.5 per mille at Jambi, Makassar, and Palau. Seasonal variability of {delta}{sup 18}O and d-excess were classified into three patterns. There are no seasonal variations in {delta}{sup 18}O and d-excess at GAW and Jambi, but clear seasonal variations at Denpasar (DPS) and Makassar (MKS). Due to the amount effect, {delta}{sup 18}O in precipitation is high when the precipitation amount is low from May to october. In contrast, the amount effect is not significant and d-excess is constant throughout the year in Manado and Palau. The {delta}{sup 18}O in precipitation at 2 stations located in sumatra Island corresponded with the Madden-Jullian Oscillation index, while those for the other 4 stations in more easterly locations did not. This finding indicates that water vapour evaporated from the Indian Ocean can reach the Island of sumatra, but can't reach more easterly locations. (author)

  14. Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings

    Directory of Open Access Journals (Sweden)

    M. S. Morales

    2012-03-01

    Full Text Available Throughout the second half of the 20th century, the Central Andes has experienced significant climatic and environmental changes characterized by a persistent warming trend, an increase in elevation of the 0 °C isotherm, and sustained glacier shrinkage. These changes have occurred in conjunction with a steadily growing demand for water resources. Given the short span of instrumental hydroclimatic records in this region, longer time span records are needed to understand the nature of climate variability and to improve the predictability of precipitation, a key factor modulating the socio-economic development in the South American Altiplano and adjacent arid lowlands. In this study we present the first quasi-millennial, tree-ring based precipitation reconstruction for the South American Altiplano. This annual (November–October precipitation reconstruction is based on the Polylepis tarapacana tree-ring width series and represents the closest dendroclimatological record to the Equator in South America. This high-resolution reconstruction covers the past 707 yr and provides a unique record characterizing the occurrence of extreme events and consistent oscillations in precipitation. It also allows an assessment of the spatial and temporal stabilities of the teleconnections between rainfall in the Altiplano and hemispheric forcings such as El Niño-Southern Oscillation. Since the 1930s to present, a persistent negative trend in precipitation has been recorded in the reconstruction, with the three driest years since 1300 AD occurring in the last 70 yr. Throughout the 707 yr, the reconstruction contains a clear ENSO-like pattern at interannual to multidecadal time scales, which determines inter-hemispheric linkages between our reconstruction and other precipitation sensitive records modulated by ENSO in North America. Our reconstruction points out that century-scale dry periods are a recurrent feature in the Altiplano climate, and that the

  15. Addressing extreme precipitation change under future climates in the Upper Yangtze River Basin

    Science.gov (United States)

    Yang, Z.; Yuan, Z.; Gao, X.

    2017-12-01

    Investigating the impact of climate change on extreme precipitation accurately is of importance for application purposes such as flooding mitigation and urban drainage system design. In this paper, a systematical analysis framework to assess the impact of climate change on extreme precipitation events is developed and practiced in the Upper Yangtze River Basin (UYRB) in China. Firstly, the UYRB is gridded and five extreme precipitation indices (annual maximum 3- 5- 7- 15- and 30-day precipitation) are selected. Secondly, with observed precipitation from China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0) and simulated daily precipitation from ten general circulation models (GCMs) of CMIP5, A regionally efficient GCM is selected for each grid by the skill score (SS) method which maximizes the overlapped area of probability density functions of extreme precipitation indices between observations and simulations during the historical period. Then, simulations of assembled efficient GCMs are bias corrected by Equidistant Cumulative Distribution Function method. Finally, the impact of climate change on extreme precipitation is analyzed. The results show that: (1) the MRI-CGCM3 and MIROC-ESM perform better in the UYRB. There are 19.8 to 20.9% and 14.2 to 18.7% of all grids regard this two GCMs as regionally efficient GCM for the five indices, respectively. Moreover, the regionally efficient GCMs are spatially distributed. (2) The assembled GCM performs much better than any single GCM, with the SS>0.8 and SS>0.6 in more than 65 and 85 percent grids. (3) Under the RCP4.5 scenario, the extreme precipitation of 50-year and 100-year return period is projected to increase in most areas of the UYRB in the future period, with 55.0 to 61.3% of the UYRB increasing larger than 10 percent for the five indices. The changes are spatially and temporal distributed. The upstream region of the UYRB has a relatively significant increase compared to the downstream basin, while

  16. Impact of Aerosols on Convective Clouds and Precipitation

    Science.gov (United States)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  17. Amorphization of Laves-Phase Precipitates in Zircaloy-4 by Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, H.R.; Taylor, D.F.; Yang, Walter J.S.

