WorldWideScience

Sample records for significantly improved model

  1. Cyclosporin A significantly improves preeclampsia signs and suppresses inflammation in a rat model.

    Science.gov (United States)

    Hu, Bihui; Yang, Jinying; Huang, Qian; Bao, Junjie; Brennecke, Shaun Patrick; Liu, Huishu

    2016-05-01

    Preeclampsia is associated with an increased inflammatory response. Immune suppression might be an effective treatment. The aim of this study was to examine whether Cyclosporin A (CsA), an immunosuppressant, improves clinical characteristics of preeclampsia and suppresses inflammation in a lipopolysaccharide (LPS) induced preeclampsia rat model. Pregnant rats were randomly divided into 4 groups: group 1 (PE) rats each received LPS via tail vein on gestational day (GD) 14; group 2 (PE+CsA5) rats were pretreated with LPS (1.0 μg/kg) on GD 14 and were then treated with CsA (5mg/kg, ip) on GDs 16, 17 and 18; group 3 (PE+CsA10) rats were pretreated with LPS (1.0 μg/kg) on GD 14 and were then treated with CsA (10mg/kg, ip) on GDs 16, 17 and 18; group 4 (pregnant control, PC) rats were treated with the vehicle (saline) used for groups 1, 2 and 3. Systolic blood pressure, urinary albumin, biometric parameters and the levels of serum cytokines were measured on day 20. CsA treatment significantly reduced LPS-induced systolic blood pressure and the mean 24-h urinary albumin excretion. Pro-inflammatory cytokines IL-6, IL-17, IFN-γ and TNF-α were increased in the LPS treatment group but were reduced in (LPS+CsA) group (Ppreeclampsia signs and attenuated inflammatory responses in the LPS induced preeclampsia rat model which suggests that immunosuppressant might be an alternative management option for preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    Science.gov (United States)

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  3. Frameworks for improvement: clinical audit, the plan-do-study-act cycle and significant event audit.

    Science.gov (United States)

    Gillam, Steve; Siriwardena, A Niroshan

    2013-01-01

    This is the first in a series of articles about quality improvement tools and techniques. We explore common frameworks for improvement, including the model for improvement and its application to clinical audit, plan-do-study-act (PDSA) cycles and significant event analysis (SEA), examining the similarities and differences between these and providing examples of each.

  4. Improving Earth/Prediction Models to Improve Network Processing

    Science.gov (United States)

    Wagner, G. S.

    2017-12-01

    The United States Atomic Energy Detection System (USAEDS) primaryseismic network consists of a relatively small number of arrays andthree-component stations. The relatively small number of stationsin the USAEDS primary network make it both necessary and feasibleto optimize both station and network processing.Station processing improvements include detector tuning effortsthat use Receiver Operator Characteristic (ROC) curves to helpjudiciously set acceptable Type 1 (false) vs. Type 2 (miss) errorrates. Other station processing improvements include the use ofempirical/historical observations and continuous background noisemeasurements to compute time-varying, maximum likelihood probabilityof detection thresholds.The USAEDS network processing software makes extensive use of theazimuth and slowness information provided by frequency-wavenumberanalysis at array sites, and polarization analysis at three-componentsites. Most of the improvements in USAEDS network processing aredue to improvements in the models used to predict azimuth, slowness,and probability of detection. Kriged travel-time, azimuth andslowness corrections-and associated uncertainties-are computedusing a ground truth database. Improvements in station processingand the use of improved models for azimuth, slowness, and probabilityof detection have led to significant improvements in USADES networkprocessing.

  5. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    Science.gov (United States)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  6. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  7. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  8. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.

    Science.gov (United States)

    Oh, Pyung Chun; Koh, Kwang Kon; Sakuma, Ichiro; Lim, Soo; Lee, Yonghee; Lee, Seungik; Lee, Kyounghoon; Han, Seung Hwan; Shin, Eak Kyun

    2014-10-20

    Experimental studies demonstrate that higher intake of omega-3 fatty acids (n-3 FA) improves insulin sensitivity, however, we reported that n-3 FA 2g therapy, most commonly used dosage did not significantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated the effects of different dosages of n-3 FA in patients with hypertriglyceridemia. This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients (about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n-3 FA 1 (O1), 2 (O2), or 4 g (O4), respectively daily for 2 months. n-3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cholesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n-3 FA therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, compared with placebo. O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 significantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with placebo, each n-3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the metabolic syndrome. n-3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation. Nonetheless, n-3 FA therapy did not significantly improve acute-phase reactants and insulin sensitivity in patients with hypertriglyceridemia, regardless of dosages. Copyright © 2014. Published by Elsevier Ireland Ltd.

  9. An improved gravity model for Mars: Goddard Mars Model 1

    Science.gov (United States)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.

  10. Process correlation analysis model for process improvement identification.

    Science.gov (United States)

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  11. Improved gap conductance model for the TRAC code

    International Nuclear Information System (INIS)

    Hatch, S.W.; Mandell, D.A.

    1980-01-01

    The purpose of the present work, as indicated earlier, is to improve the present constant fuel clad spacing in TRAC-P1A without significantly increasing the computer costs. It is realized that the simple model proposed may not be accurate enough for some cases, but for the initial calculations made the DELTAR model improves the predictions over the constant Δr results of TRAC-P1A and the additional computing costs are negligible

  12. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  13. Training directionally selective motion pathways can significantly improve reading efficiency

    Science.gov (United States)

    Lawton, Teri

    2004-06-01

    This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.

  14. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  15. Improving the Ni I atomic model for solar and stellar atmospheric models

    International Nuclear Information System (INIS)

    Vieytes, M. C.; Fontenla, J. M.

    2013-01-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  16. Improving the Ni I atomic model for solar and stellar atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Vieytes, M. C. [Instituto de de Astronomía y Física del Espacio, CONICET and UNTREF, Buenos Aires (Argentina); Fontenla, J. M., E-mail: mariela@iafe.uba.ar, E-mail: johnf@digidyna.com [North West Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2013-06-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  17. Inhaler Reminders Significantly Improve Asthma Patients' Use of Controller Medications

    Science.gov (United States)

    ... controller medications Share | Inhaler reminders significantly improve asthma patients’ use of controller medications Published Online: July 22, ... the burden and risk of asthma, but many patients do not use them regularly. This poor adherence ...

  18. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  19. An improved gravity model for Mars: Goddard Mars Model-1 (GMM-1)

    Science.gov (United States)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-bank tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least-squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.

  20. Automated Student Model Improvement

    Science.gov (United States)

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  1. The European Academy laparoscopic “Suturing Training and Testing’’ (SUTT) significantly improves surgeons’ performance

    Science.gov (United States)

    Sleiman, Z.; Tanos, V.; Van Belle, Y.; Carvalho, J.L.; Campo, R.

    2015-01-01

    The efficiency of suturing training and testing (SUTT) model by laparoscopy was evaluated, measuring the suturingskill acquisition of trainee gynecologists at the beginning and at the end of a teaching course. During a workshop organized by the European Academy of Gynecological Surgery (EAGS), 25 participants with three different experience levels in laparoscopy (minor, intermediate and major) performed the 4 exercises of the SUTT model (Ex 1: both hands stitching and continuous suturing, Ex 2: right hand stitching and intracorporeal knotting, Ex 3: left hand stitching and intracorporeal knotting, Ex 4: dominant hand stitching, tissue approximation and intracorporeal knotting). The time needed to perform the exercises is recorded for each trainee and group and statistical analysis used to note the differences. Overall, all trainees achieved significant improvement in suturing time (p psychomotor skills, surgery, teaching, training suturing model. PMID:26977264

  2. Bedtime Blood Pressure Chronotherapy Significantly Improves Hypertension Management.

    Science.gov (United States)

    Hermida, Ramón C; Ayala, Diana E; Fernández, José R; Mojón, Artemio; Crespo, Juan J; Ríos, María T; Smolensky, Michael H

    2017-10-01

    Consistent evidence of numerous studies substantiates the asleep blood pressure (BP) mean derived from ambulatory BP monitoring (ABPM) is both an independent and a stronger predictor of cardiovascular disease (CVD) risk than are daytime clinic BP measurements or the ABPM-determined awake or 24-hour BP means. Hence, cost-effective adequate control of sleep-time BP is of marked clinical relevance. Ingestion time, according to circadian rhythms, of hypertension medications of 6 different classes and their combinations significantly improves BP control, particularly sleep-time BP, and reduces adverse effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Triple Diagonal modeling: A mechanism to focus productivity improvement for business success

    Energy Technology Data Exchange (ETDEWEB)

    Levine, L.O. [Pacific Northwest Lab., Richland, WA (United States); Villareal, L.D. [Army Depot, Corpus Christi, TX (United States)

    1993-09-01

    Triple Diagonal (M) modeling is a technique to help quickly diagnose an organization`s existing production system and to identify significant improvement opportunities in executing, controlling, and planning operations. TD modeling is derived from ICAM Definition Language (IDEF 0)-also known as Structured Analysis and Design Technique. It has been used successfully at several Department of Defense remanufacturing facilities trying to accomplish significant production system modernization. TD has several advantages over other modeling techniques. First, it quickly does ``As-ls`` analysis and then moves on to identify improvements. Second, creating one large diagram makes it easier to share the TD model throughout an organization, rather than the many linked 8 1/2 {times} 11`` drawings used in traditional decomposition approaches. Third, it acts as a communication mechanism to share understanding about improvement opportunities that may cross existing functional/organizational boundaries. Finally, TD acts as a vehicle to build a consensus on a prioritized list of improvement efforts that ``hangs togethers as an agenda for systemic changes in the production system and the improved integration of support functions.

  4. National Emergency Preparedness and Response: Improving for Incidents of National Significance

    National Research Council Canada - National Science Library

    Clayton, Christopher M

    2006-01-01

    The national emergency management system has need of significant improvement in its contingency planning and early consolidation of effort and coordination between federal, state, and local agencies...

  5. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  6. Model-based software process improvement

    Science.gov (United States)

    Zettervall, Brenda T.

    1994-01-01

    The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.

  7. Improvement of Reynolds-Stress and Triple-Product Lag Models

    Science.gov (United States)

    Olsen, Michael E.; Lillard, Randolph P.

    2017-01-01

    The Reynolds-stress and triple product Lag models were created with a normal stress distribution which was denied by a 4:3:2 distribution of streamwise, spanwise and wall normal stresses, and a ratio of r(sub w) = 0.3k in the log layer region of high Reynolds number flat plate flow, which implies R11(+)= [4/(9/2)*.3] approximately 2.96. More recent measurements show a more complex picture of the log layer region at high Reynolds numbers. The first cut at improving these models along with the direction for future refinements is described. Comparison with recent high Reynolds number data shows areas where further work is needed, but also shows inclusion of the modeled turbulent transport terms improve the prediction where they influence the solution. Additional work is needed to make the model better match experiment, but there is significant improvement in many of the details of the log layer behavior.

  8. An improved Corten-Dolan's model based on damage and stress state effects

    International Nuclear Information System (INIS)

    Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun

    2015-01-01

    The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.

  9. An improved Corten-Dolan's model based on damage and stress state effects

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun [University of Electronic Science and Technology of China, Chengdu (China)

    2015-08-15

    The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.

  10. PSA Model Improvement Using Maintenance Rule Function Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP-CRI, Nuclear Safety Laboratory, Daejeon (Korea, Republic of)

    2011-10-15

    The Maintenance Rule (MR) program, in nature, is a performance-based program. Therefore, the risk information derived from the Probabilistic Safety Assessment model is introduced into the MR program during the Safety Significance determination and Performance Criteria selection processes. However, this process also facilitates the determination of the vulnerabilities in currently utilized PSA models and offers means of improving them. To find vulnerabilities in an existing PSA model, an initial review determines whether the safety-related MR functions are included in the PSA model. Because safety-related MR functions are related to accident prevention and mitigation, it is generally necessary for them to be included in the PSA model. In the process of determining the safety significance of each functions, quantitative risk importance levels are determined through a process known as PSA model basic event mapping to MR functions. During this process, it is common for some inadequate and overlooked models to be uncovered. In this paper, the PSA model and the MR program of Wolsong Unit 1 were used as references

  11. [Improvement of Phi bodies stain and its clinical significance].

    Science.gov (United States)

    Gong, Xu-Bo; Lu, Xing-Guo; Yan, Li-Juan; Xiao, Xi-Bin; Wu, Dong; Xu, Gen-Bo; Zhang, Xiao-Hong; Zhao, Xiao-Ying

    2009-02-01

    The aim of this study was to improve the dyeing method of hydroperoxidase (HPO), to analyze the morphologic features of Phi bodies and to evaluate the clinical application of this method. 128 bone marrow or peripheral blood smears from patients with myeloid and lymphoid malignancies were stained by improved HPO staining. The Phi bodies were observed with detection rate of Phi bodies in different leukemias. 69 acute myeloid leukemia (AML) specimens were chosen randomly, the positive rate and the number of Phi bodies between the improved HPO and POX stain based on the same substrate of 3, 3'diaminobenzidine were compared. The results showed that the shape of bundle-like Phi bodies was variable, long or short. while the nubbly Phi bodies often presented oval and smooth. Club-like Phi bodies were found in M(3). The detection rates of bundle-like Phi bodies in AML M(1)-M(5) were 42.9% (6/14), 83.3% (15/18), 92.0% (23/25), 52.3% (11/21), 33.3% (5/15) respectively, and those of nubbly Phi bodies were 28.6% (4/14), 66.7% (12/18), 11.1% (3/25), 33.3% (7/21), 20.0% (3/15) respectively. The detection rate of bundle-like Phi bodies in M(3) was significantly higher than that in (M(1) + M(2)) or (M(4) + M(5)) groups. The detection rate of nubbly Phi bodies in (M(1) + M(2)) group was higher than that in M(3) group. In conclusion, after improvement of staining method, the HPO stain becomes simple, the detection rate of Phi bodies is higher than that by the previous method, the positive granules are more obvious, and the results become stable. This improved method plays an important role in differentiating AML from ALL, subtyping AML, and evaluating the therapeutic results.

  12. Evaluating significance in linear mixed-effects models in R.

    Science.gov (United States)

    Luke, Steven G

    2017-08-01

    Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.

  13. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  14. Improving Rice Modeling Success Rate with Ternary Non-structural Fertilizer Response Model.

    Science.gov (United States)

    Li, Juan; Zhang, Mingqing; Chen, Fang; Yao, Baoquan

    2018-06-13

    Fertilizer response modelling is an important technical approach to realize metrological fertilization on rice. With the goal of solving the problems of a low success rate of a ternary quadratic polynomial model (TPFM) and to expand the model's applicability, this paper established a ternary non-structural fertilizer response model (TNFM) based on the experimental results from N, P and K fertilized rice fields. Our research results showed that the TNFM significantly improved the modelling success rate by addressing problems arising from setting the bias and multicollinearity in a TPFM. The results from 88 rice field trials in China indicated that the proportion of typical TNFMs that satisfy the general fertilizer response law of plant nutrition was 40.9%, while the analogous proportion of TPFMs was only 26.1%. The recommended fertilization showed a significant positive linear correlation between the two models, and the parameters N 0 , P 0 and K 0 that estimated the value of soil supplying nutrient equivalents can be used as better indicators of yield potential in plots where no N or P or K fertilizer was applied. The theoretical analysis showed that the new model has a higher fitting accuracy and a wider application range.

  15. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    Science.gov (United States)

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  16. An improved model for the Earth's gravity field

    Science.gov (United States)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  17. Improved steamflood analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.; Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., TX (United States)

    2005-11-01

    Predicting the performance of steam flooding can help in the proper execution of enhanced oil recovery (EOR) processes. The Jones model is often used for analytical steam flooding performance prediction, but it does not accurately predict oil production peaks. In this study, an improved steam flood model was developed by modifying 2 of the 3 components of the capture factor in the Jones model. The modifications were based on simulation results from a Society of Petroleum Engineers (SPE) comparative project case model. The production performance of a 5-spot steamflood pattern unit was simulated and compared with results obtained from the Jones model. Three reservoir types were simulated through the use of 3-D Cartesian black oil models. In order to correlate the simulation and the Jones analytical model results for the start and height of the production peak, the dimensionless steam zone size was modified to account for a decrease in oil viscosity during steam flooding and its dependence on the steam injection rate. In addition, the dimensionless volume of displaced oil produced was modified from its square-root format to an exponential form. The modified model improved results for production performance by up to 20 years of simulated steam flooding, compared to the Jones model. Results agreed with simulation results for 13 different cases, including 3 different sets of reservoir and fluid properties. Reservoir engineers will benefit from the improved accuracy of the model. Oil displacement calculations were based on methods proposed in earlier research, in which the oil displacement rate is a function of cumulative oil steam ratio. The cumulative oil steam ratio is a function of overall thermal efficiency. Capture factor component formulae were presented, as well as charts of oil production rates and cumulative oil-steam ratios for various reservoirs. 13 refs., 4 tabs., 29 figs.

  18. Re-engineering pre-employment check-up systems: a model for improving health services.

    Science.gov (United States)

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin

    2011-01-01

    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  19. Short-term electricity price forecast based on the improved hybrid model

    International Nuclear Information System (INIS)

    Dong Yao; Wang Jianzhou; Jiang He; Wu Jie

    2011-01-01

    Highlights: → The proposed models can detach high volatility and daily seasonality of electricity price. → The improved hybrid forecast models can make full use of the advantages of individual models. → The proposed models create commendable improvements that are relatively satisfactorily for current research. → The proposed models do not require making complicated decisions about the explicit form. - Abstract: Half-hourly electricity price in power system are volatile, electricity price forecast is significant information which can help market managers and participants involved in electricity market to prepare their corresponding bidding strategies to maximize their benefits and utilities. However, the fluctuation of electricity price depends on the common effect of many factors and there is a very complicated random in its evolution process. Therefore, it is difficult to forecast half-hourly prices with traditional only one model for different behaviors of half-hourly prices. This paper proposes the improved forecasting model that detaches high volatility and daily seasonality for electricity price of New South Wales in Australia based on Empirical Mode Decomposition, Seasonal Adjustment and Autoregressive Integrated Moving Average. The prediction errors are analyzed and compared with the ones obtained from the traditional Seasonal Autoregressive Integrated Moving Average model. The comparisons demonstrate that the proposed model can improve the prediction accuracy noticeably.

  20. Short-term electricity price forecast based on the improved hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yao, E-mail: dongyao20051987@yahoo.cn [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Wang Jianzhou, E-mail: wjz@lzu.edu.cn [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Jiang He; Wu Jie [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China)

    2011-08-15

    Highlights: {yields} The proposed models can detach high volatility and daily seasonality of electricity price. {yields} The improved hybrid forecast models can make full use of the advantages of individual models. {yields} The proposed models create commendable improvements that are relatively satisfactorily for current research. {yields} The proposed models do not require making complicated decisions about the explicit form. - Abstract: Half-hourly electricity price in power system are volatile, electricity price forecast is significant information which can help market managers and participants involved in electricity market to prepare their corresponding bidding strategies to maximize their benefits and utilities. However, the fluctuation of electricity price depends on the common effect of many factors and there is a very complicated random in its evolution process. Therefore, it is difficult to forecast half-hourly prices with traditional only one model for different behaviors of half-hourly prices. This paper proposes the improved forecasting model that detaches high volatility and daily seasonality for electricity price of New South Wales in Australia based on Empirical Mode Decomposition, Seasonal Adjustment and Autoregressive Integrated Moving Average. The prediction errors are analyzed and compared with the ones obtained from the traditional Seasonal Autoregressive Integrated Moving Average model. The comparisons demonstrate that the proposed model can improve the prediction accuracy noticeably.

  1. Improved lumped models for transient combined convective and radiative cooling of multi-layer composite slabs

    International Nuclear Information System (INIS)

    An Chen; Su Jian

    2011-01-01

    Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.

  2. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  3. Improvement of the design model for SMART fuel assembly

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Yim, Jeong Sik

    2001-04-01

    A Study on the design improvement of the TEP, BEP and Hoddown spring of a fuel assembly for SMART was performed. Cut boundary Interpolation Method was applied to get more accurate results of stress and strain distribution from the results of the coarse model calculation. The improved results were compared with that of a coarse one. The finer model predicted slightly higher stress and strain distribution than the coarse model, which meant the results of the coarse model was not converged. Considering that the test results always showed much less stress than the FEM and the location of the peak stress of the refined model, the pressure stress on the loading point seemed to contribute significantly to the stresses. Judging from the fact that the peak stress appeared only at the local area, the results of the refined model were considered enough to be a conservative prediction of the stress levels. The slot of the guide thimble screw was ignored to get how much thickness of the flow plate can be reduced in case of optimization of the thickness and also cut off the screw dent hole was included for the actual geometry. For the BEP, the leg and web were also included in the model and the results with and without the leg alignment support were compared. Finally, the holddown spring which is important during the in-reactor behavior of the FA was modeled more realistic and improved to include the effects of the friction between the leaves and the loading surface. Using this improved model, it was possible that the spring characteristics were predicted more accurate to the test results. From the analysis of the spring characteristics, the local plastic area controled the characteristics of the spring dominantly which implied that it was necessary for the design of the leaf to be optimized for the improvement of the plastic behavior of the leaf spring

  4. Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved anti-tumor activity in vitro and in vivo.

    Science.gov (United States)

    Mitrović, Ana; Sosič, Izidor; Kos, Špela; Tratar, Urša Lampreht; Breznik, Barbara; Kranjc, Simona; Mirković, Bojana; Gobec, Stanislav; Lah, Tamara; Serša, Gregor; Kos, Janko

    2017-08-29

    Lysosomal cysteine peptidase cathepsin B, involved in multiple processes associated with tumor progression, is validated as a target for anti-cancer therapy. Nitroxoline, a known antimicrobial agent, is a potent and selective inhibitor of cathepsin B, hence reducing tumor progression in vitro and in vivo . In order to further improve its anti-cancer properties we developed a number of derivatives using structure-based chemical synthesis. Of these, the 7-aminomethylated derivative (compound 17 ) exhibited significantly improved kinetic properties over nitroxoline, inhibiting cathepsin B endopeptidase activity selectively. In the present study, we have evaluated its anti-cancer properties. It was more effective than nitroxoline in reducing tumor cell invasion and migration, as determined in vitro on two-dimensional cell models and tumor spheroids, under either endpoint or real time conditions. Moreover, it exhibited improved action over nitroxoline in impairing tumor growth in vivo in LPB mouse fibrosarcoma tumors in C57Bl/6 mice. Taken together, the addition of a 2-(ethylamino)acetonitrile group to nitroxoline at position 7 significantly improves its pharmacological characteristics and its potential for use as an anti-cancer drug.

  5. Improved Model for Depth Bias Correction in Airborne LiDAR Bathymetry Systems

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-07-01

    Full Text Available Airborne LiDAR bathymetry (ALB is efficient and cost effective in obtaining shallow water topography, but often produces a low-accuracy sounding solution due to the effects of ALB measurements and ocean hydrological parameters. In bathymetry estimates, peak shifting of the green bottom return caused by pulse stretching induces depth bias, which is the largest error source in ALB depth measurements. The traditional depth bias model is often applied to reduce the depth bias, but it is insufficient when used with various ALB system parameters and ocean environments. Therefore, an accurate model that considers all of the influencing factors must be established. In this study, an improved depth bias model is developed through stepwise regression in consideration of the water depth, laser beam scanning angle, sensor height, and suspended sediment concentration. The proposed improved model and a traditional one are used in an experiment. The results show that the systematic deviation of depth bias corrected by the traditional and improved models is reduced significantly. Standard deviations of 0.086 and 0.055 m are obtained with the traditional and improved models, respectively. The accuracy of the ALB-derived depth corrected by the improved model is better than that corrected by the traditional model.

  6. An improved bipolar junction transistor model for electrical and radiation effects

    International Nuclear Information System (INIS)

    Kleiner, C.T.; Messenger, G.C.

    1982-01-01

    The use of bipolar technology in hardened electronic design requires an in-depth understanding of how the Bipolar Junction Transistor (BJT) behaves under normal electrical and radiation environments. Significant improvements in BJT process technology have been reported, and the successful use of sophisticated Computer Aided Design (CAD) tools has aided implementation with respect to specific families of hardened devices. The most advanced BJT model used to date is the Improved Gummel-Poon (IGP) model which is used in CAA programs such as the SPICE II and SLICE programs. The earlier Ebers-Moll model (ref 1 and 2) has also been updated to compare with the older Gummel-Poon model. This paper describes an adaptation of an existing computer model which incorporates the best features of both models into a new, more accurate model called the Improved Bipolar Junction Transistor model. This paper also describes a unique approach to data reduction for the B(I /SUB c/) and V /SUB BE/(ACT) vs I /SUB c/characterizations which has been successfully programmed in Basic using a Commodore PET computer. This model is described in the following sections

  7. Predicting significant torso trauma.

    Science.gov (United States)

    Nirula, Ram; Talmor, Daniel; Brasel, Karen

    2005-07-01

    Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.

  8. Modeling of scroll compressors - Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Duprez, Marie-Eve; Dumont, Eric; Frere, Marc [Thermodynamics Department, Universite de Mons - Faculte Polytechnique, 31 bd Dolez, 7000 Mons (Belgium)

    2010-06-15

    This paper presents an improvement of the scroll compressors model previously published by. This improved model allows the calculation of refrigerant mass flow rate, power consumption and heat flow rate that would be released at the condenser of a heat pump equipped with the compressor, from the knowledge of operating conditions and parameters. Both basic and improved models have been tested on scroll compressors using different refrigerants. This study has been limited to compressors with a maximum electrical power of 14 kW and for evaporation temperatures ranging from -40 to 15 C and condensation temperatures from 10 to 75 C. The average discrepancies on mass flow rate, power consumption and heat flow rate are respectively 0.50%, 0.93% and 3.49%. Using a global parameter determination (based on several refrigerants data), this model can predict the behavior of a compressor with another fluid for which no manufacturer data are available. (author)

  9. Rehearsal significantly improves immediate and delayed recall on the Rey Auditory Verbal Learning Test.

    Science.gov (United States)

    Hessen, Erik

    2011-10-01

    A repeated observation during memory assessment with the Rey Auditory Verbal Learning Test (RAVLT) is that patients who spontaneously employ a memory rehearsal strategy by repeating the word list more than once achieve better scores than patients who only repeat the word list once. This observation led to concern about the ability of the standard test procedure of RAVLT and similar tests in eliciting the best possible recall scores. The purpose of the present study was to test the hypothesis that a rehearsal recall strategy of repeating the word list more than once would result in improved scores of recall on the RAVLT. We report on differences in outcome after standard administration and after experimental administration on Immediate and Delayed Recall measures from the RAVLT of 50 patients. The experimental administration resulted in significantly improved scores for all the variables employed. Additionally, it was found that patients who failed effort screening showed significantly poorer improvement on Delayed Recall compared with those who passed the effort screening. The general clear improvement both in raw scores and T-scores demonstrates that recall performance can be significantly influenced by the strategy of the patient or by small variations in instructions by the examiner.

  10. Discovery learning model with geogebra assisted for improvement mathematical visual thinking ability

    Science.gov (United States)

    Juandi, D.; Priatna, N.

    2018-05-01

    The main goal of this study is to improve the mathematical visual thinking ability of high school student through implementation the Discovery Learning Model with Geogebra Assisted. This objective can be achieved through study used quasi-experimental method, with non-random pretest-posttest control design. The sample subject of this research consist of 62 senior school student grade XI in one of school in Bandung district. The required data will be collected through documentation, observation, written tests, interviews, daily journals, and student worksheets. The results of this study are: 1) Improvement students Mathematical Visual Thinking Ability who obtain learning with applied the Discovery Learning Model with Geogebra assisted is significantly higher than students who obtain conventional learning; 2) There is a difference in the improvement of students’ Mathematical Visual Thinking ability between groups based on prior knowledge mathematical abilities (high, medium, and low) who obtained the treatment. 3) The Mathematical Visual Thinking Ability improvement of the high group is significantly higher than in the medium and low groups. 4) The quality of improvement ability of high and low prior knowledge is moderate category, in while the quality of improvement ability in the high category achieved by student with medium prior knowledge.

  11. Methods improvements incorporated into the SAPHIRE ASP models

    International Nuclear Information System (INIS)

    Sattison, M.B.; Blackman, H.S.; Novack, S.D.; Smith, C.L.; Rasmuson, D.M.

    1994-01-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) has sought the assistance of the Idaho National Engineering Laboratory (INEL) to make some significant enhancements to the SAPHIRE-based Accident Sequence Precursor (ASP) models recently developed by the INEL. The challenge of this project is to provide the features of a full-scale PRA within the framework of the simplified ASP models. Some of these features include: (1) uncertainty analysis addressing the standard PRA uncertainties and the uncertainties unique to the ASP models and methodology, (2) incorporation and proper quantification of individual human actions and the interaction among human actions, (3) enhanced treatment of common cause failures, and (4) extension of the ASP models to more closely mimic full-scale PRAs (inclusion of more initiators, explicitly modeling support system failures, etc.). This paper provides an overview of the methods being used to make the above improvements

  12. Methods improvements incorporated into the SAPHIRE ASP models

    International Nuclear Information System (INIS)

    Sattison, M.B.; Blackman, H.S.; Novack, S.D.

    1995-01-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) has sought the assistance of the Idaho National Engineering Laboratory (INEL) to make some significant enhancements to the SAPHIRE-based Accident Sequence Precursor (ASP) models recently developed by the INEL. The challenge of this project is to provide the features of a full-scale PRA within the framework of the simplified ASP models. Some of these features include: (1) uncertainty analysis addressing the standard PRA uncertainties and the uncertainties unique to the ASP models and methods, (2) incorporation and proper quantification of individual human actions and the interaction among human actions, (3) enhanced treatment of common cause failures, and (4) extension of the ASP models to more closely mimic full-scale PRAs (inclusion of more initiators, explicitly modeling support system failures, etc.). This paper provides an overview of the methods being used to make the above improvements

  13. Low-dose vaporized cannabis significantly improves neuropathic pain.

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-02-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling medium-dose (3.53%), low-dose (1.29%), or placebo cannabis with the primary outcome being visual analog scale pain intensity. Psychoactive side effects and neuropsychological performance were also evaluated. Mixed-effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the 2 active dose groups' results (P > .7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo versus low-dose, 2.9 for placebo versus medium-dose, and 25 for medium- versus low-dose. As these NNTs are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well tolerated, and neuropsychological effects were of limited duration and readily reversible within 1 to 2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. The analgesia obtained from a low dose of delta-9-tetrahydrocannabinol (1.29%) in patients, most of whom were experiencing neuropathic pain despite conventional treatments, is a clinically significant outcome. In general, the effect sizes on cognitive testing were consistent with this minimal dose. As a result, one might not anticipate a significant impact on daily functioning. Published by Elsevier Inc.

  14. Improving Baseline Model Assumptions: Evaluating the Impacts of Typical Methodological Approaches in Watershed Models

    Science.gov (United States)

    Muenich, R. L.; Kalcic, M. M.; Teshager, A. D.; Long, C. M.; Wang, Y. C.; Scavia, D.

    2017-12-01

    Thanks to the availability of open-source software, online tutorials, and advanced software capabilities, watershed modeling has expanded its user-base and applications significantly in the past thirty years. Even complicated models like the Soil and Water Assessment Tool (SWAT) are being used and documented in hundreds of peer-reviewed publications each year, and likely more applied in practice. These models can help improve our understanding of present, past, and future conditions, or analyze important "what-if" management scenarios. However, baseline data and methods are often adopted and applied without rigorous testing. In multiple collaborative projects, we have evaluated the influence of some of these common approaches on model results. Specifically, we examined impacts of baseline data and assumptions involved in manure application, combined sewer overflows, and climate data incorporation across multiple watersheds in the Western Lake Erie Basin. In these efforts, we seek to understand the impact of using typical modeling data and assumptions, versus using improved data and enhanced assumptions on model outcomes and thus ultimately, study conclusions. We provide guidance for modelers as they adopt and apply data and models for their specific study region. While it is difficult to quantitatively assess the full uncertainty surrounding model input data and assumptions, recognizing the impacts of model input choices is important when considering actions at the both the field and watershed scales.

  15. A national-scale model of linear features improves predictions of farmland biodiversity.

    Science.gov (United States)

    Sullivan, Martin J P; Pearce-Higgins, James W; Newson, Stuart E; Scholefield, Paul; Brereton, Tom; Oliver, Tom H

    2017-12-01

    Modelling species distribution and abundance is important for many conservation applications, but it is typically performed using relatively coarse-scale environmental variables such as the area of broad land-cover types. Fine-scale environmental data capturing the most biologically relevant variables have the potential to improve these models. For example, field studies have demonstrated the importance of linear features, such as hedgerows, for multiple taxa, but the absence of large-scale datasets of their extent prevents their inclusion in large-scale modelling studies.We assessed whether a novel spatial dataset mapping linear and woody-linear features across the UK improves the performance of abundance models of 18 bird and 24 butterfly species across 3723 and 1547 UK monitoring sites, respectively.Although improvements in explanatory power were small, the inclusion of linear features data significantly improved model predictive performance for many species. For some species, the importance of linear features depended on landscape context, with greater importance in agricultural areas. Synthesis and applications . This study demonstrates that a national-scale model of the extent and distribution of linear features improves predictions of farmland biodiversity. The ability to model spatial variability in the role of linear features such as hedgerows will be important in targeting agri-environment schemes to maximally deliver biodiversity benefits. Although this study focuses on farmland, data on the extent of different linear features are likely to improve species distribution and abundance models in a wide range of systems and also can potentially be used to assess habitat connectivity.

  16. Unified Health Gamification can significantly improve well-being in corporate environments.

    Science.gov (United States)

    Shahrestani, Arash; Van Gorp, Pieter; Le Blanc, Pascale; Greidanus, Fabrizio; de Groot, Kristel; Leermakers, Jelle

    2017-07-01

    There is a multitude of mHealth applications that aim to solve societal health problems by stimulating specific types of physical activities via gamification. However, physical health activities cover just one of the three World Health Organization (WHO) dimensions of health. This paper introduces the novel notion of Unified Health Gamification (UHG), which covers besides physical health also social and cognitive health and well-being. Instead of rewarding activities in the three WHO dimensions using different mHealth competitions, UHG combines the scores for such activities on unified leaderboards and lets people interact in social circles beyond personal interests. This approach is promising in corporate environments since UHG can connect the employees with intrinsic motivation for physical health with those who have quite different interests. In order to evaluate this approach, we realized an app prototype and we evaluated it in two corporate pilot studies. In total, eighteen pilot users participated voluntarily for six weeks. Half of the participants were recruited from an occupational health setting and the other half from a treatment setting. Our results suggest that the UHG principles are worth more investigation: various positive health effects were found based on a validated survey. The mean mental health improved significantly at one pilot location and at the level of individual pilot participants, multiple other effects were found to be significant: among others, significant mental health improvements were found for 28% of the participants. Most participants intended to use the app beyond the pilot, especially if it would be further developed.

  17. Improved TOPSIS decision model for NPP emergencies

    International Nuclear Information System (INIS)

    Zhang Jin; Liu Feng; Huang Lian

    2011-01-01

    In this paper,an improved decision model is developed for its use as a tool to respond to emergencies at nuclear power plants. Given the complexity of multi-attribute emergency decision-making on nuclear accident, the improved TOPSIS method is used to build a decision-making model that integrates subjective weight and objective weight of each evaluation index. A comparison between the results of this new model and two traditional methods of fuzzy hierarchy analysis method and weighted analysis method demonstrates that the improved TOPSIS model has a better evaluation effect. (authors)

  18. An improved interfacial bonding model for material interface modeling

    Science.gov (United States)

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  19. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  20. Millisecond photo-thermal process on significant improvement of supercapacitor’s performance

    International Nuclear Information System (INIS)

    Wang, Kui; Wang, Jixiao; Wu, Ying; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-01-01

    Graphical abstract: A high way for charge transfer is created by a millisecond photo-thermal process which could decrease contact resistance among nanomaterials and improve the electrochemical performances. - Highlights: • Improve conductivity among nanomaterials with a millisecond photo-thermal process. • The specific capacitance can increase about 25% with an photo-thermal process. • The circle stability and rate capability can be improved above 10% with photo-thermal process. • Provide a new way that create electron path to improve electrochemical performance. - Abstract: Supercapacitors fabricated with nanomaterials usually have high specific capacitance and excellent performance. However, the small size of nanomaterials renders a considerable limitation of the contact area among nanomaterials, which is harmful to charge carrier transfer. This fact may hinder the development and application of nanomaterials in electrochemical storage systems. Here, a millisecond photo-thermal process was introduced to create a charge carries transfer path to decrease the contact resistance among nanomaterials, and enhance the electrochemical performance of supercapacitors. Polyaniline (PANI) nanowire, as a model nanomaterial, was used to modify electrodes under different photo-thermal process conditions. The modified electrodes were characterized by scanning electronic microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and the results were analysed by equivalent circuit simulation. These results demonstrate that the photo-thermal process can alter the morphology of PANI nanowires, lower the charge transfer resistances and thus improve the performance of electrodes. The specific capacitance increase of the modified electrodes is about 25%. The improvement of the circle stability and rate capability are above 10%. To the best of our knowledge, this is the first attempt on research the effect of photo-thermal process on the conductivity

  1. YH12852, a potent and highly selective 5-HT4 receptor agonist, significantly improves both upper and lower gastrointestinal motility in a guinea pig model of postoperative ileus.

    Science.gov (United States)

    Hussain, Z; Lee, Y J; Yang, H; Jeong, E J; Sim, J Y; Park, H

    2017-10-01

    Postoperative ileus (POI) is a transient gastrointestinal (GI) dysmotility that commonly develops after abdominal surgery. YH12852, a novel, potent and highly selective 5-hydroxytryptamine 4 (5-HT 4 ) receptor agonist, has been shown to improve both upper and lower GI motility in various animal studies and may have applications for the treatment of POI. Here, we investigated the effects and mechanism of action of YH12852 in a guinea pig model of POI to explore its therapeutic potential. The guinea pig model of POI was created by laparotomy, evisceration, and gentle manipulation of the cecum for 60 seconds, followed by closure with sutures under anesthesia. Group 1 received an oral administration of vehicle or YH12852 (1, 3, 10 or 30 mg/kg) only, while POI Group 2 was intraperitoneally pretreated with vehicle or 5-HT 4 receptor antagonist GR113808 (10 mg/kg) prior to oral dosing of vehicle or YH12852 (3 or 10 mg/kg). Upper GI transit was evaluated by assessing the migration of a charcoal mixture in the small intestine, while lower GI transit was assessed via measurement of fecal pellet output (FPO). YH12852 significantly accelerated upper and lower GI transit at the doses of 3, 10, and 30 mg/kg and reached its maximal effect at 10 mg/kg. These effects were significantly blocked by pretreatment of GR113808 10 mg/kg. Oral administration of YH12852 significantly accelerates and restores delayed upper and lower GI transit in a guinea pig model of POI. This drug may serve as a useful candidate for the treatment of postoperative ileus. © 2017 John Wiley & Sons Ltd.

  2. Determination of significance in Ecological Impact Assessment: Past change, current practice and future improvements

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Sam; Hudson, Malcolm D., E-mail: mdh@soton.ac.uk

    2013-01-15

    Ecological Impact Assessment (EcIA) is an important tool for conservation and achieving sustainable development. 'Significant' impacts are those which disturb or alter the environment to a measurable degree. Significance is a crucial part of EcIA, our understanding of the concept in practice is vital if it is to be effective as a tool. This study employed three methods to assess how the determination of significance has changed through time, what current practice is, and what would lead to future improvements. Three data streams were collected: interviews with expert stakeholders, a review of 30 Environmental Statements and a broad-scale survey of the United Kingdom Institute of Ecology and Environmental Management (IEEM) members. The approach taken in the determination of significance has become more standardised and subjectivity has become constrained through a transparent framework. This has largely been driven by a set of guidelines produced by IEEM in 2006. The significance of impacts is now more clearly justified and the accuracy with which it is determined has improved. However, there are limitations to accuracy and effectiveness of the determination of significance. These are the quality of baseline survey data, our scientific understanding of ecological processes and the lack of monitoring and feedback of results. These in turn are restricted by the limited resources available in consultancies. The most notable recommendations for future practice are the implementation of monitoring and the publication of feedback, the creation of a central database for baseline survey data and the streamlining of guidance. - Highlights: Black-Right-Pointing-Pointer The assessment of significance has changed markedly through time. Black-Right-Pointing-Pointer The IEEM guidelines have driven a standardisation of practice. Black-Right-Pointing-Pointer Currently limited by quality of baseline data and scientific understanding. Black-Right-Pointing-Pointer Monitoring

  3. Improving Safe Sleep Modeling in the Hospital through Policy Implementation.

    Science.gov (United States)

    Heitmann, Rachel; Nilles, Ester K; Jeans, Ashley; Moreland, Jackie; Clarke, Chris; McDonald, Morgan F; Warren, Michael D

    2017-11-01

    Introduction Sleep-related infant deaths are major contributors to Tennessee's high infant mortality rate. The purpose of this initiative was to evaluate the impact of policy-based efforts to improve modeling of safe sleep practices by health care providers in hospital settings across Tennessee. Methods Safe sleep policies were developed and implemented at 71 hospitals in Tennessee. Policies, at minimum, were required to address staff training on the American Academy of Pediatrics' safe sleep recommendations, correct modeling of infant safe sleep practices, and parent education. Hospital data on process measures related to training and results of crib audits were compiled for analysis. Results The overall observance of infants who were found with any risk factors for unsafe sleep decreased 45.6% (p ≤ 0.001) from the first crib audit to the last crib audit. Significant decreases were noted for specific risk factors, including infants found asleep not on their back, with a toy or object in the crib, and not sleeping in a crib. Significant improvements were observed at hospitals where printed materials or video were utilized for training staff compared to face-to-face training. Discussion Statewide implementation of the hospital policy intervention resulted in significant reductions in infants found in unsafe sleep situations. The most common risk factors for sleep-related infant deaths can be modeled in hospitals. This effort has the potential to reduce sleep-related infant deaths and ultimately infant mortality.

