WorldWideScience

Sample records for significantly improved efficiency

  1. Training directionally selective motion pathways can significantly improve reading efficiency

    Science.gov (United States)

    Lawton, Teri

    2004-06-01

    This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.

  2. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  3. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Galan, Sergio V.; Li, Xiaohang

    2018-01-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  4. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui

    2018-02-23

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  5. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  6. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    Science.gov (United States)

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  8. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon Hwa; Asadirad, Mojtaba; Kim, Seung Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon-Seop; Ryou, Jae-Hyun

    2018-01-01

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  9. The Gains from Improved Market Efficiency

    DEFF Research Database (Denmark)

    Persson, Karl Gunnar; Ejrnæs, Mette

    faster, violations of the law of one price become smaller and hence less persistent. There were also significant gains from improved market efficiency but that improvement took place after the information ‘regime’ shifted from pre-telegraphic communication to a regime with swift transmission...... of information in an era which developed a sophisticated commercial press and telegraphic communication. Improved market efficiency probably stimulated trade more than falling transport costs......This paper looks at the gains from improved market efficiency in long-distance grain trade in the second half of the 19th century when violations of the law of one price were reduced due to improved information transmission. Two markets, a major export centre, Chicago, and a major importer...

  10. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  11. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  12. The gain from improved market efficiency

    DEFF Research Database (Denmark)

    Ejrnæs, Mette; Persson, Karl Gunnar

    2010-01-01

    demand as well as excess supply, which triggered off the tâtonnement process. Over time, adjustments to equilibrium, as measured by the half-life of a shock, became faster and violations of the law of one price become smaller. There were significant gains from improved market efficiency, which took place......This article looks at the gains from improved market efficiency in long-distance grain trade in the second half of the nineteenth century, when violations of the law of one price were reduced due to improved information transmission. Two markets, a major export centre, Chicago, and a major importer......, Liverpool, are analysed. We show that the law of one price equilibrium was an ‘attractor equilibrium'. The implication is that prices converged to that equilibrium in a tâtonnement process. Because of asymmetrically timed information between markets separated by long distances there were periods of excess...

  13. Utilization of information and communications technology (ICT) to improve workface efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Haines, A.; Rasmussen, J. [Industrial Audit Corp., Toronto, Ontario (Canada)

    2010-07-01

    Improving the efficiency of personnel at the workface is a key objective for executing construction, maintenance, quality, engineering and human performance activities. Schedule and cost overruns have a significant impact on the bottom line and on future business efficiency in execution of tasks is paramount to success. Leveraging information and communications technology (ICT) in construction, maintenance and operation environments can create a mobile workforce where personnel efficiency is improved, significant gains are made on schedule and cost, and the overall quality of work is raised. This paper will discuss the impact of mobile technology specifically on workface efficiency and productivity. (author)

  14. Utilization of information and communications technology (ICT) to improve workface efficiency

    International Nuclear Information System (INIS)

    Haines, A.; Rasmussen, J.

    2010-01-01

    Improving the efficiency of personnel at the workface is a key objective for executing construction, maintenance, quality, engineering and human performance activities. Schedule and cost overruns have a significant impact on the bottom line and on future business efficiency in execution of tasks is paramount to success. Leveraging information and communications technology (ICT) in construction, maintenance and operation environments can create a mobile workforce where personnel efficiency is improved, significant gains are made on schedule and cost, and the overall quality of work is raised. This paper will discuss the impact of mobile technology specifically on workface efficiency and productivity. (author)

  15. The Multiple Benefits of Measures to Improve Energy Efficiency

    DEFF Research Database (Denmark)

    Puig, Daniel; Farrell, Timothy Clifford

    Understanding the barriers to, and enablers for, energy efficiency requires targeted information and analysis. This report is a summary of four detailed studies providing new insights on how to promote efficiency in selected priority areas. It complements initiatives such as the so-called energy...... efficiency accelerators, which seek to increase the uptake of selected technologies, as well as the work of many other institutions committed to improving energy efficiency. The modelling estimates and the case studies presented in this report illustrate that, while significant progress has already been...... achieved, the case for accelerating energy efficiency action is strong. Key highlights include: • At the global level, energy efficiency improvements would account for between 2.6 and 3.3 Gt CO2e of the reductions in 2030, equivalent to between 23 and 26 percent of the overall reductions achieved...

  16. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Nakul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  17. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  18. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  19. New raw materials improve packing sealing efficiency

    International Nuclear Information System (INIS)

    Igel, B.; McKeague, L.