    1999-04-23

    Examination of corrosion coupons by transmission electron microscopy after their exposure in the Idaho Advanced Test Reactor (ATR) has broadened the Zircaloy-4 precipitate-amorphization database and validated a new kinetic model for previously unavailable values of temperature and fast-neutron flux. The model describes the amorphization of Zr(Fe,Cr){sub 2} intermetallic precipitates in zirconium alloys as a dynamic competition between radiation damage and thermal annealing that leaves some iron atoms available for flux-assisted diffusion to the zirconium matrix. It predicts the width of the amorphous zone as a function of neutron flux (E>1 MeV), temperature, and time. In its simplest form, the model treats the crystalline/amorphous and precipitate/matrix interfaces as parallel planes, and its accuracy decreases for small precipitates and high fluence as the amorphous-zone width approaches precipitate dimensions. The simplest form of the model also considers diffusion to be rate-determining. This is an accurate approximation for steady-state conditions or slow changes in flux and temperature, but inappropriate for the analysis of faster transients. The paper addresses several difficulties inherent in measuring amorphous-zone width, and utilizes the expanded database to evaluate the improvements in predictive accuracy available through both conversion of the model to spherical coordinates and extension of its time dependency.

  18. Incidence and evolution of subretinal precipitates in optic disc pit maculopathy.

    Science.gov (United States)

    Chatziralli, Irini; Theodossiadis, George; Brouzas, Dimitrios; Theodossiadis, Panagiotis

    2017-06-26

    To study the evolution of subretinal precipitates coexistent with optic disc pit (ODP) maculopathy from their appearance at baseline examination until their absorption after successful treatment. Participants in this retrospective, multicenter study were 42 patients with ODP maculopathy, in whom complete ocular examination was performed, including visual acuity (VA) measurement, slit-lamp examination, color or red-free fundus photography, and optical coherence tomography at baseline after surgical treatment. Out of 42 cases, 17 (40.5%) cases of ODP maculopathy, which were examined between 2002 and 2015, were found to have subretinal precipitates associated with multilayer fluid accumulation at baseline. Precipitates were located at the outer part of the photoreceptor layer and remained for 3-6 months after successful treatment and absorption of subretinal fluid. The mean VA was 0.99 ± 0.21 logMAR at baseline and improved to 0.54 ± 0.25 logMAR at the final examination. Macular precipitates in association with signs of disease chronicity, such as multilayer fluid accumulation, became evident at baseline examination. Precipitates' disappearance in 15 out of 17 cases coincided with the absorption of subretinal fluid. The relative low VA at baseline probably could be attributed to the chronicity of the disease.

  19. STAMMEX high resolution gridded daily precipitation dataset over Germany: a new potential for regional precipitation climate research

    Science.gov (United States)

    Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel

    2014-05-01

    We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present

  20. Cross-Regional Assessment Of Coupling And Variability In Precipitation-Runoff Relationships

    Science.gov (United States)

    Carey, S. K.; Tetzlaff, D.; Soulsby, C.; Buttle, J. M.; Laudon, H.; McDonnell, J. J.; McGuire, K. J.; Seibert, J.; Shanley, J. B.

    2011-12-01

    The higher mid-latitudes of the northern hemisphere are particularly sensitive to change due to the important role the zero-degree isotherm plays in the phase of precipitation and intermediate storage as snow. An international inter-catchment comparison program North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). For this study, 8 catchments with 10 continuous years of daily precipitation and runoff data were selected to assess the seasonal coupling of rainfall and runoff and the memory effect of runoff events on the hydrograph at different time scales. To assess the coupling and synchroneity of precipitation, continuous wavelet transforms and wavelet coherence were used. Wavelet spectra identified the relative importance of both annual versus seasonal flows while wavelet coherence was applied to identify over different time scales along the 10-year window how well precipitation and runoff were coupled. For example, while on a given day, precipitation may be closely coupled to runoff, a wet year may not necessarily be a high runoff year in catchments with large storage. Assessing different averaging periods in the variation of daily flows highlights the importance of seasonality in runoff response and the relative influence of rain versus snowmelt on flow magnitude and variability. Wet catchments with limited seasonal precipitation variability (Strontian, Girnock) have precipitation signals more closely coupled with runoff, whereas dryer catchments dominated by snow (Wolf Creek, Krycklan) have strongly coupling only during freshet. Most catchments with highly seasonal precipitation show strong intermittent coupling during their wet season. At