  4. Carotid endarterectomy significantly improves postoperative laryngeal sensitivity.

    Science.gov (United States)

    Hammer, Georg Philipp; Tomazic, Peter Valentin; Vasicek, Sarah; Graupp, Matthias; Gugatschka, Markus; Baumann, Anneliese; Konstantiniuk, Peter; Koter, Stephan Herwig

    2016-11-01

    sensory threshold on the operated-on side (6.08 ± 2.02 mm Hg) decreased significantly at the 6-week follow-up, even in relation to the preoperative measure (P = .022). With the exception of one patient with permanent unilateral vocal fold immobility, no signs of nerve injury were detected. In accordance with previous reports, injuries to the recurrent laryngeal nerve during CEA seem to be rare. In most patients, postoperative symptoms (globus, dysphagia, dysphonia) and signs fade within a few weeks without any specific therapeutic intervention. This study shows an improved long-term postoperative superior laryngeal nerve function with regard to laryngopharyngeal sensitivity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Wendan decoction improves learning and memory deficits in a rat model of schizophrenia

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yang; Changchun Cai; Xiaojin Yang; Yanping Yang; Zhigang Zhou; Jianhua Liu; Heping Ye; Hongjiao Wan

    2012-01-01

    An experimental model of schizophrenia was established using dizocilpine (MK-801). Rats were intragastrically administered with Wendan decoction or clozapine for 21 days prior to establishing the model. The results revealed that the latency of schizophrenia model rats to escape from the hidden platform in the Morris water maze was significantly shortened after administration of Wendan decoction or clozapine. In addition, the treated rats crossed the platform significantly more times than the untreated model rats. Moreover, the rate of successful long-term potentiation induction in the Wendan decoction group and clozapine group were also obviously increased compared with the model group, and the population spike peak latency was significantly shortened. These experimental findings suggest that Wendan decoction can improve the learning and memory ability of schizophrenic rats to the same extent as clozapine treatment.

  6. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  7. Improving the representation of radiation interception and photosynthesis for climate model applications

    International Nuclear Information System (INIS)

    Mercado, Lina M.; Huntingford, Chris; Gash, John H.C.; Cox, Peter M.; Jogireddy, Venkata

    2007-01-01

    The Joint UK Land Environment Simulator (JULES) (which is based on Met Office Surface Exchange Scheme MOSES), the land surface scheme of the Hadley Centre General Circulation Models (GCM) has been improved to contain an explicit description of light interception for different canopy levels, which consequently leads to a multilayer approach to scaling from leaf to canopy level photosynthesis. We test the improved JULES model at a site in the Amazonian rainforest by comparing against measurements of vertical profiles of radiation through the canopy, eddy covariance measurements of carbon and energy fluxes, and also measurements of carbon isotopic fractionation from top canopy leaves. Overall, the new light interception formulation improves modelled photosynthetic carbon uptake compared to the standard big leaf approach used in the original JULES formulation. Additional model improvement was not significant when incorporating more realistic vertical variation of photosynthetic capacity. Even with the improved representation of radiation interception, JULES simulations of net carbon uptake underestimate eddy covariance measurements by 14%. This discrepancy can be removed by either increasing the photosynthetic capacity throughout the canopy or by explicitly including light inhibition of leaf respiration. Along with published evidence of such inhibition of leaf respiration, our study suggests this effect should be considered for inclusion in other GCMs

  8. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Kutchenreiter, Mark; Michalski, J.J.; Long, C.N.; Habte, Aron

    2017-05-22

    Accurate solar radiation measurements using pyranometers are required to understand radiative impacts on the Earth's energy budget, solar energy production, and to validate radiative transfer models. Ventilators of pyranometers, which are used to keep the domes clean and dry, also affect instrument thermal offset accuracy. This poster presents a high-level overview of the ventilators for single-black-detector pyranometers and black-and-white pyranometers. For single-black-detector pyranometers with ventilators, high-flow-rate (50-CFM and higher), 12-V DC fans lower the offsets, lower the scatter, and improve the predictability of nighttime offsets compared to lower-flow-rate (35-CFM), 120-V AC fans operated in the same type of environmental setup. Black-and-white pyranometers, which are used to measure diffuse horizontal irradiance, sometimes show minor improvement with DC fan ventilation, but their offsets are always small, usually no more than 1 W/m2, whether AC- or DC-ventilated.

  9. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    Science.gov (United States)

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Snake Model Based on Improved Genetic Algorithm in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mingying Zhang

    2016-12-01

    Full Text Available Automatic fingerprint identification technology is a quite mature research field in biometric identification technology. As the preprocessing step in fingerprint identification, fingerprint segmentation can improve the accuracy of fingerprint feature extraction, and also reduce the time of fingerprint preprocessing, which has a great significance in improving the performance of the whole system. Based on the analysis of the commonly used methods of fingerprint segmentation, the existing segmentation algorithm is improved in this paper. The snake model is used to segment the fingerprint image. Additionally, it is improved by using the global optimization of the improved genetic algorithm. Experimental results show that the algorithm has obvious advantages both in the speed of image segmentation and in the segmentation effect.

  11. Improvement of MARS code reflood model

    International Nuclear Information System (INIS)

    Hwang, Moonkyu; Chung, Bub-Dong

    2011-01-01

    A specifically designed heat transfer model for the reflood process which normally occurs at low flow and low pressure was originally incorporated in the MARS code. The model is essentially identical to that of the RELAP5/MOD3.3 code. The model, however, is known to have under-estimated the peak cladding temperature (PCT) with earlier turn-over. In this study, the original MARS code reflood model is improved. Based on the extensive sensitivity studies for both hydraulic and wall heat transfer models, it is found that the dispersed flow film boiling (DFFB) wall heat transfer is the most influential process determining the PCT, whereas the interfacial drag model most affects the quenching time through the liquid carryover phenomenon. The model proposed by Bajorek and Young is incorporated for the DFFB wall heat transfer. Both space grid and droplet enhancement models are incorporated. Inverted annular film boiling (IAFB) is modeled by using the original PSI model of the code. The flow transition between the DFFB and IABF, is modeled using the TRACE code interpolation. A gas velocity threshold is also added to limit the top-down quenching effect. Assessment calculations are performed for the original and modified MARS codes for the Flecht-Seaset test and RBHT test. Improvements are observed in terms of the PCT and quenching time predictions in the Flecht-Seaset assessment. In case of the RBHT assessment, the improvement over the original MARS code is found marginal. A space grid effect, however, is clearly seen from the modified version of the MARS code. (author)

  12. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  13. Innovative integrative bedside teaching model improves tutors’ self-assessments of teaching skills and attitudes

    Directory of Open Access Journals (Sweden)

    Itai Gat

    2016-02-01

    Full Text Available Introduction: Patient bedside is the ideal setting for teaching physical examination, medical interviewing, and interpersonal skills. Herein we describe a novel model for bedside teaching (BST practiced during tutor training workshop and its resulting effect on practitioners’ self assessment of teaching skills and perceptions. Methods: One-day tutor training workshop included theoretical knowledge supplementation regarding tutors’ roles as well as implementing practical tools for clinical education, mainly BST model. The model, which emphasizes simultaneous clinical and communication teaching in a stepwise approach, was practiced by consecutive simulations with a gradual escalation of difficulty and adjusted instruction approaches. Pre- and post-workshop-adjusted questionnaires using a Likert scale of 1 to 4 were completed by participants and compared. Results: Analysis was based on 25 out of 48 participants who completed both questionnaires. Significantly improved teaching skills were demonstrated upon workshop completion (mean 3.3, SD 0.5 compared with pre-training (mean 2.6, SD 0.6; p<0.001 with significant increase in most examined parameters. Significantly improved tutor's roles internalization was demonstrated after training completion (mean 3.7, SD 0.3 compared with pre-workshop (mean 3.5 SD 0.5; p=0.002. Discussion: Successful BST involves combination of clinical and communication skills. BST model practiced during the workshop may contribute to improved teaching skills in this challenging environment.

  14. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations

    Science.gov (United States)

    Patil, Amol; Ramsankaran, RAAJ

    2017-12-01

    This article presents a study carried out using EnKF based assimilation of coarser-scale SMOS soil moisture retrievals to improve the streamflow simulations and forecasting performance of SWAT model in a large catchment. This study has been carried out in Munneru river catchment, India, which is about 10,156 km2. In this study, an EnkF based new approach is proposed for improving the inherent vertical coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical coupling can be improved significantly using ensemble of soil storages compared to the traditional static soil storages based EnKF approach. However, the improvements in the simulated streamflow are moderate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in surface runoff computations. Further, it is observed that the durability of streamflow improvements is longer when the assimilation system effectively updates the subsurface flow component. Overall, the results of the present study indicate that the passive microwave-based coarser-scale soil moisture products like SMOS hold significant potential to improve the streamflow estimates when assimilating into large-scale distributed hydrological models operating at a daily time step.

  15. Modeling soil water content for vegetation modeling improvement

    Science.gov (United States)

    Cianfrani, Carmen; Buri, Aline; Zingg, Barbara; Vittoz, Pascal; Verrecchia, Eric; Guisan, Antoine

    2016-04-01

    Soil water content (SWC) is known to be important for plants as it affects the physiological processes regulating plant growth. Therefore, SWC controls plant distribution over the Earth surface, ranging from deserts and grassland to rain forests. Unfortunately, only a few data on SWC are available as its measurement is very time consuming and costly and needs specific laboratory tools. The scarcity of SWC measurements in geographic space makes it difficult to model and spatially project SWC over larger areas. In particular, it prevents its inclusion in plant species distribution model (SDMs) as predictor. The aims of this study were, first, to test a new methodology allowing problems of the scarcity of SWC measurements to be overpassed and second, to model and spatially project SWC in order to improve plant SDMs with the inclusion of SWC parameter. The study was developed in four steps. First, SWC was modeled by measuring it at 10 different pressures (expressed in pF and ranging from pF=0 to pF=4.2). The different pF represent different degrees of soil water availability for plants. An ensemble of bivariate models was built to overpass the problem of having only a few SWC measurements (n = 24) but several predictors to include in the model. Soil texture (clay, silt, sand), organic matter (OM), topographic variables (elevation, aspect, convexity), climatic variables (precipitation) and hydrological variables (river distance, NDWI) were used as predictors. Weighted ensemble models were built using only bivariate models with adjusted-R2 > 0.5 for each SWC at different pF. The second step consisted in running plant SDMs including modeled SWC jointly with the conventional topo-climatic variable used for plant SDMs. Third, SDMs were only run using the conventional topo-climatic variables. Finally, comparing the models obtained in the second and third steps allowed assessing the additional predictive power of SWC in plant SDMs. SWC ensemble models remained very good, with

  16. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  17. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  18. Improved water density feedback model for pressurized water reactors

    International Nuclear Information System (INIS)

    Casadei, A.L.

    1976-01-01

    An improved water density feedback model has been developed for neutron diffusion calculations of PWR cores. This work addresses spectral effects on few-group cross sections due to water density changes, and water density predictions considering open channel and subcooled boiling effects. An homogenized spectral model was also derived using the unit assembly diffusion method for employment in a coarse mesh 3D diffusion computer program. The spectral and water density evaluation models described were incorporated in a 3D diffusion code, and neutronic calculations for a typical PWR were completed for both nominal and accident conditions. Comparison of neutronic calculations employing the open versus the closed channel model for accident conditions indicates that significant safety margin increases can be obtained if subcooled boiling and open channel effects are considered in accident calculations. This is attributed to effects on both core reactivity and power distribution, which result in increased margin to fuel degradation limits. For nominal operating conditions, negligible differences in core reactivity and power distribution exist since flow redistribution and subcooled voids are not significant at such conditions. The results serve to confirm the conservatism of currently employed closed channel feedback methods in accident analysis, and indicate that the model developed in this work can contribute to show increased safety margins for certain accidents

  19. Neuro-Linguistic Programming: Improving Rapport between Track/Cross Country Coaches and Significant Others

    Science.gov (United States)

    Helm, David Jay

    2017-01-01

    This study examines the background information and the components of N.L.P., being eye movements, use of predicates, and posturing, as they apply to improving rapport and empathy between track/cross country coaches and their significant others in the arena of competition to help alleviate the inherent stressors.

  20. An improved Zircaloy-steam reaction model for use with the March 2 (Meltdown Accident Response Characteristics) code

    International Nuclear Information System (INIS)

    Manahan, M.P.

    1983-01-01

    An improved Zircaloy-steam oxidation reaction model has been incorporated into the MARCH 2 code which includes: (1) improved physical modeling for solid-state process oxidation, (2) improved geometric modeling for gaseous diffusion oxidation, (3) chemisorption/dissociation retardation due to high hydrogen partial pressures, and (4) laminar and turbulent flow conditions. Several accident sequences have been analyzed using the model, and for the sequences considered, the results indicate that the integrated and averaged variables are not significantly altered for the current level of fuel modeling, however, the localized variables such as nodal temperature and oxide thickness are affected

  1. Improvements of evaporation drag model

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Yanhua; Xu Jijun

    2004-01-01

    A special observable experiment facility has been established, and a series of experiments have been carried out on this facility by pouring one or several high-temperature particles into a water pool. The experiment has verified the evaporation drag model, which believe the non-symmetric profile of the local evaporation rate and the local density of the vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface and all of the radiation energy is deposited on the vapor-liquid interface, thus contributing to the vaporization rate and mass balance of the vapor film. So, the heat conduction and the heat convection are taken into account in improved model. At the same time, the improved model given by this paper presented calculations of the effect of hot particles temperature on the radiation absorption behavior of water

  2. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  3. Applying different quality and safety models in healthcare improvement work: Boundary objects and system thinking

    International Nuclear Information System (INIS)

    Wiig, Siri; Robert, Glenn; Anderson, Janet E.; Pietikainen, Elina; Reiman, Teemu; Macchi, Luigi; Aase, Karina

    2014-01-01

    A number of theoretical models can be applied to help guide quality improvement and patient safety interventions in hospitals. However there are often significant differences between such models and, therefore, their potential contribution when applied in diverse contexts. The aim of this paper is to explore how two such models have been applied by hospitals to improve quality and safety. We describe and compare the models: (1) The Organizing for Quality (OQ) model, and (2) the Design for Integrated Safety Culture (DISC) model. We analyze the theoretical foundations of the models, and show, by using a retrospective comparative case study approach from two European hospitals, how these models have been applied to improve quality and safety. The analysis shows that differences appear in the theoretical foundations, practical approaches and applications of the models. Nevertheless, the case studies indicate that the choice between the OQ and DISC models is of less importance for guiding the practice of quality and safety improvement work, as they are both systemic and share some important characteristics. The main contribution of the models lay in their role as boundary objects directing attention towards organizational and systems thinking, culture, and collaboration

  4. Significance of MPEG-7 textural features for improved mass detection in mammography.

    Science.gov (United States)

    Eltonsy, Nevine H; Tourassi, Georgia D; Fadeev, Aleksey; Elmaghraby, Adel S

    2006-01-01

    The purpose of the study is to investigate the significance of MPEG-7 textural features for improving the detection of masses in screening mammograms. The detection scheme was originally based on morphological directional neighborhood features extracted from mammographic regions of interest (ROIs). Receiver Operating Characteristics (ROC) was performed to evaluate the performance of each set of features independently and merged into a back-propagation artificial neural network (BPANN) using the leave-one-out sampling scheme (LOOSS). The study was based on a database of 668 mammographic ROIs (340 depicting cancer regions and 328 depicting normal parenchyma). Overall, the ROC area index of the BPANN using the directional morphological features was Az=0.85+/-0.01. The MPEG-7 edge histogram descriptor-based BPNN showed an ROC area index of Az=0.71+/-0.01 while homogeneous textural descriptors using 30 and 120 channels helped the BPNN achieve similar ROC area indexes of Az=0.882+/-0.02 and Az=0.877+/-0.01 respectively. After merging the MPEG-7 homogeneous textural features with the directional neighborhood features the performance of the BPANN increased providing an ROC area index of Az=0.91+/-0.01. MPEG-7 homogeneous textural descriptor significantly improved the morphology-based detection scheme.

  5. QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL

    Directory of Open Access Journals (Sweden)

    Dusko Pavletic

    2009-12-01

    Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.

  6. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  7. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    Science.gov (United States)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  8. Factors Related to Significant Improvement of Estimated Glomerular Filtration Rates in Chronic Hepatitis B Patients Receiving Telbivudine Therapy

    Directory of Open Access Journals (Sweden)

    Te-Fu Lin

    2017-01-01

    Full Text Available Background and Aim. The improvement of estimated glomerular filtration rates (eGFRs in chronic hepatitis B (CHB patients receiving telbivudine therapy is well known. The aim of this study was to clarify the kinetics of eGFRs and to identify the significant factors related to the improvement of eGFRs in telbivudine-treated CHB patients in a real-world setting. Methods. Serial eGFRs were calculated every 3 months using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI equation. The patients were classified as CKD-1, -2, or -3 according to a baseline eGFR of ≥90, 60–89, or <60 mL/min/1.73 m2, respectively. A significant improvement of eGFR was defined as a more than 10% increase from the baseline. Results. A total of 129 patients were enrolled, of whom 36% had significantly improved eGFRs. According to a multivariate analysis, diabetes mellitus (DM (p=0.028 and CKD-3 (p=0.043 were both significantly related to such improvement. The rates of significant improvement of eGFR were about 73% and 77% in patients with DM and CKD-3, respectively. Conclusions. Telbivudine is an alternative drug of choice for the treatment of hepatitis B patients for whom renal safety is a concern, especially patients with DM and CKD-3.

  9. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  10. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  11. Leukocyte and platelet depletion improves blood flow and function in a renal transplant model.

    Science.gov (United States)

    Yates, Phillip J; Hosgood, Sarah A; Nicholson, Michael L

    2012-01-01

    Donation after cardiac death (DCD) donors are an important source of organs for transplantation. Due to warm and cold ischemic injury, DCD kidneys undergo a significant reperfusion insult when transplanted. This is manifested clinically as a high incidence of delayed graft function (DGF) and primary non-function (PNF). The importance of leukocytes in the generation of reperfusion injury is pivotal. Using an ex vivo porcine model of kidney transplantation, the effects of reperfusion with leukocyte and platelet depleted blood (LDB) and whole blood (WB) on renal blood flow and function were compared. Hemodynamic measurements were recorded, and biochemical, hematological, and histologic samples taken at set time-points. Reperfusion with LDB improved renal blood flow significantly compared with WB reperfusion. In addition, there was a significant improvement in creatinine clearance and renal oxygen consumption, but not fractional excretion of sodium, acid-base homeostasis, urinary nitric oxide (NO), or 8-isoprostane levels. This study represents a good model for the initial reperfusion period in renal transplantation. Improvement in only some functional markers and neither urinary NO nor 8-isoprostane levels indicates that improved blood flow alone is not sufficient to reverse the severe ischemic insult endured by DCD kidneys. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...

  13. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  14. An Inventory Controlled Supply Chain Model Based on Improved BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2013-01-01

    Full Text Available Inventory control is a key factor for reducing supply chain cost and increasing customer satisfaction. However, prediction of inventory level is a challenging task for managers. As one of the widely used techniques for inventory control, standard BP neural network has such problems as low convergence rate and poor prediction accuracy. Aiming at these problems, a new fast convergent BP neural network model for predicting inventory level is developed in this paper. By adding an error offset, this paper deduces the new chain propagation rule and the new weight formula. This paper also applies the improved BP neural network model to predict the inventory level of an automotive parts company. The results show that the improved algorithm not only significantly exceeds the standard algorithm but also outperforms some other improved BP algorithms both on convergence rate and prediction accuracy.

  15. Repetitive Model Refinement for Questionnaire Design Improvement in the Evaluation of Working Characteristics in Construction Enterprises

    Directory of Open Access Journals (Sweden)

    Jeng-Wen Lin

    2015-11-01

    Full Text Available This paper presents an iterative confidence interval based parametric refinement approach for questionnaire design improvement in the evaluation of working characteristics in construction enterprises. This refinement approach utilizes the 95% confidence interval of the estimated parameters of the model to determine their statistical significance in a least-squares regression setting. If this confidence interval of particular parameters covers the zero value, it is statistically valid to remove such parameters from the model and their corresponding questions from the designed questionnaire. The remaining parameters repetitively undergo this sifting process until their statistical significance cannot be improved. This repetitive model refinement approach is implemented in efficient questionnaire design by using both linear series and Taylor series models to remove non-contributing questions while keeping significant questions that are contributive to the issues studied, i.e., employees’ work performance being explained by their work values and cadres’ organizational commitment being explained by their organizational management. Reducing the number of questions alleviates the respondent burden and reduces costs. The results show that the statistical significance of the sifted contributing questions is decreased with a total mean relative change of 49%, while the Taylor series model increases the R-squared value by 17% compared with the linear series model.

  16. Study on Software Quality Improvement based on Rayleigh Model and PDCA Model

    OpenAIRE

    Ning Jingfeng; Hu Ming

    2013-01-01

    As the software industry gradually becomes mature, software quality is regarded as the life of a software enterprise. This article discusses how to improve the quality of software, applies Rayleigh model and PDCA model to the software quality management, combines with the defect removal effectiveness index, exerts PDCA model to solve the problem of quality management objectives when using the Rayleigh model in bidirectional quality improvement strategies of software quality management, a...

  17. Short-Term City Electric Load Forecasting with Considering Temperature Effects: An Improved ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Herui Cui

    2015-01-01

    Full Text Available Short-term electric load is significantly affected by weather, especially the temperature effects in summer. External factors can result in mutation structures in load data. Under the influence of the external temperature factors, city electric load cannot be easily forecasted as usual. This research analyzes the relationship between electricity load and daily temperature in city. An improved ARIMAX model is proposed in this paper to deal with the mutation data structures. It is found that information amount of the improved ARIMAX model is smaller than that of the classic method and its relative error is less than AR, ARMA and Sigmoid-Function ANN models. The forecasting results are more accurately fitted. This improved model is highly valuable when dealing with mutation data structure in the field of load forecasting. And it is also an effective technique in forecasting electric load with temperature effects.

  18. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  19. Improvement of snowpack simulations in a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the

  20. The challenges of ESRD care in developing economies: sub-Saharan African opportunities for significant improvement.

    Science.gov (United States)

    Bamgboye, Ebun Ladipo

    Chronic kidney disease (CKD) is a significant cause of morbidity and mortality in sub-Saharan Africa. This, along with other noncommunicable diseases like hypertension, diabetes, and heart diseases, poses a double burden on a region that is still struggling to cope with the scourge of communicable diseases like malaria, tuberculosis, HIV, and more recently Ebola. Causes of CKD in the region are predominantly glomerulonephritis and hypertension, although type 2 diabetes is also becoming a significant cause as is the retroviral disease. Patients are generally younger than in the developed world, and there is a significant male preponderance. Most patients are managed by hemodialysis, with peritoneal dialysis and kidney transplantation being available in only few countries in the region. Government funding and support for dialysis is often unavailable, and when available, often with restrictions. There is a dearth of trained manpower to treat the disease, and many countries have a limited number of units, which are often ill-equipped to deal adequately with the number of patients who require end-stage renal disease (ESRD) care in the region. Although there has been a significant improvement when compared with the situation, even as recently as 10 years ago, there is also the potential for further improvement, which would significantly improve the outcomes in patients with ESRD in the region. The information in this review was obtained from a combination of renal registry reports (published and unpublished), published articles, responses to a questionnaire sent to nephrologists prior to the World Congress of Nephrology (WCN) in Cape Town, and from nephrologists attending the WCN in Cape Town (March 13 - 17, 2015).

  1. Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning

    DEFF Research Database (Denmark)

    Aakerberg, Andreas; Nasrollahi, Kamal; Heder, Thomas

    2018-01-01

    Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to im- prove the performance of visual recognition models is ensemble learning. However, this method has not been widely explored...... in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments...

  2. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  3. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    Science.gov (United States)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  4. Gravity model improvement using GEOS 3 /GEM 9 and 10/. [and Seasat altimetry data

    Science.gov (United States)

    Lerch, F. J.; Wagner, C. A.; Klosko, S. M.; Laubscher, R. E.

    1979-01-01

    Although errors in previous gravity models have produced large uncertainties in the orbital position of GEOS 3, significant improvement has been obtained with new geopotential solutions, Goddard Earth Model (GEM) 9 and 10. The GEM 9 and 10 solutions for the potential coefficients and station coordinates are presented along with a discussion of the new techniques employed. Also presented and discussed are solutions for three fundamental geodetic reference parameters, viz. the mean radius of the earth, the gravitational constant, and mean equatorial gravity. Evaluation of the gravity field is examined together with evaluation of GEM 9 and 10 for orbit determination accuracy. The major objectives of GEM 9 and 10 are achieved. GEOS 3 orbital accuracies from these models are about 1 m in their radial components for 5-day arc lengths. Both models yield significantly improved results over GEM solutions when compared to surface gravimetry, Skylab and GEOS 3 altimetry, and highly accurate BE-C (Beacon Explorer-C) laser ranges. The new values of the parameters discussed are given.

  5. Developing models of how cognitive improvements change functioning: Mediation, moderation and moderated mediation

    Science.gov (United States)

    Wykes, Til; Reeder, Clare; Huddy, Vyv; Taylor, Rumina; Wood, Helen; Ghirasim, Natalia; Kontis, Dimitrios; Landau, Sabine

    2012-01-01

    Background Cognitive remediation (CRT) affects functioning but the extent and type of cognitive improvements necessary are unknown. Aim To develop and test models of how cognitive improvement transfers to work behaviour using the data from a current service. Method Participants (N49) with a support worker and a paid or voluntary job were offered CRT in a Phase 2 single group design with three assessments: baseline, post therapy and follow-up. Working memory, cognitive flexibility, planning and work outcomes were assessed. Results Three models were tested (mediation — cognitive improvements drive functioning improvement; moderation — post treatment cognitive level affects the impact of CRT on functioning; moderated mediation — cognition drives functioning improvements only after a certain level is achieved). There was evidence of mediation (planning improvement associated with improved work quality). There was no evidence that cognitive flexibility (total Wisconsin Card Sorting Test errors) and working memory (Wechsler Adult Intelligence Scale III digit span) mediated work functioning despite significant effects. There was some evidence of moderated mediation for planning improvement if participants had poorer memory and/or made fewer WCST errors. The total CRT effect on work quality was d = 0.55, but the indirect (planning-mediated CRT effect) was d = 0.082 Conclusion Planning improvements led to better work quality but only accounted for a small proportion of the total effect on work outcome. Other specific and non-specific effects of CRT and the work programme are likely to account for some of the remaining effect. This is the first time complex models have been tested and future Phase 3 studies need to further test mediation and moderated mediation models. PMID:22503640

  6. Survival prediction algorithms miss significant opportunities for improvement if used for case selection in trauma quality improvement programs.

    Science.gov (United States)

    Heim, Catherine; Cole, Elaine; West, Anita; Tai, Nigel; Brohi, Karim

    2016-09-01

    Quality improvement (QI) programs have shown to reduce preventable mortality in trauma care. Detailed review of all trauma deaths is a time and resource consuming process and calculated probability of survival (Ps) has been proposed as audit filter. Review is limited on deaths that were 'expected to survive'. However no Ps-based algorithm has been validated and no study has examined elements of preventability associated with deaths classified as 'expected'. The objective of this study was to examine whether trauma performance review can be streamlined using existing mortality prediction tools without missing important areas for improvement. We conducted a retrospective study of all trauma deaths reviewed by our trauma QI program. Deaths were classified into non-preventable, possibly preventable, probably preventable or preventable. Opportunities for improvement (OPIs) involve failure in the process of care and were classified into clinical and system deviations from standards of care. TRISS and PS were used for calculation of probability of survival. Peer-review charts were reviewed by a single investigator. Over 8 years, 626 patients were included. One third showed elements of preventability and 4% were preventable. Preventability occurred across the entire range of the calculated Ps band. Limiting review to unexpected deaths would have missed over 50% of all preventability issues and a third of preventable deaths. 37% of patients showed opportunities for improvement (OPIs). Neither TRISS nor PS allowed for reliable identification of OPIs and limiting peer-review to patients with unexpected deaths would have missed close to 60% of all issues in care. TRISS and PS fail to identify a significant proportion of avoidable deaths and miss important opportunities for process and system improvement. Based on this, all trauma deaths should be subjected to expert panel review in order to aim at a maximal output of performance improvement programs. Copyright © 2016 Elsevier

  7. Improvement of vision measurement accuracy using Zernike moment based edge location error compensation model

    International Nuclear Information System (INIS)

    Cui, J W; Tan, J B; Zhou, Y; Zhang, H

    2007-01-01

    This paper presents the Zernike moment based model developed to compensate edge location errors for further improvement of the vision measurement accuracy by compensating the slight changes resulting from sampling and establishing mathematic expressions for subpixel location of theoretical and actual edges which are either vertical to or at an angle with X-axis. Experimental results show that the proposed model can be used to achieve a vision measurement accuracy of up to 0.08 pixel while the measurement uncertainty is less than 0.36μm. It is therefore concluded that as a model which can be used to achieve a significant improvement of vision measurement accuracy, the proposed model is especially suitable for edge location of images with low contrast

  8. Selection of productivity improvement techniques via mathematical modeling

    Directory of Open Access Journals (Sweden)

    Mahassan M. Khater

    2011-07-01

    Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.

  9. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  10. Can Video Self-Modeling Improve Affected Limb Reach and Grasp Ability in Stroke Patients?

    Science.gov (United States)

    Steel, Kylie Ann; Mudie, Kurt; Sandoval, Remi; Anderson, David; Dogramaci, Sera; Rehmanjan, Mohammad; Birznieks, Ingvars

    2018-01-01

    The authors examined whether feedforward video self-modeling (FF VSM) would improve control over the affected limb, movement self-confidence, movement self-consciousness, and well-being in 18 stroke survivors. Participants completed a cup transport task and 2 questionnaires related to psychological processes pre- and postintervention. Pretest video footage of the unaffected limb performing the task was edited to create a best-of or mirror-reversed training DVD, creating the illusion that patients were performing proficiently with the affected limb. The training yielded significant improvements for the forward movement of the affected limb compared to the unaffected limb. Significant improvements were also seen in movement self-confidence, movement self-consciousness, and well-being. FF VSM appears to be a viable way to improve motor ability in populations with movement disorders.

  11. Improvements to the nuclear model code GNASH for cross section calculations at higher energies

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1994-01-01

    The nuclear model code GNASH, which in the past has been used predominantly for incident particle energies below 20 MeV, has been modified extensively for calculations at higher energies. The model extensions and improvements are described in this paper, and their significance is illustrated by comparing calculations with experimental data for incident energies up to 160 MeV

  12. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    Science.gov (United States)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  13. Gemtuzumab Ozogamicin (GO Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Cathy C Zhang

    2018-01-01

    Full Text Available Gemtuzumab ozogamicin (GO is an anti-CD33 antibody-drug conjugate for the treatment of acute myeloid leukemia (AML. Although GO shows a narrow therapeutic window in early clinical studies, recent reports detailing a modified dosing regimen of GO can be safely combined with induction chemotherapy, and the combination provides significant survival benefits in AML patients. Here we tested whether the survival benefits seen with the combination arise from the enhanced reduction of chemoresidual disease and leukemic initiating cells (LICs. Herein, we use cell line and patient-derived xenograft (PDX AML models to evaluate the combination of GO with daunorubicin and cytarabine (DA induction chemotherapy on AML blast growth and animal survival. DA chemotherapy and GO as separate treatments reduced AML burden but left significant chemoresidual disease in multiple AML models. The combination of GO and DA chemotherapy eliminated nearly all AML burden and extended overall survival. In two small subsets of AML models, chemoresidual disease following DA chemotherapy displayed hallmark markers of leukemic LICs (CLL1 and CD34. In vivo, the two chemoresistant subpopulations (CLL1+/CD117− and CD34+/CD38+ showed higher ability to self-renewal than their counterpart subpopulations, respectively. CD33 was coexpressed in these functional LIC subpopulations. We demonstrate that the GO and DA induction chemotherapy combination more effectively eliminates LICs in AML PDX models than either single agent alone. These data suggest that the survival benefit seen by the combination of GO and induction chemotherapy, nonclinically and clinically, may be attributed to the enhanced reduction of LICs.

  14. A Continuous Improvement Capital Funding Model.

    Science.gov (United States)

    Adams, Matt

    2001-01-01

    Describes a capital funding model that helps assess facility renewal needs in a way that minimizes resources while maximizing results. The article explains the sub-components of a continuous improvement capital funding model, including budgeting processes for finish renewal, building performance renewal, and critical outcome. (GR)

  15. Improved ensemble-mean forecast skills of ENSO events by a zero-mean stochastic model-error model of an intermediate coupled model

    Science.gov (United States)

    Zheng, F.; Zhu, J.

    2015-12-01

    To perform an ensemble-based ENSO probabilistic forecast, the crucial issue is to design a reliable ensemble prediction strategy that should include the major uncertainties of a forecast system. In this study, we developed a new general ensemble perturbation technique to improve the ensemble-mean predictive skill of forecasting ENSO using an intermediate coupled model (ICM). The model uncertainties are first estimated and analyzed from EnKF analysis results through assimilating observed SST. Then, based on the pre-analyzed properties of the model errors, a zero-mean stochastic model-error model is developed to mainly represent the model uncertainties induced by some important physical processes missed in the coupled model (i.e., stochastic atmospheric forcing/MJO, extra-tropical cooling and warming, Indian Ocean Dipole mode, etc.). Each member of an ensemble forecast is perturbed by the stochastic model-error model at each step during the 12-month forecast process, and the stochastical perturbations are added into the modeled physical fields to mimic the presence of these high-frequency stochastic noises and model biases and their effect on the predictability of the coupled system. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr retrospective forecast experiments. The two forecast schemes are differentiated by whether they considered the model stochastic perturbations, with both initialized by the ensemble-mean analysis states from EnKF. The comparison results suggest that the stochastic model-error perturbations have significant and positive impacts on improving the ensemble-mean prediction skills during the entire 12-month forecast process. Because the nonlinear feature of the coupled model can induce the nonlinear growth of the added stochastic model errors with model integration, especially through the nonlinear heating mechanism with the vertical advection term of the model, the

  16. An Improved Physics-Based Model for Topographic Correction of Landsat TM Images

    Directory of Open Access Journals (Sweden)

    Ainong Li

    2015-05-01

    Full Text Available Optical remotely sensed images in mountainous areas are subject to radiometric distortions induced by topographic effects, which need to be corrected before quantitative applications. Based on Li model and Sandmeier model, this paper proposed an improved physics-based model for the topographic correction of Landsat Thematic Mapper (TM images. The model employed Normalized Difference Vegetation Index (NDVI thresholds to approximately divide land targets into eleven groups, due to NDVI’s lower sensitivity to topography and its significant role in indicating land cover type. Within each group of terrestrial targets, corresponding MODIS BRDF (Bidirectional Reflectance Distribution Function products were used to account for land surface’s BRDF effect, and topographic effects are corrected without Lambertian assumption. The methodology was tested with two TM scenes of severely rugged mountain areas acquired under different sun elevation angles. Results demonstrated that reflectance of sun-averted slopes was evidently enhanced, and the overall quality of images was improved with topographic effect being effectively suppressed. Correlation coefficients between Near Infra-Red band reflectance and illumination condition reduced almost to zero, and coefficients of variance also showed some reduction. By comparison with the other two physics-based models (Sandmeier model and Li model, the proposed model showed favorable results on two tested Landsat scenes. With the almost half-century accumulation of Landsat data and the successive launch and operation of Landsat 8, the improved model in this paper can be potentially helpful for the topographic correction of Landsat and Landsat-like data.

  17. E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer

    KAUST Repository

    Kothandaraman, Narasimhan

    2010-02-24

    Background: Ovarian epithelial cancer (OEC) usually presents in the later stages of the disease. Factors, especially those associated with cell-cycle genes, affecting the genesis and tumour progression for ovarian cancer are largely unknown. We hypothesized that over-expressed transcription factors (TFs), as well as those that are driving the expression of the OEC over-expressed genes, could be the key for OEC genesis and potentially useful tissue and serum markers for malignancy associated with OEC.Methods: Using a combination of computational (selection of candidate TF markers and malignancy prediction) and experimental approaches (tissue microarray and western blotting on patient samples) we identified and evaluated E2F5 transcription factor involved in cell proliferation, as a promising candidate regulatory target in early stage disease. Our hypothesis was supported by our tissue array experiments that showed E2F5 expression only in OEC samples but not in normal and benign tissues, and by significantly positively biased expression in serum samples done using western blotting studies.Results: Analysis of clinical cases shows that of the E2F5 status is characteristic for a different population group than one covered by CA125, a conventional OEC biomarker. E2F5 used in different combinations with CA125 for distinguishing malignant cyst from benign cyst shows that the presence of CA125 or E2F5 increases sensitivity of OEC detection to 97.9% (an increase from 87.5% if only CA125 is used) and, more importantly, the presence of both CA125 and E2F5 increases specificity of OEC to 72.5% (an increase from 55% if only CA125 is used). This significantly improved accuracy suggests possibility of an improved diagnostics of OEC. Furthermore, detection of malignancy status in 86 cases (38 benign, 48 early and late OEC) shows that the use of E2F5 status in combination with other clinical characteristics allows for an improved detection of malignant cases with sensitivity

  18. Modeling within-word and cross-word pronunciation variation to improve the performance of a Dutch CSR

    OpenAIRE

    Kessens, J.M.; Wester, M.; Strik, H.

    1999-01-01

    This paper describes how the performance of a continuous speech recognizer for Dutch has been improved by modeling within-word and cross-word pronunciation variation. Within-word variants were automatically generated by applying five phonological rules to the words in the lexicon. For the within-word method, a significant improvement is found compared to the baseline. Cross-word pronunciation variation was modeled using two different methods: 1) adding cross-word variants directly to the lexi...

  19. Improving cardiovascular care through outpatient cardiac rehabilitation: an analysis of payment models that would improve quality and promote use.

    Science.gov (United States)

    Mead, Holly; Grantham, Sarah; Siegel, Bruce

    2014-01-01

    Much attention has been paid to improving the care of patients with cardiovascular disease by focusing attention on delivery system redesign and payment reforms that encompass the healthcare spectrum, from an acute episode to maintenance of care. However, 1 area of cardiovascular disease care that has received little attention in the advancement of quality is cardiac rehabilitation (CR), a comprehensive secondary prevention program that is significantly underused despite evidence-based guidelines that recommending its use. The purpose of this article was to analyze the applicability of 2 payment and reimbursement models-pay-for-performance and bundled payments for episodes of care--that can promote the use of CR. We conclude that a payment model combining elements of both pay-for-performance and episodes of care would increase the use of CR, which would both improve quality and increase efficiency in cardiac care. Specific elements would need to be clearly defined, however, including: (a) how an episode is defined, (b) how to hold providers accountable for the care they provider, (c) how to encourage participation among CR providers, and (d) how to determine an equitable distribution of payment. Demonstrations testing new payment models must be implemented to generate empirical evidence that a melded pay-for-performance and episode-based care payment model will improve quality and efficiency.

  20. Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth

    Science.gov (United States)

    Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing

    2014-10-01

    The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.

  1. An optimization model for improving highway safety

    Directory of Open Access Journals (Sweden)

    Promothes Saha

    2016-12-01

    Full Text Available This paper developed a traffic safety management system (TSMS for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs associated with safety improvement countermeasures, and average daily traffics (ADTs. This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.

  2. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.

    1997-01-01

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  3. Improvements in numerical modelling of highly injected crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P. [University of New South Wales, Centre for Photovoltaic Engineering, 2052 Sydney (Australia); Sinton, R.A. [Sinton Consulting, 1132 Green Circle, 80303 Boulder, CO (United States); Heiser, G. [University of NSW, School of Computer Science and Engineering, 2052 Sydney (Australia)

    2001-01-01

    We numerically model crystalline silicon concentrator cells with the inclusion of band gap narrowing (BGN) caused by injected free carriers. In previous studies, the revised room-temperature value of the intrinsic carrier density, n{sub i}=1.00x10{sup 10}cm{sup -3}, was inconsistent with the other material parameters of highly injected silicon. In this paper, we show that high-injection experiments can be described consistently with the revised value of n{sub i} if free-carrier induced BGN is included, and that such BGN is an important effect in silicon concentrator cells. The new model presented here significantly improves the ability to model highly injected silicon cells with a high level of precision.

  4. Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-01-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling either medium dose (3.53%), low dose (1.29%), or placebo cannabis with the primary outcome being VAS pain intensity. Psychoactive side-effects, and neuropsychological performance were also evaluated. Mixed effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the two active dose groups’ results (p>0.7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo vs. low dose, 2.9 for placebo vs. medium dose, and 25 for medium vs. low dose. As these NNT are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being, for all intents and purposes, as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well-tolerated, and neuropsychological effects were of limited duration and readily reversible within 1–2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. PMID:23237736

  5. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    Science.gov (United States)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  6. Improving Agent Based Modeling of Critical Incidents

    Directory of Open Access Journals (Sweden)

    Robert Till

    2010-04-01

    Full Text Available Agent Based Modeling (ABM is a powerful method that has been used to simulate potential critical incidents in the infrastructure and built environments. This paper will discuss the modeling of some critical incidents currently simulated using ABM and how they may be expanded and improved by using better physiological modeling, psychological modeling, modeling the actions of interveners, introducing Geographic Information Systems (GIS and open source models.