  1. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  2. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    Science.gov (United States)

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  3. Detecting the effect of urban land use on extreme precipitation in the Netherlands

    NARCIS (Netherlands)

    Rahimpour Golroudbary, Vahid; Zeng, Y.; Mannaerts, C.M.; Su, Z.

    2017-01-01

    A notable increase in heavy precipitation has been observed over the Netherlands in recent decades. The aim of this study was to assess the influences of urban land use on these extreme precipitation patterns. Significant differences between an earlier multi-decadal period and a recent period were

  4. Response of soil CO2 efflux to precipitation manipulation in a semiarid grassland.

    Science.gov (United States)

    Wei, Xiaorong; Zhang, Yanjiang; Liu, Jian; Gao, Hailong; Fan, Jun; Jia, Xiaoxu; Cheng, Jimin; Shao, Mingan; Zhang, Xingchang

    2016-07-01

    Soil CO2 efflux (SCE) is an important component of ecosystem CO2 exchange and is largely temperature and moisture dependent, providing feedback between C cycling and the climate system. We used a precipitation manipulation experiment to examine the effects of precipitation treatment on SCE and its dependences on soil temperature and moisture in a semiarid grassland. Precipitation manipulation included ambient precipitation, decreased precipitation (-43%), or increased precipitation (+17%). The SCE was measured from July 2013 to December 2014, and CO2 emission during the experimental period was assessed. The response curves of SCE to soil temperature and moisture were analyzed to determine whether the dependence of SCE on soil temperature or moisture varied with precipitation manipulation. The SCE significantly varied seasonally but was not affected by precipitation treatments regardless of season. Increasing precipitation resulted in an upward shift of SCE-temperature response curves and rightward shift of SCE-moisture response curves, while decreasing precipitation resulted in opposite shifts of such response curves. These shifts in the SCE response curves suggested that increasing precipitation strengthened the dependence of SCE on temperature or moisture, and decreasing precipitation weakened such dependences. Such shifts affected the predictions in soil CO2 emissions for different precipitation treatments. When considering such shifts, decreasing or increasing precipitation resulted in 43 or 75% less change, respectively, in CO2 emission compared with changes in emissions predicted without considering such shifts. Furthermore, the effects of shifts in SCE response curves on CO2 emission prediction were greater during the growing than the non-growing season. Copyright © 2016. Published by Elsevier B.V.

  5. Spatial and temporal variability of precipitation in Serbia for the period 1961-2010

    Science.gov (United States)

    Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph

    2017-10-01

    Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.

  6. Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2015-03-01

    Full Text Available Based on the satellite data from the Climate Prediction Center morphing (CMORPH at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta (PRD metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency (ratio of rainy hours, about 3 days per year less; however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.

  7. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Directory of Open Access Journals (Sweden)

    E. Schlosser

    2017-10-01

    Full Text Available The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM. The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study

  8. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  9. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  10. Optimization of Sigma Phase Precipitates with Respect to the Functional Properties of Duplex Cast Steel

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2012-04-01

    Full Text Available The paper presents the results of examination concerning optimization of the σ phase precipitates with respect to the functional properties of ferritic-austenitic cast steel. The examined material comprised two grades of corrosion-resistant cast steel, namely GX2CrNiMoN25-6-3 and GX2CrNiMoCuN25-6-3-3, used for example in elements of systems of wet flue gas desulphurisation in power industry. The operating conditions in media heated up to 70°C and containing Cl- and SO4 ions and solid particles produce high erosive and corrosive wear. The work proposes an application of the σ phase as a component of precipitation strengthening mechanism in order to increase the functional properties of the material. Morphology and quantities of σ phase precipitates were determined, as well as its influence on the erosion and corrosion wear resistance. It was shown that annealing at 800°C or 900°C significantly improves tribological properties as compared with the supersaturated state, and the best erosion and corrosion wear resistance achieved due to the ferrite decomposition δ → γ’ + σ was exhibited in the case of annealing at the temperature of 800°C for 3 hours.