  7. INTEGRATED COST MODEL FOR IMPROVING THE PRODUCTION IN COMPANIES

    Directory of Open Access Journals (Sweden)

    Zuzana Hajduova

    2014-12-01

    Full Text Available Purpose: All processes in the company play important role in ensuring functional integrated management system. We point out the importance of need for a systematic approach to the use of quantitative, but especially statistical methods for modelling the cost of the improvement activities that are part of an integrated management system. Development of integrated management systems worldwide leads towards building of systematic procedures of implementation maintenance and improvement of all systems according to the requirements of all the sides involved.Methodology: Statistical evaluation of the economic indicators of improvement costs and the need for a systematic approach to their management in terms of integrated management systems have become a key role also in the management of processes in the company Cu Drôt, a.s. The aim of this publication is to highlight the importance of proper implementation of statistical methods in the process of improvement costs management in the integrated management system of current market conditions and document the legitimacy of a systematic approach in the area of monitoring and analysing indicators of improvement with the aim of the efficient process management of company. We provide specific example of the implementation of appropriate statistical methods in the production of copper wire in a company Cu Drôt, a.s. This publication also aims to create a model for the estimation of integrated improvement costs, which through the use of statistical methods in the company Cu Drôt, a.s. is used to support decision-making on improving efficiency.Findings: In the present publication, a method for modelling the improvement process, by an integrated manner, is proposed. It is a method in which the basic attributes of the improvement in quality, safety and environment are considered and synergistically combined in the same improvement project. The work examines the use of sophisticated quantitative, especially

  8. TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis

    International Nuclear Information System (INIS)

    Krafft, S; Briere, T; Court, L; Martel, M

    2015-01-01

    Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. A total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP

  9. An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping

    Directory of Open Access Journals (Sweden)

    Qianqian Ba

    2017-01-01

    Full Text Available Landslides, as geological hazards, cause significant casualties and economic losses. Therefore, it is necessary to identify areas prone to landslides for prevention work. This paper proposes an improved information value model based on gray clustering (IVM-GC for landslide susceptibility mapping. This method uses the information value derived from an information value model to achieve susceptibility classification and weight determination of landslide predisposing factors and, hence, obtain the landslide susceptibility of each study unit based on the clustering analysis. Using a landslide inventory of Chongqing, China, which contains 8435 landslides, three landslide susceptibility maps were generated based on the common information value model (IVM, an information value model improved by an analytic hierarchy process (IVM-AHP and our new improved model. Approximately 70% (5905 of the inventory landslides were used to generate the susceptibility maps, while the remaining 30% (2530 were used to validate the results. The training accuracies of the IVM, IVM-AHP and IVM-GC were 81.8%, 78.7% and 85.2%, respectively, and the prediction accuracies were 82.0%, 78.7% and 85.4%, respectively. The results demonstrate that all three methods perform well in evaluating landslide susceptibility. Among them, IVM-GC has the best performance.

  10. An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO

    Directory of Open Access Journals (Sweden)

    Xiaofeng Lv

    2018-01-01

    Full Text Available Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR and fault isolation rate (FIR. From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.

  11. Teaching physical activities to students with significant disabilities using video modeling.

    Science.gov (United States)

    Cannella-Malone, Helen I; Mizrachi, Sharona V; Sabielny, Linsey M; Jimenez, Eliseo D

    2013-06-01

    The objective of this study was to examine the effectiveness of video modeling on teaching physical activities to three adolescents with significant disabilities. The study implemented a multiple baseline across six physical activities (three per student): jumping rope, scooter board with cones, ladder drill (i.e., feet going in and out), ladder design (i.e., multiple steps), shuttle run, and disc ride. Additional prompt procedures (i.e., verbal, gestural, visual cues, and modeling) were implemented within the study. After the students mastered the physical activities, we tested to see if they would link the skills together (i.e., complete an obstacle course). All three students made progress learning the physical activities, but only one learned them with video modeling alone (i.e., without error correction). Video modeling can be an effective tool for teaching students with significant disabilities various physical activities, though additional prompting procedures may be needed.

  12. Crop Model Improvement Reduces the Uncertainty of the Response to Temperature of Multi-Model Ensembles

    Science.gov (United States)

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold; Ewert, Frank; Mueller, Christoph; Roetter, Reimund P.; Ruane, Alex C.; Semenov, Mikhail A.; Wallach, Daniel; Wang, Enli

    2016-01-01

    To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures greater than 24 C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.

  13. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography

    Science.gov (United States)

    Boudria, Yacine; Feltane, Amal; Besio, Walter

    2014-06-01

    Objective. Brain-computer interfaces (BCIs) based on electroencephalography (EEG) have been shown to accurately detect mental activities, but the acquisition of high levels of control require extensive user training. Furthermore, EEG has low signal-to-noise ratio and low spatial resolution. The objective of the present study was to compare the accuracy between two types of BCIs during the first recording session. EEG and tripolar concentric ring electrode (TCRE) EEG (tEEG) brain signals were recorded and used to control one-dimensional cursor movements. Approach. Eight human subjects were asked to imagine either ‘left’ or ‘right’ hand movement during one recording session to control the computer cursor using TCRE and disc electrodes. Main results. The obtained results show a significant improvement in accuracies using TCREs (44%-100%) compared to disc electrodes (30%-86%). Significance. This study developed the first tEEG-based BCI system for real-time one-dimensional cursor movements and showed high accuracies with little training.

  14. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  15. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation

    Directory of Open Access Journals (Sweden)

    Chia-Hung Dylan Tsai

    2016-10-01

    Full Text Available An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of deformation provides statistical information of RBC deformability. However, such correlations are usually only moderate, or even weak, in practical evaluations due to limited range of RBC deformation. To solve this issue, we implemented three constrictions of different width in the proposed checker, so that three different deformation regions can be applied to RBCs. By considering cell responses from the three regions as a whole, we practically extend the range of cell deformation in the evaluation, and could resolve the issue about the limited range of RBC deformation. RBCs from five volunteer subjects were tested using the proposed checker. The results show that the correlation between cell deformation and transit velocity is significantly improved by the proposed deformability checker. The absolute values of the correlation coefficients are increased from an average of 0.54 to 0.92. The effects of cell size, shape and orientation to the evaluation are discussed according to the experimental results. The proposed checker is expected to be useful for RBC evaluation in medical practices.

  16. Improved SPICE electrical model of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Marano, D., E-mail: davide.marano@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Belluso, M.; Billotta, S.; Grillo, A.; Garozzo, S.; Romeo, G. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; La Rosa, G.; Sottile, G.; Impiombato, D.; Giarrusso, S. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2013-10-21

    The present work introduces an improved SPICE equivalent electrical model of silicon photomultiplier (SiPM) detectors, in order to simulate and predict their transient response to avalanche triggering events. In particular, the developed circuit model provides a careful investigation of the magnitude and timing of the read-out signals and can therefore be exploited to perform reliable circuit-level simulations. The adopted modeling approach is strictly related to the physics of each basic microcell constituting the SiPM device, and allows the avalanche timing as well as the photodiode current and voltage to be accurately simulated. Predictive capabilities of the proposed model are demonstrated by means of experimental measurements on a real SiPM detector. Simulated and measured pulses are found to be in good agreement with the expected results. -- Highlights: • An improved SPICE electrical model of silicon photomultipliers is proposed. • The developed model provides a truthful representation of the physics of the device. • An accurate charge collection as a function of the overvoltage is achieved. • The adopted electrical model allows reliable circuit-level simulations to be performed. • Predictive capabilities of the adopted model are experimentally demonstrated.

  17. Improvements in ECN Wake Model

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, M.C. [University of Twente, Enschede (Netherlands); Ozdemir, H.; Brand, A.J. [ECN Wind Energy, Petten (Netherlands)

    2013-08-15

    Wind turbines extract energy from the flow field so that the flow in the wake of a wind turbine contains less energy and more turbulence than the undisturbed flow, leading to less energy extraction for the downstream turbines. In large wind farms, most turbines are located in the wake of one or more turbines causing the flow characteristics felt by these turbines differ considerably from the free stream flow conditions. The most important wake effect is generally considered to be the lower wind speed behind the turbine(s) since this decreases the energy production and as such the economical performance of a wind farm. The overall loss of a wind farm is very much dependent on the conditions and the lay-out of the farm but it can be in the order of 5-10%. Apart from the loss in energy production an additional wake effect is formed by the increase in turbulence intensity, which leads to higher fatigue loads. In this sense it becomes important to understand the details of wake behavior to improve and/or optimize a wind farm layout. Within this study improvements are presented for the existing ECN wake model which constructs the fundamental basis of ECN's FarmFlow wind farm wake simulation tool. The outline of this paper is as follows: first, the governing equations of the ECN wake farm model are presented. Then the near wake modeling is discussed and the results compared with the original near wake modeling and EWTW (ECN Wind Turbine Test Site Wieringermeer) data as well as the results obtained for various near wake implementation cases are shown. The details of the atmospheric stability model are given and the comparison with the solution obtained for the original surface layer model and with the available data obtained by EWTW measurements are presented. Finally the conclusions are summarized.

  18. Modeling of chemical exergy of agricultural biomass using improved general regression neural network

    International Nuclear Information System (INIS)

    Huang, Y.W.; Chen, M.Q.; Li, Y.; Guo, J.

    2016-01-01

    A comprehensive evaluation for energy potential contained in agricultural biomass was a vital step for energy utilization of agricultural biomass. The chemical exergy of typical agricultural biomass was evaluated based on the second law of thermodynamics. The chemical exergy was significantly influenced by C and O elements rather than H element. The standard entropy of the samples also was examined based on their element compositions. Two predicted models of the chemical exergy were developed, which referred to a general regression neural network model based upon the element composition, and a linear model based upon the high heat value. An auto-refinement algorithm was firstly developed to improve the performance of regression neural network model. The developed general regression neural network model with K-fold cross-validation had a better ability for predicting the chemical exergy than the linear model, which had lower predicted errors (±1.5%). - Highlights: • Chemical exergies of agricultural biomass were evaluated based upon fifty samples. • Values for the standard entropy of agricultural biomass samples were calculated. • A linear relationship between chemical exergy and HHV of samples was detected. • An improved GRNN prediction model for the chemical exergy of biomass was developed.

  19. Improving Catastrophe Modeling for Business Interruption Insurance Needs.

    Science.gov (United States)

    Rose, Adam; Huyck, Charles K

    2016-10-01

    While catastrophe (CAT) modeling of property damage is well developed, modeling of business interruption (BI) lags far behind. One reason is the crude nature of functional relationships in CAT models that translate property damage into BI. Another is that estimating BI losses is more complicated because it depends greatly on public and private decisions during recovery with respect to resilience tactics that dampen losses by using remaining resources more efficiently to maintain business function and to recover more quickly. This article proposes a framework for improving hazard loss estimation for BI insurance needs. Improved data collection that allows for analysis at the level of individual facilities within a company can improve matching the facilities with the effectiveness of individual forms of resilience, such as accessing inventories, relocating operations, and accelerating repair, and can therefore improve estimation accuracy. We then illustrate the difference this can make in a case study example of losses from a hurricane. © 2016 Society for Risk Analysis.

  20. Significant uncertainty in global scale hydrological modeling from precipitation data erros

    NARCIS (Netherlands)

    Sperna Weiland, F.; Vrugt, J.A.; Beek, van P.H.; Weerts, A.H.; Bierkens, M.F.P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  1. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NARCIS (Netherlands)

    Weiland, Frederiek C. Sperna; Vrugt, Jasper A.; van Beek, Rens (L. ) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  2. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice.

    Science.gov (United States)

    Motta, Victor F; Aguila, Marcia B; Mandarim-DE-Lacerda, Carlos A

    2016-05-01

    Controlling obesity and other comorbidities in the population is a challenge in modern society. High-intensity interval training (HIIT) combines short periods of high-intensity exercise with long recovery periods or a low-intensity exercise. The aim was to assess the impact of HIIT in the context of diet-induced obesity in the animal model. C57BL/6 mice were fed one of the two diets: standard chow (lean group [LE]) or a high-fat diet (obese group [OB]). After twelve weeks, the animals were divided into non-trained groups (LE-NT and OB-NT) and trained groups (LE-T and OB-T), and began an exercise protocol. For biochemical analysis of inflammatory and lipid profile, we used a colorimetric enzymatic method and an automatic spectrophotometer. One-way ANOVA was used for statistical analysis of the experimental groups with Holm-Sidak post-hoc Test. Two-way ANOVA analyzed the interactions between diet and HIIT protocol. HIIT leads to significant reductions in body mass, blood glucose, glucose tolerance and hepatic lipid profile in T-groups compared to NT-groups. HIIT was able to reduce plasma levels of inflammatory cytokines. Additionally, HIIT improves the insulin immunodensity in the islets, reduces the adiposity and the hepatic steatosis in the T-groups. HIIT improves beta-oxidation and peroxisome proliferator-activated receptor (PPAR)-alpha and reduces lipogenesis and PPAR-gamma levels in the liver. In skeletal muscle, HIIT improves PPAR-alpha and glucose transporter-4 and reduces PPAR-gamma levels. HIIT leads to attenuate the adverse effects caused by a chronic ingestion of a high-fat diet.

  3. New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection

    Science.gov (United States)

    Aubé, M.; Simoneau, A.

    2018-05-01

    Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016-17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications. After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).

  4. Improved hydrogen combustion model for multi-compartment analysis

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    2000-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using six different flame front shapes of fireball, prism, bubble, spherical jet, plane jet, and parallelepiped. A verification study of the proposed model was carried out using the NUPEC large-scale combustion test results following the previous work in which the GRS/Battelle multi-compartment combustion test results had been used. The selected test cases for the study were the premixed test and the scenario-oriented test which simulated the severe accident sequences of an actual plant. The improved MELCOR code replaced by the proposed model could predict sufficiently both results of the premixed test and the scenario-oriented test of NUPEC large-scale test. The improved MELCOR code was confirmed to simulate the combustion behavior in the multi-compartment containment vessel during a severe accident with acceptable degree of accuracy. Application of the new model to the LWR severe accident analysis will be continued. (author)

  5. Improvements on Semi-Classical Distorted-Wave model

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.

    1998-03-01

    A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)

  6. Improving MJO Prediction and Simulation Using AGCM Coupled Ocean Model with Refined Vertical Resolution

    Science.gov (United States)

    Tu, Chia-Ying; Tseng, Wan-Ling; Kuo, Pei-Hsuan; Lan, Yung-Yao; Tsuang, Ben-Jei; Hsu, Huang-Hsiung

    2017-04-01

    Precipitation in Taiwan area is significantly influenced by MJO (Madden-Julian Oscillation) in the boreal winter. This study is therefore conducted by toggling the MJO prediction and simulation with a unique model structure. The one-dimensional TKE (Turbulence Kinetic Energy) type ocean model SIT (Snow, Ice, Thermocline) with refined vertical resolution near surface is able to resolve cool skin, as well as diurnal warm layer. SIT can simulate accurate SST and hence give precise air-sea interaction. By coupling SIT with ECHAM5 (MPI-Meteorology), CAM5 (NCAR) and HiRAM (GFDL), the MJO simulations in 20-yrs climate integrations conducted by three SIT-coupled AGCMs are significant improved comparing to those driven by prescribed SST. The horizontal resolutions in ECHAM5, CAM5 and HiRAM are 2-deg., 1-deg and 0.5-deg., respectively. This suggests that the improvement of MJO simulation by coupling SIT is AGCM-resolution independent. This study further utilizes HiRAM coupled SIT to evaluate its MJO forecast skill. HiRAM has been recognized as one of the best model for seasonal forecasts of hurricane/typhoon activity (Zhao et al., 2009; Chen & Lin, 2011; 2013), but was not as successful in MJO forecast. The preliminary result of the HiRAM-SIT experiment during DYNAMO period shows improved success in MJO forecast. These improvements of MJO prediction and simulation in both hindcast experiments and climate integrations are mainly from better-simulated SST diurnal cycle and diurnal amplitude, which is contributed by the refined vertical resolution near ocean surface in SIT. Keywords: MJO Predictability, DYNAMO

  7. Improved double Q2 rescaling model

    International Nuclear Information System (INIS)

    Gao Yonghua

    2001-01-01

    The authors present an improved double Q 2 rescaling model. Based on this condition of the nuclear momentum conservation, the authors have found a Q 2 rescaling parameters' formula of the model, where authors have established the connection between the Q 2 rescaling parameter ζ i (i = v, s, g) and the mean binding energy in nucleus. By using this model, the authors coned explain the experimental data of the EMC effect in the whole x region, the nuclear Drell-Yan process and J/Ψ photoproduction process

  8. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  9. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  10. Innovative model of delivering quality improvement education for trainees – a pilot project

    Directory of Open Access Journals (Sweden)

    Kannan Ramar

    2015-09-01

    Full Text Available Background: After incorporating quality improvement (QI education as a required curriculum for our trainees in 2010, a need arose to readdress our didactic sessions as they were too long, difficult to schedule, and resulting in a drop in attendance. A ‘flipped classroom’ (FC model to deliver QI education was touted to be an effective delivery method as it allows the trainees to view didactic materials on videos, on their own time, and uses the classroom to clarify concepts and employ learned tools on case-based scenarios including workshops. Methods: The Mayo Quality Academy prepared 29 videos that incorporated the previously delivered 17 weekly didactic sessions, for a total duration of 135 min. The half-day session clarified questions related to the videos, followed by case examples and a hands-on workshop on how to perform and utilize a few commonly used QI tools and methods. Results: Seven trainees participated. There was a significant improvement in knowledge as measured by pre- and post-FC model test results [improvement by 40.34% (SD 16.34, p<0.001]. The survey results were overall positive about the FC model with all trainees strongly agreeing that we should continue with this model to deliver QI education. Conclusions: The pilot project of using the FC model to deliver QI education was successful in a small sample of trainees.

  11. Significant improvement of optical traps by tuning standard water immersion objectives

    International Nuclear Information System (INIS)

    Reihani, S Nader S; Mir, Shahid A; Richardson, Andrew C; Oddershede, Lene B

    2011-01-01

    Focused infrared lasers are widely used for micromanipulation and visualization of biological specimens. An inherent practical problem is that off-the-shelf commercial microscope objectives are designed for use with visible and not infrared wavelengths. Less aberration is introduced by water immersion objectives than by oil immersion ones, however, even water immersion objectives induce significant aberration. We present a simple method to reduce the spherical aberration induced by water immersion objectives, namely by tuning the correction collar of the objective to a value that is ∼ 10% lower than the physical thickness of the coverslip. This results in marked improvements in optical trapping strengths of up to 100% laterally and 600% axially from a standard microscope objective designed for use in the visible range. The results are generally valid for any water immersion objective with any numerical aperture

  12. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    Zang, Weilin; Gunnars, Jens; Dong, Pingsha; Hong, Jeong K.

    2009-06-01

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  13. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  14. Improving practical atmospheric dispersion models

    International Nuclear Information System (INIS)

    Hunt, J.C.R.; Hudson, B.; Thomson, D.J.

    1992-01-01

    The new generation of practical atmospheric dispersion model (for short range ≤ 30 km) are based on dispersion science and boundary layer meteorology which have widespread international acceptance. In addition, recent improvements in computer skills and the widespread availability of small powerful computers make it possible to have new regulatory models which are more complex than the previous generation which were based on charts and simple formulae. This paper describes the basis of these models and how they have developed. Such models are needed to satisfy the urgent public demand for sound, justifiable and consistent environmental decisions. For example, it is preferable that the same models are used to simulate dispersion in different industries; in many countries at present different models are used for emissions from nuclear and fossil fuel power stations. The models should not be so simple as to be suspect but neither should they be too complex for widespread use; for example, at public inquiries in Germany, where simple models are mandatory, it is becoming usual to cite the results from highly complex computational models because the simple models are not credible. This paper is written in a schematic style with an emphasis on tables and diagrams. (au) (22 refs.)

  15. Collaborative Project: Building improved optimized parameter estimation algorithms to improve methane and nitrogen fluxes in a climate model

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Natalie [Cornell Univ., Ithaca, NY (United States)

    2016-11-29

    earth science with limited numbers of simulations; and, c) will be (as part of the proposed research) significantly improved both by adding asynchronous parallelism, early truncation of unsuccessful simulations, and the improvement of both serial and parallel performance by the use of derivative and sensitivity information from global and local surrogate approximations S(x). The algorithm development and testing will be focused on the CLM-ME/N model application, but the methods are general and are expected to also perform well on optimization for parameter estimation of other climate models and other classes of continuous multimodal optimization problems arising from complex simulation models. In addition, this proposal will compile available datasets of emissions of methane, nitrous oxides and reactive nitrogen species and develop protocols for site level comparisons with the CLM-ME/N. Once the model parameters are optimized against site level data, the model will be simulated at the global level and compared to atmospheric concentration measurements for the current climate, and future emissions will be estimated using climate change as simulated by the CESM. This proposal combines experts in earth system modeling, optimization, computer science, and process level understanding of soil gas emissions in an interdisciplinary team in order to improve the modeling of methane and nitrogen gas emissions. This proposal thus meets the requirements of the SciDAC RFP, by integrating state-of-the-art computer science and earth system to build an improved earth system model.

  16. Thermosensitive Hydrogel Mask Significantly Improves Skin Moisture and Skin Tone; Bilateral Clinical Trial

    Directory of Open Access Journals (Sweden)

    Anna Quattrone

    2017-06-01

    Full Text Available Objective: A temperature-sensitive state-changing hydrogel mask was used in this study. Once it comes into contact with the skin and reaches the body temperature, it uniformly and quickly releases the active compounds, which possess moisturizing, anti-oxidant, anti-inflammatory and regenerative properties. Methods: An open label clinical trial was conducted to evaluate the effects of the test product on skin hydration, skin tone and skin ageing. Subjects applied the product to one side of their face and underwent Corneometer® and Chromameter measurements, Visual assessment of facial skin ageing and facial photography. All assessments and Self-Perception Questionnaires (SPQ were performed at baseline, after the first application of the test product and after four applications. Results: After a single treatment we observed an increase in skin moisturisation, an improvement of skin tone/luminosity and a reduction in signs of ageing, all statistically significant. After four applications a further improvement in all measured parameters was recorded. These results were confirmed by the subjects’ own perceptions, as reported in the SPQ both after one and four applications. Conclusion: The hydrogel mask tested in this study is very effective in improving skin hydration, skin radiance and luminosity, in encouraging an even skin tone and in reducing skin pigmentation.

  17. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  18. Understanding catchment behaviour through model concept improvement

    NARCIS (Netherlands)

    Fenicia, F.

    2008-01-01

    This thesis describes an approach to model development based on the concept of iterative model improvement, which is a process where by trial and error different hypotheses of catchment behaviour are progressively tested, and the understanding of the system proceeds through a combined process of

  19. The Significance of the Bystander Effect: Modeling, Experiments, and More Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-22

    Non-targeted (bystander) effects of ionizing radiation are caused by intercellular signaling; they include production of DNA damage and alterations in cell fate (i.e. apoptosis, differentiation, senescence or proliferation). Biophysical models capable of quantifying these effects may improve cancer risk estimation at radiation doses below the epidemiological detection threshold. Understanding the spatial patterns of bystander responses is important, because it provides estimates of how many bystander cells are affected per irradiated cell. In a first approach to modeling of bystander spatial effects in a three-dimensional artificial tissue, we assumed the following: (1) The bystander phenomenon results from signaling molecules (S) that rapidly propagate from irradiated cells and decrease in concentration (exponentially in the case of planar symmetry) as distance increases. (2) These signals can convert cells to a long-lived epigenetically activated state, e.g. a state of oxidative stress; cells in this state are more prone to DNA damage and behavior alterations than normal and therefore exhibit an increased response (R) for many end points (e.g. apoptosis, differentiation, micronucleation). These assumptions were implemented by a mathematical formalism and computational algorithms. The model adequately described data on bystander responses in the 3D system using a small number of adjustable parameters. Mathematical models of radiation carcinogenesis are important for understanding mechanisms and for interpreting or extrapolating risk. There are two classes of such models: (1) long-term formalisms that track pre-malignant cell numbers throughout an entire lifetime but treat initial radiation dose-response simplistically and (2) short-term formalisms that provide a detailed initial dose-response even for complicated radiation protocols, but address its modulation during the subsequent cancer latency period only indirectly. We argue that integrating short- and long

  20. Improved Mathematical Models for Particle-Size Distribution Data

    African Journals Online (AJOL)

    BirukEdimon

    School of Civil & Environmental Engineering, Addis Ababa Institute of Technology,. 3. Murray Rix ... two improved mathematical models to describe ... demand further improvement to handle the PSD ... statistics and the range of the optimized.

  1. A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search.

    Directory of Open Access Journals (Sweden)

    Simon D Angus

    Full Text Available Multi-dose radiotherapy protocols (fraction dose and timing currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5% and 7.1% (13.3% improvement (reduction on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h, leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost

  2. A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search.

    Science.gov (United States)

    Angus, Simon D; Piotrowska, Monika Joanna

    2014-01-01

    Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means

  3. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  4. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.

    Science.gov (United States)

    Tian, Ye; Zhang, Bai; Hoffman, Eric P; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M; Wang, Yue

    2014-07-24

    Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological

  5. Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhien [Univ. of Wyoming, Laramie, WY (United States)

    2016-12-13

    Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentration retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations

  6. How Often Is the Misfit of Item Response Theory Models Practically Significant?

    Science.gov (United States)

    Sinharay, Sandip; Haberman, Shelby J.

    2014-01-01

    Standard 3.9 of the Standards for Educational and Psychological Testing ([, 1999]) demands evidence of model fit when item response theory (IRT) models are employed to data from tests. Hambleton and Han ([Hambleton, R. K., 2005]) and Sinharay ([Sinharay, S., 2005]) recommended the assessment of practical significance of misfit of IRT models, but…

  7. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    International Nuclear Information System (INIS)

    Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen

    2015-01-01

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  8. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-Cheng [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Huang, Guohe, E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Huang, Yuefei [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Hua [College of Science and Engineering, Texas A& M University — Corpus Christi, Corpus Christi, TX 78412-5797 (United States); Li, Zhong [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Chen, Qiuwen [Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029 (China)

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  9. A model for ageing-home-care service process improvement

    OpenAIRE

    Yu, Shu-Yan; Shie, An-Jin

    2017-01-01

    The purpose of this study was to develop an integrated model to improve service processes in ageing-home-care. According to the literature, existing service processes have potential service failures that affect service quality and efficacy. However, most previous studies have only focused on conceptual model development using New Service Development (NSD) and fail to provide a systematic model to analyse potential service failures and facilitate managers developing solutions to improve the se...

  10. Knowledge-Management-Based-Nursing Care Model Improves Patient Adherence to Tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    Ninuk Dian Kurniawati

    2016-04-01

    Full Text Available Introduction. Pulmonary tuberculosis remains prominent as one of public health problems in the world. Patients’ non-compliance to treatment is a significant contributor to drug resistance. This study aimed to develop and to test the efficacy of a nursing care model to prevent non-compliance. Method This study consisted of two phases: phase one, model development, used a descriptive analytic, and phase two, model testing, employed a quasi-experimental design. Participants, comprised both patients and nurses at two health care centres in Surabaya, were recruited by consecutive sampling. Data were collected by interview, self-administered-questionnaires, check-list and focused group discussion. Data analyses were performed using both partial least squares and Wilcoxon signed rank test. Results. The model was statistically effective to improve nearly all aspects of patients’ compliance to TB treatment (knowledge, discipline in taking medications regularity of controls, and abilities to monitor the results of treatment with p < 0.05, except for abilities to cope with drug adverse effects (p = 1.000. This is possible because seldom do patients aware of the medication side effects, so their experiences were probably limited. Conclusion. This study concludes that the KM nursing care model was proven effective to improve patients’ adherence to treatment. Future study is suggested to evaluate the impact of the KM nursing care model in bigger population.

  11. Natalizumab Significantly Improves Cognitive Impairment over Three Years in MS: Pattern of Disability Progression and Preliminary MRI Findings.

    Directory of Open Access Journals (Sweden)

    Flavia Mattioli

    Full Text Available Previous studies reported that Multiple Sclerosis (MS patients treated with natalizumab for one or two years exhibit a significant reduction in relapse rate and in cognitive impairment, but the long term effects on cognitive performance are unknown. This study aimed to evaluate the effects of natalizumab on cognitive impairment in a cohort of 24 consecutive patients with relapsing remitting MS treated for 3 years. The neuropsychological tests, as well as relapse number and EDSS, were assessed at baseline and yearly for three years. The impact on cortical atrophy was also considered in a subgroup of them, and are thus to be considered as preliminary. Results showed a significant reduction in the number of impaired neuropsychological tests after three years, a significant decrease in annualized relapse rate at each time points compared to baseline and a stable EDSS. In the neuropsychological assessment, a significant improvement in memory, attention and executive function test scores was detected. Preliminary MRI data show that, while GM volume did not change at 3 years, a significantly greater parahippocampal and prefrontal gray matter density was noticed, the former correlating with neuropsychological improvement in a memory test. This study showed that therapy with Natalizumab is helpful in improving cognitive performance, and is likely to have a protective role on grey matter, over a three years follow-up.

  12. Improved Modeling and Prediction of Surface Wave Amplitudes

    Science.gov (United States)

    2017-05-31

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0162 TR-2017-0162 IMPROVED MODELING AND PREDICTION OF SURFACE WAVE AMPLITUDES Jeffry L. Stevens, et al. Leidos...data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented...SUBTITLE Improved Modeling and Prediction of Surface Wave Amplitudes 5a. CONTRACT NUMBER FA9453-14-C-0225 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  13. A Unified Framework for Systematic Model Improvement

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A unified framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation (SDE) modelling, statistical tests and multivariate nonparametric regression. This co......-batch bioreactor, where it is illustrated how an incorrectly modelled biomass growth rate can be pinpointed and an estimate provided of the functional relation needed to properly describe it....

  14. Multi-physics Modeling for Improving Li-Ion Battery Safety; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Kim, G.; Santhanagopalan, S.; Yang, C.

    2015-04-21

    Battery performance, cost, and safety must be further improved for larger market share of HEVs/PEVs and penetration into the grid. Significant investment is being made to develop new materials, fine tune existing ones, improve cell and pack designs, and enhance manufacturing processes to increase performance, reduce cost, and make batteries safer. Modeling, simulation, and design tools can play an important role by providing insight on how to address issues, reducing the number of build-test-break prototypes, and accelerating the development cycle of generating products.

  15. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng

    2014-12-01

    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  16. Improved transition models for cepstral trajectories

    CSIR Research Space (South Africa)

    Badenhorst, J

    2012-11-01

    Full Text Available We improve on a piece-wise linear model of the trajectories of Mel Frequency Cepstral Coefficients, which are commonly used as features in Automatic Speech Recognition. For this purpose, we have created a very clean single-speaker corpus, which...

  17. An improved large signal model of InP HEMTs

    Science.gov (United States)

    Li, Tianhao; Li, Wenjun; Liu, Jun

    2018-05-01

    An improved large signal model for InP HEMTs is proposed in this paper. The channel current and charge model equations are constructed based on the Angelov model equations. Both the equations for channel current and gate charge models were all continuous and high order drivable, and the proposed gate charge model satisfied the charge conservation. For the strong leakage induced barrier reduction effect of InP HEMTs, the Angelov current model equations are improved. The channel current model could fit DC performance of devices. A 2 × 25 μm × 70 nm InP HEMT device is used to demonstrate the extraction and validation of the model, in which the model has predicted the DC I–V, C–V and bias related S parameters accurately. Project supported by the National Natural Science Foundation of China (No. 61331006).

  18. Improvement of insulin secretion in rat models of diabetes after ACEI/ARB therapy

    International Nuclear Information System (INIS)

    Tian Jingyan; Li Fengying; Liu Yun; Long Hongmei; Li Weiyi; Wang Xiao; Zhang Hongli; Li Guo; Luo Min

    2009-01-01

    Objective To study the effect of ACEI/ARB therapy on the secretion of insulin and glucagon as well as serum lipid peroxidation marker 8-iso PGF-2α levels in streptozoticin (STZ) induced diabetic rat models.Methods Twenty-four rat models of STZ induced diabetes were prepared (random blood sugar>16.7 mmol/L). Of which, 8 models were fed enalaprial 5mg/kg/d, 8 models were fed losartan 10μg/kg/d and 8 models left unterated. Fasting serum insulin,glucagon (with RIA) and 8-iso PGF-2α (with ELISA) levels were measured in these models and 8 control rats three weeks later. Intravenous glucose tolerance test (IVGTT) were performed in 12 rats (3 animals in each group) six weeks later. Results: Serum levels of insulin in the treated models were higher than those in the non-treated models but without significance (P>0.05). Serum levels of glucagon and 8-iso PGF-2α levels in the treated models were significantly lower than those in the non-treated models (P 6 x ) in the treated models. Conclusion: ACEI/ARB treatment could improve the secretion of insulin in rat models of diabetes, which might be beneficial for controlling the progression of the disease. This phenomenon is consistent with the result of clinical study. (authors)

  19. Highly Adoptable Improvement: A Practical Model and Toolkit to Address Adoptability and Sustainability of Quality Improvement Initiatives.

    Science.gov (United States)

    Hayes, Christopher William; Goldmann, Don

    2018-03-01

    Failure to consider the impact of change on health care providers is a barrier to success. Initiatives that increase workload and have low perceived value are less likely to be adopted. A practical model and supporting tools were developed on the basis of existing theories to help quality improvement (QI) programs design more adoptable approaches. Models and theories from the diffusion of innovation and work stress literature were reviewed, and key-informant interviews and site visits were conducted to develop a draft Highly Adoptable Improvement (HAI) Model. A list of candidate factors considered for inclusion in the draft model was presented to an expert panel. A modified Delphi process was used to narrow the list of factors into main themes and refine the model. The resulting model and supporting tools were pilot tested by 16 improvement advisors for face validity and usability. The HAI Model depicts how workload and perceived value influence adoptability of QI initiatives. The supporting tools include an assessment guide and suggested actions that QI programs can use to help design interventions that are likely to be adopted. Improvement advisors reported good face validity and usability and found that the model and the supporting tools helped address key issues related to adoption and reported that they would continue to use them. The HAI Model addresses important issues regarding workload and perceived value of improvement initiatives. Pilot testing suggests that the model and supporting tools are helpful and practical in guiding design and implementation of adoptable and sustainable QI interventions. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  20. Improving Climate and Achievement in a Troubled Urban High School through the Talent Development Model.

    Science.gov (United States)

    McPartland, James; Balfanz, Robert; Jordan, Will; Legters, Nettie

    1998-01-01

    A case study of a large nonselective urban high school in Baltimore (Maryland) describes the design and implementation of a comprehensive package of school reforms, the Talent Development Model with Career Academies. Qualitative and quantitative evidence is provided on significant improvements in school climate, student attendance, promotion…

  1. Clinical performance improvement series. Classic CQI integrated with comprehensive disease management as a model for performance improvement.

    Science.gov (United States)

    Joshi, M S; Bernard, D B

    1999-08-01

    In recent years, health and disease management has emerged as an effective means of delivering, integrating, and improving care through a population-based approach. Since 1997 the University of Pennsylvania Health System (UPHS) has utilized the key principles and components of continuous quality improvement (CQI) and disease management to form a model for health care improvement that focuses on designing best practices, using best practices to influence clinical decision making, changing processes and systems to deploy and deliver best practices, and measuring outcomes to improve the process. Experience with 28 programs and more than 14,000 patients indicates significant improvement in outcomes, including high physician satisfaction, increased patient satisfaction, reduced costs, and improved clinical process and outcome measures across multiple diseases. DIABETES DISEASE MANAGEMENT: In three months a UPHS multidisciplinary diabetes disease management team developed a best practice approach for the treatment of all patients with diabetes in the UPHS. After the program was pilot tested in three primary care physician sites, it was then introduced progressively to additional practice sites throughout the health system. The establishment of the role of the diabetes nurse care managers (certified diabetes educators) was central to successful program deployment. Office-based coordinators ensure incorporation of the best practice protocols into routine flow processes. A disease management intranet disseminates programs electronically. Outcomes of the UPHS health and disease management programs so far demonstrate success across multiple dimensions of performance-service, clinical quality, access, and value. The task of health care leadership today is to remove barriers and enable effective implementation of key strategies, such as health and disease management. Substantial effort and resources must be dedicated to gain physician buy-in and achieve compliance. The

  2. Improvement of a combustion model in MELCOR code

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    1999-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using five different flame front shapes of fireball, prism, bubble, spherical jet, and plane jet. For validation of the proposed model, the results of the Battelle multi-compartment hydrogen combustion test were used. The selected test cases for the study were Hx-6, 13, 14, 20 and Ix-2 which had two, three or four compartments under homogeneous hydrogen concentration of 5 to 10 vol%. The proposed model could predict well the combustion behavior in multi-compartment containment geometry on the whole. MELCOR code, incorporating the present combustion model, can simulate combustion behavior during severe accident with acceptable computing time and some degree of accuracy. The applicability study of the improved MELCOR code to the actual reactor plants will be further continued. (author)

  3. A supply chain model to improve the beef quality distribution using investment analysis: A case study

    Science.gov (United States)

    Lupita, Alessandra; Rangkuti, Sabrina Heriza; Sutopo, Wahyudi; Hisjam, Muh.

    2017-11-01

    There are significant differences related to the quality and price of the beef commodity in traditional market and modern market in Indonesia. Those are caused by very different treatments of the commodity. The different treatments are in the slaughter lines, the transportation from the abattoir to the outlet, the display system, and the control system. If the problem is not solved by the Government, the gap will result a great loss of the consumer regarding to the quality and sustainability of traditional traders business because of the declining interest in purchasing beef in the traditional markets. This article aims to improve the quality of beef in traditional markets. This study proposed A Supply Chain Model that involves the schemes of investment and government incentive for improving the distribution system. The supply chain model is can be formulated using the Mix Integer Linear Programming (MILP) and solved using the IBM®ILOG®CPLEX software. The results show that the proposed model can be used to determine the priority of programs for improving the quality and sustainability business of traditional beef merchants. By using the models, The Government can make a decision to consider incentives for improving the condition.

  4. The effect of various parameters of large scale radio propagation models on improving performance mobile communications

    Science.gov (United States)

    Pinem, M.; Fauzi, R.

    2018-02-01

    One technique for ensuring continuity of wireless communication services and keeping a smooth transition on mobile communication networks is the soft handover technique. In the Soft Handover (SHO) technique the inclusion and reduction of Base Station from the set of active sets is determined by initiation triggers. One of the initiation triggers is based on the strong reception signal. In this paper we observed the influence of parameters of large-scale radio propagation models to improve the performance of mobile communications. The observation parameters for characterizing the performance of the specified mobile system are Drop Call, Radio Link Degradation Rate and Average Size of Active Set (AS). The simulated results show that the increase in altitude of Base Station (BS) Antenna and Mobile Station (MS) Antenna contributes to the improvement of signal power reception level so as to improve Radio Link quality and increase the average size of Active Set and reduce the average Drop Call rate. It was also found that Hata’s propagation model contributed significantly to improvements in system performance parameters compared to Okumura’s propagation model and Lee’s propagation model.

  5. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    Science.gov (United States)

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  6. Improved radiograph measurement inter-observer reliability by use of statistical shape models

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, E.C., E-mail: elise.pegg@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Mellon, S.J., E-mail: stephen.mellon@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Salmon, G. [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Alvand, A., E-mail: abtin.alvand@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Pandit, H., E-mail: hemant.pandit@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Murray, D.W., E-mail: david.murray@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Gill, H.S., E-mail: richie.gill@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom)

    2012-10-15

    Pre- and post-operative radiographs of patients undergoing joint arthroplasty are often examined for a variety of purposes including preoperative planning and patient assessment. This work examines the feasibility of using active shape models (ASM) to semi-automate measurements from post-operative radiographs for the specific case of the Oxford™ Unicompartmental Knee. Measurements of the proximal tibia and the position of the tibial tray were made using the ASM model and manually. Data were obtained by four observers and one observer took four sets of measurements to allow assessment of the inter- and intra-observer reliability, respectively. The parameters measured were the tibial tray angle, the tray overhang, the tray size, the sagittal cut position, the resection level and the tibial width. Results demonstrated improved reliability (average of 27% and 11.2% increase for intra- and inter-reliability, respectively) and equivalent accuracy (p > 0.05 for compared data values) for all of the measurements using the ASM model, with the exception of the tray overhang (p = 0.0001). Less time (15 s) was required to take measurements using the ASM model compared with manual measurements, which was significant. These encouraging results indicate that semi-automated measurement techniques could improve the reliability of radiographic measurements.

  7. Improved radiograph measurement inter-observer reliability by use of statistical shape models

    International Nuclear Information System (INIS)

    Pegg, E.C.; Mellon, S.J.; Salmon, G.; Alvand, A.; Pandit, H.; Murray, D.W.; Gill, H.S.

    2012-01-01

    Pre- and post-operative radiographs of patients undergoing joint arthroplasty are often examined for a variety of purposes including preoperative planning and patient assessment. This work examines the feasibility of using active shape models (ASM) to semi-automate measurements from post-operative radiographs for the specific case of the Oxford™ Unicompartmental Knee. Measurements of the proximal tibia and the position of the tibial tray were made using the ASM model and manually. Data were obtained by four observers and one observer took four sets of measurements to allow assessment of the inter- and intra-observer reliability, respectively. The parameters measured were the tibial tray angle, the tray overhang, the tray size, the sagittal cut position, the resection level and the tibial width. Results demonstrated improved reliability (average of 27% and 11.2% increase for intra- and inter-reliability, respectively) and equivalent accuracy (p > 0.05 for compared data values) for all of the measurements using the ASM model, with the exception of the tray overhang (p = 0.0001). Less time (15 s) was required to take measurements using the ASM model compared with manual measurements, which was significant. These encouraging results indicate that semi-automated measurement techniques could improve the reliability of radiographic measurements

  8. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  9. Development of an equipment management model to improve effectiveness of processes

    International Nuclear Information System (INIS)

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-01-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  10. Application of 3D CADDS model to design and engineering for constructability improvement

    International Nuclear Information System (INIS)

    Cho, U.Y.; Park, C.C.; Choy, E.

    1998-01-01

    The use of three dimensional (3D) computer-aided design and drafting system (CADDS) model along with the associated information management system in engineering phases of large projects is well established and yielding significant improvements in project cost, schedule and quality. The information contained in these models can also be utilized in plant construction site for construction schedule review, installation procedure review, interference check, and visual communication tool to the utility owner when the visual and spatial information contained in the 3D models is integrated with other plant information. This paper will describe the application of 3D models and the associated databases in the construction process of CANDU HWR heavy water reactors. Some examples on the use of 3D CADD models in CANDU projects will be presented

  11. Using Unified Modelling Language (UML) as a process-modelling technique for clinical-research process improvement.

    Science.gov (United States)

    Kumarapeli, P; De Lusignan, S; Ellis, T; Jones, B

    2007-03-01

    The Primary Care Data Quality programme (PCDQ) is a quality-improvement programme which processes routinely collected general practice computer data. Patient data collected from a wide range of different brands of clinical computer systems are aggregated, processed, and fed back to practices in an educational context to improve the quality of care. Process modelling is a well-established approach used to gain understanding and systematic appraisal, and identify areas of improvement of a business process. Unified modelling language (UML) is a general purpose modelling technique used for this purpose. We used UML to appraise the PCDQ process to see if the efficiency and predictability of the process could be improved. Activity analysis and thinking-aloud sessions were used to collect data to generate UML diagrams. The UML model highlighted the sequential nature of the current process as a barrier for efficiency gains. It also identified the uneven distribution of process controls, lack of symmetric communication channels, critical dependencies among processing stages, and failure to implement all the lessons learned in the piloting phase. It also suggested that improved structured reporting at each stage - especially from the pilot phase, parallel processing of data and correctly positioned process controls - should improve the efficiency and predictability of research projects. Process modelling provided a rational basis for the critical appraisal of a clinical data processing system; its potential maybe underutilized within health care.

  12. Spontaneous Resolution of Long-Standing Macular Detachment due to Optic Disc Pit with Significant Visual Improvement.

    Science.gov (United States)

    Parikakis, Efstratios A; Chatziralli, Irini P; Peponis, Vasileios G; Karagiannis, Dimitrios; Stratos, Aimilianos; Tsiotra, Vasileia A; Mitropoulos, Panagiotis G

    2014-01-01

    To report a case of spontaneous resolution of a long-standing serous macular detachment associated with an optic disc pit, leading to significant visual improvement. A 63-year-old female presented with a 6-month history of blurred vision and micropsia in her left eye. Her best-corrected visual acuity was 6/24 in the left eye, and fundoscopy revealed serous macular detachment associated with optic disc pit, which was confirmed by optical coherence tomography (OCT). The patient was offered vitrectomy as a treatment alternative, but she preferred to be reviewed conservatively. Three years after initial presentation, neither macular detachment nor subretinal fluid was evident in OCT, while the inner segment/outer segment (IS/OS) junction line was intact. Her visual acuity was improved from 6/24 to 6/12 in her left eye, remaining stable at the 6-month follow-up after resolution. We present a case of spontaneous resolution of a long-standing macular detachment associated with an optic disc pit with significant visual improvement, postulating that the integrity of the IS/OS junction line may be a prognostic factor for final visual acuity and suggesting OCT as an indicator of visual prognosis and the probable necessity of a surgical management.

  13. Spontaneous Resolution ofLong-Standing Macular Detachment due to Optic Disc Pit with Significant Visual Improvement

    Directory of Open Access Journals (Sweden)

    Efstratios A. Parikakis

    2014-03-01

    Full Text Available Purpose: To report a case of spontaneous resolution of a long-standing serous macular detachment associated with an optic disc pit, leading to significant visual improvement. Case Presentation: A 63-year-old female presented with a 6-month history of blurred vision and micropsia in her left eye. Her best-corrected visual acuity was 6/24 in the left eye, and fundoscopy revealed serous macular detachment associated with optic disc pit, which was confirmed by optical coherence tomography (OCT. The patient was offered vitrectomy as a treatment alternative, but she preferred to be reviewed conservatively. Three years after initial presentation, neither macular detachment nor subretinal fluid was evident in OCT, while the inner segment/outer segment (IS/OS junction line was intact. Her visual acuity was improved from 6/24 to 6/12 in her left eye, remaining stable at the 6-month follow-up after resolution. Conclusion: We present a case of spontaneous resolution of a long-standing macular detachment associated with an optic disc pit with significant visual improvement, postulating that the integrity of the IS/OS junction line may be a prognostic factor for final visual acuity and suggesting OCT as an indicator of visual prognosis and the probable necessity of a surgical management.

  14. Centers for medicare and medicaid services: using an episode-based payment model to improve oncology care.

    Science.gov (United States)

    Kline, Ronald M; Bazell, Carol; Smith, Erin; Schumacher, Heidi; Rajkumar, Rahul; Conway, Patrick H

    2015-03-01

    Cancer is a medically complex and expensive disease with costs projected to rise further as new treatment options increase and the United States population ages. Studies showing significant regional variation in oncology quality and costs and model tests demonstrating cost savings without adverse outcomes suggest there are opportunities to create a system of oncology care in the US that delivers higher quality care at lower cost. The Centers for Medicare and Medicaid Services (CMS) have designed an episode-based payment model centered around 6 month periods of chemotherapy treatment. Monthly per-patient care management payments will be made to practices to support practice transformation, including additional patient services and specific infrastructure enhancements. Quarterly reporting of quality metrics will drive continuous quality improvement and the adoption of best practices among participants. Practices achieving cost savings will also be eligible for performance-based payments. Savings are expected through improved care coordination and appropriately aligned payment incentives, resulting in decreased avoidable emergency department visits and hospitalizations and more efficient and evidence-based use of imaging, laboratory tests, and therapeutic agents, as well as improved end of life care. New therapies and better supportive care have significantly improved cancer survival in recent decades. This has come at a high cost, with cancer therapy consuming $124 billion in 2010. CMS has designed an episode-based model of oncology care that incorporates elements from several successful model tests. By providing care management and performance based payments in conjunction with quality metrics and a rapid learning environment, it is hoped that this model will demonstrate how oncology care in the US can transform into a high value, high quality system. Copyright © 2015 by American Society of Clinical Oncology.

  15. Improving Representational Competence with Concrete Models

    Science.gov (United States)

    Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane

    2016-01-01

    Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…

  16. An Improved Walk Model for Train Movement on Railway Network

    International Nuclear Information System (INIS)

    Li Keping; Mao Bohua; Gao Ziyou

    2009-01-01

    In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic. (general)

  17. Efficient Adoption and Assessment of Multiple Process Improvement Reference Models

    Directory of Open Access Journals (Sweden)

    Simona Jeners

    2013-06-01

    Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.

  18. Multiple model analysis with discriminatory data collection (MMA-DDC): A new method for improving measurement selection

    Science.gov (United States)

    Kikuchi, C.; Ferre, P. A.; Vrugt, J. A.

    2011-12-01

    Hydrologic models are developed, tested, and refined based on the ability of those models to explain available hydrologic data. The optimization of model performance based upon mismatch between model outputs and real world observations has been extensively studied. However, identification of plausible models is sensitive not only to the models themselves - including model structure and model parameters - but also to the location, timing, type, and number of observations used in model calibration. Therefore, careful selection of hydrologic observations has the potential to significantly improve the performance of hydrologic models. In this research, we seek to reduce prediction uncertainty through optimization of the data collection process. A new tool - multiple model analysis with discriminatory data collection (MMA-DDC) - was developed to address this challenge. In this approach, multiple hydrologic models are developed and treated as competing hypotheses. Potential new data are then evaluated on their ability to discriminate between competing hypotheses. MMA-DDC is well-suited for use in recursive mode, in which new observations are continuously used in the optimization of subsequent observations. This new approach was applied to a synthetic solute transport experiment, in which ranges of parameter values constitute the multiple hydrologic models, and model predictions are calculated using likelihood-weighted model averaging. MMA-DDC was used to determine the optimal location, timing, number, and type of new observations. From comparison with an exhaustive search of all possible observation sequences, we find that MMA-DDC consistently selects observations which lead to the highest reduction in model prediction uncertainty. We conclude that using MMA-DDC to evaluate potential observations may significantly improve the performance of hydrologic models while reducing the cost associated with collecting new data.

  19. An initiative to improve the management of clinically significant test results in a large health care network.

    Science.gov (United States)

    Roy, Christopher L; Rothschild, Jeffrey M; Dighe, Anand S; Schiff, Gordon D; Graydon-Baker, Erin; Lenoci-Edwards, Jennifer; Dwyer, Cheryl; Khorasani, Ramin; Gandhi, Tejal K

    2013-11-01

    The failure of providers to communicate and follow up clinically significant test results (CSTR) is an important threat to patient safety. The Massachusetts Coalition for the Prevention of Medical Errors has endorsed the creation of systems to ensure that results can be received and acknowledged. In 2008 a task force was convened that represented clinicians, laboratories, radiology, patient safety, risk management, and information systems in a large health care network with the goals of providing recommendations and a road map for improvement in the management of CSTR and of implementing this improvement plan during the sub-force sequent five years. In drafting its charter, the task broadened the scope from "critical" results to "clinically significant" ones; clinically significant was defined as any result that requires further clinical action to avoid morbidity or mortality, regardless of the urgency of that action. The task force recommended four key areas for improvement--(1) standardization of policies and definitions, (2) robust identification of the patient's care team, (3) enhanced results management/tracking systems, and (4) centralized quality reporting and metrics. The task force faced many challenges in implementing these recommendations, including disagreements on definitions of CSTR and on who should have responsibility for CSTR, changes to established work flows, limitations of resources and of existing information systems, and definition of metrics. This large-scale effort to improve the communication and follow-up of CSTR in a health care network continues with ongoing work to address implementation challenges, refine policies, prepare for a new clinical information system platform, and identify new ways to measure the extent of this important safety problem.

  20. Modeling coverage gaps in haplotype frequencies via Bayesian inference to improve stem cell donor selection.

    Science.gov (United States)

    Louzoun, Yoram; Alter, Idan; Gragert, Loren; Albrecht, Mark; Maiers, Martin

    2018-05-01

    Regardless of sampling depth, accurate genotype imputation is limited in regions of high polymorphism which often have a heavy-tailed haplotype frequency distribution. Many rare haplotypes are thus unobserved. Statistical methods to improve imputation by extending reference haplotype distributions using linkage disequilibrium patterns that relate allele and haplotype frequencies have not yet been explored. In the field of unrelated stem cell transplantation, imputation of highly polymorphic human leukocyte antigen (HLA) genes has an important application in identifying the best-matched stem cell donor when searching large registries totaling over 28,000,000 donors worldwide. Despite these large registry sizes, a significant proportion of searched patients present novel HLA haplotypes. Supporting this observation, HLA population genetic models have indicated that many extant HLA haplotypes remain unobserved. The absent haplotypes are a significant cause of error in haplotype matching. We have applied a Bayesian inference methodology for extending haplotype frequency distributions, using a model where new haplotypes are created by recombination of observed alleles. Applications of this joint probability model offer significant improvement in frequency distribution estimates over the best existing alternative methods, as we illustrate using five-locus HLA frequency data from the National Marrow Donor Program registry. Transplant matching algorithms and disease association studies involving phasing and imputation of rare variants may benefit from this statistical inference framework.

  1. Risk analysis of urban gas pipeline network based on improved bow-tie model

    Science.gov (United States)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  2. Model-driven approach to data collection and reporting for quality improvement.

    Science.gov (United States)

    Curcin, Vasa; Woodcock, Thomas; Poots, Alan J; Majeed, Azeem; Bell, Derek

    2014-12-01

    Continuous data collection and analysis have been shown essential to achieving improvement in healthcare. However, the data required for local improvement initiatives are often not readily available from hospital Electronic Health Record (EHR) systems or not routinely collected. Furthermore, improvement teams are often restricted in time and funding thus requiring inexpensive and rapid tools to support their work. Hence, the informatics challenge in healthcare local improvement initiatives consists of providing a mechanism for rapid modelling of the local domain by non-informatics experts, including performance metric definitions, and grounded in established improvement techniques. We investigate the feasibility of a model-driven software approach to address this challenge, whereby an improvement model designed by a team is used to automatically generate required electronic data collection instruments and reporting tools. To that goal, we have designed a generic Improvement Data Model (IDM) to capture the data items and quality measures relevant to the project, and constructed Web Improvement Support in Healthcare (WISH), a prototype tool that takes user-generated IDM models and creates a data schema, data collection web interfaces, and a set of live reports, based on Statistical Process Control (SPC) for use by improvement teams. The software has been successfully used in over 50 improvement projects, with more than 700 users. We present in detail the experiences of one of those initiatives, Chronic Obstructive Pulmonary Disease project in Northwest London hospitals. The specific challenges of improvement in healthcare are analysed and the benefits and limitations of the approach are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping

    Energy Technology Data Exchange (ETDEWEB)

    Sifain, Andrew E. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Wang, Linjun [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Prezhdo, Oleg V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062 (United States)

    2016-06-07

    Surface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop. The proposed prescription significantly reduces the total number of classically forbidden hops encountered along a trajectory, suggesting that some randomization in nuclear velocity is needed when classically forbidden hops constitute a large fraction of attempted hops. Our results are verified computationally using two- and three-level quantum subsystems, coupled to a classical bath undergoing Langevin dynamics.

  4. Models for Evaluating and Improving Architecture Competence

    National Research Council Canada - National Science Library

    Bass, Len; Clements, Paul; Kazman, Rick; Klein, Mark

    2008-01-01

    ... producing high-quality architectures. This report lays out the basic concepts of software architecture competence and describes four models for explaining, measuring, and improving the architecture competence of an individual...

  5. An Improved Parametrization Method for Li-ion Linear Static Equivalent Circuit Battery Models Based on Direct Current Resistance Measurement

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Pinto, Claudio; de Castro, Ricardo

    2015-01-01

    response in the range of interest of many applications, including electro-mobility. Model validation and performance evaluation is achieved in simulations by comparison with other low and high order EECM battery models over dynamic driving profiles. Significant improvements in terms of cell terminal...

  6. A process improvement model for software verification and validation

    Science.gov (United States)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  7. Costello Syndrome with Severe Nodulocystic Acne: Unexpected Significant Improvement of Acanthosis Nigricans after Oral Isotretinoin Treatment

    Directory of Open Access Journals (Sweden)

    Leelawadee Sriboonnark

    2015-01-01

    Full Text Available We report the case of 17-year-old female diagnosed with Costello syndrome. Genetic testing provided a proof with G12S mutation in the HRAS gene since 3 years of age with a presentation of severe nodulocystic acne on her face. After 2 months of oral isotretinoin treatment, improvement in her acne was observed. Interestingly, an unexpected significant improvement of acanthosis nigricans on her neck and dorsum of her hands was found as well. We present this case as a successful treatment option by using oral isotretinoin for the treatment of acanthosis nigricans in Costello syndrome patients.

  8. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    Science.gov (United States)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly

  9. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS

    Science.gov (United States)

    Jiao, Ziti; Schaaf, Crystal B.; Dong, Yadong; Roman, Miguel; Hill, Michael J.; Chen, Jing M.; Wang, Zhuosen; Zhang, Hu; Saenz, Edward; Poudyal, Rajesh; hide

    2016-01-01

    The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS BRDFAlbedo product due to its global applicability and the underlying physics. A challenge of this model in regard to surface reflectance anisotropy effects comes from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot magnitude and width using two free parameters (C(sub 1) and C(sub 2), respectively). The approach allows one to reconstruct, with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables. Our results demonstrate that: (1) significant improvements in capturing hotspot effect can be made to this method by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive for simulating the hotspot height and width with high accuracy, especially in cases where hotspot signatures are available; and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals. With the hotspot-related model parameters determined a priori, this method offers improved performance for various ecological remote sensing applications; including the estimation of canopy structure parameters.

  10. Do convection-permitting models improve the representation of the impact of LUC?

    Science.gov (United States)

    Vanden Broucke, Sam; Van Lipzig, Nicole

    2017-10-01

    In this study we assess the added value of convection permitting scale (CPS) simulations in studies using regional climate models to quantify the bio-geophysical climate impact of land-use change (LUC). To accomplish this, a comprehensive model evaluation methodology is applied to both non-CPS and CPS simulations. The main characteristics of the evaluation methodology are (1) the use of paired eddy-covariance site observations (forest vs open land) and (2) a simultaneous evaluation of all surface energy budget components. Results show that although generally satisfactory, non-CPS simulations fall short of completely reproducing the observed LUC signal because of three key biases. CPS scale simulations succeed at significantly reducing two of these biases, namely, those in daytime shortwave radiation and daytime sensible heat flux. Also, CPS slightly reduces a third bias in nighttime incoming longwave radiation. The daytime improvements can be attributed partially to the switch from parameterized to explicit convection, the associated improvement in the simulation of afternoon convective clouds, and resulting surface energy budget and atmospheric feedbacks. Also responsible for the improvements during daytime is a better representation of surface heterogeneity and thus, surface roughness. Meanwhile, the modest nighttime longwave improvement can be attributed to increased vertical atmospheric resolution. However, the model still fails at reproducing the magnitude of the observed nighttime longwave difference. One possible explanation for this persistent bias is the nighttime radiative effect of biogenic volatile organic compound emissions over the forest site. A correlation between estimated emission rates and the observed nighttime longwave difference, as well as the persistence of the longwave bias provide support for this hypothesis. However, more research is needed to conclusively determine if the effect indeed exists.

  11. An Improved Valuation Model for Technology Companies

    Directory of Open Access Journals (Sweden)

    Ako Doffou

    2015-06-01

    Full Text Available This paper estimates some of the parameters of the Schwartz and Moon (2001 model using cross-sectional data. Stochastic costs, future financing, capital expenditures and depreciation are taken into account. Some special conditions are also set: the speed of adjustment parameters are equal; the implied half-life of the sales growth process is linked to analyst forecasts; and the risk-adjustment parameter is inferred from the company’s observed stock price beta. The model is illustrated in the valuation of Google, Amazon, eBay, Facebook and Yahoo. The improved model is far superior to the Schwartz and Moon (2001 model.

  12. Improvements of ENSO-monsoon relationship in CMIP5 models through statistical downscaling over India.

    Science.gov (United States)

    Akhter, J.; Das, L.; Deb, A.

    2017-12-01

    Present study has assessed the skills of global climate models (GCMS) from coupled model inter-comparison project phase five (CMIP5) in simulating ENSO-monsoon relationships over seven homogeneous zones of India. Observational sea surface temperature (SST) data has revealed that there has been a significant negative correlation between zonal precipitation and Nino 3.4 index over North Mountainous India, North West India, North Central India, West Peninsular India and South Peninsular India. First and third principal component (PC) of zonal precipitation explaining 44.4% and 14.2% variance respectively has also shown significant anti-correlation with Nino 3.4. Analysis with CMIP5 models revealed that majority of GCMs have failed to reproduce both magnitude and phase of such relationships mainly due to poor simulation of Nino 3.4 index. Therefore, an attempt has been made to improve the results through empirical orthogonal function (EOF) based statistical downscaling of CMIP5 GCMs. To downscale Nino 3.4 index, an optimal predictor combination of PCs extracted from EOF fields of large scale GCM predictors like Geo-potential height, u and v wind, Specific and relative humidity and air temperature at pressure levels 500, 850 and 1000 hpa, mean sea level pressure and atmospheric vapor content has been utilized. Results indicated improvements of downscaled CMIP5 models in simulating ENSO-monsoon relationship for zone wise precipitation. Multi-model ensemble (MME) of downscaled GCMs has better skill than individuals GCM. Therefore, downscaled MME may be used more reliably to investigate future ENSO-monsoon relationship under various warming scenarios

  13. Improving PSA quality of KSNP PSA model

    International Nuclear Information System (INIS)

    Yang, Joon Eon; Ha, Jae Joo

    2004-01-01

    In the RIR (Risk-informed Regulation), PSA (Probabilistic Safety Assessment) plays a major role because it provides overall risk insights for the regulatory body and utility. Therefore, the scope, the level of details and the technical adequacy of PSA, i.e. the quality of PSA is to be ensured for the successful RIR. To improve the quality of Korean PSA, we evaluate the quality of the KSNP (Korean Standard Nuclear Power Plant) internal full-power PSA model based on the 'ASME PRA Standard' and the 'NEI PRA Peer Review Process Guidance.' As a working group, PSA experts of the regulatory body and industry also participated in the evaluation process. It is finally judged that the overall quality of the KSNP PSA is between the ASME Standard Capability Category I and II. We also derive some items to be improved for upgrading the quality of the PSA up to the ASME Standard Capability Category II. In this paper, we show the result of quality evaluation, and the activities to improve the quality of the KSNP PSA model

  14. Improving the accuracy of energy baseline models for commercial buildings with occupancy data

    International Nuclear Information System (INIS)

    Liang, Xin; Hong, Tianzhen; Shen, Geoffrey Qiping

    2016-01-01

    Highlights: • We evaluated several baseline models predicting energy use in buildings. • Including occupancy data improved accuracy of baseline model prediction. • Occupancy is highly correlated with energy use in buildings. • This simple approach can be used in decision makings of energy retrofit projects. - Abstract: More than 80% of energy is consumed during operation phase of a building’s life cycle, so energy efficiency retrofit for existing buildings is considered a promising way to reduce energy use in buildings. The investment strategies of retrofit depend on the ability to quantify energy savings by “measurement and verification” (M&V), which compares actual energy consumption to how much energy would have been used without retrofit (called the “baseline” of energy use). Although numerous models exist for predicting baseline of energy use, a critical limitation is that occupancy has not been included as a variable. However, occupancy rate is essential for energy consumption and was emphasized by previous studies. This study develops a new baseline model which is built upon the Lawrence Berkeley National Laboratory (LBNL) model but includes the use of building occupancy data. The study also proposes metrics to quantify the accuracy of prediction and the impacts of variables. However, the results show that including occupancy data does not significantly improve the accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. In addition, sensitivity analysis is conducted to show the influence of parameters in baseline models. The results from this study can help us understand the influence of occupancy on energy use, improve energy baseline prediction by including the occupancy factor, reduce risks of M&V and facilitate investment strategies of energy efficiency retrofit.

  15. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hou Jue

    2010-07-01

    Full Text Available Abstract Background Leucine may function as a signaling molecule to regulate metabolism. We have previously shown that dietary leucine supplementation significantly improves glucose and energy metabolism in diet-induced obese mice, suggesting that leucine supplementation could potentially be a useful adjuvant therapy for obesity and type 2 diabetes. Since the underlying cause for obesity and type 2 diabetes is multifold, we further investigated metabolic effects of leucine supplementation in obese/diabetes mouse models with different etiologies, and explored the underlying molecular mechanisms. Methods Leucine supplementation was carried out in NONcNZO10/LtJ (RCS10 - a polygenic model predisposed to beta cell failure and type 2 diabetes, and in B6.Cg-Ay/J (Ay - a monogenic model for impaired central melanocortin receptor signaling, obesity, and severe insulin resistance. Mice in the treatment group received the drinking water containing 1.5% leucine for up to 8 months; control mice received the tap water. Body weight, body composition, blood HbA1c levels, and plasma glucose and insulin levels were monitored throughout and/or at the end of the study period. Indirect calorimetry, skeletal muscle gene expression, and adipose tissue inflammation were also assessed in Ay mice. Results Leucine supplementation significantly reduced HbA1c levels throughout the study period in both RCS10 and Ay mice. However, the treatment had no long term effect on body weight or adiposity. The improvement in glycemic control was associated with an increased insulin response to food challenge in RCS10 mice and decreased plasma insulin levels in Ay mice. In leucine-treated Ay mice, energy expenditure was increased by ~10% (p y mice whereas the expression levels of MCP-1 and TNF-alpha and macrophage infiltration in adipose tissue were significantly reduced. Conclusions Chronic leucine supplementation significantly improves glycemic control in multiple mouse models of

  16. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells

    Directory of Open Access Journals (Sweden)

    Ogris Manfred

    2010-03-01

    Full Text Available Abstract Background The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP and directed into a 2000 bp long matrix attachment region sequence (MARS derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. Results Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P element that is known to be less affected by epigenetic silencing events. Conclusions The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.

  17. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  18. An Improved QTM Subdivision Model with Approximate Equal-area

    Directory of Open Access Journals (Sweden)

    ZHAO Xuesheng

    2016-01-01

    Full Text Available To overcome the defect of large area deformation in the traditional QTM subdivision model, an improved subdivision model is proposed which based on the “parallel method” and the thought of the equal area subdivision with changed-longitude-latitude. By adjusting the position of the parallel, this model ensures that the grid area between two adjacent parallels combined with no variation, so as to control area variation and variation accumulation of the QTM grid. The experimental results show that this improved model not only remains some advantages of the traditional QTM model(such as the simple calculation and the clear corresponding relationship with longitude/latitude grid, etc, but also has the following advantages: ①this improved model has a better convergence than the traditional one. The ratio of area_max/min finally converges to 1.38, far less than 1.73 of the “parallel method”; ②the grid units in middle and low latitude regions have small area variations and successive distributions; meanwhile, with the increase of subdivision level, the grid units with large variations gradually concentrate to the poles; ③the area variation of grid unit will not cumulate with the increasing of subdivision level.

  19. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  20. Granulocyte-colony stimulating factor (G-CSF improves motor recovery in the rat impactor model for spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Tanjew Dittgen

    Full Text Available Granulocyte-colony stimulating factor (G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function.

  1. Improving students’ mathematical critical thinking through rigorous teaching and learning model with informal argument

    Science.gov (United States)

    Hamid, H.

    2018-01-01

    The purpose of this study is to analyze an improvement of students’ mathematical critical thinking (CT) ability in Real Analysis course by using Rigorous Teaching and Learning (RTL) model with informal argument. In addition, this research also attempted to understand students’ CT on their initial mathematical ability (IMA). This study was conducted at a private university in academic year 2015/2016. The study employed the quasi-experimental method with pretest-posttest control group design. The participants of the study were 83 students in which 43 students were in the experimental group and 40 students were in the control group. The finding of the study showed that students in experimental group outperformed students in control group on mathematical CT ability based on their IMA (high, medium, low) in learning Real Analysis. In addition, based on medium IMA the improvement of mathematical CT ability of students who were exposed to RTL model with informal argument was greater than that of students who were exposed to CI (conventional instruction). There was also no effect of interaction between RTL model and CI model with both (high, medium, and low) IMA increased mathematical CT ability. Finally, based on (high, medium, and low) IMA there was a significant improvement in the achievement of all indicators of mathematical CT ability of students who were exposed to RTL model with informal argument than that of students who were exposed to CI.

  2. Improving carbon model phenology using data assimilation

    Science.gov (United States)

    Exrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Carbon cycle dynamics is significantly impacted by ecosystem phenology, leading to substantial seasonal and inter-annual variation in the global carbon balance. Representing inter-annual variability is key for predicting the response of the terrestrial ecosystem to climate change and disturbance. Existing terrestrial ecosystem models (TEMs) often struggle to accurately simulate observed inter-annual variability. TEMs often use different phenological models based on plant functional type (PFT) assumptions. Moreover, due to a high level of computational overhead in TEMs they are unable to take advantage of globally available datasets to calibrate their models. Here we describe the novel CARbon DAta MOdel fraMework (CARDAMOM) for data assimilation. CARDAMOM is used to calibrate the Data Assimilation Linked Ecosystem Carbon version 2 (DALEC2) model using Bayes' Theorem within a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC). CARDAMOM provides a framework which combines knowledge from observations, such as remotely sensed LAI, and heuristic information in the form of Ecological and Dynamical Constraints (EDCs). The EDCs are representative of real world processes and constrain parameter interdependencies and constrain carbon dynamics. We used CARDAMOM to bring together globally spanning datasets of LAI and the DALEC2 and DALEC2-GSI models. These analyses allow us to investigate the sensitivity ecosystem processes to the representation of phenology. DALEC2 uses an analytically solved model of phenology which is invariant between years. In contrast DALEC2-GSI uses a growing season index (GSI) calculated as a function of temperature, vapour pressure deficit (VPD) and photoperiod to calculate bud-burst and leaf senescence, allowing the model to simulate inter-annual variability in response to climate. Neither model makes any PFT assumptions about the phenological controls of a given ecosystem, allowing the data alone to determine the impact of the meteorological

  3. Improving the physiological realism of experimental models.

    Science.gov (United States)

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  4. Can model weighting improve probabilistic projections of climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni; Ylhaeisi, Jussi S. [Department of Physics, P.O. Box 48, University of Helsinki (Finland)

    2012-10-15

    Recently, Raeisaenen and co-authors proposed a weighting scheme in which the relationship between observable climate and climate change within a multi-model ensemble determines to what extent agreement with observations affects model weights in climate change projection. Within the Third Coupled Model Intercomparison Project (CMIP3) dataset, this scheme slightly improved the cross-validated accuracy of deterministic projections of temperature change. Here the same scheme is applied to probabilistic temperature change projection, under the strong limiting assumption that the CMIP3 ensemble spans the actual modeling uncertainty. Cross-validation suggests that probabilistic temperature change projections may also be improved by this weighting scheme. However, the improvement relative to uniform weighting is smaller in the tail-sensitive logarithmic score than in the continuous ranked probability score. The impact of the weighting on projection of real-world twenty-first century temperature change is modest in most parts of the world. However, in some areas mainly over the high-latitude oceans, the mean of the distribution is substantially changed and/or the distribution is considerably narrowed. The weights of individual models vary strongly with location, so that a model that receives nearly zero weight in some area may still get a large weight elsewhere. Although the details of this variation are method-specific, it suggests that the relative strengths of different models may be difficult to harness by weighting schemes that use spatially uniform model weights. (orig.)

  5. Analysis of significance of environmental factors in landslide susceptibility modeling: Case study Jemma drainage network, Ethiopia

    Directory of Open Access Journals (Sweden)

    Vít Maca

    2017-06-01

    Full Text Available Aim of the paper is to describe methodology for calculating significance of environmental factors in landslide susceptibility modeling and present result of selected one. As a study area part of a Jemma basin in Ethiopian Highland is used. This locality is highly affected by mass movement processes. In the first part all major factors and their influence are described briefly. Majority of the work focuses on research of other methodologies used in susceptibility models and design of own methodology. This method is unlike most of the methods used completely objective, therefore it is not possible to intervene in the results. In article all inputs and outputs of the method are described as well as all stages of calculations. Results are illustrated on specific examples. In study area most important factor for landslide susceptibility is slope, on the other hand least important is land cover. At the end of article landslide susceptibility map is created. Part of the article is discussion of results and possible improvements of the methodology.

  6. Improving Language Models in Speech-Based Human-Machine Interaction

    Directory of Open Access Journals (Sweden)

    Raquel Justo

    2013-02-01

    Full Text Available This work focuses on speech-based human-machine interaction. Specifically, a Spoken Dialogue System (SDS that could be integrated into a robot is considered. Since Automatic Speech Recognition is one of the most sensitive tasks that must be confronted in such systems, the goal of this work is to improve the results obtained by this specific module. In order to do so, a hierarchical Language Model (LM is considered. Different series of experiments were carried out using the proposed models over different corpora and tasks. The results obtained show that these models provide greater accuracy in the recognition task. Additionally, the influence of the Acoustic Modelling (AM in the improvement percentage of the Language Models has also been explored. Finally the use of hierarchical Language Models in a language understanding task has been successfully employed, as shown in an additional series of experiments.

  7. Improving default risk prediction using Bayesian model uncertainty techniques.

    Science.gov (United States)

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.

  8. An Improved Car-Following Model Accounting for Impact of Strong Wind

    Directory of Open Access Journals (Sweden)

    Dawei Liu

    2017-01-01

    Full Text Available In order to investigate the effect of strong wind on dynamic characteristic of traffic flow, an improved car-following model based on the full velocity difference model is developed in this paper. Wind force is introduced as the influence factor of car-following behavior. Among three components of wind force, lift force and side force are taken into account. The linear stability analysis is carried out and the stability condition of the newly developed model is derived. Numerical analysis is made to explore the effect of strong wind on spatial-time evolution of a small perturbation. The results show that the strong wind can significantly affect the stability of traffic flow. Driving safety in strong wind is also studied by comparing the lateral force under different wind speeds with the side friction of vehicles. Finally, the fuel consumption of vehicle in strong wind condition is explored and the results show that the fuel consumption decreased with the increase of wind speed.

  9. On improving the communication between models and data.

    Science.gov (United States)

    Dietze, Michael C; Lebauer, David S; Kooper, Rob

    2013-09-01

    The potential for model-data synthesis is growing in importance as we enter an era of 'big data', greater connectivity and faster computation. Realizing this potential requires that the research community broaden its perspective about how and why they interact with models. Models can be viewed as scaffolds that allow data at different scales to inform each other through our understanding of underlying processes. Perceptions of relevance, accessibility and informatics are presented as the primary barriers to broader adoption of models by the community, while an inability to fully utilize the breadth of expertise and data from the community is a primary barrier to model improvement. Overall, we promote a community-based paradigm to model-data synthesis and highlight some of the tools and techniques that facilitate this approach. Scientific workflows address critical informatics issues in transparency, repeatability and automation, while intuitive, flexible web-based interfaces make running and visualizing models more accessible. Bayesian statistics provides powerful tools for assimilating a diversity of data types and for the analysis of uncertainty. Uncertainty analyses enable new measurements to target those processes most limiting our predictive ability. Moving forward, tools for information management and data assimilation need to be improved and made more accessible. © 2013 John Wiley & Sons Ltd.

  10. Bayesian Data Assimilation for Improved Modeling of Road Traffic

    NARCIS (Netherlands)

    Van Hinsbergen, C.P.Y.

    2010-01-01

    This thesis deals with the optimal use of existing models that predict certain phenomena of the road traffic system. Such models are extensively used in Advanced Traffic Information Systems (ATIS), Dynamic Traffic Management (DTM) or Model Predictive Control (MPC) approaches in order to improve the

  11. A small business worksite wellness model for improving health behaviors.

    Science.gov (United States)

    Merrill, Ray M

    2013-08-01

    To evaluate the effectiveness of a wellness program delivered by WellSteps, LLC, aimed at improving employee health behaviors in small companies that lack the resources to independently develop and manage a wellness program. Analyses are based on 618 employees from five diverse companies that completed an initial personal health assessment. Exercise and dietary behaviors significantly improved across the five companies. Significant improvements in health perception and life satisfaction also resulted and were associated with improvements in health behaviors. Three of the five companies, each with fewer than 50 employees, were most effective in influencing positive health behaviors, health perceptions, and life satisfaction. The worksite wellness program effectively improved health behaviors, health perceptions, and life satisfaction.

  12. A model for continuous improvement at a South African minerals benefication plant

    Directory of Open Access Journals (Sweden)

    Ras, Eugene Ras

    2015-05-01

    Full Text Available South Africa has a variety of mineral resources, and several minerals beneficiation plants are currently in operation. These plants must be operated effectively to ensure that the end-users of its products remain internationally competitive. To achieve this objective, plants need a sustainable continuous improvement programme. Several frameworks for continuous improvement are used, with variable success rates, in beneficiation plants around the world. However, none of these models specifically addresses continuous improvement from a minerals-processing point of view. The objective of this research study was to determine which factors are important for a continuous improvement model at a minerals beneficiation plant, and to propose a new model using lean manufacturing, six sigma, and the theory of constraints. A survey indicated that managers in the industry prefer a model that combines various continuous improvement models.

  13. Improvement of blow down model for LEAP code

    International Nuclear Information System (INIS)

    Itooka, Satoshi; Fujimata, Kazuhiro

    2003-03-01

    In Japan Nuclear Cycle Development Institute, the improvement of analysis method for overheating tube rapture was studied for the accident of sodium-water reactions in the steam generator of a fast breeder reactor and the evaluation of heat transfer condition in the tube were carried out based on study of critical heat flux (CHF) and post-CHF heat transfer equation in Light Water Reactors. In this study, the improvement of blow down model for the LEAP code was carried out taking into consideration the above-mentioned evaluation of heat transfer condition. Improvements of the LEAP code were following items. Calculations and verification were performed with the improved LEAP code in order to confirm the code functions. The addition of critical heat flux (CHF) by the formula of Katto and the formula of Tong. The addition of post-CHF heat transfer equation by the formula of Condie-BengstonIV and the formula of Groeneveld 5.9. The physical properties of the water and steam are expanded to the critical conditions of the water. The expansion of the total number of section and the improvement of the input form. The addition of the function to control the valve setting by the PID control model. (author)

  14. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  15. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  16. PKC theta ablation improves healing in a mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Luca Madaro

    Full Text Available Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/- mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.

  17. Improved heat transfer modeling of the eye for electromagnetic wave exposures.

    Science.gov (United States)

    Hirata, Akimasa

    2007-05-01

    This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.

  18. Improving pain care through implementation of the Stepped Care Model at a multisite community health center

    Directory of Open Access Journals (Sweden)

    Anderson DR

    2016-11-01

    Full Text Available Daren R Anderson,1 Ianita Zlateva,1 Emil N Coman,2 Khushbu Khatri,1 Terrence Tian,1 Robert D Kerns3 1Weitzman Institute, Community Health Center, Inc., Middletown, 2UCONN Health Disparities Institute, University of Connecticut, Farmington, 3VA Connecticut Healthcare System, West Haven, CT, USA Purpose: Treating pain in primary care is challenging. Primary care providers (PCPs receive limited training in pain care and express low confidence in their knowledge and ability to manage pain effectively. Models to improve pain outcomes have been developed, but not formally implemented in safety net practices where pain is particularly common. This study evaluated the impact of implementing the Stepped Care Model for Pain Management (SCM-PM at a large, multisite Federally Qualified Health Center. Methods: The Promoting Action on Research Implementation in Health Services framework guided the implementation of the SCM-PM. The multicomponent intervention included: education on pain care, new protocols for pain assessment and management, implementation of an opioid management dashboard, telehealth consultations, and enhanced onsite specialty resources. Participants included 25 PCPs and their patients with chronic pain (3,357 preintervention and 4,385 postintervention cared for at Community Health Center, Inc. Data were collected from the electronic health record and supplemented by chart reviews. Surveys were administered to PCPs to assess knowledge, attitudes, and confidence. Results: Providers’ pain knowledge scores increased to an average of 11% from baseline; self-rated confidence in ability to manage pain also increased. Use of opioid treatment agreements and urine drug screens increased significantly by 27.3% and 22.6%, respectively. Significant improvements were also noted in documentation of pain, pain treatment, and pain follow-up. Referrals to behavioral health providers for patients with pain increased by 5.96% (P=0.009. There was no

  19. A Novel Feed-Forward Modeling System Leads to Sustained Improvements in Attention and Academic Performance.

    Science.gov (United States)

    McDermott, Ashley F; Rose, Maya; Norris, Troy; Gordon, Eric

    2016-01-28

    This study tested a novel feed-forward modeling (FFM) system as a nonpharmacological intervention for the treatment of ADHD children and the training of cognitive skills that improve academic performance. This study implemented a randomized, controlled, parallel design comparing this FFM with a nonpharmacological community care intervention. Improvements were measured on parent- and clinician-rated scales of ADHD symptomatology and on academic performance tests completed by the participant. Participants were followed for 3 months after training. Participants in the FFM training group showed significant improvements in ADHD symptomatology and academic performance, while the control group did not. Improvements from FFM were sustained 3 months later. The FFM appeared to be an effective intervention for the treatment of ADHD and improving academic performance. This FFM training intervention shows promise as a first-line treatment for ADHD while improving academic performance. © The Author(s) 2016.

  20. Improved dust representation in the Community Atmosphere Model

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.; Perry, A. T.; Scanza, R. A.; Zender, C. S.; Heavens, N. G.; Maggi, V.; Kok, J. F.; Otto-Bliesner, B. L.

    2014-09-01

    Aerosol-climate interactions constitute one of the major sources of uncertainty in assessing changes in aerosol forcing in the anthropocene as well as understanding glacial-interglacial cycles. Here we focus on improving the representation of mineral dust in the Community Atmosphere Model and assessing the impacts of the improvements in terms of direct effects on the radiative balance of the atmosphere. We simulated the dust cycle using different parameterization sets for dust emission, size distribution, and optical properties. Comparing the results of these simulations with observations of concentration, deposition, and aerosol optical depth allows us to refine the representation of the dust cycle and its climate impacts. We propose a tuning method for dust parameterizations to allow the dust module to work across the wide variety of parameter settings which can be used within the Community Atmosphere Model. Our results include a better representation of the dust cycle, most notably for the improved size distribution. The estimated net top of atmosphere direct dust radiative forcing is -0.23 ± 0.14 W/m2 for present day and -0.32 ± 0.20 W/m2 at the Last Glacial Maximum. From our study and sensitivity tests, we also derive some general relevant findings, supporting the concept that the magnitude of the modeled dust cycle is sensitive to the observational data sets and size distribution chosen to constrain the model as well as the meteorological forcing data, even within the same modeling framework, and that the direct radiative forcing of dust is strongly sensitive to the optical properties and size distribution used.