  11. Spatial and temporal relationships between precipitation and ANPP of four types of grasslands in northern China

    Institute of Scientific and Technical Information of China (English)

    GUO Ran; WANG Xiao-ke; OUYANG Zhi-yun; LI Ying-nian

    2006-01-01

    Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe,temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r2 = 0.61,P < 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual precipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r2= 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r2= 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r2= 0.51, P <0.01); for the alpine meadow, the key variable was last September-May precipitation (r2 = 0.29, P < 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.

  12. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    Science.gov (United States)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  13. Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast

    Science.gov (United States)

    Jiang, Mengjiao; Feng, Jinqin; Li, Zhanqing; Sun, Ruiyu; Hou, Yu-Tai; Zhu, Yuejian; Wan, Bingcheng; Guo, Jianping; Cribb, Maureen

    2017-11-01

    -phase clouds (especially in summertime), which in turn affects precipitation. While we cannot establish rigorous causal relations based on the analyses presented in this study, the significant rainfall forecast bias seen in operational weather forecast model simulations warrants consideration in future model improvements.

  14. Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast

    Directory of Open Access Journals (Sweden)

    M. Jiang

    2017-11-01

    invigorate warm-base mixed-phase clouds (especially in summertime, which in turn affects precipitation. While we cannot establish rigorous causal relations based on the analyses presented in this study, the significant rainfall forecast bias seen in operational weather forecast model simulations warrants consideration in future model improvements.

  15. Spatial correlation in precipitation trends in the Brazilian Amazon

    Science.gov (United States)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  16. Effect of precipitates on mechanical properties of AA2195

    International Nuclear Information System (INIS)

    Kim, Jae-Hee; Jeun, Jeong-Hoon; Chun, Hyun-Jin; Lee, Ye Rim; Yoo, Joon-Tae; Yoon, Jong-Hoon; Lee, Ho-Sung

    2016-01-01

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al_2Cu), ß′ (Al_3Zr), and T (Al_xLi_yCu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al_2Cu), ß′ (Al_3Zr), and T_1 (Al_2LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  17. Effect of precipitates on mechanical properties of AA2195

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hee [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Jeun, Jeong-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Chun, Hyun-Jin [Southeast University, Nanjing (China); Lee, Ye Rim [Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Yoo, Joon-Tae [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yoon, Jong-Hoon [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Lee, Ho-Sung, E-mail: hslee@kari.re.kr [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of)

    2016-06-05

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T (Al{sub x}Li{sub y}Cu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T{sub 1} (Al{sub 2}LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  18. Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model

    Science.gov (United States)

    Fonseca, R. M.; Zhang, T.; Yong, K.-T.

    2015-09-01

    The successful modelling of the observed precipitation, a very important variable for a wide range of climate applications, continues to be one of the major challenges that climate scientists face today. When the Weather Research and Forecasting (WRF) model is used to dynamically downscale the Climate Forecast System Reanalysis (CFSR) over the Indo-Pacific region, with analysis (grid-point) nudging, it is found that the cumulus scheme used, Betts-Miller-Janjić (BMJ), produces excessive rainfall suggesting that it has to be modified for this region. Experimentation has shown that the cumulus precipitation is not very sensitive to changes in the cloud efficiency but varies greatly in response to modifications of the temperature and humidity reference profiles. A new version of the scheme, denoted "modified BMJ" scheme, where the humidity reference profile is more moist, was developed. In tropical belt simulations it was found to give a better estimate of the observed precipitation as given by the Tropical Rainfall Measuring Mission (TRMM) 3B42 data set than the default BMJ scheme for the whole tropics and both monsoon seasons. In fact, in some regions the model even outperforms CFSR. The advantage of modifying the BMJ scheme to produce better rainfall estimates lies in the final dynamical consistency of the rainfall with other dynamical and thermodynamical variables of the atmosphere.