  1. Titan I propulsion system modeling and possible performance improvements

    Science.gov (United States)

    Giusti, Oreste

    This thesis features the Titan I propulsion systems and offers data-supported suggestions for improvements to increase performance. The original propulsion systems were modeled both graphically in CAD and via equations. Due to the limited availability of published information, it was necessary to create a more detailed, secondary set of models. Various engineering equations---pertinent to rocket engine design---were implemented in order to generate the desired extra detail. This study describes how these new models were then imported into the ESI CFD Suite. Various parameters are applied to these imported models as inputs that include, for example, bi-propellant combinations, pressure, temperatures, and mass flow rates. The results were then processed with ESI VIEW, which is visualization software. The output files were analyzed for forces in the nozzle, and various results were generated, including sea level thrust and ISP. Experimental data are provided to compare the original engine configuration models to the derivative suggested improvement models.

  2. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Science.gov (United States)

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  3. The quest for significance model of radicalization: implications for the management of terrorist detainees.

    Science.gov (United States)

    Dugas, Michelle; Kruglanski, Arie W

    2014-01-01

    Radicalization and its culmination in terrorism represent a grave threat to the security and stability of the world. A related challenge is effective management of extremists who are detained in prison facilities. The major aim of this article is to review the significance quest model of radicalization and its implications for management of terrorist detainees. First, we review the significance quest model, which elaborates on the roles of motivation, ideology, and social processes in radicalization. Secondly, we explore the implications of the model in relation to the risks of prison radicalization. Finally, we analyze the model's implications for deradicalization strategies and review preliminary evidence for the effectiveness of a rehabilitation program targeting components of the significance quest. Based on this evidence, we argue that the psychology of radicalization provides compelling reason for the inclusion of deradicalization efforts as an essential component of the management of terrorist detainees. Copyright © 2014 John Wiley & Sons, Ltd.

  4. NOVEL APPROACH TO IMPROVE GEOCENTRIC TRANSLATION MODEL PERFORMANCE USING ARTIFICIAL NEURAL NETWORK TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Yao Yevenyo Ziggah

    Full Text Available Abstract: Geocentric translation model (GTM in recent times has not gained much popularity in coordinate transformation research due to its attainable accuracy. Accurate transformation of coordinate is a major goal and essential procedure for the solution of a number of important geodetic problems. Therefore, motivated by the successful application of Artificial Intelligence techniques in geodesy, this study developed, tested and compared a novel technique capable of improving the accuracy of GTM. First, GTM based on official parameters (OP and new parameters determined using the arithmetic mean (AM were applied to transform coordinate from global WGS84 datum to local Accra datum. On the basis of the results, the new parameters (AM attained a maximum horizontal position error of 1.99 m compared to the 2.75 m attained by OP. In line with this, artificial neural network technology of backpropagation neural network (BPNN, radial basis function neural network (RBFNN and generalized regression neural network (GRNN were then used to compensate for the GTM generated errors based on AM parameters to obtain a new coordinate transformation model. The new implemented models offered significant improvement in the horizontal position error from 1.99 m to 0.93 m.

  5. Forecasting China’s Annual Biofuel Production Using an Improved Grey Model

    Directory of Open Access Journals (Sweden)

    Nana Geng

    2015-10-01

    Full Text Available Biofuel production in China suffers from many uncertainties due to concerns about the government’s support policy and supply of biofuel raw material. Predicting biofuel production is critical to the development of this energy industry. Depending on the biofuel’s characteristics, we improve the prediction precision of the conventional prediction method by creating a dynamic fuzzy grey–Markov prediction model. Our model divides random time series decomposition into a change trend sequence and a fluctuation sequence. It comprises two improvements. We overcome the problem of considering the status of future time from a static angle in the traditional grey model by using the grey equal dimension new information and equal dimension increasing models to create a dynamic grey prediction model. To resolve the influence of random fluctuation data and weak anti-interference ability in the Markov chain model, we improve the traditional grey–Markov model with classification of states using the fuzzy set theory. Finally, we use real data to test the dynamic fuzzy prediction model. The results prove that the model can effectively improve the accuracy of forecast data and can be applied to predict biofuel production. However, there are still some defects in our model. The modeling approach used here predicts biofuel production levels based upon past production levels dictated by economics, governmental policies, and technological developments but none of which can be forecast accurately based upon past events.

  6. Improved dual sided doped memristor: modelling and applications

    Directory of Open Access Journals (Sweden)

    Anup Shrivastava

    2014-05-01

    Full Text Available Memristor as a novel and emerging electronic device having vast range of applications suffer from poor frequency response and saturation length. In this paper, the authors present a novel and an innovative device structure for the memristor with two active layers and its non-linear ionic drift model for an improved frequency response and saturation length. The authors investigated and compared the I–V characteristics for the proposed model with the conventional memristors and found better results in each case (different window functions for the proposed dual sided doped memristor. For circuit level simulation, they developed a SPICE model of the proposed memristor and designed some logic gates based on hybrid complementary metal oxide semiconductor memristive logic (memristor ratioed logic. The proposed memristor yields improved results in terms of noise margin, delay time and dynamic hazards than that of the conventional memristors (single active layer memristors.

  7. Improving Student Learning Outcomes Marketing Strategy Lesson By Applying SFAE Learning Model

    Directory of Open Access Journals (Sweden)

    Winda Nur Rohmawati

    2017-11-01

    Full Text Available Research objectives for improving student learning outcomes on the subjects of marketing strategy through the implementation of model learning SFAE. This type of research this is a class action research using a qualitative approach which consists of two cycles with the subject Marketing X grade SMK YPI Darussalam 2 Cerme Gresik Regency. This research consists of four stages: (1 the Planning Act, (2 the implementation of the action, (3 observations (observation, and (4 Reflection. The result of the research shows that cognitive and affective learning outcomes of students have increased significantly.

  8. Process-Improvement Cost Model for the Emergency Department.

    Science.gov (United States)

    Dyas, Sheila R; Greenfield, Eric; Messimer, Sherri; Thotakura, Swati; Gholston, Sampson; Doughty, Tracy; Hays, Mary; Ivey, Richard; Spalding, Joseph; Phillips, Robin

    2015-01-01

    The objective of this report is to present a simplified, activity-based costing approach for hospital emergency departments (EDs) to use with Lean Six Sigma cost-benefit analyses. The cost model complexity is reduced by removing diagnostic and condition-specific costs, thereby revealing the underlying process activities' cost inefficiencies. Examples are provided for evaluating the cost savings from reducing discharge delays and the cost impact of keeping patients in the ED (boarding) after the decision to admit has been made. The process-improvement cost model provides a needed tool in selecting, prioritizing, and validating Lean process-improvement projects in the ED and other areas of patient care that involve multiple dissimilar diagnoses.

  9. A participatory model for improving occupational health and safety: improving informal sector working conditions in Thailand.

    Science.gov (United States)

    Manothum, Aniruth; Rukijkanpanich, Jittra; Thawesaengskulthai, Damrong; Thampitakkul, Boonwa; Chaikittiporn, Chalermchai; Arphorn, Sara

    2009-01-01

    The purpose of this study was to evaluate the implementation of an Occupational Health and Safety Management Model for informal sector workers in Thailand. The studied model was characterized by participatory approaches to preliminary assessment, observation of informal business practices, group discussion and participation, and the use of environmental measurements and samples. This model consisted of four processes: capacity building, risk analysis, problem solving, and monitoring and control. The participants consisted of four local labor groups from different regions, including wood carving, hand-weaving, artificial flower making, and batik processing workers. The results demonstrated that, as a result of applying the model, the working conditions of the informal sector workers had improved to meet necessary standards. This model encouraged the use of local networks, which led to cooperation within the groups to create appropriate technologies to solve their problems. The authors suggest that this model could effectively be applied elsewhere to improve informal sector working conditions on a broader scale.

  10. Establishing an Improved Kane Dynamic Model for the 7-DOF Reconfigurable Modular Robot

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2017-01-01

    Full Text Available We propose an improved Kane dynamic model theory for the 7-DOF modular robot in this paper, and the model precision is improved by the improved function T′it. We designed three types of progressive modular joints for reconfigurable modular robot that can be used in industrial robot, space robot, and special robot. The Kane dynamic model and the solid dynamic model are established, respectively, for the 7-DOF modular robot. After that, the experimental results are obtained from the simulation experiment of typical task in the established dynamic models. By the analysis model of error, the equation of the improved torque T′it is derived and proposed. And the improved Kane dynamic model is established for the modular robot that used T′it. Based on the experimental data, the undetermined coefficient matrix is five-order linear that was proved in 7-DOF modular robot. And the explicit formulation is solved of the Kane dynamic model and can be used in control system.

  11. Carfilzomib significantly improves the progression-free survival of high-risk patients in multiple myeloma.

    Science.gov (United States)

    Avet-Loiseau, Hervé; Fonseca, Rafael; Siegel, David; Dimopoulos, Meletios A; Špička, Ivan; Masszi, Tamás; Hájek, Roman; Rosiñol, Laura; Goranova-Marinova, Vesselina; Mihaylov, Georgi; Maisnar, Vladimír; Mateos, Maria-Victoria; Wang, Michael; Niesvizky, Ruben; Oriol, Albert; Jakubowiak, Andrzej; Minarik, Jiri; Palumbo, Antonio; Bensinger, William; Kukreti, Vishal; Ben-Yehuda, Dina; Stewart, A Keith; Obreja, Mihaela; Moreau, Philippe

    2016-09-01

    The presence of certain high-risk cytogenetic abnormalities, such as translocations (4;14) and (14;16) and deletion (17p), are known to have a negative impact on survival in multiple myeloma (MM). The phase 3 study ASPIRE (N = 792) demonstrated that progression-free survival (PFS) was significantly improved with carfilzomib, lenalidomide, and dexamethasone (KRd), compared with lenalidomide and dexamethasone (Rd) in relapsed MM. This preplanned subgroup analysis of ASPIRE was conducted to evaluate KRd vs Rd by baseline cytogenetics according to fluorescence in situ hybridization. Of 417 patients with known cytogenetic risk status, 100 patients (24%) were categorized with high-risk cytogenetics (KRd, n = 48; Rd, n = 52) and 317 (76%) were categorized with standard-risk cytogenetics (KRd, n = 147; Rd, n = 170). For patients with high-risk cytogenetics, treatment with KRd resulted in a median PFS of 23.1 months, a 9-month improvement relative to treatment with Rd. For patients with standard-risk cytogenetics, treatment with KRd led to a 10-month improvement in median PFS vs Rd. The overall response rates for KRd vs Rd were 79.2% vs 59.6% (high-risk cytogenetics) and 91.2% vs 73.5% (standard-risk cytogenetics); approximately fivefold as many patients with high- or standard-risk cytogenetics achieved a complete response or better with KRd vs Rd (29.2% vs 5.8% and 38.1% vs 6.5%, respectively). KRd improved but did not abrogate the poor prognosis associated with high-risk cytogenetics. This regimen had a favorable benefit-risk profile in patients with relapsed MM, irrespective of cytogenetic risk status, and should be considered a standard of care in these patients. This trial was registered at www.clinicaltrials.gov as #NCT01080391. © 2016 by The American Society of Hematology.

  12. Basic study of the plant maintenance model considering plant improvement/modification

    International Nuclear Information System (INIS)

    Tsumaya, Akira; Inoue, Kazuya; Mochizuki, Masahito; Wakamatsu, Hidefumi; Arai, Eiji

    2007-01-01

    This paper proposes a maintenance activity model that considers not only routine maintenance activity but also functional maintenance including improvement/modification. Required maintenance types are categorized, and limitation of Activity Domain Integration Diagram (ADID) proposed by ISO18435 are discussed based on framework for life cycle maintenance management of manufacturing assets. Then, we proposed extension ADID model for plant maintenance activity model considering functional improvement/modification. (author)

  13. An integrated PRA module for fast determination of risk significance and improvement effectiveness

    International Nuclear Information System (INIS)

    Chao, Chun-Chang; Lin, Jyh-Der

    2004-01-01

    With the widely use of PRA technology in risk-informed applications, to predict the changes of CDF and LERF becomes a standard process for risk-informed applications. This paper describes an integrated PRA module prepared for risk-informed applications. The module contains a super risk engine, a super fault tree engine, an advanced PRA model and a tool for data base maintenance. The individual element of the module also works well for purpose other than risk-informed applications. The module has been verified and validated through a series of scrupulous benchmark tests with similar software. The results of the benchmark tests showed that the module has remarkable accuracy and speed even for an extremely large-size top-logic fault tree as well as for the case in which large amount of MCSs may be generated. The risk monitor for nuclear power plants in Taiwan is the first application to adopt the module. The results predicted by the risk monitor are now accepted by the regulatory agency. A tool to determine the risk significance according to the inspection findings will be the next application to adopt the module in the near future. This tool classified the risk significance into four different color codes according to the level of increase on CDF. Experience of application showed that the flexibility, the accuracy and speed of the module make it useful in any risk-informed applications when risk indexes must be determined by resolving a PRA model. (author)

  14. Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements

    Science.gov (United States)

    O'Neill, Pat M.; Kim, Myung-Hee Y.

    2014-01-01

    The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GR measurements is used by deep space mission planners for the certification of micro-electronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n-20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determines the GCR flux at a given time applying an empirical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized for than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried onward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so empirical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on the gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its

  15. Improved model for solar heating of buildings

    OpenAIRE

    Lie, Bernt

    2015-01-01

    A considerable future increase in the global energy use is expected, and the effects of energy conversion on the climate are already observed. Future energy conversion should thus be based on resources that have negligible climate effects; solar energy is perhaps the most important of such resources. The presented work builds on a previous complete model for solar heating of a house; here the aim to introduce ventilation heat recovery and improve on the hot water storage model. Ventilation he...

  16. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs).

    Science.gov (United States)

    Myung, Ja Hye; Park, Sin-Jung; Wang, Andrew Z; Hong, Seungpyo

    2017-12-13

    Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed. Copyright © 2017. Published by Elsevier B.V.

  17. Compression stockings significantly improve hemodynamic performance in post-thrombotic syndrome irrespective of class or length.

    Science.gov (United States)

    Lattimer, Christopher R; Azzam, Mustapha; Kalodiki, Evi; Makris, Gregory C; Geroulakos, George

    2013-07-01

    Graduated elastic compression (GEC) stockings have been demonstrated to reduce the morbidity associated with post-thrombotic syndrome. The ideal length or compression strength required to achieve this is speculative and related to physician preference and patient compliance. The aim of this study was to evaluate the hemodynamic performance of four different stockings and determine the patient's preference. Thirty-four consecutive patients (40 legs, 34 male) with post-thrombotic syndrome were tested with four different stockings (Mediven plus open toe, Bayreuth, Germany) of their size in random order: class 1 (18-21 mm Hg) and class II (23-32 mm Hg), below-knee (BK) and above-knee thigh-length (AK). The median age, Venous Clinical Severity Score, Venous Segmental Disease Score, and Villalta scale were 62 years (range, 31-81 years), 8 (range, 1-21), 5 (range, 2-10), and 10 (range, 2-22), respectively. The C of C0-6EsAs,d,pPr,o was C0 = 2, C2 = 1, C3 = 3, C4a = 12, C4b = 7, C5 = 12, C6 = 3. Obstruction and reflux was observed on duplex in 47.5% legs, with deep venous reflux alone in 45%. Air plethysmography was used to measure the venous filling index (VFI), venous volume, and time to fill 90% of the venous volume. Direct pressure measurements were obtained while lying and standing using the PicoPress device (Microlab Elettronica, Nicolò, Italy). The pressure sensor was placed underneath the test stocking 5 cm above and 2 cm posterior to the medial malleolus. At the end of the study session, patients stated their preferred stocking based on comfort. The VFI, venous volume, and time to fill 90% of the venous volume improved significantly with all types of stocking versus no compression. In class I, the VFI (mL/s) improved from a median of 4.9 (range, 1.7-16.3) without compression to 3.7 (range, 0-14) BK (24.5%) and 3.6 (range, 0.6-14.5) AK (26.5%). With class II, the corresponding improvement was to 4.0 (range, 0.3-16.2) BK (18.8%) and 3.7 (range, 0.5-14.2) AK (24

  18. School Improvement Model to Foster Student Learning

    Science.gov (United States)

    Rulloda, Rudolfo Barcena

    2011-01-01

    Many classroom teachers are still using the traditional teaching methods. The traditional teaching methods are one-way learning process, where teachers would introduce subject contents such as language arts, English, mathematics, science, and reading separately. However, the school improvement model takes into account that all students have…

  19. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na. We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring

  20. Mapping the Most Significant Computer Hacking Events to a Temporal Computer Attack Model

    OpenAIRE

    Heerden , Renier ,; Pieterse , Heloise; Irwin , Barry

    2012-01-01

    Part 4: Section 3: ICT for Peace and War; International audience; This paper presents eight of the most significant computer hacking events (also known as computer attacks). These events were selected because of their unique impact, methodology, or other properties. A temporal computer attack model is presented that can be used to model computer based attacks. This model consists of the following stages: Target Identification, Reconnaissance, Attack, and Post-Attack Reconnaissance stages. The...

  1. Development of an Improved Time Varying Loudness Model with the Inclusion of Binaural Loudness Summation

    Science.gov (United States)

    Charbonneau, Jeremy

    As the perceived quality of a product is becoming more important in the manufacturing industry, more emphasis is being placed on accurately predicting the sound quality of everyday objects. This study was undertaken to improve upon current prediction techniques with regard to the psychoacoustic descriptor of loudness and an improved binaural summation technique. The feasibility of this project was first investigated through a loudness matching experiment involving thirty-one subjects and pure tones of constant sound pressure level. A dependence of binaural summation on frequency was observed which had previously not been a subject of investigation in the reviewed literature. A follow-up investigation was carried out with forty-eight volunteers and pure tones of constant sensation level. Contrary to existing theories in literature the resulting loudness matches revealed an amplitude versus frequency relationship which confirmed the perceived increase in loudness when a signal was presented to both ears simultaneously as opposed to one ear alone. The resulting trend strongly indicated that the higher the frequency of the presented signal, the greater the increase in observed binaural summation. The results from each investigation were summarized into a single binaural summation algorithm and inserted into an improved time-varying loudness model. Using experimental techniques, it was demonstrated that the updated binaural summation algorithm was a considerable improvement over the state of the art approach for predicting the perceived binaural loudness. The improved function retained the ease of use from the original model while additionally providing accurate estimates of diotic listening conditions from monaural WAV files. It was clearly demonstrated using a validation jury test that the revised time-varying loudness model was a significant improvement over the previously standardized approach.

  2. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: mdf2004@zju.edu.cn [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)

    2015-10-16

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.

  3. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    International Nuclear Information System (INIS)

    Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai

    2015-01-01

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated

  4. Improving Simulations of Extreme Flows by Coupling a Physically-based Hydrologic Model with a Machine Learning Model

    Science.gov (United States)

    Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.

    2017-12-01

    With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967

  5. An improved state-parameter analysis of ecosystem models using data assimilation

    Science.gov (United States)

    Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.

    2008-01-01

    simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.

  6. Improved Inference of Heteroscedastic Fixed Effects Models

    Directory of Open Access Journals (Sweden)

    Afshan Saeed

    2016-12-01

    Full Text Available Heteroscedasticity is a stern problem that distorts estimation and testing of panel data model (PDM. Arellano (1987 proposed the White (1980 estimator for PDM with heteroscedastic errors but it provides erroneous inference for the data sets including high leverage points. In this paper, our attempt is to improve heteroscedastic consistent covariance matrix estimator (HCCME for panel dataset with high leverage points. To draw robust inference for the PDM, our focus is to improve kernel bootstrap estimators, proposed by Racine and MacKinnon (2007. The Monte Carlo scheme is used for assertion of the results.

  7. Improved Kinetic Models for High-Speed Combustion Simulation

    National Research Council Canada - National Science Library

    Montgomery, C. J; Tang, Q; Sarofim, A. F; Bockelie, M. J; Gritton, J. K; Bozzelli, J. W; Gouldin, F. C; Fisher, E. M; Chakravarthy, S

    2008-01-01

    Report developed under an STTR contract. The overall goal of this STTR project has been to improve the realism of chemical kinetics in computational fluid dynamics modeling of hydrocarbon-fueled scramjet combustors...

  8. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    Science.gov (United States)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  9. The Ras antagonist, farnesylthiosalicylic acid (FTS, decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Yoram Nevo

    Full Text Available The Ras superfamily of guanosine-triphosphate (GTP-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy(2J/dy(2J mouse model of merosin deficient congenital muscular dystrophy. The dy(2J/dy(2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy(2J/dy(2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy(2J/dy(2J mouse model of congenital muscular dystrophy.

  10. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  11. On Improving 4-km Mesoscale Model Simulations

    Science.gov (United States)

    Deng, Aijun; Stauffer, David R.

    2006-03-01

    A previous study showed that use of analysis-nudging four-dimensional data assimilation (FDDA) and improved physics in the fifth-generation Pennsylvania State University National Center for Atmospheric Research Mesoscale Model (MM5) produced the best overall performance on a 12-km-domain simulation, based on the 18 19 September 1983 Cross-Appalachian Tracer Experiment (CAPTEX) case. However, reducing the simulated grid length to 4 km had detrimental effects. The primary cause was likely the explicit representation of convection accompanying a cold-frontal system. Because no convective parameterization scheme (CPS) was used, the convective updrafts were forced on coarser-than-realistic scales, and the rainfall and the atmospheric response to the convection were too strong. The evaporative cooling and downdrafts were too vigorous, causing widespread disruption of the low-level winds and spurious advection of the simulated tracer. In this study, a series of experiments was designed to address this general problem involving 4-km model precipitation and gridpoint storms and associated model sensitivities to the use of FDDA, planetary boundary layer (PBL) turbulence physics, grid-explicit microphysics, a CPS, and enhanced horizontal diffusion. Some of the conclusions include the following: 1) Enhanced parameterized vertical mixing in the turbulent kinetic energy (TKE) turbulence scheme has shown marked improvements in the simulated fields. 2) Use of a CPS on the 4-km grid improved the precipitation and low-level wind results. 3) Use of the Hong and Pan Medium-Range Forecast PBL scheme showed larger model errors within the PBL and a clear tendency to predict much deeper PBL heights than the TKE scheme. 4) Combining observation-nudging FDDA with a CPS produced the best overall simulations. 5) Finer horizontal resolution does not always produce better simulations, especially in convectively unstable environments, and a new CPS suitable for 4-km resolution is needed. 6

  12. Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees.

    Science.gov (United States)

    Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E

    2017-03-01

    Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R 2 of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.

  13. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment.

    Science.gov (United States)

    Wang, Zhenzhi; Zhai, Dongxia; Zhang, Danying; Bai, Lingling; Yao, Ruipin; Yu, Jin; Cheng, Wen; Yu, Chaoqin

    2017-05-01

    Insulin resistance (IR) is a clinical feature of polycystic ovary syndrome (PCOS). Quercetin, derived from Chinese medicinal herbs such as hawthorn, has been proven practical in the management of IR in diabetes. However, whether quercetin could decrease IR in PCOS is unknown. This study aims to observe the therapeutic effect of quercetin on IR in a PCOS rat model and explore the underlying mechanism. An IR PCOS rat model was established by subcutaneous injection with dehydroepiandrosterone. The body weight, estrous cycle, and ovary morphology of the quercetin-treated rats were observed. Serum inflammatory cytokines were analyzed using enzyme-linked immunosorbent assay. In ovarian tissues, the expression of key genes involved in the inflammatory signaling pathway was detected through Western blot, real-time polymerase chain reaction, or immunohistochemistry. The nuclear translocation of nuclear factor κB (NF-κB) was also observed by immunofluorescence. The estrous cycle recovery rate of the insulin-resistant PCOS model after quercetin treatment was 58.33%. Quercetin significantly reduced the levels of blood insulin, interleukin 1β, IL-6, and tumor necrosis factor α. Quercetin also significantly decreased the granulosa cell nuclear translocation of NF-κB in the insulin-resistant PCOS rat model. The treatment inhibited the expression of inflammation-related genes, including the nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox, oxidized low-density lipoprotein, and Toll-like receptor 4, in ovarian tissue. Quercetin improved IR and demonstrated a favorable therapeutic effect on the PCOS rats. The underlying mechanism of quercetin potentially involves the inhibition of the Toll-like receptor/NF-κB signaling pathway and the improvement in the inflammatory microenvironment of the ovarian tissue of the PCOS rat model.

  14. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  15. Multi-approach model for improving agrochemical safety among rice farmers in Pathumthani, Thailand

    Directory of Open Access Journals (Sweden)

    Siriwong W

    2012-07-01

    safety precautions and the use of faulty protective gear. After 6 months, the intervention program showed significant improvements in the overall scores on knowledge, beliefs, behaviors, and home pesticide safety in the study group (P < 0.05. Therefore, this intervention model is effective in improving agrochemical safety behaviors among Khlong Seven Community rice farmers. These findings demonstrate that a multi-approach model for improving agrochemical safety behaviors can lead to sustainable prevention of agrochemical hazards for farmers.Keywords: rice farmer, agrochemical safety, community-based intervention, model

  16. Liraglutide Improves Hypertension and Metabolic Perturbation in a Rat Model of Polycystic Ovarian Syndrome

    Science.gov (United States)

    Hoang, Vanessa; Bi, Jiangjiang; Mohankumar, Sheba M.; Vyas, Arpita K.

    2015-01-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with a prevalence of 5–8%. Type 2 diabetes and cardiovascular disease (CVD) are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1) agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT) pellets (90 day release; 83μg/day). At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2mg/kg s.c twice daily) for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; pDHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; pDHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT–induced metabolic and blood pressure deficits associated with PCOS. PMID:26010091

  17. Does box model training improve surgical dexterity and economy of movement during virtual reality laparoscopy? A randomised trial

    DEFF Research Database (Denmark)

    Clevin, L.; Grantcharov, T.P.

    2008-01-01

    OBJECTIVE: Laparoscopic box model trainers have been used in training curricula for a long time, however data on their impact on skills acquisition is still limited. Our aim was to validate a low cost box model trainer as a tool for the training of skills relevant to laparoscopic surgery. DESIGN:...... the VR system. Trainees who used the box model trainer showed significant improvement compared to the control group. Box model trainers are valid tools for laparoscopic skills training and should be implemented in the comprehensive training curricula in gynaecology Udgivelsesdato: 2008...

  18. Towards improved modeling of steel-concrete composite wall elements

    International Nuclear Information System (INIS)

    Vecchio, Frank J.; McQuade, Ian

    2011-01-01

    Highlights: → Improved analysis of double skinned steel concrete composite containment walls. → Smeared rotating crack concept applied in formulation of new analytical model. → Model implemented into finite element program; numerically stable and robust. → Models behavior of shear-critical elements with greater ease and improved accuracy. → Accurate assessments of strength, deformation and failure mode of test specimens. - Abstract: The Disturbed Stress Field Model, a smeared rotating crack model for reinforced concrete based on the Modified Compression Field Theory, is adapted to the analysis of double-skin steel-concrete wall elements. The computational model is then incorporated into a two-dimensional nonlinear finite element analysis algorithm. Verification studies are undertaken by modeling various test specimens, including panel elements subject to uniaxial compression, panel elements subjected to in-plane shear, and wall specimens subjected to reversed cyclic lateral displacements. In all cases, the analysis model is found to provide accurate calculations of structural load capacities, pre- and post-peak displacement responses, post-peak ductility, chronology of damage, and ultimate failure mode. Minor deficiencies are found in regards to the accurate portrayal of faceplate buckling and the effects of interfacial slip between the faceplates and the concrete. Other aspects of the modeling procedure that are in need of further research and development are also identified and discussed.

  19. Improvement of PSA Models Using Monitoring and Prognostics

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyun Young; Chang, Yoon Suk; Kim, Hyun Dae [Kyung Hee University, Yongin (Korea, Republic of)

    2014-08-15

    Probabilistic Safety Assessment (PSA) has performed a significant role for quantitative decision-making by finding design and operational vulnerability and evaluating cost-benefit in improving such weak points. Especially, it has been widely used as the core methodology for Risk-Informed Applications (RIAs). Even though the nature of PSA seeks realistic results, there are still 'conservative' aspects. The sources for the conservatism come from the assumption of safety analysis and the estimation of failure frequency. Surveillance, Diagnosis, and Prognosis (SDP) utilizing massive database and information technology is worthwhile to be highlighted in terms of the capability of alleviating the conservatism in the conventional PSA. This paper provides enabling techniques to concretize the method to provide time- and condition-dependent risk by integrating a conventional PSA model with condition monitoring and prognostics techniques. We will discuss how to integrate the results with frequency of initiating events (IEs) and failure probability of basic events (BEs). Two illustrative examples will be introduced: how the failure probability of a passive system can be evaluated under different plant conditions and how the IE frequency for Steam Generator Tube Rupture (SGTR) can be updated in terms of operating time. We expect that the proposed PSA model can take a role of annunciator to show the variation of Core Damage Frequency (CDF) in terms of time and operational conditions.

  20. Does model performance improve with complexity? A case study with three hydrological models

    Science.gov (United States)

    Orth, Rene; Staudinger, Maria; Seneviratne, Sonia I.; Seibert, Jan; Zappa, Massimiliano

    2015-04-01

    In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts).

  1. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. An Improved Inventory Control Model for the Brazilian Navy Supply System

    Science.gov (United States)

    2001-12-01

    Portuguese Centro de Controle de Inventario da Marinha, the Brazilian Navy Inventory Control Point (ICP) developed an empirical model called SPAADA...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS Approved for public release; distribution is unlimited AN IMPROVED INVENTORY CONTROL ...AN IMPROVED INVENTORY CONTROL MODEL FOR THE BRAZILIAN NAVY SUPPLY SYSTEM Contract Number Grant Number Program Element Number Author(s) Moreira

  3. How can model comparison help improving species distribution models?

    Directory of Open Access Journals (Sweden)

    Emmanuel Stephan Gritti

    Full Text Available Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs. However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagussylvatica L., Quercusrobur L. and Pinussylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.

  4. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  5. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    Science.gov (United States)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  6. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  7. Modelled female sale options demonstrate improved profitability in northern beef herds.

    Science.gov (United States)

    Niethe, G E; Holmes, W E

    2008-12-01

    To examine the impact of improving the average value of cows sold, the risk of decreasing the number weaned, and total sales on the profitability of northern Australian cattle breeding properties. Gather, model and interpret breeder herd performances and production parameters on properties from six beef-producing regions in northern Australia. Production parameters, prices, costs and herd structure were entered into a herd simulation model for six northern Australian breeding properties that spay females to enhance their marketing options. After the data were validated by management, alternative management strategies were modelled using current market prices and most likely herd outcomes. The model predicted a close relationship between the average sale value of cows, the total herd sales and the gross margin/adult equivalent. Keeping breeders out of the herd to fatten generally improves their sale value, and this can be cost-effective, despite the lower number of progeny produced and the subsequent reduction in total herd sales. Furthermore, if the price of culled cows exceeds the price of culled heifers, provided there are sufficient replacement pregnant heifers available to maintain the breeder herd nucleus, substantial gains in profitability can be obtained by decreasing the age at which cows are culled from the herd. Generalised recommendations on improving reproductive performance are not necessarily the most cost-effective strategy to improve breeder herd profitability. Judicious use of simulation models is essential to help develop the best turnoff strategies for females and to improve station profitability.

  8. A New Performance Improvement Model: Adding Benchmarking to the Analysis of Performance Indicator Data.

    Science.gov (United States)

    Al-Kuwaiti, Ahmed; Homa, Karen; Maruthamuthu, Thennarasu

    2016-01-01

    A performance improvement model was developed that focuses on the analysis and interpretation of performance indicator (PI) data using statistical process control and benchmarking. PIs are suitable for comparison with benchmarks only if the data fall within the statistically accepted limit-that is, show only random variation. Specifically, if there is no significant special-cause variation over a period of time, then the data are ready to be benchmarked. The proposed Define, Measure, Control, Internal Threshold, and Benchmark model is adapted from the Define, Measure, Analyze, Improve, Control (DMAIC) model. The model consists of the following five steps: Step 1. Define the process; Step 2. Monitor and measure the variation over the period of time; Step 3. Check the variation of the process; if stable (no significant variation), go to Step 4; otherwise, control variation with the help of an action plan; Step 4. Develop an internal threshold and compare the process with it; Step 5.1. Compare the process with an internal benchmark; and Step 5.2. Compare the process with an external benchmark. The steps are illustrated through the use of health care-associated infection (HAI) data collected for 2013 and 2014 from the Infection Control Unit, King Fahd Hospital, University of Dammam, Saudi Arabia. Monitoring variation is an important strategy in understanding and learning about a process. In the example, HAI was monitored for variation in 2013, and the need to have a more predictable process prompted the need to control variation by an action plan. The action plan was successful, as noted by the shift in the 2014 data, compared to the historical average, and, in addition, the variation was reduced. The model is subject to limitations: For example, it cannot be used without benchmarks, which need to be calculated the same way with similar patient populations, and it focuses only on the "Analyze" part of the DMAIC model.

  9. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  10. Zone-specific logistic regression models improve classification of prostate cancer on multi-parametric MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dikaios, Nikolaos; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit [University College London, Centre for Medical Imaging, London (United Kingdom); University College London Hospital, Departments of Radiology, London (United Kingdom); Alkalbani, Jokha; Sidhu, Harbir Singh [University College London, Centre for Medical Imaging, London (United Kingdom); Abd-Alazeez, Mohamed; Ahmed, Hashim U.; Emberton, Mark [University College London, Research Department of Urology, Division of Surgery and Interventional Science, London (United Kingdom); Kirkham, Alex [University College London Hospital, Departments of Radiology, London (United Kingdom); Freeman, Alex [University College London Hospital, Department of Histopathology, London (United Kingdom)

    2015-09-15

    To assess the interchangeability of zone-specific (peripheral-zone (PZ) and transition-zone (TZ)) multiparametric-MRI (mp-MRI) logistic-regression (LR) models for classification of prostate cancer. Two hundred and thirty-one patients (70 TZ training-cohort; 76 PZ training-cohort; 85 TZ temporal validation-cohort) underwent mp-MRI and transperineal-template-prostate-mapping biopsy. PZ and TZ uni/multi-variate mp-MRI LR-models for classification of significant cancer (any cancer-core-length (CCL) with Gleason > 3 + 3 or any grade with CCL ≥ 4 mm) were derived from the respective cohorts and validated within the same zone by leave-one-out analysis. Inter-zonal performance was tested by applying TZ models to the PZ training-cohort and vice-versa. Classification performance of TZ models for TZ cancer was further assessed in the TZ validation-cohort. ROC area-under-curve (ROC-AUC) analysis was used to compare models. The univariate parameters with the best classification performance were the normalised T2 signal (T2nSI) within the TZ (ROC-AUC = 0.77) and normalized early contrast-enhanced T1 signal (DCE-nSI) within the PZ (ROC-AUC = 0.79). Performance was not significantly improved by bi-variate/tri-variate modelling. PZ models that contained DCE-nSI performed poorly in classification of TZ cancer. The TZ model based solely on maximum-enhancement poorly classified PZ cancer. LR-models dependent on DCE-MRI parameters alone are not interchangeable between prostatic zones; however, models based exclusively on T2 and/or ADC are more robust for inter-zonal application. (orig.)

  11. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent LER Calculations

    Science.gov (United States)

    Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.

    2017-12-01

    In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.

  12. Improved Assimilation of Streamflow and Satellite Soil Moisture with the Evolutionary Particle Filter and Geostatistical Modeling

    Science.gov (United States)

    Yan, Hongxiang; Moradkhani, Hamid; Abbaszadeh, Peyman

    2017-04-01

    Assimilation of satellite soil moisture and streamflow data into hydrologic models using has received increasing attention over the past few years. Currently, these observations are increasingly used to improve the model streamflow and soil moisture predictions. However, the performance of this land data assimilation (DA) system still suffers from two limitations: 1) satellite data scarcity and quality; and 2) particle weight degeneration. In order to overcome these two limitations, we propose two possible solutions in this study. First, the general Gaussian geostatistical approach is proposed to overcome the limitation in the space/time resolution of satellite soil moisture products thus improving their accuracy at uncovered/biased grid cells. Secondly, an evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC, is developed to further reduce weight degeneration and improve the robustness of the land DA system. This study provides a detailed analysis of the joint and separate assimilation of streamflow and satellite soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed EPF-MCMC and the general Gaussian geostatistical approach. Performance is assessed over several basins in the USA selected from Model Parameter Estimation Experiment (MOPEX) and located in different climate regions. The results indicate that: 1) the general Gaussian approach can predict the soil moisture at uncovered grid cells within the expected satellite data quality threshold; 2) assimilation of satellite soil moisture inferred from the general Gaussian model can significantly improve the soil moisture predictions; and 3) in terms of both deterministic and probabilistic measures, the EPF-MCMC can achieve better streamflow predictions. These results recommend that the geostatistical model is a helpful tool to aid the remote sensing technique and the EPF-MCMC is a

  13. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    Science.gov (United States)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  14. Azimuth cut-off model for significant wave height investigation along coastal water of Kuala Terengganu, Malaysia

    Science.gov (United States)

    Marghany, Maged; Ibrahim, Zelina; Van Genderen, Johan

    2002-11-01

    The present work is used to operationalize the azimuth cut-off concept in the study of significant wave height. Three ERS-1 images have been used along the coastal waters of Terengganu, Malaysia. The quasi-linear transform was applied to map the SAR wave spectra into real ocean wave spectra. The azimuth cut-off was then used to model the significant wave height. The results show that azimuth cut-off varied with the different period of the ERS-1 images. This is because of the fact that the azimuth cut-off is a function of wind speed and significant wave height. It is of interest to find that the significant wave height modeled from azimuth cut-off is in good relation with ground wave conditions. It can be concluded that ERS-1 can be used as a monitoring tool in detecting the significant wave height variation. The azimuth cut-off can be used to model the significant wave height. This means that the quasi-linear transform could be a good application to significant wave height variation during different seasons.

  15. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Creating Significant Learning Experiences across Disciplines

    Science.gov (United States)

    Levine, Laura E.; Fallahi, Carolyn R.; Nicoll-Senft, Joan M.; Tessier, Jack T.; Watson, Cheryl L.; Wood, Rebecca M.

    2008-01-01

    The purpose of this study was to use Fink's (2003) taxonomy of significant learning to redesign courses and assess student learning. Significant improvements were found across the semester for students in the six courses, but there were differences in which taxa showed improvement in each course. The meta-analysis showed significant, positive…

  17. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  18. Collaboration of Physician, Pharmacist and Director Model Toward the Improvement of Teamwork Effectiveness in Hospital

    Directory of Open Access Journals (Sweden)

    Widy S. Abdulkadir

    2017-09-01

    Full Text Available Collaboration of physicians and pharmacists is very important in providing treatment to patients. Collaboration includes an exchange of views or ideas that give perspective to all collaborators. In order to make collaborative relationship optimal, all members of the different professions should have a desire to cooperate. Pharmacists and physicians should plan and practice as colleagues, work interdependence within the limits of the scope of practice with a variety of values and knowledge. The role of director in cooperation between doctor and pharmacist takes decision-making which refers to treatment of patients to be decided together between health professionals (physician and pharmacist. The study was a quasi-experimental design with a pre-test-post-test control group design, using paired t-test analysis. The study was conducted from October 2012 until February 2013. The paired t-test results showed that the variable of teamwork effectiveness in M. M. Dunda Hospital increased significantly (p=0.038, which means that the three-party (physician-pharmacist-director collaboration model may increase teamwork effectiveness. Three-party collaboration model can improve physician-pharmacist relationship in the hospital. Leadership has a positive and significant effect on employees’ organizational commitment. Director can be an inspiration in the work and determine the direction and goals of the organization. Therefore, the three-party (physician-pharmacist-director collaboration model can improve the quality of the relationship between the two professions, physician and pharmacist.

  19. Methylphenidate significantly improves declarative memory functioning of adults with ADHD.

    NARCIS (Netherlands)

    Verster, J.C.; Bekker, E.M.; Kooij, J.J.; Buitelaar, J.K.; Verbaten, M.N.; Volkerts, E.R.; Olivier, B.

    2010-01-01

    BACKGROUND: Declarative memory deficits are common in untreated adults with attention-deficit hyperactivity disorder (ADHD), but limited evidence exists to support improvement after treatment with methylphenidate. The objective of this study was to examine the effects of methylphenidate on memory

  20. The SGLT2 Inhibitor Dapagliflozin Significantly Improves the Peripheral Microvascular Endothelial Function in Patients with Uncontrolled Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Sugiyama, Seigo; Jinnouchi, Hideaki; Kurinami, Noboru; Hieshima, Kunio; Yoshida, Akira; Jinnouchi, Katsunori; Nishimura, Hiroyuki; Suzuki, Tomoko; Miyamoto, Fumio; Kajiwara, Keizo; Jinnouchi, Tomio

    2018-03-30

    Objective Sodium-glucose cotransporter-2 (SGLT2) inhibitors reduce cardiovascular events and decrease the body fat mass in patients with type 2 diabetes mellitus (T2DM). We examined whether or not the SGLT2-inhibitor dapagliflozin can improve the endothelial function associated with a reduction in abdominal fat mass. Methods We prospectively recruited patients with uncontrolled (hemoglobin A1c [HbA1c] >7.0%) T2DM who were not being treated by SGLT2 inhibitors. Patients were treated with add-on dapagliflozin (5 mg/day) or non-SGLT2 inhibitor medicines for 6 months to improve their HbA1c. We measured the peripheral microvascular endothelial function as assessed by reactive hyperemia peripheral arterial tonometry (RH-PAT) and calculated the natural logarithmic transformed value of the RH-PAT index (LnRHI). We then investigated changes in the LnRHI and abdominal fat area using computed tomography (CT). Results The subjects were 54 patients with uncontrolled T2DM (72.2% men) with a mean HbA1c of 8.1%. The HbA1c was significantly decreased in both groups, with no significant difference between the groups. Dapagliflozin treatment, but not non-SGLT2 inhibitor treatment, significantly increased the LnRHI. The changes in the LnRHI were significantly greater in the dapagliflozin group than in the non-SGLT2 inhibitor group. Dapagliflozin treatment, but not non-SGLT2 inhibitor treatment, significantly decreased the abdominal visceral fat area, subcutaneous fat area (SFA), and total fat area (TFA) as assessed by CT and significantly increased the plasma adiponectin levels. The percentage changes in the LnRHI were significantly correlated with changes in the SFA, TFA, systolic blood pressure, and adiponectin. Conclusion Add-on treatment with dapagliflozin significantly improves the glycemic control and endothelial function associated with a reduction in the abdominal fat mass in patients with uncontrolled T2DM.

  1. Improving Bioenergy Crops through Dynamic Metabolic Modeling

    Directory of Open Access Journals (Sweden)

    Mojdeh Faraji

    2017-10-01

    Full Text Available Enormous advances in genetics and metabolic engineering have made it possible, in principle, to create new plants and crops with improved yield through targeted molecular alterations. However, while the potential is beyond doubt, the actual implementation of envisioned new strains is often difficult, due to the diverse and complex nature of plants. Indeed, the intrinsic complexity of plants makes intuitive predictions difficult and often unreliable. The hope for overcoming this challenge is that methods of data mining and computational systems biology may become powerful enough that they could serve as beneficial tools for guiding future experimentation. In the first part of this article, we review the complexities of plants, as well as some of the mathematical and computational methods that have been used in the recent past to deepen our understanding of crops and their potential yield improvements. In the second part, we present a specific case study that indicates how robust models may be employed for crop improvements. This case study focuses on the biosynthesis of lignin in switchgrass (Panicum virgatum. Switchgrass is considered one of the most promising candidates for the second generation of bioenergy production, which does not use edible plant parts. Lignin is important in this context, because it impedes the use of cellulose in such inedible plant materials. The dynamic model offers a platform for investigating the pathway behavior in transgenic lines. In particular, it allows predictions of lignin content and composition in numerous genetic perturbation scenarios.

  2. Experiential Learning Model on Entrepreneurship Subject to Improve Students’ Soft Skills

    Directory of Open Access Journals (Sweden)

    Lina Rifda Naufalin

    2016-06-01

    Full Text Available This research aims to improve students’ soft skills on entrepreneurship subject by using experiential learning model. It was expected that the learning model could upgrade students’ soft skills which were indicated by the higher confidence, result and job oriented, being courageous to take risks, leadership, originality, and future-oriented. It was a class action research using Kemmis and Mc Tagart’s design model. The research was conducted for two cycles. The subject of the study was economics education students in the year of 2015/2016.  Findings show that the experiential learning model could improve students’ soft skills. The research showed that there is increased at the dimension of confidence by 52.1%, result-oriented by 22.9%, being courageous to take risks by 10.4%, leadership by 12.5%, originality by 10.4%, and future-oriented by 18.8%. It could be concluded that the experiential learning model is effective model to improve students’ soft skills on entrepreneurship subject. Dimension of confidence has the highest rise. Students’ soft skills are shaped through the continuous stimulus when they get involved at the implementation.

  3. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage.

    Science.gov (United States)

    Geremia, N M; Hryciw, T; Bao, F; Streijger, F; Okon, E; Lee, J H T; Weaver, L C; Dekaban, G A; Kwon, B K; Brown, A

    2017-09-01

    We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    Science.gov (United States)

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  5. Increasing the statistical significance of entanglement detection in experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jungnitsch, Bastian; Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Lu, He; Gao, Wei-Bo; Chen, Zeng-Bing [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Chen, Yu-Ao; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Physikalisches Institut, Universitaet Heidelberg (Germany)

    2010-07-01

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. We show this to be the case for an error model in which the variance of an observable is interpreted as its error and for the standard error model in photonic experiments. Specifically, we demonstrate that the Mermin inequality yields a Bell test which is statistically more significant than the Ardehali inequality in the case of a photonic four-qubit state that is close to a GHZ state. Experimentally, we observe this phenomenon in a four-photon experiment, testing the above inequalities for different levels of noise.

  6. Investigations of incorporating source directivity into room acoustics computer models to improve auralizations

    Science.gov (United States)

    Vigeant, Michelle C.

    Room acoustics computer modeling and auralizations are useful tools when designing or modifying acoustically sensitive spaces. In this dissertation, the input parameter of source directivity has been studied in great detail to determine first its effect in room acoustics computer models and secondly how to better incorporate the directional source characteristics into these models to improve auralizations. To increase the accuracy of room acoustics computer models, the source directivity of real sources, such as musical instruments, must be included in the models. The traditional method for incorporating source directivity into room acoustics computer models involves inputting the measured static directivity data taken every 10° in a sphere-shaped pattern around the source. This data can be entered into the room acoustics software to create a directivity balloon, which is used in the ray tracing algorithm to simulate the room impulse response. The first study in this dissertation shows that using directional sources over an omni-directional source in room acoustics computer models produces significant differences both in terms of calculated room acoustics parameters and auralizations. The room acoustics computer model was also validated in terms of accurately incorporating the input source directivity. A recently proposed technique for creating auralizations using a multi-channel source representation has been investigated with numerous subjective studies, applied to both solo instruments and an orchestra. The method of multi-channel auralizations involves obtaining multi-channel anechoic recordings of short melodies from various instruments and creating individual channel auralizations. These auralizations are then combined to create a total multi-channel auralization. Through many subjective studies, this process was shown to be effective in terms of improving the realism and source width of the auralizations in a number of cases, and also modeling different

  7. A improved Network Security Situation Awareness Model

    Directory of Open Access Journals (Sweden)

    Li Fangwei

    2015-08-01

    Full Text Available In order to reflect the situation of network security assessment performance fully and accurately, a new network security situation awareness model based on information fusion was proposed. Network security situation is the result of fusion three aspects evaluation. In terms of attack, to improve the accuracy of evaluation, a situation assessment method of DDoS attack based on the information of data packet was proposed. In terms of vulnerability, a improved Common Vulnerability Scoring System (CVSS was raised and maked the assessment more comprehensive. In terms of node weights, the method of calculating the combined weights and optimizing the result by Sequence Quadratic Program (SQP algorithm which reduced the uncertainty of fusion was raised. To verify the validity and necessity of the method, a testing platform was built and used to test through evaluating 2000 DAPRA data sets. Experiments show that the method can improve the accuracy of evaluation results.

  8. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  9. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  10. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  11. Five-year results from a prospective multicentre study of percutaneous pulmonary valve implantation demonstrate sustained removal of significant pulmonary regurgitation, improved right ventricular outflow tract obstruction and improved quality of life

    DEFF Research Database (Denmark)

    Hager, Alfred; Schubert, Stephan; Ewert, Peter

    2017-01-01

    . The EQ-5D quality of life utility index and visual analogue scale scores were both significantly improved six months post PPVI and remained so at five years. CONCLUSIONS: Five-year results following PPVI demonstrate resolved moderate or severe pulmonary regurgitation, improved right ventricular outflow...

  12. Combination of blood tests for significant fibrosis and cirrhosis improves the assessment of liver-prognosis in chronic hepatitis C.

    Science.gov (United States)

    Boursier, J; Brochard, C; Bertrais, S; Michalak, S; Gallois, Y; Fouchard-Hubert, I; Oberti, F; Rousselet, M-C; Calès, P

    2014-07-01

    Recent longitudinal studies have emphasised the prognostic value of noninvasive tests of liver fibrosis and cross-sectional studies have shown their combination significantly improves diagnostic accuracy. To compare the prognostic accuracy of six blood fibrosis tests and liver biopsy, and evaluate if test combination improves the liver-prognosis assessment in chronic hepatitis C (CHC). A total of 373 patients with compensated CHC, liver biopsy (Metavir F) and blood tests targeting fibrosis (APRI, FIB4, Fibrotest, Hepascore, FibroMeter) or cirrhosis (CirrhoMeter) were included. Significant liver-related events (SLRE) and liver-related deaths were recorded during follow-up (started the day of biopsy). During the median follow-up of 9.5 years (3508 person-years), 47 patients had a SLRE and 23 patients died from liver-related causes. For the prediction of first SLRE, most blood tests allowed higher prognostication than Metavir F [Harrell C-index: 0.811 (95% CI: 0.751-0.868)] with a significant increase for FIB4: 0.879 [0.832-0.919] (P = 0.002), FibroMeter: 0.870 [0.812-0.922] (P = 0.005) and APRI: 0.861 [0.813-0.902] (P = 0.039). Multivariate analysis identified FibroMeter, CirrhoMeter and sustained viral response as independent predictors of first SLRE. CirrhoMeter was the only independent predictor of liver-related death. The combination of FibroMeter and CirrhoMeter classifications into a new FM/CM classification improved the liver-prognosis assessment compared to Metavir F staging or single tests by identifying five subgroups of patients with significantly different prognoses. Some blood fibrosis tests are more accurate than liver biopsy for determining liver prognosis in CHC. A new combination of two complementary blood tests, one targeted for fibrosis and the other for cirrhosis, optimises assessment of liver-prognosis. © 2014 John Wiley & Sons Ltd.

  13. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  14. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  15. Improving ability mathematic literacy, self-efficacy and reducing mathematical anxiety with learning Treffinger model at senior high school students

    Directory of Open Access Journals (Sweden)

    Hafizh Nizham

    2017-12-01

    Full Text Available This study is a Quasi Experimental study with the design of The Pretest-Post-Test Non-Equivalent Group Design. Population in this research is all student of class X SHS in South Jakarta. Sampling is done by purposive sampling, to obtain an experimental class and control class. In the experimental class, students learn with Treffinger learning model and control, class learning with conventional learning. This study is also to examine the differences of self-efficacy improvement and students literacy skills, and decreased students' mathematical anxiety. Also, this study also examines the relevance of early mathematical abilities (high, medium, low with improving students' math literacy skills. The instrument used in this research is literacy skill test, self-efficacy scale, mathematical anxiety scale, observation sheet, and student interview. Data were analyzed by t-test, one-way ANOVA, and two lines. From the results of the data, it is found that: (1 The improvement of literacy ability of students who are learned with Treffinger model learning is not significantly higher than students who learn with conventional. (2 The self-efficacy of students who learning with the Treffinger model learning  is better than the student that is learning by conventional. (3 The mathematical anxiety of students learning with Treffinger model learning reduces better than students learning with conventional. (4 There is a difference in the improvement of students' mathematical literacy skills learning by learning the Treffinger model and students learning with conventional learning based on early mathematical abilities. (5 Student response to Treffinger model learning is better than students learning with conventional learning. Therefore, learning model Treffinger can be an alternative model of learning to improve students' mathematical literacy skills, and self-efficacy students, and able to reduce mathematical anxiety.

  16. Fedora Content Modelling for Improved Services for Research Databases

    DEFF Research Database (Denmark)

    Elbæk, Mikael Karstensen; Heller, Alfred; Pedersen, Gert Schmeltz

    A re-implementation of the research database of the Technical University of Denmark, DTU, is based on Fedora. The backbone consists of content models for primary and secondary entities and their relationships, giving flexible and powerful extraction capabilities for interoperability and reporting....... By adopting such an abstract data model, the platform enables new and improved services for researchers, librarians and administrators....

  17. Improvement of the projection models for radiogenic cancer risk

    International Nuclear Information System (INIS)

    Tong Jian

    2005-01-01

    Calculations of radiogenic cancer risk are based on the risk projection models for specific cancer sites. Improvement has been made for the parameters used in the previous models including introductions of mortality and morbidity risk coefficients, and age-/ gender-specific risk coefficients. These coefficients have been applied to calculate the radiogenic cancer risks for specific organs and radionuclides under different exposure scenarios. (authors)

  18. Robust design in generelaised linear models for improving the quality of polyurethane soles

    Directory of Open Access Journals (Sweden)

    Castro, Armando Mares

    2015-11-01

    Full Text Available In a process that manufactures polyurethane soles by casting, a number of problems lead to different types of defects on the sole, causing significant economic losses for the company. In order to improve the product quality and decrease the number of defects, this study conducts an experimental design in the context of robust design. Since the response variable is binary, the statistical analysis was performed using generalised linear models. The operational methodology reduced the percentage of defects, while combining the experimental technique and control systems to achieve superior quality and a consequent reduction in costs.

  19. Liraglutide improves hypertension and metabolic perturbation in a rat model of polycystic ovarian syndrome.

    Directory of Open Access Journals (Sweden)

    Vanessa Hoang

    Full Text Available Polycystic ovarian syndrome (PCOS is the most common endocrine disorder in women of reproductive age, with a prevalence of 5-8%. Type 2 diabetes and cardiovascular disease (CVD are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1 agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT pellets (90 day release; 83 μg/day. At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2 mg/kg s.c twice daily for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; p<0.05 and 4 weeks of treatment with liraglutide in DHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; p<0.01. Liraglutide treatment in the DHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p <0.01. DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT-induced metabolic and blood pressure deficits associated with PCOS.

  20. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Galan, Sergio V.; Li, Xiaohang

    2018-01-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  1. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui

    2018-02-23

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  2. Applying a health action model to predict and improve healthy behaviors in coal miners.

    Science.gov (United States)

    Vahedian-Shahroodi, Mohammad; Tehrani, Hadi; Mohammadi, Faeze; Gholian-Aval, Mahdi; Peyman, Nooshin

    2018-05-01

    One of the most important ways to prevent work-related diseases in occupations such as mining is to promote healthy behaviors among miners. This study aimed to predict and promote healthy behaviors among coal miners by using a health action model (HAM). The study was conducted on 200 coal miners in Iran in two steps. In the first step, a descriptive study was implemented to determine predictive constructs and effectiveness of HAM on behavioral intention. The second step involved a quasi-experimental study to determine the effect of an HAM-based education intervention. This intervention was implemented by the researcher and the head of the safety unit based on the predictive construct specified in the first step over 12 sessions of 60 min. The data was collected using an HAM questionnaire and a checklist of healthy behavior. The results of the first step of the study showed that attitude, belief, and normative constructs were meaningful predictors of behavioral intention. Also, the results of the second step revealed that the mean score of attitude and behavioral intention increased significantly after conducting the intervention in the experimental group, while the mean score of these constructs decreased significantly in the control group. The findings of this study showed that HAM-based educational intervention could improve the healthy behaviors of mine workers. Therefore, it is recommended to extend the application of this model to other working groups to improve healthy behaviors.

  3. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    International Nuclear Information System (INIS)

    Silva, Alice Cunha da; Su, Jian

    2013-01-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  4. An improved mechanistic critical heat flux model for subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)

  5. An improved mechanistic critical heat flux model for subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)

  6. Improving patient handover between teams using a business improvement model: PDSA cycle.

    Science.gov (United States)

    Luther, Vishal; Hammersley, Daniel; Chekairi, Ahmed

    2014-01-01

    Medical admission units are continuously under pressure to move patients off the unit to outlying medical wards and allow for new admissions. In a typical district general hospital, doctors working in these medical wards reported that, on average, three patients each week arrived from the medical admission unit before any handover was received, and a further two patients arrived without any handover at all. A quality improvement project was therefore conducted using a 'Plan, Do, Study, Act' cycle model for improvement to address this issue. P - Plan: as there was no framework to support doctors with handover, a series of standard handover procedures were designed. D - Do: the procedures were disseminated to all staff, and championed by key stakeholders, including the clinical director and matron of the medical admission unit. S - STUDY: Measurements were repeated 3 months later and showed no change in the primary end points. A - ACT: The post take ward round sheet was redesigned, creating a checkbox for a medical admission unit doctor to document that handover had occurred. Nursing staff were prohibited from moving the patient off the ward until this had been completed. This later evolved into a separate handover sheet. Six months later, a repeat study revealed that only one patient each week was arriving before or without a verbal handover. Using a 'Plan, Do, Study, Act' business improvement tool helped to improve patient care.

  7. The Effect of Pender’s Health Promotion Model in Improving the Nutritional Behavior of Overweight and Obese Women

    Directory of Open Access Journals (Sweden)

    Masoud Khodaveisi

    2017-04-01

    Full Text Available Background: Changes in lifestyle and eating habits have put women at risk of obesity and overweight more than ever. This aim of this study was to investigate the effect of Pender’s Health Promotion Model (HPM to improve the nutritional behavior of overweight and obese women admitted to Fatemiyeh Hospital clinics in Hamadan, west Iran in 2015. Methods: n this quasi-experimental study, 108 eligible women were selected and randomly assigned to two groups: one experimental and one control. Data were gathered using three questionnaires: demographics, Pender’s HPM constructs, and nutritional behavior. The questionnaires were filled out by both groups as pre-test and two months later. A Pender’s HPM-based intervention was conducted for the experimental group. The data were analyzed by paired and independent t-tests, ANCOVA, and Spearmans’ correlation coefficient in SPSS/16. The level of significance was considered to be <0.05. Results: The mean score of nutritional behavior was 41.75±3.28 and 42.36±3.69 before the intervention and 79.09±5.27 and 49.72±9.49 after it in the experimental and control groups, respectively. The difference was significant only between before and after the intervention in the experimental group (P<0.001. Furthermore, the mean scores of the following variables were significantly different between before and after the intervention in the experimental group: nutritional behavior, perceived benefits, perceived self-efficacy, commitment to action, interpersonal and situational influences, behavior-related affect, and perceived barriers (P<0.001. Conclusion: The results showed that Pender’s HPM-based training improved nutritional behavior and some constructs of the model. Therefore, this educative model can be used by healthcare providers to improve the nutritional and other health promoting behaviors.

  8. Improved modeling of clinical data with kernel methods.

    Science.gov (United States)

    Daemen, Anneleen; Timmerman, Dirk; Van den Bosch, Thierry; Bottomley, Cecilia; Kirk, Emma; Van Holsbeke, Caroline; Valentin, Lil; Bourne, Tom; De Moor, Bart

    2012-02-01

    Despite the rise of high-throughput technologies, clinical data such as age, gender and medical history guide clinical management for most diseases and examinations. To improve clinical management, available patient information should be fully exploited. This requires appropriate modeling of relevant parameters. When kernel methods are used, traditional kernel functions such as the linear kernel are often applied to the set of clinical parameters. These kernel functions, however, have their disadvantages due to the specific characteristics of clinical data, being a mix of variable types with each variable its own range. We propose a new kernel function specifically adapted to the characteristics of clinical data. The clinical kernel function provides a better representation of patients' similarity by equalizing the influence of all variables and taking into account the range r of the variables. Moreover, it is robust with respect to changes in r. Incorporated in a least squares support vector machine, the new kernel function results in significantly improved diagnosis, prognosis and prediction of therapy response. This is illustrated on four clinical data sets within gynecology, with an average increase in test area under the ROC curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining clinical parameters and expression data in three case studies on breast cancer, results improved overall with use of the new kernel function and when considering both data types in a weighted fashion, with a larger weight assigned to the clinical parameters. The increase in AUC with respect to a standard kernel function and/or unweighted data combination was maximum 0.127, 0.042 and 0.118 for the three case studies. For clinical data consisting of variables of different types, the proposed kernel function--which takes into account the type and range of each variable--has shown to be a better alternative for linear and non-linear classification problems

  9. Improvement and Application of the Softened Strut-and-Tie Model

    Science.gov (United States)

    Fan, Guoxi; Wang, Debin; Diao, Yuhong; Shang, Huaishuai; Tang, Xiaocheng; Sun, Hai

    2017-11-01

    Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. The aims of this paper are to predict the joint carrying capacity and cracks development theoretically. Thus, a rational model needs to be developed. Based on the former considerations, the softened strut-and-tie model is selected to be introduced and analyzed. Four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. After that, the carrying capacity of beam-column joint and cracks development are predicted using the improved softened strut-and-tie model. Based on the test results, it is not difficult to find that the improved softened strut-and-tie model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.

  10. Improvement for Amelioration Inventory Model with Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Han-Wen Tuan

    2017-01-01

    Full Text Available Most inventory models dealt with deteriorated items. On the contrary, just a few papers considered inventory systems under amelioration environment. We study an amelioration inventory model with Weibull distribution. However, there are some questionable results in the amelioration paper. We will first point out those questionable results in the previous paper that did not derive the optimal solution and then provide some improvements. We will provide a rigorous analytical work for different cases dependent on the size of the shape parameter. We present a detailed numerical example for different ranges of the sharp parameter to illustrate that our solution method attains the optimal solution. We developed a new amelioration model and then provided a detailed analyzed procedure to find the optimal solution. Our findings will help researchers develop their new inventory models.

  11. IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2017-12-01

    Full Text Available Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1 design of new types of draft gears and air distributors; 2 development of methods for controlling the movement of conventional and connected trains; 3 creation of appropriate process flow diagrams; 4 development of energy-saving methods of train driving; 5 revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76; 6 when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7 when creating computer simulators for the training of locomotive drivers; 8 assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity

  12. Improvements to the RADIOM non-LTE model

    Science.gov (United States)

    Busquet, M.; Colombant, D.; Klapisch, M.; Fyfe, D.; Gardner, J.

    2009-12-01

    In 1993, we proposed the RADIOM model [M. Busquet, Phys. Fluids 85 (1993) 4191] where an ionization temperature T z is used to derive non-LTE properties from LTE data. T z is obtained from an "extended Saha equation" where unbalanced transitions, like radiative decay, give the non-LTE behavior. Since then, major improvements have been made. T z has been shown to be more than a heuristic value, but describes the actual distribution of excited and ionized states and can be understood as an "effective temperature". Therefore we complement the extended Saha equation by introducing explicitly the auto-ionization/dielectronic capture. Also we use the SCROLL model to benchmark the computed values of T z.

  13. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Eric R. Edelman

    2017-06-01

    Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related

  14. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.

    Science.gov (United States)

    Edelman, Eric R; van Kuijk, Sander M J; Hamaekers, Ankie E W; de Korte, Marcel J M; van Merode, Godefridus G; Buhre, Wolfgang F F A

    2017-01-01

    For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.

  15. An implementation of 7E Learning Cycle Model to Improve Student Self-esteem

    Science.gov (United States)

    Firdaus, F.; Priatna, N.; Suhendra, S.

    2017-09-01

    One of the affective factors that affect student learning outcomes is student self-esteem in mathematics, learning achievement and self-esteem influence each other. The purpose of this research is to know whether self-esteem students who get 7E learning cycle model is better than students who get conventional learning. This research method is a non-control group design. Based on the results obtained that the normal and homogeneous data so that the t test and from the test results showed there are significant differences in self-esteem students learning with 7E learning cycle model compared with students who get conventional learning. The implications of the results of this study are that students should be required to conduct many discussions, presentations and evaluations on classroom activities as these learning stages can improve students’ self-esteem especially pride in the results achieved.

  16. Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model

    International Nuclear Information System (INIS)

    Manderla, M; Koutnik, J; Kiniger, K

    2014-01-01

    Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance

  17. Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model

    Science.gov (United States)

    Manderla, M.; Kiniger, K.; Koutnik, J.

    2014-03-01

    Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

  18. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Science.gov (United States)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.

    2017-10-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  19. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  20. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  1. Radiotherapy is associated with significant improvement in local and regional control in Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Kang, Susan H; Haydu, Lauren E; Goh, Robin Yeong Hong; Fogarty, Gerald B

    2012-01-01

    Merkel cell carcinoma (MCC) is a rare tumour of skin. This study is a retrospective audit of patients with MCC from St Vincent’s and Mater Hospital, Sydney, Australia. The aim of this study was to investigate the influence of radiotherapy (RT) on the local and regional control of MCC lesions and survival of patients with MCC. The data bases in anatomical pathology, RT and surgery. We searched for patients having a diagnosis of MCC between 1996 and 2007. Patient, tumour and treatment characteristics were collected and analysed. Univariate survival analysis of categorical variables was conducted with the Kaplan-Meier method together with the Log-Rank test for statistical significance. Continuous variables were assessed using the Cox regression method. Multivariate analysis was performed for significant univariate results. Sixty seven patients were found. Sixty two who were stage I-III and were treated with radical intent were analysed. 68% were male. The median age was 74 years. Forty-two cases (68%) were stage I or II, and 20 cases (32%) were stage III. For the subset of 42 stage I and II patients, those that had RT to their primary site had a 2-year local recurrence free survival of 89% compared with 36% for patients not receiving RT (p<0.001). The cumulative 2-year regional recurrence free survival for patients having adjuvant regional RT was 84% compared with 43% for patients not receiving this treatment (p<0.001). Immune status at initial surgery was a significant predictor for OS and MCCSS. In a multivariate analysis combining macroscopic size (mm) and immune status at initial surgery, only immune status remained a significant predictor of overall survival (HR=2.096, 95% CI: 1.002-4.385, p=0.049). RT is associated with significant improvement in local and regional control in Merkel cell carcinoma. Immunosuppression is an important factor in overall survival

  2. Assessment and improvement of condensation model in RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Hui Cheon; Choi, Kee Yong; Park, Hyeon Sik; Kim, Sang Jae [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Lee, Sang Il [Korea Power Engineering Co., Inc., Seoul (Korea, Republic of)

    1997-07-15

    The objective of this research is to remove the uncertainty of the condensation model through the assessment and improvement of the various heat transfer correlations used in the RELAP5/MOD3 code. The condensation model of the standard RELAP5/MOD3 code is systematically arranged and analyzed. A condensation heat transfer database is constructed from the previous experimental data on various condensation phenomena. Based on the constructed database, the condensation models in the code are assessed and improved. An experiment on the reflux condensation in a tube of steam generator in the presence of noncondensable gases is planned to acquire the experimental data.

  3. Improving Project Management Using Formal Models and Architectures

    Science.gov (United States)

    Kahn, Theodore; Sturken, Ian

    2011-01-01

    This talk discusses the advantages formal modeling and architecture brings to project management. These emerging technologies have both great potential and challenges for improving information available for decision-making. The presentation covers standards, tools and cultural issues needing consideration, and includes lessons learned from projects the presenters have worked on.

  4. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding.

    Science.gov (United States)

    Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L

    2015-06-01

    To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.

  5. The improvement of the heat transfer model for sodium-water reaction jet code

    International Nuclear Information System (INIS)

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  6. Surgical Process Improvement: Impact of a Standardized Care Model With Electronic Decision Support to Improve Compliance With SCIP Inf-9.

    Science.gov (United States)

    Cook, David J; Thompson, Jeffrey E; Suri, Rakesh; Prinsen, Sharon K

    2014-01-01

    The absence of standardization in surgical care process, exemplified in a "solution shop" model, can lead to unwarranted variation, increased cost, and reduced quality. A comprehensive effort was undertaken to improve quality of care around indwelling bladder catheter use following surgery by creating a "focused factory" model within the cardiac surgical practice. Baseline compliance with Surgical Care Improvement Inf-9, removal of urinary catheter by the end of surgical postoperative day 2, was determined. Comparison of baseline data to postintervention results showed clinically important reductions in the duration of indwelling bladder catheters as well as marked reduction in practice variation. Following the intervention, Surgical Care Improvement Inf-9 guidelines were met in 97% of patients. Although clinical quality improvement was notable, the process to accomplish this-identification of patients suitable for standardized pathways, protocol application, and electronic systems to support the standardized practice model-has potentially greater relevance than the specific clinical results. © 2013 by the American College of Medical Quality.

  7. Adjusting the Stems Regional Forest Growth Model to Improve Local Predictions

    Science.gov (United States)

    W. Brad Smith

    1983-01-01

    A simple procedure using double sampling is described for adjusting growth in the STEMS regional forest growth model to compensate for subregional variations. Predictive accuracy of the STEMS model (a distance-independent, individual tree growth model for Lake States forests) was improved by using this procedure

  8. Waste Minimization Improvements Achieved Through Six Sigma Analysis Result In Significant Cost Savings

    International Nuclear Information System (INIS)

    Mousseau, Jeffrey D.; Jansen, John R.; Janke, David H.; Plowman, Catherine M.

    2003-01-01

    Improved waste minimization practices at the Department of Energy's (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) are leading to a 15% reduction in the generation of hazardous and radioactive waste. Bechtel, BWXT Idaho, LLC (BBWI), the prime management and operations contractor at the INEEL, applied the Six Sigma improvement process to the INEEL Waste Minimization Program to review existing processes and define opportunities for improvement. Our Six Sigma analysis team: composed of an executive champion, process owner, a black belt and yellow belt, and technical and business team members used this statistical based process approach to analyze work processes and produced ten recommendations for improvement. Recommendations ranged from waste generator financial accountability for newly generated waste to enhanced employee recognition programs for waste minimization efforts. These improvements have now been implemented to reduce waste generation rates and are producing positive results

  9. Agmatine Improves Cognitive Dysfunction and Prevents Cell Death in a Streptozotocin-Induced Alzheimer Rat Model

    Science.gov (United States)

    Song, Juhyun; Hur, Bo Eun; Bokara, Kiran Kumar; Yang, Wonsuk; Cho, Hyun Jin; Park, Kyung Ah; Lee, Won Taek; Lee, Kyoung Min

    2014-01-01

    Purpose Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. Materials and Methods We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 µL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. Results Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. Conclusion Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD. PMID:24719136

  10. A keyword spotting model using perceptually significant energy features

    Science.gov (United States)

    Umakanthan, Padmalochini

    The task of a keyword recognition system is to detect the presence of certain words in a conversation based on the linguistic information present in human speech. Such keyword spotting systems have applications in homeland security, telephone surveillance and human-computer interfacing. General procedure of a keyword spotting system involves feature generation and matching. In this work, new set of features that are based on the psycho-acoustic masking nature of human speech are proposed. After developing these features a time aligned pattern matching process was implemented to locate the words in a set of unknown words. A word boundary detection technique based on frame classification using the nonlinear characteristics of speech is also addressed in this work. Validation of this keyword spotting model was done using widely acclaimed Cepstral features. The experimental results indicate the viability of using these perceptually significant features as an augmented feature set in keyword spotting.

  11. Coastal Improvements for Tide Models: The Impact of ALES Retracker

    Directory of Open Access Journals (Sweden)

    Gaia Piccioni

    2018-05-01

    Full Text Available Since the launch of the first altimetry satellites, ocean tide models have been improved dramatically for deep and shallow waters. However, issues are still found for areas of great interest for climate change investigations: the coastal regions. The purpose of this study is to analyze the influence of the ALES coastal retracker on tide modeling in these regions with respect to a standard open ocean retracker. The approach used to compute the tidal constituents is an updated and along-track version of the Empirical Ocean Tide model developed at DGFI-TUM. The major constituents are derived from a least-square harmonic analysis of sea level residuals based on the FES2014 tide model. The results obtained with ALES are compared with the ones estimated with the standard product. A lower fitting error is found for the ALES solution, especially for distances closer than 20 km from the coast. In comparison with in situ data, the root mean squared error computed with ALES can reach an improvement larger than 2 cm at single locations, with an average impact of over 10% for tidal constituents K 2 , O 1 , and P 1 . For Q 1 , the improvement is over 25%. It was observed that improvements to the root-sum squares are larger for distances closer than 10 km to the coast, independently on the sea state. Finally, the performance of the solutions changes according to the satellite’s flight direction: for tracks approaching land from open ocean root mean square differences larger than 1 cm are found in comparison to tracks going from land to ocean.

  12. Radiatively-driven winds: model improvements, ionization balance and the infared spectrum

    International Nuclear Information System (INIS)

    Castor, J.I.

    1979-01-01

    Recent improvements to theoretical stellar wind models and the results of empirical modelling of the ionization balance and the infrared continuum are discussed. The model of a wind driven by radiation pressure in spectral lines is improved by accounting for overlap of the driving lines, dependence of ionization balance on density, and stellar rotation. These effects produce a softer velocity law than that given by Castor, Abbott and Klein (1975). The ionization balance in zeta Puppis is shown to agree with that estimated for an optically thick wind at a gas temperature of 60,000 K. The ionization model is not unique. The infrared continuum of zeta Pup measured by Barlow and Cohen is fitted to a cool model with a linear rise of velocity with radius; this fit is also not unique. It is concluded that one should try to find a model that fits several kinds of evidence simultaneously. (Auth.)

  13. Improvement of AEP Predictions Using Diurnal CFD Modelling with Site-Specific Stability Weightings Provided from Mesoscale Simulation

    International Nuclear Information System (INIS)

    Hristov, Y; Oxley, G; Žagar, M

    2014-01-01

    The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-ε turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies

  14. Development of Improved Mechanistic Deterioration Models for Flexible Pavements

    DEFF Research Database (Denmark)

    Ullidtz, Per; Ertman, Hans Larsen

    1998-01-01

    The paper describes a pilot study in Denmark with the main objective of developing improved mechanistic deterioration models for flexible pavements based on an accelerated full scale test on an instrumented pavement in the Danish Road Tessting Machine. The study was the first in "International...... Pavement Subgrade Performance Study" sponsored by the Federal Highway Administration (FHWA), USA. The paper describes in detail the data analysis and the resulting models for rutting, roughness, and a model for the plastic strain in the subgrade.The reader will get an understanding of the work needed...

  15. A Theory-Based Model for Understanding Faculty Intention to Use Students Ratings to Improve Teaching in a Health Sciences Institution in Puerto Rico

    Science.gov (United States)

    Collazo, Andrés A.

    2018-01-01

    A model derived from the theory of planned behavior was empirically assessed for understanding faculty intention to use student ratings for teaching improvement. A sample of 175 professors participated in the study. The model was statistically significant and had a very large explanatory power. Instrumental attitude, affective attitude, perceived…

  16. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    International Nuclear Information System (INIS)

    Koohbor, M.; Soltanian, S.; Najafi, M.; Servati, P.

    2012-01-01

    Highlights: ► Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. ► Increasing the Zn concentration significantly reduces the Hc value of NWs. ► Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. ► The pH of electrolyte has no significant effect on the properties of the NW arrays. ► Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co 1−x Zn x (0 ≤ x ≤ 0.74) nanowires (NWs) with diameters of ∼35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 °C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on the magnetic properties of the NW arrays. The changes in magnetic property of NWs are rooted in a competition between shape anisotropy and

  17. Improving breast cancer survival analysis through competition-based multidimensional modeling.

    Directory of Open Access Journals (Sweden)

    Erhan Bilal

    Full Text Available Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually. As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently. Understanding the difference in prognosis for breast cancer based on its molecular and phenotypic features is one avenue for improving treatment by matching the proper treatment with molecular subtypes of the disease. In this work, we employed a competition-based approach to modeling breast cancer prognosis using large datasets containing genomic and clinical information and an online real-time leaderboard program used to speed feedback to the modeling team and to encourage each modeler to work towards achieving a higher ranked submission. We find that machine learning methods combined with molecular features selected based on expert prior knowledge can improve survival predictions compared to current best-in-class methodologies and that ensemble models trained across multiple user submissions systematically outperform individual models within the ensemble. We also find that model scores are highly consistent across multiple independent evaluations. This study serves as the pilot phase of a much larger competition open to the whole research community, with the goal of understanding general strategies for model optimization using clinical and molecular profiling data and providing an objective, transparent system for assessing prognostic models.

  18. Improvement of the model for surface process of tritium release from lithium oxide

    International Nuclear Information System (INIS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-01-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model

  19. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  20. Improved SAFARI-1 research reactor irradiation position modeling in OSCAR-3 code system

    International Nuclear Information System (INIS)

    Moloko, L. E.; Belal, M. G. A. H.

    2009-01-01

    The demand on the availability of irradiation positions in the SAFARI-1 reactor is continuously increasing due to the commercial pressure to produce isotopes more efficiently. This calls for calculational techniques and modeling methods to be improved regularly to optimize irradiation services. The irradiation position models are improved using the OSCAR-3 code system, and results are compared to experimental measurements. It is concluded that the irradiation position models are essential if realistic core follow and reload studies are to be performed and most importantly, for the realization of improved agreement between experimental data and calculated results. (authors)

  1. Improving doctor-patient communication: content validity examination of a novel urinary system-simulating physical model.

    Science.gov (United States)

    Hu, WenGang; Song, YaJun; Zhong, Xiao; Feng, JiaYu; Wang, PingXian; Huang, ChiBing

    2016-01-01

    Effective doctor-patient communication is essential for establishing a successful doctor-patient relationship and implementing high-quality health care. In this study, a novel urinary system-simulating physical model was designed and fabricated, and its content validity for improving doctor-patient communication was examined by conducting a randomized controlled trial in which this system was compared with photographs. A total of 240 inpatients were randomly selected and assigned to six doctors for treatment. After primary diagnosis and treatment had been determined, these patients were randomly divided into the experimental group and the control group. Patients in the experimental group participated in model-based doctor-patient communication, whereas control group patients received picture-based communication. Within 30 min after this communication, a Demographic Information Survey Scale and a Medical Interview Satisfaction Scale (MISS) were distributed to investigate patients' demographic characteristics and their assessments of total satisfaction, distress relief, communication comfort, rapport, and compliance intent. The study results demonstrated that the individual groups were comparable with respect to demographic variables but that relative to patients in the picture-based communication group, patients in the model-based communication group had significantly higher total satisfaction scores and higher ratings for distress relief, communication comfort, rapport, and compliance intent. These results indicate that the physical model is more effective than the pictures at improving doctor-patient communication and patient outcomes. The application of the physical model in doctor-patient communication is helpful and valuable and therefore merits widespread clinical popularization.

  2. The use of discrete-event simulation modelling to improve radiation therapy planning processes.

    Science.gov (United States)

    Werker, Greg; Sauré, Antoine; French, John; Shechter, Steven

    2009-07-01

    The planning portion of the radiation therapy treatment process at the British Columbia Cancer Agency is efficient but nevertheless contains room for improvement. The purpose of this study is to show how a discrete-event simulation (DES) model can be used to represent this complex process and to suggest improvements that may reduce the planning time and ultimately reduce overall waiting times. A simulation model of the radiation therapy (RT) planning process was constructed using the Arena simulation software, representing the complexities of the system. Several types of inputs feed into the model; these inputs come from historical data, a staff survey, and interviews with planners. The simulation model was validated against historical data and then used to test various scenarios to identify and quantify potential improvements to the RT planning process. Simulation modelling is an attractive tool for describing complex systems, and can be used to identify improvements to the processes involved. It is possible to use this technique in the area of radiation therapy planning with the intent of reducing process times and subsequent delays for patient treatment. In this particular system, reducing the variability and length of oncologist-related delays contributes most to improving the planning time.

  3. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    International Nuclear Information System (INIS)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    The SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided

  4. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    Science.gov (United States)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  5. Use of natural geochemical tracers to improve reservoir simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, O.; Chatzichristos, C.; Sagen, J.; Muller, J.; Kleven, R.; Bennett, B.; Larter, S.; Stubos, A.K.; Adler, P.M.

    2005-01-01

    This article introduces a methodology for integrating geochemical data in reservoir simulations to improve hydrocarbon reservoir models. The method exploits routine measurements of naturally existing inorganic ion concentration in hydrocarbon reservoir production wells, and uses the ions as non-partitioning water tracers. The methodology is demonstrated on a North Sea field case, using the field's reservoir model, together with geochemical information (SO{sub 4}{sup 2}, Mg{sup 2+} K{sup +}, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, Cl{sup -} concentrations) from the field's producers. From the data-set we show that some of the ions behave almost as ideal sea-water tracers, i.e. without sorption to the matrix, ion-exchange with the matrix or scale-formation with other ions in the formation water. Moreover, the dataset shows that ion concentrations in pure formation-water vary according to formation. This information can be used to allocate produced water to specific water-producing zones in commingled production. Based on an evaluation of the applicability of the available data, one inorganic component, SO{sub 4}{sup 2}, is used as a natural seawater tracer. Introducing SO{sub 4}{sup 2} as a natural tracer in a tracer simulation has revealed a potential for improvements of the reservoir model. By tracking the injected seawater it was possible to identify underestimated fault lengths in the reservoir model. The demonstration confirms that geochemical data are valuable additional information for reservoir characterization, and shows that integration of geochemical data into reservoir simulation procedures can improve reservoir simulation models. (author)

  6. Improved modelling of independent parton hadronization

    International Nuclear Information System (INIS)

    Biddulph, P.; Thompson, G.

    1989-01-01

    A modification is proposed to current versions of the Field-Feynman ansatz for the hadronization of a quark in Monte Carlo models of QCD interactions. This faster-running algorithm has no more parameters and imposes a better degree of energy conservation. It results in naturally introducing a limitation of the transverse momentum distribution, similar to the experimentally observed ''seagull'' effect. There is now a much improved conservation of quantum numbers between the original parton and resultant hadrons, and the momentum of the emitted parton is better preserved in the summed momentum vectors of the final state particles. (orig.)