  19. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  20. Stochastic generation of multi-site daily precipitation focusing on extreme events

    Directory of Open Access Journals (Sweden)

    G. Evin

    2018-01-01

    Full Text Available Many multi-site stochastic models have been proposed for the generation of daily precipitation, but they generally focus on the reproduction of low to high precipitation amounts at the stations concerned. This paper proposes significant extensions to the multi-site daily precipitation model introduced by Wilks, with the aim of reproducing the statistical features of extremely rare events (in terms of frequency and magnitude at different temporal and spatial scales. In particular, the first extended version integrates heavy-tailed distributions, spatial tail dependence, and temporal dependence in order to obtain a robust and appropriate representation of the most extreme precipitation fields. A second version enhances the first version using a disaggregation method. The performance of these models is compared at different temporal and spatial scales on a large region covering approximately half of Switzerland. While daily extremes are adequately reproduced at the stations by all models, including the benchmark Wilks version, extreme precipitation amounts at larger temporal scales (e.g., 3-day amounts are clearly underestimated when temporal dependence is ignored.

  1. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  2. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2009-01-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  3. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  4. Continuous precipitation process of plutonium salts; Procede continu de precipitation des sels de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-03-01

    This work concerns the continuous precipitation process of plutonium oxalate. Investigations about the solubility of different valence states in nitric-oxalic and in nitric-sulfuric-oxalic medium lead to select the precipitation process of tetravalent plutonium oxalate. Settling velocity and granulometry of tetravalent oxalate plutonium have been studied with variation of several precipitation parameters such as: temperature, acidity, excess of oxalic acid and aging time. Then are given test results of some laboratory continuous apparatus. Conditions of operation with adopted tubular apparatus are defined in conclusion. A flow-sheet is given for a process at industrial scale. (author) [French] Cette etude porte sur la precipitation continue de l'oxalate de plutonium. L'etude de la solubilite des differentes valences du plutonium dans des milieux acides nitrique-oxalique, puis nitrique-sulfurique-oxalique conduit a choisir la precipitation de l'oxalate de plutonium tetravalent. L'etude porte ensuite sur la sedimentation et la granulometrie de l'oxalate de Pu{sup 4+} obtenue en faisant varier differents parametres de la precipitation : la temperature, l'acidite, l'exces oxalique et le temps de murissement. La derniere partie traite des resultats obtenus avec plusieurs types d'appareils continus essayes au laboratoire. En conclusion sont donnees les conditions de marche de l'appareil tubulaire adopte, ainsi qu'une extrapolation a l'echelle industrielle sous forme d'un flow-sheet. (auteur)

  5. Wildfire Dynamics and Occasional Precipitation during Active Fire Season in Tropical Lowland of Nepal

    Directory of Open Access Journals (Sweden)

    Krishna Bahadur Bhujel

    2017-10-01

    Full Text Available Occasional precipitation plays a vital role in reducing the effect of wildfire. This precipitation is especially important for countries like Nepal, where wildfires are a common seasonal event. Approximately 0.1 million hectare of forest area is affected annually due to wildfires in active fire season. The study on the relation of these forms of occasional precipitation with wildfire incidence is still lacking. This research was objectively carried out to examine the correlation of occasional precipitation with wildfire incidence and burnt area. The Moderate Resolution Imaging Spector-Radiometer (MODIS satellite images and precipitation records for 15 years gathered from Department of Hydrology and Metrology were used as input data for this study. The images were analyzed by using ArcGIS function while the precipitation records were analyzed by using Statistical Package for the Social Science (SPSS program. The linear regression model was applied to find correlation of occasional precipitation with wildfire incidence and burnt area. Analysis revealed decreasing trend of precipitation in study area. We found significant correlation (p<0.05 of precipitation with wildfire incidence and burnt area. Findings will be useful for policy makers, implementers and researchers to manage wildfire in sustainable basis.