  7. QUALITY IMPROVEMENT MODEL OF NURSING EDUCATION IN MUHAMMADIYAH UNIVERSITIES TOWARD COMPETITIVE ADVANTAGE

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Alimul Hidayat

    2017-06-01

    Full Text Available Introduction: Most of (90,6% nursing education quality in East Java was still low (BAN-PT, 2012. It was because the quality improvement process in nursing education generally was conducted partially (random performance improvement. The solution which might be done was through identifying proper quality improvement model in Nursing Education toward competitive advantage. Method: This research used survey to gain the data. The research sample was 16 Muhammadiyah Universities chosen using simple random sampling. The data were collected with questionnaires of 174 questions and documentation study. Data analysis used was Partial Least Square (PLS analysis technique. Result: Nursing education department profile in Muhammadiyah Universities in Indonesia showed of 10 years establishment, accredited B and the competition level in one city/regency was averagely more than three Universities becoming the competitors. Based on the quality improvement model analysis of nursing education toward competitive advantage on Muhammadiyah Universities, it was directly affected by the focus of learning and operasional process through human resources management improvement, on the other hand information system also directly affected on quality improvement, also affected quality process components; leadership, human resources, focus of learning and operational process. In improving human resources would be directly influenced with proper strategic planning. Strategic planning was directly influenced with leadership. Thus, in improving quality of nursing education, the leadership role of department, proper information system, and thehuman resources management improvement must be implemented.  Conclusion: Quality improvement model in nursing education was directly determined with learning and operational process through human resources management along with information system, strategic planning factors, and leadership. The research finding could be developed in quality

  8. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    International Nuclear Information System (INIS)

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-01-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes

  9. Improving surgeon utilization in an orthopedic department using simulation modeling

    Directory of Open Access Journals (Sweden)

    Simwita YW

    2016-10-01

    Full Text Available Yusta W Simwita, Berit I Helgheim Department of Logistics, Molde University College, Molde, Norway Purpose: Worldwide more than two billion people lack appropriate access to surgical services due to mismatch between existing human resource and patient demands. Improving utilization of existing workforce capacity can reduce the existing gap between surgical demand and available workforce capacity. In this paper, the authors use discrete event simulation to explore the care process at an orthopedic department. Our main focus is improving utilization of surgeons while minimizing patient wait time.Methods: The authors collaborated with orthopedic department personnel to map the current operations of orthopedic care process in order to identify factors that influence poor surgeons utilization and high patient waiting time. The authors used an observational approach to collect data. The developed model was validated by comparing the simulation output with the actual patient data that were collected from the studied orthopedic care process. The authors developed a proposal scenario to show how to improve surgeon utilization.Results: The simulation results showed that if ancillary services could be performed before the start of clinic examination services, the orthopedic care process could be highly improved. That is, improved surgeon utilization and reduced patient waiting time. Simulation results demonstrate that with improved surgeon utilizations, up to 55% increase of future demand can be accommodated without patients reaching current waiting time at this clinic, thus, improving patient access to health care services.Conclusion: This study shows how simulation modeling can be used to improve health care processes. This study was limited to a single care process; however the findings can be applied to improve other orthopedic care process with similar operational characteristics. Keywords: waiting time, patient, health care process

  10. Improvement of airfoil trailing edge bluntness noise model

    Directory of Open Access Journals (Sweden)

    Wei Jun Zhu

    2016-02-01

    Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.

  11. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis.

    Science.gov (United States)

    Vilaplana, Cristina; Marzo, Elena; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanesa; Cardona, Pere-Joan

    2013-07-15

    C3HeB/FeJ mice infected with Mycobacterium tuberculosis were used in an experimental animal model mimicking active tuberculosis in humans to evaluate the effect of antiinflammatory agents. No other treatment but ibuprofen was given, and it was administered when the animals' health started to deteriorate. Animals treated with ibuprofen had statistically significant decreases in the size and number of lung lesions, decreases in the bacillary load, and improvements in survival, compared with findings for untreated animals. Because antiinflammatory agents are already on the market, further clinical trials should be done to evaluate this effect in humans as soon as possible, to determine their suitability as coadjuvant tuberculosis treatment.

  12. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    Science.gov (United States)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  13. Managing health care decisions and improvement through simulation modeling.

    Science.gov (United States)

    Forsberg, Helena Hvitfeldt; Aronsson, Håkan; Keller, Christina; Lindblad, Staffan

    2011-01-01

    Simulation modeling is a way to test changes in a computerized environment to give ideas for improvements before implementation. This article reviews research literature on simulation modeling as support for health care decision making. The aim is to investigate the experience and potential value of such decision support and quality of articles retrieved. A literature search was conducted, and the selection criteria yielded 59 articles derived from diverse applications and methods. Most met the stated research-quality criteria. This review identified how simulation can facilitate decision making and that it may induce learning. Furthermore, simulation offers immediate feedback about proposed changes, allows analysis of scenarios, and promotes communication on building a shared system view and understanding of how a complex system works. However, only 14 of the 59 articles reported on implementation experiences, including how decision making was supported. On the basis of these articles, we proposed steps essential for the success of simulation projects, not just in the computer, but also in clinical reality. We also presented a novel concept combining simulation modeling with the established plan-do-study-act cycle for improvement. Future scientific inquiries concerning implementation, impact, and the value for health care management are needed to realize the full potential of simulation modeling.

  14. Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer

    International Nuclear Information System (INIS)

    Pan Feng; Qian Xian-Rui; Huang Li-Zhen; Wang Hai-Bo; Yan Dong-Hang

    2011-01-01

    High-mobility vanadyl phthalocyanine (VOPc)/5,5‴-bis(4-fluorophenyl)-2,2':5',2″:5″,2‴-quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F 16 CuPc)/copper phthalocyanine (CuPc) heterojunction unit, which are fabricated at different substrate temperatures, as a buffer layer. The highest mobility of 4.08cm 2 /Vs is achieved using a F 16 CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature. Compared with the random small grain-like morphology of the room-temperature buffer layer, the high-temperature organic heterojunction presents a large-sized fiber-like film morphology, resulting in an enhanced conductivity. Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained. (cross-disciplinary physics and related areas of science and technology)

  15. Improving ROLO lunar albedo model using PLEIADES-HR satellites extra-terrestrial observations

    Science.gov (United States)

    Meygret, Aimé; Blanchet, Gwendoline; Colzy, Stéphane; Gross-Colzy, Lydwine

    2017-09-01

    The accurate on orbit radiometric calibration of optical sensors has become a challenge for space agencies which have developed different technics involving on-board calibration systems, ground targets or extra-terrestrial targets. The combination of different approaches and targets is recommended whenever possible and necessary to reach or demonstrate a high accuracy. Among these calibration targets, the moon is widely used through the well-known ROLO (RObotic Lunar Observatory) model developed by USGS. A great and worldwide recognized work was done to characterize the moon albedo which is very stable. However the more and more demanding needs for calibration accuracy have reached the limitations of the model. This paper deals with two mains limitations: the residual error when modelling the phase angle dependency and the absolute accuracy of the model which is no more acceptable for the on orbit calibration of radiometers. Thanks to PLEIADES high resolution satellites agility, a significant data base of moon and stars images was acquired, allowing to show the limitations of ROLO model and to characterize the errors. The phase angle residual dependency is modelled using PLEIADES 1B images acquired for different quasi-complete moon cycles with a phase angle varying by less than 1°. The absolute albedo residual error is modelled using PLEIADES 1A images taken over stars and the moon. The accurate knowledge of the stars spectral irradiance is transferred to the moon spectral albedo using the satellite as a transfer radiometer. This paper describes the data set used, the ROLO model residual errors and their modelling, the quality of the proposed correction and show some calibration results using this improved model.

  16. Significance of categorization and the modeling of age related factors for radiation protection

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1987-01-01

    It is proposed that the categorization and modelling are necessary with regard to age related factors of radionuclide metabolism for the radiation protection of the public. In order to utilize the age related information as a model for life time risk estimate of public, it is necessary to generalize and simplify it according to the categorized model patterns. Since the patterns of age related changes in various parameters of radionuclide metabolism seem to be rather simple, it is possible to categorize them into eleven types of model patterns. Among these models, five are selected as positively significant models to be considered. Examples are shown as to the fitting of representative parameters of both physiological and metabolic parameter of radionuclides into the proposed model. The range of deviation from adult standard value is also analyzed for each model. The fitting of each parameter to categorized models, and its comparative consideration provide the effective information as to the physiological basis of radionuclide metabolism. Discussions are made on the problems encountered in the application of available age related information to radiation protection of the public, i.e. distribution of categorized parameter, period of life covered, range of deviation from adult value, implication to other dosimetric and pathological models and to the final estimation. 5 refs.; 3 figs.; 4 tabs

  17. Computation of spatial significance of mountain objects extracted from multiscale digital elevation models

    International Nuclear Information System (INIS)

    Sathyamoorthy, Dinesh

    2014-01-01

    The derivation of spatial significance is an important aspect of geospatial analysis and hence, various methods have been proposed to compute the spatial significance of entities based on spatial distances with other entities within the cluster. This paper is aimed at studying the spatial significance of mountain objects extracted from multiscale digital elevation models (DEMs). At each scale, the value of spatial significance index SSI of a mountain object is the minimum number of morphological dilation iterations required to occupy all the other mountain objects in the terrain. The mountain object with the lowest value of SSI is the spatially most significant mountain object, indicating that it has the shortest distance to the other mountain objects. It is observed that as the area of the mountain objects reduce with increasing scale, the distances between the mountain objects increase, resulting in increasing values of SSI. The results obtained indicate that the strategic location of a mountain object at the centre of the terrain is more important than its size in determining its reach to other mountain objects and thus, its spatial significance

  18. Improving Estimated Optical Constants With MSTM and DDSCAT Modeling

    Science.gov (United States)

    Pitman, K. M.; Wolff, M. J.

    2015-12-01

    We present numerical experiments to determine quantitatively the effects of mineral particle clustering on Mars spacecraft spectral signatures and to improve upon the values of refractive indices (optical constants n, k) derived from Mars dust laboratory analog spectra such as those from RELAB and MRO CRISM libraries. Whereas spectral properties for Mars analog minerals and actual Mars soil are dominated by aggregates of particles smaller than the size of martian atmospheric dust, the analytic radiative transfer (RT) solutions used to interpret planetary surfaces assume that individual, well-separated particles dominate the spectral signature. Both in RT models and in the refractive index derivation methods that include analytic RT approximations, spheres are also over-used to represent nonspherical particles. Part of the motivation is that the integrated effect over randomly oriented particles on quantities such as single scattering albedo and phase function are relatively less than for single particles. However, we have seen in previous numerical experiments that when varying the shape and size of individual grains within a cluster, the phase function changes in both magnitude and slope, thus the "relatively less" effect is more significant than one might think. Here we examine the wavelength dependence of the forward scattering parameter with multisphere T-matrix (MSTM) and discrete dipole approximation (DDSCAT) codes that compute light scattering by layers of particles on planetary surfaces to see how albedo is affected and integrate our model results into refractive index calculations to remove uncertainties in approximations and parameters that can lower the accuracy of optical constants. By correcting the single scattering albedo and phase function terms in the refractive index determinations, our data will help to improve the understanding of Mars in identifying, mapping the distributions, and quantifying abundances for these minerals and will address long

  19. Active surface model improvement by energy function optimization for 3D segmentation.

    Science.gov (United States)

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Flooding Experiments and Modeling for Improved Reactor Safety

    International Nuclear Information System (INIS)

    Solmos, M.; Hogan, K.J.; VIerow, K.

    2008-01-01

    Countercurrent two-phase flow and 'flooding' phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing

  1. The disconnected values model improves mental well-being and fitness in an employee wellness program.

    Science.gov (United States)

    Anshel, Mark H; Brinthaupt, Thomas M; Kang, Minsoo

    2010-01-01

    This study examined the effect of a 10-week wellness program on changes in physical fitness and mental well-being. The conceptual framework for this study was the Disconnected Values Model (DVM). According to the DVM, detecting the inconsistencies between negative habits and values (e.g., health, family, faith, character) and concluding that these "disconnects" are unacceptable promotes the need for health behavior change. Participants were 164 full-time employees at a university in the southeastern U.S. The program included fitness coaching and a 90-minute orientation based on the DVM. Multivariate Mixed Model analyses indicated significantly improved scores from pre- to post-intervention on selected measures of physical fitness and mental well-being. The results suggest that the Disconnected Values Model provides an effective cognitive-behavioral approach to generating health behavior change in a 10-week workplace wellness program.

  2. Improvement of a near wake model for trailing vorticity

    DEFF Research Database (Denmark)

    Pirrung, Georg; Hansen, Morten Hartvig; Aagaard Madsen, Helge

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly...... the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model...... to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup...

  3. Improved Hydrology over Peatlands in a Global Land Modeling System

    Science.gov (United States)

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  4. Application of random number generators in genetic algorithms to improve rainfall-runoff modelling

    Science.gov (United States)

    Chlumecký, Martin; Buchtele, Josef; Richta, Karel

    2017-10-01

    The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.

  5. Improvement of a Robotic Manipulator Model Based on Multivariate Residual Modeling

    Directory of Open Access Journals (Sweden)

    Serge Gale

    2017-07-01

    Full Text Available A new method is presented for extending a dynamic model of a six degrees of freedom robotic manipulator. A non-linear multivariate calibration of input–output training data from several typical motion trajectories is carried out with the aim of predicting the model systematic output error at time (t + 1 from known input reference up till and including time (t. A new partial least squares regression (PLSR based method, nominal PLSR with interactions was developed and used to handle, unmodelled non-linearities. The performance of the new method is compared with least squares (LS. Different cross-validation schemes were compared in order to assess the sampling of the state space based on conventional trajectories. The method developed in the paper can be used as fault monitoring mechanism and early warning system for sensor failure. The results show that the suggested methods improves trajectory tracking performance of the robotic manipulator by extending the initial dynamic model of the manipulator.

  6. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm

    International Nuclear Information System (INIS)

    Yu, Kunjie; Liang, J.J.; Qu, B.Y.; Chen, Xu; Wang, Heshan

    2017-01-01

    Highlights: • IJAYA algorithm is proposed to identify the PV model parameters efficiently. • A self-adaptive weight is introduced to purposefully adjust the search process. • Experience-based learning strategy is developed to enhance the population diversity. • Chaotic learning method is proposed to refine the quality of the best solution. • IJAYA features the superior performance in identifying parameters of PV models. - Abstract: Parameters identification of photovoltaic (PV) models based on measured current-voltage characteristic curves is significant for the simulation, evaluation, and control of PV systems. To accurately and reliably identify the parameters of different PV models, an improved JAYA (IJAYA) optimization algorithm is proposed in the paper. In IJAYA, a self-adaptive weight is introduced to adjust the tendency of approaching the best solution and avoiding the worst solution at different search stages, which enables the algorithm to approach the promising area at the early stage and implement the local search at the later stage. Furthermore, an experience-based learning strategy is developed and employed randomly to maintain the population diversity and enhance the exploration ability. A chaotic elite learning method is proposed to refine the quality of the best solution in each generation. The proposed IJAYA is used to solve the parameters identification problems of different PV models, i.e., single diode, double diode, and PV module. Comprehensive experiment results and analyses indicate that IJAYA can obtain a highly competitive performance compared with other state-of-the-state algorithms, especially in terms of accuracy and reliability.

  7. NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L

    2016-01-01

    and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD(+), and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD(+) reduce the severity of A-T neuropathology, normalize neuromuscular...... function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD(+) also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial...

  8. Intriguing model significantly reduces boarding of psychiatric patients, need for inpatient hospitalization.

    Science.gov (United States)

    2015-01-01

    As new approaches to the care of psychiatric emergencies emerge, one solution is gaining particular traction. Under the Alameda model, which has been put into practice in Alameda County, CA, patients who are brought to regional EDs with emergency psychiatric issues are quickly transferred to a designated emergency psychiatric facility as soon as they are medically stabilized. This alleviates boarding problems in area EDs while also quickly connecting patients with specialized care. With data in hand on the model's effectiveness, developers believe the approach could alleviate boarding problems in other communities as well. The model is funded by through a billing code established by California's Medicaid program for crisis stabilization services. Currently, only 22% of the patients brought to the emergency psychiatric facility ultimately need to be hospitalized; the other 78% are able to go home or to an alternative situation. In a 30-day study of the model, involving five community hospitals in Alameda County, CA, researchers found that ED boarding times were as much as 80% lower than comparable ED averages, and that patients were stabilized at least 75% of the time, significantly reducing the need for inpatient hospitalization.

  9. Prediction of earth rotation parameters based on improved weighted least squares and autoregressive model

    Directory of Open Access Journals (Sweden)

    Sun Zhangzhen

    2012-08-01

    Full Text Available In this paper, an improved weighted least squares (WLS, together with autoregressive (AR model, is proposed to improve prediction accuracy of earth rotation parameters(ERP. Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.

  10. Innovative integrative bedside teaching model improves tutors' self-assessments of teaching skills and attitudes.

    Science.gov (United States)

    Gat, Itai; Pessach-Gelblum, Liat; Givati, Gili; Haim, Nadav; Paluch-Shimon, Shani; Unterman, Avraham; Bar-Shavit, Yochay; Grabler, Galit; Sagi, Doron; Achiron, Anat; Ziv, Amitai

    2016-01-01

    Patient bedside is the ideal setting for teaching physical examination, medical interviewing, and interpersonal skills. Herein we describe a novel model for bedside teaching (BST) practiced during tutor training workshop and its resulting effect on practitioners' self assessment of teaching skills and perceptions. One-day tutor training workshop included theoretical knowledge supplementation regarding tutors' roles as well as implementing practical tools for clinical education, mainly BST model. The model, which emphasizes simultaneous clinical and communication teaching in a stepwise approach, was practiced by consecutive simulations with a gradual escalation of difficulty and adjusted instruction approaches. Pre- and post-workshop-adjusted questionnaires using a Likert scale of 1 to 4 were completed by participants and compared. Analysis was based on 25 out of 48 participants who completed both questionnaires. Significantly improved teaching skills were demonstrated upon workshop completion (mean 3.3, SD 0.5) compared with pre-training (mean 2.6, SD 0.6; pteaching skills in this challenging environment.

  11. Biomechanical modelling and evaluation of construction jobs for performance improvement.

    Science.gov (United States)

    Parida, Ratri; Ray, Pradip Kumar

    2012-01-01

    Occupational risk factors, such as awkward posture, repetition, lack of rest, insufficient illumination and heavy workload related to construction-related MMH activities may cause musculoskeletal disorders and poor performance of the workers, ergonomic design of construction worksystems was a critical need for improving their health and safety wherein a dynamic biomechanical models were required to be empirically developed and tested at a construction site of Tata Steel, the largest steel making company of India in private sector. In this study, a comprehensive framework is proposed for biomechanical evaluation of shovelling and grinding under diverse work environments. The benefit of such an analysis lies in its usefulness in setting guidelines for designing such jobs with minimization of risks of musculoskeletal disorders (MSDs) and enhancing correct methods of carrying out the jobs leading to reduced fatigue and physical stress. Data based on direct observations and videography were collected for the shovellers and grinders over a number of workcycles. Compressive forces and moments for a number of segments and joints are computed with respect to joint flexion and extension. The results indicate that moments and compressive forces at L5/S1 link are significant for shovellers while moments at elbow and wrist are significant for grinders.

  12. The effect of a rehabilitation nursing intervention model on improving the comprehensive health status of patients with hand burns.

    Science.gov (United States)

    Li, Lin; Dai, Jia-Xi; Xu, Le; Huang, Zhen-Xia; Pan, Qiong; Zhang, Xi; Jiang, Mei-Yun; Chen, Zhao-Hong

    2017-06-01

    To observe the effect of a rehabilitation intervention on the comprehensive health status of patients with hand burns. Most studies of hand-burn patients have focused on functional recovery. There have been no studies involving a biological-psychological-social rehabilitation model of hand-burn patients. A randomized controlled design was used. Patients with hand burns were recruited to the study, and sixty patients participated. Participants were separated into two groups: (1) The rehabilitation intervention model group (n=30) completed the rehabilitation intervention model, which included the following measures: enhanced social support, intensive health education, comprehensive psychological intervention, and graded exercise. (2) The control group (n=30) completed routine treatment. Intervention lasted 5 weeks. Analysis of variance (ANOVA) and Student's t test were conducted. The rehabilitation intervention group had significantly better scores than the control group for comprehensive health, physical function, psychological function, social function, and general health. The differences between the index scores of the two groups were statistically significant. The rehabilitation intervention improved the comprehensive health status of patients with hand burns and has favorable clinical application. The comprehensive rehabilitation intervention model used here provides scientific guidance for medical staff aiming to improve the integrated health status of hand-burn patients and accelerate their recovery. What does this paper contribute to the wider global clinical community? Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Recent Improvements to the Calibration Models for RXTE/PCA

    Science.gov (United States)

    Jahoda, K.

    2008-01-01

    We are updating the calibration of the PCA to correct for slow variations, primarily in energy to channel relationship. We have also improved the physical model in the vicinity of the Xe K-edge, which should increase the reliability of continuum fits above 20 keV. The improvements to the matrix are especially important to simultaneous observations, where the PCA is often used to constrain the continuum while other higher resolution spectrometers are used to study the shape of lines and edges associated with Iron.

  14. Improving Middle School Students’ Critical Thinking Skills Through Reading Infusion-Loaded Discovery Learning Model in the Science Instruction

    Science.gov (United States)

    Nuryakin; Riandi

    2017-02-01

    A study has been conducted to obtain a depiction of middle school students’ critical thinking skills improvement through the implementation of reading infusion-loaded discovery learning model in science instruction. A quasi-experimental study with the pretest-posttest control group design was used to engage 55 eighth-year middle school students in Tasikmalaya, which was divided into the experimental and control group respectively were 28 and 27 students. Critical thinking skills were measured using a critical thinking skills test in multiple-choice with reason format questions that administered before and after a given instruction. The test was 28 items encompassing three essential concepts, vibration, waves and auditory senses. The critical thinking skills improvement was determined by using the normalized gain score and statistically analyzed by using Mann-Whitney U test.. The findings showed that the average of students’ critical thinking skills normalized gain score of both groups were 59 and 43, respectively for experimental and control group in the medium category. There were significant differences between both group’s improvement. Thus, the implementation of reading infusion-loaded discovery learning model could further improve middle school students’ critical thinking skills than conventional learning.

  15. A hybrid health service accreditation program model incorporating mandated standards and continuous improvement: interview study of multiple stakeholders in Australian health care.

    Science.gov (United States)

    Greenfield, David; Hinchcliff, Reece; Hogden, Anne; Mumford, Virginia; Debono, Deborah; Pawsey, Marjorie; Westbrook, Johanna; Braithwaite, Jeffrey

    2016-07-01

    The study aim was to investigate the understandings and concerns of stakeholders regarding the evolution of health service accreditation programs in Australia. Stakeholder representatives from programs in the primary, acute and aged care sectors participated in semi-structured interviews. Across 2011-12 there were 47 group and individual interviews involving 258 participants. Interviews lasted, on average, 1 h, and were digitally recorded and transcribed. Transcriptions were analysed using textual referencing software. Four significant issues were considered to have directed the evolution of accreditation programs: altering underlying program philosophies; shifting of program content focus and details; different surveying expectations and experiences and the influence of external contextual factors upon accreditation programs. Three accreditation program models were noted by participants: regulatory compliance; continuous quality improvement and a hybrid model, incorporating elements of these two. Respondents noted the compatibility or incommensurability of the first two models. Participation in a program was reportedly experienced as ranging on a survey continuum from "malicious compliance" to "performance audits" to "quality improvement journeys". Wider contextual factors, in particular, political and community expectations, and associated media reporting, were considered significant influences on the operation and evolution of programs. A hybrid accreditation model was noted to have evolved. The hybrid model promotes minimum standards and continuous quality improvement, through examining the structure and processes of organisations and the outcomes of care. The hybrid model appears to be directing organisational and professional attention to enhance their safety cultures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Significant clinical improvement in radiation-induced lumbosacral poly-radiculopathy by a treatment combining pentoxifylline, tocopherol, and clodronate (Pentoclo)

    Energy Technology Data Exchange (ETDEWEB)

    Delanian, S. [Hop St Louis, Serv Oncol Radiotherapie, APHP, F-75010 Paris, (France); Lefaix, J.L. [CEA-LARIA, CIRIL-GANIL, Caen, (France); Maisonobe, T. [Hop La Pitie Salpetriere, Federat Neurophysiol Clin, APHP, Paris, (France)

    2008-07-01

    Radiation-induced (RI) peripheral neuropathy is a rare and severe delayed complication of radiotherapy that is spontaneously irreversible, with no standard of treatment. We previously developed a successful antioxidant treatment in RI fibrosis and necrosis. Two patients with progressive worsening RI lumbosacral poly-radiculopathy experienced over several years a significant clinical improvement in their neurological sensorimotor symptoms with long-term pentoxifylline-tocopherol-clodronate treatment, and good safety. (authors)

  17. The cumulative effect of small dietary changes may significantly improve nutritional intakes in free-living children and adults

    OpenAIRE

    Bornet , Francis; Paineau , Damien; Beaufils , François; Boulier , Alain; Cassuto , Dominique-Adèle; Chwalow , Judith; Combris , Pierre; Couet , Charles; Jouret , Béatrice; Lafay , Lionel; Laville , Martine; Mahé , Sylvain; Ricour , Claude; Romon , Monique; Simon , Chantal

    2010-01-01

    Abstract Background/Objectives: The ELPAS study was an 8-month randomized controlled dietary modification trial designed to test the hypothesis that family dietary coaching would improve nutritional intakes and weight control in 2026 free-living children and parents (Paineau et al., 2008). It resulted in significant nutritional changes, with beneficial effects on body mass index in adults. In these ancillary analyses, we investigated dietary changes throughout the intervention. ...

  18. Shoulder Arthroscopy Simulator Training Improves Shoulder Arthroscopy Performance in a Cadaver Model

    Science.gov (United States)

    Henn, R. Frank; Shah, Neel; Warner, Jon J.P.; Gomoll, Andreas H.

    2013-01-01

    Purpose The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaver model of shoulder arthroscopy. Methods Seventeen first year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and nine of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The two groups were compared with students t-tests, and change over time within groups was analyzed with paired t-tests. Results There were no observed differences between the two groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (parthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaver model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. Clinical Relevance There may be a role for simulator training in shoulder arthroscopy education. PMID:23591380

  19. Shoulder arthroscopy simulator training improves shoulder arthroscopy performance in a cadaveric model.

    Science.gov (United States)

    Henn, R Frank; Shah, Neel; Warner, Jon J P; Gomoll, Andreas H

    2013-06-01

    The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaveric model of shoulder arthroscopy. Seventeen first-year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and 9 of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The 2 groups were compared by use of Student t tests, and change over time within groups was analyzed with paired t tests. There were no observed differences between the 2 groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (P arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaveric model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. There may be a role for simulator training in shoulder arthroscopy education. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  20. The use of an exclusion-based risk-assessment model for venous thrombosis improves uptake of appropriate thromboprophylaxis in hospitalized medical patients.

    Science.gov (United States)

    Bagot, C; Gohil, S; Perrott, R; Barsam, S; Patel, R K; Arya, R

    2010-08-01

    Venous thromboembolism is a common condition in hospitalized medical patients. Numerous studies have demonstrated that low molecular weight heparin significantly reduces this risk but, despite this, the use of thromboprophylaxis remains poor. To evaluate the use of an exclusion based risk-assessment model (RAM) for venous thrombosis in improving the uptake of appropriate thromboprophylaxis in hospitalized medical patients. A survey with a subsequent audit cycle of three separate audits over 36 months. 497 hospitalized patients with acute medical conditions on general medical wards were audited at a secondary care centre in London, UK. The survey and subsequent audits were performed by reviewing the notes and medication charts of medical patients, prior to the launch of the RAM and at 12, 28 and 36 months following its introduction. Prior to launching the RAM, 49% of hospitalized medical patients received appropriate thromboprophylaxis. This did not change 12 months after the RAM was introduced but increased significantly to 71% following formal education of the health care professionals involved in thromboprophylaxis prescription. This improvement was maintained as demonstrated by a subsequent audit 8 months later (75.9%). The introduction of a simple exclusion-based RAM for venous thrombosis in medical patients significantly improved delivery of thromboprophylaxis. The successful uptake of the RAM appears to have been dependent on direct education of those health carers involved in its use. A similar exclusion-based model used nationally could have a significant impact on the burden of VTE currently experienced in the UK.

  1. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    Science.gov (United States)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  2. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    Science.gov (United States)

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  3. MODIS Data Assimilation in the CROPGRO model for improving soybean yield estimations

    Science.gov (United States)

    Richetti, J.; Monsivais-Huertero, A.; Ahmad, I.; Judge, J.

    2017-12-01

    Soybean is one of the main agricultural commodities in the world. Thus, having better estimates of its agricultural production is important. Improving the soybean crop models in Brazil is crucial for better understanding of the soybean market and enhancing decision making, because Brazil is the second largest soybean producer in the world, Parana state is responsible for almost 20% of it, and by itself would be the fourth greatest soybean producer in the world. Data assimilation techniques provide a method to improve spatio-temporal continuity of crops through integration of remotely sensed observations and crop growth models. This study aims to use MODIS EVI to improve DSSAT-CROPGRO soybean yield estimations in the Parana state, southern Brazil. The method uses the Ensemble Kalman filter which assimilates MODIS Terra and Aqua combined products (MOD13Q1 and MYD13Q1) into the CROPGRO model to improve the agricultural production estimates through update of light interception data over time. Expected results will be validated with monitored commercial farms during the period of 2013-2014.

  4. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    Science.gov (United States)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the

  5. Improved stoves in India: A study of sustainable business models

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Slaski, Xander; Thurber, Mark C.; Zerriffi, Hisham

    2011-01-01

    Burning of biomass for cooking is associated with health problems and climate change impacts. Many previous efforts to disseminate improved stoves – primarily by governments and NGOs – have not been successful. Based on interviews with 12 organizations selling improved biomass stoves, we assess the results to date and future prospects of commercial stove operations in India. Specifically, we consider how the ability of these businesses to achieve scale and become self-sustaining has been influenced by six elements of their respective business models: design, customers targeted, financing, marketing, channel strategy, and organizational characteristics. The two companies with the most stoves in the field shared in common generous enterprise financing, a sophisticated approach to developing a sales channel, and many person-years of management experience in marketing and operations. And yet the financial sustainability of improved stove sales to households remains far from assured. The only company in our sample with demonstrated profitability is a family-owned business selling to commercial rather than household customers. The stove sales leader is itself now turning to the commercial segment to maintain flagging cash flow, casting doubt on the likelihood of large positive impacts on health from sales to households in the near term. - Highlights: ► Business models to sell improved stoves can be viable in India. ► Commercial stove efforts may not be able to deliver all the benefits hoped for. ► The government could play a useful role if policies are targeted and well thought-out. ► Develops models for that hard-to-define entity mixing business and charity.

  6. Improvement of the RELAP5 subcooled boiling model for low pressure conditions

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2000-01-01

    The RELAP5/MOD3.2.2 Gamma code was assessed against low pressure subcooled boiling experiments performed by Zeitoun and Shoukri [1] in a vertical annulus. The predictions of subcooled boiling bubbly flow showed that the present version of the RELAP5 code underestimates the void fraction growth along the tube. To improve the void fraction prediction at low pressure conditions a set of model changes is proposed, which includes modifications of bubbly-slug transition criterion, drift-flux model, interphase heat transfer coefficient and wall evaporation modeling. The improved experiment predictions with the modified RELAP5 code are presented and analysed. (author)

  7. Dialect topic modeling for improved consumer medical search.

    Science.gov (United States)

    Crain, Steven P; Yang, Shuang-Hong; Zha, Hongyuan; Jiao, Yu

    2010-11-13

    Access to health information by consumers is hampered by a fundamental language gap. Current attempts to close the gap leverage consumer oriented health information, which does not, however, have good coverage of slang medical terminology. In this paper, we present a Bayesian model to automatically align documents with different dialects (slang, common and technical) while extracting their semantic topics. The proposed diaTM model enables effective information retrieval, even when the query contains slang words, by explicitly modeling the mixtures of dialects in documents and the joint influence of dialects and topics on word selection. Simulations using consumer questions to retrieve medical information from a corpus of medical documents show that diaTM achieves a 25% improvement in information retrieval relevance by nDCG@5 over an LDA baseline.

  8. Dialect Topic Modeling for Improved Consumer Medical Search

    Energy Technology Data Exchange (ETDEWEB)

    Crain, Steven P. [Georgia Institute of Technology; Yang, Shuang-Hong [Georgia Institute of Technology; Zha, Hongyuan [Georgia Institute of Technology; Jiao, Yu [ORNL

    2010-01-01

    Access to health information by consumers is ham- pered by a fundamental language gap. Current attempts to close the gap leverage consumer oriented health information, which does not, however, have good coverage of slang medical terminology. In this paper, we present a Bayesian model to automatically align documents with different dialects (slang, com- mon and technical) while extracting their semantic topics. The proposed diaTM model enables effective information retrieval, even when the query contains slang words, by explicitly modeling the mixtures of dialects in documents and the joint influence of dialects and topics on word selection. Simulations us- ing consumer questions to retrieve medical information from a corpus of medical documents show that diaTM achieves a 25% improvement in information retrieval relevance by nDCG@5 over an LDA baseline.

  9. Electroacupuncture improves microcirculation and neuronal morphology in the spinal cord of a rat model of intervertebral disc extrusion

    Directory of Open Access Journals (Sweden)

    Dai-xun Jiang

    2015-01-01

    Full Text Available Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral surface of T 13 . Electroacupuncture was used to stimulate the bilateral Zusanli point (ST36 and Neiting point (ST44 for 14 days. Compared with control animals, blood flow in the first lumbar vertebra (L 1 was noticeably increased in rats given electroacupuncture. Microvessel density in the T 13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved significantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.

  10. Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala

    Science.gov (United States)

    Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.

    2014-03-01

    The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

  11. Application of an improved model for the identification of material parameters

    DEFF Research Database (Denmark)

    Frederiksen, Per S.

    1997-01-01

    Elastic material constants of thick plates can be identified by combining a range of measured natural frequencies with an accurate numerical model for the theoretical predictions. To deal with thick plates, a model that takes transverse shear effects into account is necessary. Since modeling errors...... affect the estimates in a systematic way, an accurate numerical model is of primary importance. Compared to a model used previously, an improved more accurate plate model is studied here for the purpose of identification. This new advanced model is used to assess the systematic errors...

  12. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Koohbor, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Soltanian, S., E-mail: s.soltanian@gmail.com [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada); Najafi, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Physics, Hamadan University of Technology, Hamadan (Iran, Islamic Republic of); Servati, P. [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. Black-Right-Pointing-Pointer Increasing the Zn concentration significantly reduces the Hc value of NWs. Black-Right-Pointing-Pointer Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. Black-Right-Pointing-Pointer The pH of electrolyte has no significant effect on the properties of the NW arrays. Black-Right-Pointing-Pointer Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co{sub 1-x}Zn{sub x} (0 {<=} x {<=} 0.74) nanowires (NWs) with diameters of {approx}35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 Degree-Sign C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on

  13. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    Science.gov (United States)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  14. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.

    Directory of Open Access Journals (Sweden)

    Chun-Jung Chen

    Full Text Available The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.Seventy two Sprague-Dawley rats weighing 200-250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups.NT-3 (Neurotrophin 3, BDNF (Brain derived neurotrophic factor, CNTF (Ciliary neurotrophic factor, and GDNF (Glia cell line derived neurotrophic factor were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology.Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve

  15. Modelling long term energy consumption of French residential sector - improving behavioral realism and simulating ambitious scenarios

    International Nuclear Information System (INIS)

    Allibe, Benoit

    2012-01-01

    This thesis aims to integrate components of an economic model of the behaviors of households in a technological model of French residential sector energy consumption dynamics and to analyze the consequences of this integration on the results of long-term residential energy consumption simulations (2030-2050). The results of this work highlight significant differences between the actual household space heating energy consumptions and those estimated by engineering models. These differences are largely due to the elasticity of thermal comfort demand to thermal comfort price. Our improved model makes it possible to conjointly integrate the concepts of price elasticity and rebound effect (the increase in energy service level following an improvement in energy performance of the equipment providing the service) in a daily behavior model. Regarding space heating consumption, the consequences of this behavioral adaptation - combined with some technical defects - are a significant reduction of the technical and behavioral energy saving potentials (while effective daily use of energy is generally lower than predicted by engineering models) at a national level. This implies that mid and long-term national energy policy targets (a 38% drop in primary energy consumption by 2020 and a reduction in greenhouse gas emissions by a factor of 4 by 2050 compared to the 1990 level) will be harder to reach than previously expected for the residential sector. These results also imply that a strong reduction in carbon emissions cannot be achieved solely through the diffusion of efficient technologies and energy conservation behavior but also requires to significantly lower the average carbon content of residential space heating energy through the generalized use of wood energy. The second issue addressed in this thesis is the influence of the resolution of a techno-economic model (i.e. its ability to represent the various values that a variable can have within the modeled system) on its

  16. An improved UO2 thermal conductivity model in the ELESTRES computer code

    International Nuclear Information System (INIS)

    Chassie, G.G.; Tochaie, M.; Xu, Z.

    2010-01-01

    This paper describes the improved UO 2 thermal conductivity model for use in the ELESTRES (ELEment Simulation and sTRESses) computer code. The ELESTRES computer code models the thermal, mechanical and microstructural behaviour of a CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains for fuel element design and assessment. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. The thermal conductivity of UO 2 fuel is one of the key parameters that affect ELESTRES calculations. The existing ELESTRES thermal conductivity model has been assessed and improved based on a large amount of thermal conductivity data from measurements of irradiated and un-irradiated UO 2 fuel with different densities. The UO 2 thermal conductivity data cover 90% to 99% theoretical density of UO 2 , temperature up to 3027 K, and burnup up to 1224 MW·h/kg U. The improved thermal conductivity model, which is recommended for a full implementation in the ELESTRES computer code, has reduced the ELESTRES code prediction biases of temperature, fission gas release, and fuel sheath strains when compared with the available experimental data. This improved thermal conductivity model has also been checked with a test version of ELESTRES over the full ranges of fuel temperature, fuel burnup, and fuel density expected in CANDU fuel. (author)

  17. Using NLP meta, Milton, metaphor models, for improving the activity of the organization

    Directory of Open Access Journals (Sweden)

    Cornel Marian IOSIF

    2010-12-01

    Full Text Available The objective of this paper is the improving of the three methods from the neuro- linguistic programming – metaphor, Milton model and the meta-model, so by using this in daily activities by an organization to improve the activities witch, are performed and to have a more efficient allocation of the available resources.

  18. Prostate health index (phi) and prostate cancer antigen 3 (PCA3) significantly improve diagnostic accuracy in patients undergoing prostate biopsy.

    Science.gov (United States)

    Perdonà, Sisto; Bruzzese, Dario; Ferro, Matteo; Autorino, Riccardo; Marino, Ada; Mazzarella, Claudia; Perruolo, Giuseppe; Longo, Michele; Spinelli, Rosa; Di Lorenzo, Giuseppe; Oliva, Andrea; De Sio, Marco; Damiano, Rocco; Altieri, Vincenzo; Terracciano, Daniela

    2013-02-15

    Prostate health index (phi) and prostate cancer antigen 3 (PCA3) have been recently proposed as novel biomarkers for prostate cancer (PCa). We assessed the diagnostic performance of these biomarkers, alone or in combination, in men undergoing first prostate biopsy for suspicion of PCa. One hundred sixty male subjects were enrolled in this prospective observational study. PSA molecular forms, phi index (Beckman coulter immunoassay), PCA3 score (Progensa PCA3 assay), and other established biomarkers (tPSA, fPSA, and %fPSA) were assessed before patients underwent a 18-core first prostate biopsy. The discriminating ability between PCa-negative and PCa-positive biopsies of Beckman coulter phi and PCA3 score and other used biomarkers were determined. One hundred sixty patients met inclusion criteria. %p2PSA (p2PSA/fPSA × 100), phi and PCA3 were significantly higher in patients with PCa compared to PCa-negative group (median values: 1.92 vs. 1.55, 49.97 vs. 36.84, and 50 vs. 32, respectively, P ≤ 0.001). ROC curve analysis showed that %p2PSA, phi, and PCA3 are good indicator of malignancy (AUCs = 0.68, 0.71, and 0.66, respectively). A multivariable logistic regression model consisting of both the phi index and PCA3 score allowed to reach an overall diagnostic accuracy of 0.77. Decision curve analysis revealed that this "combined" marker achieved the highest net benefit over the examined range of the threshold probability. phi and PCA3 showed no significant difference in the ability to predict PCa diagnosis in men undergoing first prostate biopsy. However, diagnostic performance is significantly improved by combining phi and PCA3. Copyright © 2012 Wiley Periodicals, Inc.

  19. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2017-10-01

    Full Text Available In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols (1 a correction to the sedimentation of aerosols, (2 dimethyl sulfide (DMS oceanic emissions and gas-phase chemistry, (3 an improved representation of the dry deposition of trace gases over seasonal snow, and (4 an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5 correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6 couple and further test the recent KF-CuP (Kain–Fritsch + Cumulus Potential cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC, sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone, the improved surface temperatures over sea ice (surface ozone, BC, and sulfate, and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone. DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  20. Increasing the statistical significance of entanglement detection in experiments.

    Science.gov (United States)

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  1. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  2. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1996-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  3. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  4. A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy.

    Science.gov (United States)

    van Leeuwen, Pim J; Hayen, Andrew; Thompson, James E; Moses, Daniel; Shnier, Ron; Böhm, Maret; Abuodha, Magdaline; Haynes, Anne-Maree; Ting, Francis; Barentsz, Jelle; Roobol, Monique; Vass, Justin; Rasiah, Krishan; Delprado, Warick; Stricker, Phillip D

    2017-12-01

    To develop and externally validate a predictive model for detection of significant prostate cancer. Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate-specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with >5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P prostate cancer. Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over-detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  5. Policy improvement by a model-free Dyna architecture.

    Science.gov (United States)

    Hwang, Kao-Shing; Lo, Chia-Yue

    2013-05-01

    The objective of this paper is to accelerate the process of policy improvement in reinforcement learning. The proposed Dyna-style system combines two learning schemes, one of which utilizes a temporal difference method for direct learning; the other uses relative values for indirect learning in planning between two successive direct learning cycles. Instead of establishing a complicated world model, the approach introduces a simple predictor of average rewards to actor-critic architecture in the simulation (planning) mode. The relative value of a state, defined as the accumulated differences between immediate reward and average reward, is used to steer the improvement process in the right direction. The proposed learning scheme is applied to control a pendulum system for tracking a desired trajectory to demonstrate its adaptability and robustness. Through reinforcement signals from the environment, the system takes the appropriate action to drive an unknown dynamic to track desired outputs in few learning cycles. Comparisons are made between the proposed model-free method, a connectionist adaptive heuristic critic, and an advanced method of Dyna-Q learning in the experiments of labyrinth exploration. The proposed method outperforms its counterparts in terms of elapsed time and convergence rate.

  6. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  7. Improved virtual channel noise model for transform domain Wyner-Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2009-01-01

    Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...... coding is proposed, which utilizes cross-band correlation to estimate the Laplacian parameters more accurately. Experimental results show that the proposed noise model can improve the rate-distortion (RD) performance....

  8. Improved choked flow model for MARS code

    International Nuclear Information System (INIS)

    Chung, Moon Sun; Lee, Won Jae; Ha, Kwi Seok; Hwang, Moon Kyu

    2002-01-01

    Choked flow calculation is improved by using a new sound speed criterion for bubbly flow that is derived by the characteristic analysis of hyperbolic two-fluid model. This model was based on the notion of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speed in the bubbly flow regime that agrees well with the existing experimental data. The present sound speed shows more reasonable result in the extreme case than the Nguyens did. The present choked flow criterion derived by the present sound speed is employed in the MARS code and assessed by using the Marviken choked flow tests. The assessment results without any adjustment made by some discharge coefficients demonstrate more accurate predictions of choked flow rate in the bubbly flow regime than those of the earlier choked flow calculations. By calculating the Typical PWR (SBLOCA) problem, we make sure that the present model can reproduce the reasonable transients of integral reactor system

  9. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    Science.gov (United States)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  10. Induction Based Training leads to Highly Significant Improvements of Objective and Subjective Suturing Ability in Junior Doctors

    Directory of Open Access Journals (Sweden)

    Kevin Garry

    2018-03-01

    Full Text Available Background: Simulation based training has shown to be of benefit in the education of medical students. However, the impact of induction based clinical simulation on surgical ability of qualified doctors remains unclear.The aim of this study was to establish if a 60 minute teaching session integrated into an Emergency Medicine speciality induction program produces statistically significant improvements in objective and subjective suturing abilities of junior doctors commencing an Emergency Medicine rotation.Methods: The objective suturing abilities of 16 Foundation Year Two doctors were analysed using a validated OSATs scale prior to a novel teaching intervention. The doctors then undertook an intensive hour long workshop receiving one to one feedback before undergoing repeat OSATs assessment.Subjective ability was measured using a 5 point likert scale and self-assessed competency reporting interrupted suturing before and after the intervention. Photographs of wound closure before and after the intervention were recorded for further blinded assessment of impact of intervention. A survey regarding continued ability was repeated at four months following the intervention. The study took place on 7/12/16 during the Belfast Health and Social Care Trust Emergency Medicine induction in the Royal Victoria Hospital Belfast. The hospital is a regional level 1 trauma centre that has annual departmental attendances in excess of 200,000.All new junior doctors commencing the Emergency Medicine rotation were invited to partake in the study. All 16 agreed. The group consisted of a mixture of undergraduate and postgraduate medicaldoctors who all had 16 months experience working in a variety of medical or surgical jobs previously.Results: Following the teaching intervention objective and subjective abilities in interrupted suturing showed statistically significant improvement (P>0.005. Self-reporting of competency of independently suturingwounds improved from 50

  11. Model improvements for tritium transport in DEMO fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Tosti, Silvano [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Franza, Fabrizio [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-10-15

    Highlights: • T inventory and permeation of DEMO blankets have been assessed under pulsed operation. • 1-D model for T transport has been developed for the HCLL DEMO blanket. • The 1-D model evaluated T partial pressure and T permeation rate radial profiles. - Abstract: DEMO operation requires a large amount of tritium, which is directly produced inside the reactor by means of Li-based breeders. During its production, recovering and purification, tritium comes in contact with large surfaces of hot metallic walls, therefore it can permeate through the blanket cooling structure, reach the steam generator and finally the environment. The development of dedicated simulation tools able to predict tritium losses and inventories is necessary to verify the accomplishment of the accepted tritium environmental releases as well as to guarantee a correct machine operation. In this work, the FUS-TPC code is improved by including the possibility to operate in pulsed regime: results in terms of tritium inventory and losses for three pulsed scenarios are shown. Moreover, the development of a 1-D model considering the radial profile of the tritium generation is described. By referring to the inboard segment on the equatorial axis of the helium-cooled lithium–lead (HCLL) blanket, preliminary results of the 1-D model are illustrated: tritium partial pressure in Li–Pb and tritium permeation in the cooling and stiffening plates by assuming several permeation reduction factor (PRF) values. Future improvements will consider the application of the model to all segments of different blanket concepts.

  12. Significant improvement of olfactory performance in sleep apnea patients after three months of nasal CPAP therapy - Observational study and randomized trial.

    Directory of Open Access Journals (Sweden)

    Bettina Boerner

    Full Text Available The olfactory function highly impacts quality of life (QoL. Continuous positive airway pressure is an effective treatment for obstructive sleep apnea (OSA and is often applied by nasal masks (nCPAP. The influence of nCPAP on the olfactory performance of OSA patients is unknown. The aim of this study was to assess the sense of smell before initiation of nCPAP and after three months treatment, in moderate and severe OSA patients.The sense of smell was assessed in 35 patients suffering from daytime sleepiness and moderate to severe OSA (apnea/hypopnea index ≥ 15/h, with the aid of a validated test battery (Sniffin' Sticks before initiation of nCPAP therapy and after three months of treatment. Additionally, adherent subjects were included in a double-blind randomized three weeks CPAP-withdrawal trial (sub-therapeutic CPAP pressure.Twenty five of the 35 patients used the nCPAP therapy for more than four hours per night, and for more than 70% of nights (adherent group. The olfactory performance of these patients improved significantly (p = 0.007 after three months of nCPAP therapy. When considering the entire group of patients, olfaction also improved significantly (p = 0.001. In the randomized phase the sense of smell of six patients deteriorated under sub-therapeutic CPAP pressure (p = 0.046 whereas five patients in the maintenance CPAP group showed no significant difference (p = 0.501.Olfactory performance improved significantly after three months of nCPAP therapy in patients suffering from moderate and severe OSA. It seems that this effect of nCPAP is reversible under sub-therapeutic CPAP pressure.ISRCTN11128866.

  13. Two-Dimensional Magnetotelluric Modelling of Ore Deposits: Improvements in Model Constraints by Inclusion of Borehole Measurements

    Science.gov (United States)

    Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri

    2017-12-01

    A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer

  14. Implications of regional improvement in global climate models for agricultural impact research

    International Nuclear Information System (INIS)

    Ramirez-Villegas, Julian; Thornton, Philip K; Jarvis, Andy; Challinor, Andrew J

    2013-01-01

    Global climate models (GCMs) have become increasingly important for climate change science and provide the basis for most impact studies. Since impact models are highly sensitive to input climate data, GCM skill is crucial for getting better short-, medium- and long-term outlooks for agricultural production and food security. The Coupled Model Intercomparison Project (CMIP) phase 5 ensemble is likely to underpin the majority of climate impact assessments over the next few years. We assess 24 CMIP3 and 26 CMIP5 simulations of present climate against climate observations for five tropical regions, as well as regional improvements in model skill and, through literature review, the sensitivities of impact estimates to model error. Climatological means of seasonal mean temperatures depict mean errors between 1 and 18 ° C (2–130% with respect to mean), whereas seasonal precipitation and wet-day frequency depict larger errors, often offsetting observed means and variability beyond 100%. Simulated interannual climate variability in GCMs warrants particular attention, given that no single GCM matches observations in more than 30% of the areas for monthly precipitation and wet-day frequency, 50% for diurnal range and 70% for mean temperatures. We report improvements in mean climate skill of 5–15% for climatological mean temperatures, 3–5% for diurnal range and 1–2% in precipitation. At these improvement rates, we estimate that at least 5–30 years of CMIP work is required to improve regional temperature simulations and at least 30–50 years for precipitation simulations, for these to be directly input into impact models. We conclude with some recommendations for the use of CMIP5 in agricultural impact studies. (letter)

  15. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Akrami, S M R; Nakayachi, H; Fukuma, T; Watanabe-Nakayama, T; Asakawa, H

    2014-01-01

    Recent advancement of dynamic-mode atomic force microscopy (AFM) for liquid-environment applications enabled atomic-scale studies on various interfacial phenomena. However, instabilities and poor reproducibility of the measurements often prevent systematic studies. To solve this problem, we have investigated the effect of various tip treatment methods for atomic-scale imaging and force measurements in liquid. The tested methods include Si coating, Ar plasma, Ar sputtering and UV/O 3 cleaning. We found that all the methods provide significant improvements in both the imaging and force measurements in spite of the tip transfer through the air. Among the methods, we found that the Si coating provides the best stability and reproducibility in the measurements. To understand the origin of the fouling resistance of the cleaned tip surface and the difference between the cleaning methods, we have investigated the tip surface properties by x-ray photoelectron spectroscopy and contact angle measurements. The results show that the contaminations adsorbed on the tip during the tip transfer through the air should desorb from the surface when it is immersed in aqueous solution due to the enhanced hydrophilicity by the tip treatments. The tip surface prepared by the Si coating is oxidized when it is immersed in aqueous solution. This creates local spots where stable hydration structures are formed. For the other methods, there is no active mechanism to create such local hydration sites. Thus, the hydration structure formed under the tip apex is not necessarily stable. These results reveal the desirable tip properties for atomic-scale AFM measurements in liquid, which should serve as a guideline for further improvements of the tip treatment methods. (paper)

  16. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    Science.gov (United States)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with

  17. Modeling of environmentally significant interfaces: Two case studies

    International Nuclear Information System (INIS)

    Williford, R.E.

    2006-01-01

    When some parameters cannot be easily measured experimentally, mathematical models can often be used to deconvolute or interpret data collected on complex systems, such as those characteristic of many environmental problems. These models can help quantify the contributions of various physical or chemical phenomena that contribute to the overall behavior, thereby enabling the scientist to control and manipulate these phenomena, and thus to optimize the performance of the material or device. In the first case study presented here, a model is used to test the hypothesis that oxygen interactions with hydrogen on the catalyst particles of solid oxide fuel cell anodes can sometimes occur a finite distance away from the triple phase boundary (TPB), so that such reactions are not restricted to the TPB as normally assumed. The model may help explain a discrepancy between the observed structure of SOFCs and their performance. The second case study develops a simple physical model that allows engineers to design and control the sizes and shapes of mesopores in silica thin films. Such pore design can be useful for enhancing the selectivity and reactivity of environmental sensors and catalysts. This paper demonstrates the mutually beneficial interactions between experiment and modeling in the solution of a wide range of problems

  18. An improved Rosetta pedotransfer function and evaluation in earth system models

    Science.gov (United States)

    Zhang, Y.; Schaap, M. G.

    2017-12-01

    Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.

  19. Discussion of skill improvement in marine ecosystem dynamic models based on parameter optimization and skill assessment

    Science.gov (United States)

    Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen

    2016-07-01

    Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.

  20. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  1. Hot kinetic model as a guide to improve organic photovoltaic materials.

    Science.gov (United States)

    Sosorev, Andrey Yu; Godovsky, Dmitry Yu; Paraschuk, Dmitry Yu

    2018-01-31

    The modeling of organic solar cells (OSCs) can provide a roadmap for their further improvement. Many OSC models have been proposed in recent years; however, the impact of the key intermediates from photons to electricity-hot charge-transfer (CT) states-on the OSC efficiency is highly ambiguous. In this study, we suggest an analytical kinetic model for OSC that considers a two-step charge generation via hot CT states. This hot kinetic model allowed us to evaluate the impact of different material parameters on the OSC performance: the driving force for charge separation, optical bandgap, charge mobility, geminate recombination rate, thermalization rate, average electron-hole separation distance in the CT state, dielectric permittivity, reorganization energy and charge delocalization. In contrast to a widespread trend of lowering the material bandgap, the model predicts that this approach is only efficient along with improvement of the other material properties. The most promising ways to increase the OSC performance are decreasing the reorganization energy, i.e., an energy change accompanying CT from the donor molecule to the acceptor, increasing the dielectric permittivity and charge delocalization. The model suggests that there are no fundamental limitations that can prevent achieving the OSC efficiency above 20%.

  2. End-to-end models for marine ecosystems: Are we on the precipice of a significant advance or just putting lipstick on a pig?

    Directory of Open Access Journals (Sweden)

    Kenneth A. Rose

    2012-02-01

    Full Text Available There has been a rapid rise in the development of end-to-end models for marine ecosystems over the past decade. Some reasons for this rise include need for predicting effects of climate change on biota and dissatisfaction with existing models. While the benefits of a well-implemented end-to-end model are straightforward, there are many challenges. In the short term, my view is that the major role of end-to-end models is to push the modelling community forward, and to identify critical data so that these data can be collected now and thus be available for the next generation of end-to-end models. I think we should emulate physicists and build theoretically-oriented models first, and then collect the data. In the long-term, end-to-end models will increase their skill, data collection will catch up, and end-to-end models will move towards site-specific applications with forecasting and management capabilities. One pathway into the future is individual efforts, over-promise, and repackaging of poorly performing component submodels (“lipstick on a pig”. The other pathway is a community-based collaborative effort, with appropriate caution and thoughtfulness, so that the needed improvements are achieved (“significant advance”. The promise of end-to-end modelling is great. We should act now to avoid missing a great opportunity.

  3. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  4. Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment.

    Science.gov (United States)

    Keegan, Ronan M; McNicholas, Stuart J; Thomas, Jens M H; Simpkin, Adam J; Simkovic, Felix; Uski, Ville; Ballard, Charles C; Winn, Martyn D; Wilson, Keith S; Rigden, Daniel J

    2018-03-01

    Increasing sophistication in molecular-replacement (MR) software and the rapid expansion of the PDB in recent years have allowed the technique to become the dominant method for determining the phases of a target structure in macromolecular X-ray crystallography. In addition, improvements in bioinformatic techniques for finding suitable homologous structures for use as MR search models, combined with developments in refinement and model-building techniques, have pushed the applicability of MR to lower sequence identities and made weak MR solutions more amenable to refinement and improvement. MrBUMP is a CCP4 pipeline which automates all stages of the MR procedure. Its scope covers everything from the sourcing and preparation of suitable search models right through to rebuilding of the positioned search model. Recent improvements to the pipeline include the adoption of more sensitive bioinformatic tools for sourcing search models, enhanced model-preparation techniques including better ensembling of homologues, and the use of phase improvement and model building on the resulting solution. The pipeline has also been deployed as an online service through CCP4 online, which allows its users to exploit large bioinformatic databases and coarse-grained parallelism to speed up the determination of a possible solution. Finally, the molecular-graphics application CCP4mg has been combined with MrBUMP to provide an interactive visual aid to the user during the process of selecting and manipulating search models for use in MR. Here, these developments in MrBUMP are described with a case study to explore how some of the enhancements to the pipeline and to CCP4mg can help to solve a difficult case.

  5. CORCON-MOD1 modelling improvements

    International Nuclear Information System (INIS)

    Corradini, M.L.; Gonzales, F.G.; Vandervort, C.L.

    1986-01-01

    Given the unlikely occurrence of a severe accident in a light water reactor (LWR), the core may melt and slump into the reactor cavity below the reactor vessel. The interaction of the molten core with exposed concrete (a molten-core-concrete-interaction, MCCI) causes copious gas production which influences further heat transfer and concrete attack and may threaten containment integrity. In this paper the authors focus on the low-temperature phase of the MCCI where the molten pool is partially solidified, but is still capable of attacking concrete. The authors have developed some improved phenomenological models for pool freezing and molten core-coolant heat transfer and have incorporated them into the CORCON-MOD1 computer program. In the paper the authors compare the UW-CORCON/MOD1 calculations to CORCON/MOD2 and WECHSL results as well as the BETA experiments which are being conducted in Germany

  6. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  7. Assessing and improving the quality of modeling : a series of empirical studies about the UML

    NARCIS (Netherlands)

    Lange, C.F.J.

    2007-01-01

    Assessing and Improving the Quality of Modeling A Series of Empirical Studies about the UML This thesis addresses the assessment and improvement of the quality of modeling in software engineering. In particular, we focus on the Unified Modeling Language (UML), which is the de facto standard in

  8. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  9. Improving Hydrological Models of The Netherlands Using ALOS PALSAR

    NARCIS (Netherlands)

    Dekker, R.J.; Schuurmans, J.M.; Berendrecht, W.L.; Borren, W.; Ven, T.J.M. van de; Westerhoff, R.S.

    2010-01-01

    In this paper the improvement of the hydrological model metaSWAP of The Netherlands, with respect to soil moisture, is studied using remote sensing data. Therefore we investigate the value of ALOS PALSAR data of 2007 in combination with the method of Dubois et al. [1] for measuring volumetric

  10. Guiding and Modelling Quality Improvement in Higher Education Institutions

    Science.gov (United States)

    Little, Daniel

    2015-01-01

    The article considers the process of creating quality improvement in higher education institutions from the point of view of current organisational theory and social-science modelling techniques. The author considers the higher education institution as a functioning complex of rules, norms and other organisational features and reviews the social…

  11. Improved modelling of a parallel plate active magnetic regenerator

    International Nuclear Information System (INIS)

    Engelbrecht, K; Nielsen, K K; Bahl, C R H; Tušek, J; Kitanovski, A; Poredoš, A

    2013-01-01

    Much of the active magnetic regenerator (AMR) modelling presented in the literature considers only the solid and fluid domains of the regenerator and ignores other physical effects that have been shown to be important, such as demagnetizing fields in the regenerator, parasitic heat losses and fluid flow maldistribution in the regenerator. This paper studies the effects of these loss mechanisms and compares theoretical results with experimental results obtained on an experimental AMR device. Three parallel plate regenerators were tested, each having different demagnetizing field characteristics and fluid flow maldistributions. It was shown that when these loss mechanisms are ignored, the model significantly over predicts experimental results. Including the loss mechanisms can significantly change the model predictions, depending on the operating conditions and construction of the regenerator. The model is compared with experimental results for a range of fluid flow rates and cooling loads. (paper)

  12. [Effects of transtheoretical model intervention on improving self-esteem of obese children].

    Science.gov (United States)

    Zhang, Xueyan; Zhou, Leshan; Li, Chenchen

    2013-07-01

    To explore the effects of transtheoretical model (TTM) intervention on improving self-esteem status of obese children. A quasi-experimental research was conducted using a repeated-measure, pretest-posttest control group design in one randomly-selected boarding school of Changsha, Hunan Province in China. Seventy-three obesity students (54 males, 19 females) among grade three to six were included. All participants received first assessment, including: demographic data, stage of change questionnaire, and the Self-Esteem Scale (SES). According to the baseline data, different intervention measures based on TTM were given to different students to promote them to begin exercise and improve their self-esteem status. Follow-up assessments were collected respectively at 1- and 6- month after intervention. Intervention effects on proportion of obese children and self-esteem status as well as BMI were explored. All analyses were conducted using SPSS 17.0. After intervention, the proportion of obese children in precontemplation and maintenance stages was significantly different (P children who are in the later stages have higher self-esteem scores than those in former stages. Intervention based on TTM can help obese children move through the stages of change.

  13. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    Science.gov (United States)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  14. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Chen H

    2018-04-01

    Full Text Available Hengwen Chen,* Yan Dong,* Xuanhui He, Jun Li, Jie Wang Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China *These authors contributed equally to this work Background: Paeoniflorin (PF is the active component of Paeonia lactiflora Pall. or Paeonia veitchii Lynch. This study was, therefore, aimed to evaluate the improvement and mechanism of the PF on ventricular remodeling in rats with acute myocardial infarction (AMI. Materials and methods: In this study, AMI model was established by ligating the anterior descending coronary artery in Wistar rats. After 4 weeks gavage of PF, the apparent signs and the left ventricle weight index of Wistar rats were observed. The left ventricular ejection fraction (LVEF was evaluated by Doppler ultrasonography. Changes in cardiac morphology were observed by pathologic examination, and apoptosis was observed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, enzyme-linked immunosorbent assay was used to detect the expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 interleukin-10 (IL-10 and brain natriuretic peptide (BNP. Immunohistochemistry and Western blot method were applied to detect Caspase-3 and Caspase-9. Results: Compared with the model control, the survival conditions of rats in all treatment groups were generally improved after PF treatment. LVEF was significantly increased, and both left ventricular end-diastolic inner diameter and left ventricular end-systolic inner diameter were significantly reduced. Moreover, pathologic examination showed that the myocardium degeneration of the rats treated with PF was decreased, including neater arrangement, more complete myofilament, more uniform gap and less interstitial collagen fibers. Furthermore, the mitochondrial structure of cardiomyocytes was significantly improved. The ultrastructure was clear, and the arrangement of myofilament was more regular. Also, the expression of

  15. Thermal Modeling Method Improvements for SAGE III on ISS

    Science.gov (United States)

    Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; McLeod, Shawn

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Many innovative analysis methods have been used in developing this model; these will be described in the paper. This paper builds on a paper presented at TFAWS 2013, which described some of the initial developments of efficient methods for SAGE III. The current paper describes additional improvements that have been made since that time. To expedite the correlation of the model to thermal vacuum (TVAC) testing, the chambers and GSE for both TVAC chambers at Langley used to test the payload were incorporated within the thermal model. This allowed the runs of TVAC predictions and correlations to be run within the flight model, thus eliminating the need for separate models for TVAC. In one TVAC test, radiant lamps were used which necessitated shooting rays from the lamps, and running in both solar and IR wavebands. A new Dragon model was incorporated which entailed a change in orientation; that change was made using an assembly, so that any potential additional new Dragon orbits could be added in the future without modification of the model. The Earth orbit parameters such as albedo and Earth infrared flux were incorporated as time-varying values that change over the course of the orbit; despite being required in one of the ISS documents, this had not been done before by any previous payload. All parameters such as initial temperature, heater voltage, and location of the payload are defined based on the case definition. For one component, testing was performed in both air and vacuum; incorporating the air convection in a submodel that was

  16. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  17. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    International Nuclear Information System (INIS)

    Hong, Mei; Wang, Dong; Wang, Yuankun; Zeng, Xiankui; Ge, Shanshan; Yan, Hengqian; Singh, Vijay P.

    2016-01-01

    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  18. Mid- and long-term runoff predictions by an improved phase-space reconstruction model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Wang, Dong, E-mail: wangdong@nju.edu.cn [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Wang, Yuankun; Zeng, Xiankui [Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Collaborative Innovation Center of South China Sea Studies, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Ge, Shanshan; Yan, Hengqian [Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and oceanography, PLA University of Science and Technology, Nanjing (China); Singh, Vijay P. [Department of Biological and Agricultural Engineering Zachry Department of Civil Engineering, Texas A & M University, College Station, TX 77843 (United States)

    2016-07-15

    In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated

  19. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  20. A Step beyond Univision Evaluation: Using a Systems Model of Performance Improvement.

    Science.gov (United States)

    Sleezer, Catherine M.; Zhang, Jiping; Gradous, Deane B.; Maile, Craig

    1999-01-01

    Examines three views of performance improvement--scientific management, instructional design, and systems thinking--each providing a unique view of performance improvement and specific roles for evaluation. Provides an integrated definition of performance and a synthesis model that encompasses the three views. (AEF)

  1. Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge?

    Science.gov (United States)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2015-03-01

    Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As

  2. BAYESIAN FORECASTS COMBINATION TO IMPROVE THE ROMANIAN INFLATION PREDICTIONS BASED ON ECONOMETRIC MODELS

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu

    2014-12-01

    Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.

  3. Skill of Predicting Heavy Rainfall Over India: Improvement in Recent Years Using UKMO Global Model

    Science.gov (United States)

    Sharma, Kuldeep; Ashrit, Raghavendra; Bhatla, R.; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.

    2017-11-01

    The quantitative precipitation forecast (QPF) performance for heavy rains is still a challenge, even for the most advanced state-of-art high-resolution Numerical Weather Prediction (NWP) modeling systems. This study aims to evaluate the performance of UK Met Office Unified Model (UKMO) over India for prediction of high rainfall amounts (>2 and >5 cm/day) during the monsoon period (JJAS) from 2007 to 2015 in short range forecast up to Day 3. Among the various modeling upgrades and improvements in the parameterizations during this period, the model horizontal resolution has seen an improvement from 40 km in 2007 to 17 km in 2015. Skill of short range rainfall forecast has improved in UKMO model in recent years mainly due to increased horizontal and vertical resolution along with improved physics schemes. Categorical verification carried out using the four verification metrics, namely, probability of detection (POD), false alarm ratio (FAR), frequency bias (Bias) and Critical Success Index, indicates that QPF has improved by >29 and >24% in case of POD and FAR. Additionally, verification scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and SEDI (Symmetric EDI) are used with special emphasis on verification of extreme and rare rainfall events. These scores also show an improvement by 60% (EDS) and >34% (EDI and SEDI) during the period of study, suggesting an improved skill of predicting heavy rains.

  4. Experimentally validated modification to Cook-Torrance BRDF model for improved accuracy

    Science.gov (United States)

    Butler, Samuel D.; Ethridge, James A.; Nauyoks, Stephen E.; Marciniak, Michael A.

    2017-09-01

    The BRDF describes optical scatter off realistic surfaces. The microfacet BRDF model assumes geometric optics but is computationally simple compared to wave optics models. In this work, MERL BRDF data is fitted to the original Cook-Torrance microfacet model, and a modified Cook-Torrance model using the polarization factor in place of the mathematically problematic cross section conversion and geometric attenuation terms. The results provide experimental evidence that this modified Cook-Torrance model leads to improved fits, particularly for large incident and scattered angles. These results are expected to lead to more accurate BRDF modeling for remote sensing.

  5. An Employee-Centered Care Model Responds to the Triple Aim: Improving Employee Health.

    Science.gov (United States)

    Fox, Kelly; McCorkle, Ruth

    2018-01-01

    Health care expenditures, patient satisfaction, and timely access to care will remain problematic if dramatic changes in health care delivery models are not developed and implemented. To combat this challenge, a Triple Aim approach is essential; Innovation in payment and health care delivery models is required. Using the Donabedian framework of structure, process, and outcome, this article describes a nurse-led employee-centered care model designed to improve consumers' health care experiences, improve employee health, and increase access to care while reducing health care costs for employees, age 18 and older, in a corporate environment.

  6. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    Science.gov (United States)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  7. Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from Bacillus licheniformis in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jian-Rong Wang

    2015-01-01

    Full Text Available α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis, the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.

  8. An improved cellular automata model for train operation simulation with dynamic acceleration

    Science.gov (United States)

    Li, Wen-Jun; Nie, Lei

    2018-03-01

    Urban rail transit plays an important role in the urban public traffic because of its advantages of fast speed, large transport capacity, high safety, reliability and low pollution. This study proposes an improved cellular automaton (CA) model by considering the dynamic characteristic of the train acceleration to analyze the energy consumption and train running time. Constructing an effective model for calculating energy consumption to aid train operation improvement is the basis for studying and analyzing energy-saving measures for urban rail transit system operation.

  9. An improved steam generator model for the SASSYS code

    International Nuclear Information System (INIS)

    Pizzica, P.A.

    1989-01-01

    A new steam generator model has been developed for the SASSYS computer code, which analyzes accident conditions in a liquid metal cooled fast reactor. It has been incorporated into the new SASSYS balance-of-plant model but it can also function on a stand-alone basis. The steam generator can be used in a once-through mode, or a variant of the model can be used as a separate evaporator and a superheater with recirculation loop. The new model provides for an exact steady-state solution as well as the transient calculation. There was a need for a faster and more flexible model than the old steam generator model. The new model provides for more detail with its multi-mode treatment as opposed to the previous model's one node per region approach. Numerical instability problems which were the result of cell-centered spatial differencing, fully explicit time differencing, and the moving boundary treatment of the boiling crisis point in the boiling region have been reduced. This leads to an increase in speed as larger time steps can now be taken. The new model is an improvement in many respects. 2 refs., 3 figs

  10. Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning

    Directory of Open Access Journals (Sweden)

    Gijs J. H. de Goeijen

    2017-12-01

    Full Text Available The Ecovat is a seasonal thermal storage solution consisting of a large underground water tank divided into a number of virtual segments that can be individually charged and discharged. The goal of the Ecovat is to supply heat demand to a neighborhood throughout the entire year. In this work, we extend an integer linear programming model to describe the charging and discharging of such an Ecovat buffer by adding a long-term (yearly planning step to the model. We compare the results from the model using this extension to previously obtained results and show significant improvements when looking at the combination of costs and the energy content of the buffer at the end of the optimization. Furthermore, we show that the model is very robust against prediction errors. For this, we compare two different cases: one case in which we assume perfect predictions are available and one case in which we assume no predictions are available. The largest observed difference in costs between these two cases is less than 2%.

  11. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    1999-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  12. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    2001-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  13. Improving Saliency Models by Predicting Human Fixation Patches

    KAUST Repository

    Dubey, Rachit

    2015-04-16

    There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

  14. Improving Saliency Models by Predicting Human Fixation Patches

    KAUST Repository

    Dubey, Rachit; Dave, Akshat; Ghanem, Bernard

    2015-01-01

    There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

  15. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  16. Improved utilization of ADAS-cog assessment data through item response theory based pharmacometric modeling.

    Science.gov (United States)

    Ueckert, Sebastian; Plan, Elodie L; Ito, Kaori; Karlsson, Mats O; Corrigan, Brian; Hooker, Andrew C

    2014-08-01

    This work investigates improved utilization of ADAS-cog data (the primary outcome in Alzheimer's disease (AD) trials of mild and moderate AD) by combining pharmacometric modeling and item response theory (IRT). A baseline IRT model characterizing the ADAS-cog was built based on data from 2,744 individuals. Pharmacometric methods were used to extend the baseline IRT model to describe longitudinal ADAS-cog scores from an 18-month clinical study with 322 patients. Sensitivity of the ADAS-cog items in different patient populations as well as the power to detect a drug effect in relation to total score based methods were assessed with the IRT based model. IRT analysis was able to describe both total and item level baseline ADAS-cog data. Longitudinal data were also well described. Differences in the information content of the item level components could be quantitatively characterized and ranked for mild cognitively impairment and mild AD populations. Based on clinical trial simulations with a theoretical drug effect, the IRT method demonstrated a significantly higher power to detect drug effect compared to the traditional method of analysis. A combined framework of IRT and pharmacometric modeling permits a more effective and precise analysis than total score based methods and therefore increases the value of ADAS-cog data.

  17. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    Science.gov (United States)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-08-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.

  18. Improvement of a near wake model for trailing vorticity

    International Nuclear Information System (INIS)

    Pirrung, G R; Hansen, M H; Madsen, H A

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model

  19. Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Qifeng Zhuang

    2015-11-01

    Full Text Available Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER images from an improved two-source energy balance (TSEB model. The original TSEB approach may overestimate latent heat flux under vegetative stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor equation used in the original TSEB model with one that uses plant moisture and temperature constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model solving. The collected ASTER data and field observations employed in this study are over corn fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER area, China. The results were validated by measurements from eddy covariance (EC systems, and the surface energy flux estimates of the improved TSEB model are similar to the ground truth. A comparison of the results from the original and improved TSEB models indicates that the improved method more accurately estimates the sensible and latent heat fluxes, generating more precise daily evapotranspiration (ET estimate under vegetative stress conditions.

  20. A New Approach of Modeling an Ultra-Super-Critical Power Plant for Performance Improvement

    Directory of Open Access Journals (Sweden)

    Guolian Hou

    2016-04-01

    Full Text Available A suitable model of coordinated control system (CCS with high accuracy and simple structure is essential for the design of advanced controllers which can improve the efficiency of the ultra-super-critical (USC power plant. Therefore, with the demand of plant performance improvement, an improved T-S fuzzy model identification approach is proposed in this paper. Firstly, the improved entropy cluster algorithm is applied to identify the premise parameters which can automatically determine the cluster numbers and initial cluster centers by introducing the concept of a decision-making constant and threshold. Then, the learning algorithm is used to modify the initial cluster center and a new structure of concluding part is discussed, the incremental data around the cluster center is used to identify the local linear model through a weighted recursive least-square algorithm. Finally, the proposed approach is employed to model the CCS of a 1000 MW USC one-through boiler power plant by using on-site measured data. Simulation results show that the T-S fuzzy model built in this paper is accurate enough to reflect the dynamic performance of CCS and can be treated as a foundation model for the overall optimizing control of the USC power plant.

  1. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  2. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    International Nuclear Information System (INIS)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy; Forget, François; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S.

    2016-01-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m 2 ; differences in shortwave reach up to 60 W m 2 , especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m 2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  3. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China); Leconte, Jérémy; Forget, François [Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris (France); Wolf, Eric T. [Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, CO (United States); Goldblatt, Colin [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Feldl, Nicole [Division of Geological and Planetary Sciences, California Institute of Technology, CA (United States); Merlis, Timothy [Department of Atmospheric and Oceanic Sciences at McGill University, Montréal (Canada); Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S., E-mail: junyang@pku.edu.cn, E-mail: abbot@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL (United States)

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  4. Improving Accuracy of Intrusion Detection Model Using PCA and optimized SVM

    Directory of Open Access Journals (Sweden)

    Sumaiya Thaseen Ikram

    2016-06-01

    Full Text Available Intrusion detection is very essential for providing security to different network domains and is mostly used for locating and tracing the intruders. There are many problems with traditional intrusion detection models (IDS such as low detection capability against unknown network attack, high false alarm rate and insufficient analysis capability. Hence the major scope of the research in this domain is to develop an intrusion detection model with improved accuracy and reduced training time. This paper proposes a hybrid intrusiondetection model by integrating the principal component analysis (PCA and support vector machine (SVM. The novelty of the paper is the optimization of kernel parameters of the SVM classifier using automatic parameter selection technique. This technique optimizes the punishment factor (C and kernel parameter gamma (γ, thereby improving the accuracy of the classifier and reducing the training and testing time. The experimental results obtained on the NSL KDD and gurekddcup dataset show that the proposed technique performs better with higher accuracy, faster convergence speed and better generalization. Minimum resources are consumed as the classifier input requires reduced feature set for optimum classification. A comparative analysis of hybrid models with the proposed model is also performed.

  5. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  6. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    Directory of Open Access Journals (Sweden)

    Y. Yan

    2016-02-01

    with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled system reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas and MOZAIC (for polluted regions data, reducing the tropospheric (0–9 km mean bias by 3–10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean, bringing them closer to the OMI data in all seasons. Additionally, the two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with improved estimates of methyl chloroform and methane lifetimes. Simulation improvements are more significant in the Northern Hemisphere, and are mainly driven by improved representation of spatial inhomogeneity in chemistry/emissions. Within the nested domains, the two-way coupled simulation reduces surface ozone biases relative to typical GEOS-Chem one-way nested simulations, due to much improved LBCs. The bias reduction is 1–7 times the bias reduction from the global to the one-way nested simulation. Improving model representations of small-scale processes is important for understanding the global and regional tropospheric chemistry.

  7. Improvement of a three-dimensional atmospheric dynamic model and examination of its performance over complex terrain

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1994-11-01

    A three-dimensional atmospheric dynamic model (PHYSIC) was improved and its performance was examined using the meteorological data observed at a coastal area with a complex terrain. To introduce synoptic meteorological conditions into the model, the initial and boundary conditions were improved. By this improvement, the model can predict the temporal change of wind field for more than 24 hours. Moreover, the model successfully simulates the land and sea breeze observed at Shimokita area in the summer of 1992. (author)

  8. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  9. A systematic experimental investigation of significant parameters affecting model tire hydroplaning

    Science.gov (United States)

    Wray, G. A.; Ehrlich, I. R.

    1973-01-01

    The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.

  10. Performance of the Sellick maneuver significantly improves when residents and trained nurses use a visually interactive guidance device in simulation

    International Nuclear Information System (INIS)

    Connor, Christopher W; Saffary, Roya; Feliz, Eddy

    2013-01-01

    We examined the proper performance of the Sellick maneuver, a maneuver used to reduce the risk of aspiration of stomach contents during induction of general anesthesia, using a novel device that measures and visualizes the force applied to the cricoid cartilage using thin-film force sensitive resistors in a form suitable for in vivo use. Performance was tested in three stages with twenty anaesthesiology residents and twenty trained operating room nurses. Firstly, subjects applied force to the cricoid cartilage as was customary to them. Secondly, subjects used the device to guide the application of that force. Thirdly, subjects were again asked to perform the manoeuvre without visual guidance. Each test lasted 1 min and the amount of force applied was measured throughout. Overall, the Sellick maneuver was often not applied properly, with large variance between individual subjects. Performance and inter-subject consistency improved to a very highly significant degree when subjects were able to use the device as a visual guide (p < 0.001). Subsequent significant improvements in performances during the last, unguided test demonstrated that the device initiated learning. (paper)

  11. Performance of the Sellick maneuver significantly improves when residents and trained nurses use a visually interactive guidance device in simulation

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Christopher W; Saffary, Roya; Feliz, Eddy [Department of Anesthesiology Boston Medical Center, Boston, MA (United States)

    2013-12-15

    We examined the proper performance of the Sellick maneuver, a maneuver used to reduce the risk of aspiration of stomach contents during induction of general anesthesia, using a novel device that measures and visualizes the force applied to the cricoid cartilage using thin-film force sensitive resistors in a form suitable for in vivo use. Performance was tested in three stages with twenty anaesthesiology residents and twenty trained operating room nurses. Firstly, subjects applied force to the cricoid cartilage as was customary to them. Secondly, subjects used the device to guide the application of that force. Thirdly, subjects were again asked to perform the manoeuvre without visual guidance. Each test lasted 1 min and the amount of force applied was measured throughout. Overall, the Sellick maneuver was often not applied properly, with large variance between individual subjects. Performance and inter-subject consistency improved to a very highly significant degree when subjects were able to use the device as a visual guide (p < 0.001). Subsequent significant improvements in performances during the last, unguided test demonstrated that the device initiated learning. (paper)

  12. Transplantation of N-Acetyl Aspartyl-Glutamate Synthetase-Activated Neural Stem Cells after Experimental Traumatic Brain Injury Significantly Improves Neurological Recovery

    Directory of Open Access Journals (Sweden)

    Mingfeng Li

    2013-12-01

    Full Text Available Background/Aims: Neural stem cells (NSCs hold considerable potential as a therapeutic tool for repair of the damaged nervous system. In the current study, we examined whether transplanted N-acetyl aspartyl-glutamate synthetase (NAAGS-activated NSCs (NAAGS/NSCs further improve neurological recovery following traumatic brain injury (TBI in Sprague-Dawley rats. Methods: Animals received TBI and stereotactic injection of NSCs, NAAGS/NSCs or phosphate buffered saline without cells (control into the injured cortex. NAAGS protein expression was detected through western blot analysis. Dialysate NAAG levels were analyzed with radioimmunoassay. Cell apoptosis was detected via TUNEL staining. The expression levels of specific pro-inflammatory cytokines were detected with enzyme-linked immunosorbent assay. Results: Groups with transplanted NSCs and NAAGS/NSCs displayed significant recovery of the motor behavior, compared to the control group. At 14 and 21 days post-transplantation, the motor behavior in NAAGS/NSC group was significantly improved than that in NSC group (pConclusion: Our results collectively demonstrate that NAAGS/NSCs provide a more powerful autoplastic therapy for the injured nervous system.

  13. Improved atmospheric dispersion modelling in the new program system UFOMOD for accident consequence assessments

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1988-01-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straightline Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different concepts of dispersion modelling on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been carried out. The study showed that there are trajectory models available which can be applied in ACAs and that these trajectory models provide more realistic results of ACAs than straight-line Gaussian models. This led to a completly novel concept of atmospheric dispersion modelling which distinguish between two different distance ranges of validity: the near range ( 50 km). The two ranges are assigned to respective trajectory models

  14. Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model

    Science.gov (United States)

    Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.

    2006-12-01

    We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.

  15. An Improved Nonlinear Five-Point Model for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning Dongue

    2013-01-01

    Full Text Available This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.

  16. Multi-scale enhancement of climate prediction over land by improving the model sensitivity to vegetation variability

    Science.gov (United States)

    Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2017-12-01

    Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in

  17. Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Weifeng Lu

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P<0.05. rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P<0.05. RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P<0.05. Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.

  18. MODEL OF IMPROVING ENVIRONMENTAL MANAGEMENT SYSTEM BY MULTI - SOFTWARE

    Directory of Open Access Journals (Sweden)

    Jelena Jovanovic

    2009-03-01

    Full Text Available This paper is based on doctoral dissertation which is oriented on improving environmental management system using multi - software. In this doctoral dissertation will be used key results of master thesis which is oriented on quantification environmental aspects and impacts by artificial neural network in organizations. This paper recommend improving environmental management system in organization using Balanced scorecard model and MCDM method - AHP (Analytic hierarchy process based on group decision. BSC would be spread with elements of Environmental management system and used in area of strategic management system in organization and AHP would be used in area of checking results getting by quantification environmental aspects and impacts.

  19. The Continuous Improvement Model: A K-12 Literacy Focus

    Science.gov (United States)

    Brown, Jennifer V.

    2013-01-01

    The purpose of the study was to determine if the eight steps of the Continuous Improvement Model (CIM) provided a framework to raise achievement and to focus educators in identifying high-yield literacy strategies. This study sought to determine if an examination of the assessment data in reading revealed differences among schools that fully,…

  20. Renormalized trajectory for non-linear sigma model and improved scaling behaviour

    International Nuclear Information System (INIS)

    Guha, A.; Okawa, M.; Zuber, J.B.

    1984-01-01

    We apply the block-spin renormalization group method to the O(N) Heisenberg spin model. Extending a previous work of Hirsch and Shenker, we find the renormalized trajectory for O(infinite) in two dimensions. Four finite N models, we choose a four-parameter action near the large-N renormalized trajectory and demonstrate a remarkable improvement in the approach to continuum limit by performing Monte Carlo simulation of O(3) and O(4) models. (orig.)