  6. The frequency of precipitation days in the Yangtze Catchment from 1950 to 2000

    International Nuclear Information System (INIS)

    Wu Yijin; Becker, Stefan; Jiang Tong; Harmann, Heike; Su Bu Da

    2004-01-01

    This paper explores the frequency of precipitation days by using different percentiles in the Yangtze River catchment from 1950 to 2000. Some interesting facts have been revealed through the present study. The positive (increasing) trends of the yearly precipitation days at the 75 th percentile appears in most of the Yangtze River catchment, especially in the northern regions of the upper and the middle reaches of the catchment. The Sichuan basin is the only region with negative trends. The transitional area from negative to positive trends is found east of the Sichuan basin in the Three Gorges area. For the 95 th percentile, the negative trend regions are still mainly in Sichuan basin but extend to northern regions and there are also obviously increasing trend centers in the middle and lower reaches of Yangtze river catchment. On the decadal time scale, the most significant positive trends at the 75th percentiles are in the middle reaches in 1980s and 1990s. The lower reaches show significant positive trends in 1980s. Those positive phases greatly contribute to the positive trends of the whole catchment during the last two decades. The most significant negative phase also occurs in the middle reaches during the earlier three decades. For this case, it seems that the precipitation days in the middle reaches are more sensitive to changes than other regions in the Yangtze River catchment. Take the Yangtze River catchment as a whole, a positive trend is very obvious for this percentile. For the 95 th percentile, the trends between the middle and lower reaches of the Yangtze River catchment are coherent: after two decades (1960s and 1970s) of negative phases, the most significant increasing trend is shown in the last two decades. On the other side, the fluctuation of the precipitation days in the catchment of the upper reaches over the 50 years is somewhat smoother than for other regions. For the whole catchment, the precipitation days in the 1950s and in the 1990s are

  7. Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China: has precipitation recovered from acidification following sulphur dioxide emission control?

    Directory of Open Access Journals (Sweden)

    Yunting Fang

    2013-09-01

    Full Text Available We examined if precipitation had recovered from acidification in Guangzhou, the third biggest city in China, and if sulphur deposition in precipitation had decreased, and to what extent if yes, following abatement strategies in sulphur dioxide (SO2 emission and energy use implemented since 2001. SO2 emissions were decreasing steadily since 2001, but a marked recovery of precipitation acidity occurred only since 2005; precipitation pH values decreased from 4.65 in 2001 to 4.34 in 2005 and then increased to 5.08 in 2010, while in the same period acid rain (pH<5.6 frequency increased from 70% to 81% and then decreased to 48%. During this period, the change in pH value and sulphate concentration more reflected the patterns of SO2 emission at provincial and national scales than at the local scale, suggesting that precipitation chemical composition was largely controlled by the emissions of pollutants from surrounding areas of the study city. Since 2001, sulphate deposition in precipitation decreased significantly (by 40% but nitrogen deposition remained unaltered. More importantly, the current sulphur (43 kg S ha−1 yr−1 as sulphate and nitrogen depositions (35 kg N ha−1 yr−1 as ammonium plus nitrate in 2010 were still among the highest in China. These results highlight the fact that ambient sulphur and nitrogen deposition still pose a threat to the health of both terrestrial and aquatic ecosystems. Precipitation may become more acidified in the future because the deposition of alkaline dusts containing calcium is also likely to decrease with stricter SO2 emission control policy and reduced construction activities. Additionally, we recommend that a reduction of emissions of nitrogen and chlorine bearing pollutants is urgently required for complete control on acid deposition.

  8. Encoding information into precipitation structures

    International Nuclear Information System (INIS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-01-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A + + B – → C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm

  9. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    Science.gov (United States)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  10. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years

    Science.gov (United States)

    Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H.

    2014-09-01

    This paper investigates the single and combined impacts of El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on precipitation and streamflow in China over the last century. Results indicate that the precipitation and streamflow overall decrease during El Niño/PDO warm phase periods and increase during La Niña/PDO cool phase periods in the majority of China, although there are regional and seasonal differences. Precipitation and streamflow in the Yellow River basin, Yangtze River basin and Pearl River basin are more significantly influenced by El Niño and La Niña events than is precipitation and streamflow in the Songhua River basin, especially in October and November. Moreover, significant influence of ENSO on streamflow in the Yangtze River mainly occurs in summer and autumn while in the Pearl River influence primarily occurs in the winter and spring. The precipitation and streamflow are relatively greater in the warm PDO phase in the Songhua River basin and several parts of the Yellow River basin and relatively less in the Pearl River basin and most parts of Northwest China compared to those in the cool PDO phase, though there is little significance detected by Wilcoxon signed-rank test. When considering the combined influence of ENSO and PDO, the responses of precipitation/streamflow are shown to be opposite in northern China and southern China, with ENSO-related precipitation/streamflow enhanced in northern China and decreased in southern China during the warm PDO phases, and enhanced in southern China and decreased in northern China during the cool PDO phases. It is hoped that this study will be beneficial for understanding the precipitation/streamflow responses to the changing climate and will correspondingly provide valuable reference for water resources prediction and management across China.

  11. A new power regulator control system based on verilog for electrostatic precipitators

    International Nuclear Information System (INIS)

    Zhang, Zisheng; Li, Guan; Liu, Taotao; Ge, Pengbo; Liu, Zhiqiang

    2013-01-01

    In order to improve the inefficient response of the power system in traditional electrostatic precipitators, such as long design cycles and low safety, a new power regulator control system is designed to tackle the deficiencies. The working voltage system of an electrostatic precipitator consists of an L-C component, a rectifier bridge group and a step-up transformer. The Verilog hardware description language is used to complete the design of the feedback systems. Continuous steady current can be obtained automatically through changing the number of steady voltage control units. The results show that control systems can accurately feed back the changes of the voltage signal of the electrostatic precipitator. Comparing with other control systems, it has the advantages of faster response, higher accuracy, better monitoring performance and superior anti-interference capacity.

  12. A convection-allowing ensemble forecast based on the breeding growth mode and associated optimization of precipitation forecast

    Science.gov (United States)

    Li, Xiang; He, Hongrang; Chen, Chaohui; Miao, Ziqing; Bai, Shigang

    2017-10-01

    A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP) methods were used to optimize the associated precipitation forecast. The ensemble forecast predicted the precipitation tendency accurately, which was closer to the observation than in the control forecast. For heavy rainfall, the precipitation center produced by the ensemble forecast was also better. The Fractions Skill Score (FSS) results indicated that the ensemble mean was skillful in light rainfall, while the PMM produced better probability distribution of precipitation for heavy rainfall. Preliminary results demonstrated that convection-allowing ensemble forecast could improve precipitation forecast skill through providing valuable probability forecasts. It is necessary to employ new methods, such as the PMM and NEP, to generate precipitation probability forecasts. Nonetheless, the lack of spread and the overprediction of precipitation by the ensemble members are still problems that need to be solved.

  13. Transient bedrock channel evolution across a precipitation gradient: A case study from Kohala, Hawaii.

    Science.gov (United States)

    Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.

    2011-12-01

    This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is

  14. Variation of runoff and precipitation in the Hekou-Longmen region of the Yellow River based on elasticity analysis.

    Science.gov (United States)

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000-2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.

  15. A System Dynamics Approach to Modeling Future Climate Scenarios: Quantifying and Projecting Patterns of Evapotranspiration and Precipitation in the Salton Sea Watershed

    Directory of Open Access Journals (Sweden)

    Michael E. Kjelland

    2014-01-01

    Full Text Available The need for improved quantitative precipitation forecasts and realistic assessments of the regional impacts of natural climate variability and climate change has generated increased interest in regional (i.e., systems-scale climate simulation. The Salton Sea Stochastic Simulation Model (S4M was developed to assist planners and residents of the Salton Sea (SS transboundary watershed (USA and Mexico in making sound policy decisions regarding complex water-related issues. In order to develop the S4M with a higher degree of climate forecasting resolution, an in-depth analysis was conducted regarding precipitation and evapotranspiration for the semiarid region of the watershed. Weather station data were compiled for both precipitation and evapotranspiration from 1980 to 2004. Several logistic regression models were developed for determining the relationships among precipitation events, that is, duration and volume, and evapotranspiration levels. These data were then used to develop a stochastic weather generator for S4M. Analyses revealed that the cumulative effects and changes of ±10 percent in SS inflows can have significant effects on sea elevation and salinity. The aforementioned technique maintains the relationships between the historic frequency distributions of both precipitation and evapotranspiration, and not as separate unconnected and constrained variables.

  16. Long range transport of air pollutants in Europe and acid precipitation in Norway

    Science.gov (United States)

    Jack Nordo

    1976-01-01

    Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 miles away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented, with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed...

  17. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    OpenAIRE

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan wat...

  18. Zirconia powders production by precipitation: state-of-art review

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo

    1994-01-01

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author)

  19. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Science.gov (United States)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  20. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    Science.gov (United States)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.