    2012-01-01

    End-users and OEM's using or manufacturing on/off and control valves expect a permanent and effective increase in service life together with an increased sealing capability while at the same time minimizing maintenance concerns. Developing materials which provide consistency and repeatability are essential characteristics to optimizing valve performance. “New Generation” materials and yarn allow us to meet this growing demand while complying with the requirements related to chemical purity and an increased level of safety to both plant workers and equipment in the nuclear environment. Through R&D initiatives and developments in new and improved raw materials; a new mechanical packing generation which optimizes friction coefficients and extended life cycle has been introduced to the industry. Lower friction values drastically optimize actuator effort and size improving efficiency for stem operation with significant improvements in flow control of fluids. Combined with new and improved procedures (installation, torque levels and consolidation recommendations), this new packing generation has provided significant improvement in the mechanical behavior of packing materials (independent tests carried out in collaboration with AECL and CETIM) this has provided the opportunity to develop successful Valve Enhancement Programs which offer improved efficiency, valve operation and repeatability. These NEW generation yarns are available with or without wire reinforcement depending on specific operating parameters and conditions. The purpose of this presentation is to demonstrate that new generation material(s). Which are available to the industry for AOV, MOV and Manual valves? - To highlight the steps taken in R&D and manufacturing contributing to the much improved yarns and finished packing products. - Comply and are designed to meet the stringent requirements in the nuclear industry - Simplify valve maintenance without risk to safety or performance - Increase service

  20. Electric motor systems in developing countries: Opportunities for efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  1. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  2. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diddi, Saurabh [Bureau of Energy Efficiency, Government of India (India); Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-01

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant,and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one-star level) should be evaluated rigorously considering significant benefits to consumers, energy security, and environment

  3. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  4. Efficiency improvement opportunities in TVs: Implications for market transformation programs

    International Nuclear Information System (INIS)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2013-01-01

    Televisions (TVs) account for a significant portion of residential electricity consumption and global TV shipments are expected to continue to increase. We assess the market trends in the energy efficiency of TVs that are likely to occur without any additional policy intervention and estimate that TV efficiency will likely improve by over 60% by 2015 with savings potential of 45 terawatt-hours [TW h] per year in 2015, compared to today’s technology. We discuss various energy-efficiency improvement options and evaluate the cost effectiveness of three of them. At least one of these options improves efficiency by at least 20% cost effectively beyond ongoing market trends. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy savings potential from TVs which we estimate to be up to 23 TW h per year in 2015. - Highlights: • We analyze the impact of the recent TV market transition on TV energy consumption. • We review TV technology options that could be realized in the near future. • We assess the cost-effectiveness of selected energy-efficiency improvement options. • We estimate global electricity savings potential in selected scenarios. • We discuss possible directions of market transformation programs

  5. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Diddi, Saurabh [Government of India, New Delhi (India). Bureau of Energy Efficiency; Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-30

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.

  6. Efficiency Improvement and Quality Initiatives Application in Financial Institutions

    Directory of Open Access Journals (Sweden)

    MSc. Ajtene Avdullahi

    2015-06-01

    Full Text Available Financial institutions in today’s economy have no longer the luxury to improve profit simply by increasing revenue. These firms, due to the significant measuring reductions in the financial services industry needed to improve operational efficiencies and merely support existing processes with fewer resources. This paper explains the benefits of Lean, Six Sigma, Total Quality Management and Lean Six Sigma that have improved organization's performance, by cutting costs and waste, improving their products or services, increasing profitability as well as enhancing customer satisfaction. The applicability of quality management practices in financial institutions in Kosovo is presented and also their efficiency and effectiveness. By analyzing data from Raiffeisen Bank Kosovo, this paper highlights the benefits of Individual and Micro companies customer segment as the result of organizational change and successful application of quality initiatives from financial institutions in Kosovo.

  7. Scope for improved eco-efficiency varies among diverse cropping systems.

    Science.gov (United States)

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  8. Improving efficiency in stereology

    DEFF Research Database (Denmark)

    Keller, Kresten Krarup; Andersen, Ina Trolle; Andersen, Johnnie Bremholm

    2013-01-01

    of the study was to investigate the time efficiency of the proportionator and the autodisector on virtual slides compared with traditional methods in a practical application, namely the estimation of osteoclast numbers in paws from mice with experimental arthritis and control mice. Tissue slides were scanned......, a proportionator sampling and a systematic, uniform random sampling were simulated. We found that the proportionator was 50% to 90% more time efficient than systematic, uniform random sampling. The time efficiency of the autodisector on virtual slides was 60% to 100% better than the disector on tissue slides. We...... conclude that both the proportionator and the autodisector on virtual slides may improve efficiency of cell counting in stereology....

  9. Residential carbon dioxide emissions in Canada. Impact of efficiency improvements and fuel substitution

    International Nuclear Information System (INIS)

    Ugursal, V.I.; FUng, A.S.

    1998-01-01

    The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the magnitude of the reduction in carbon dioxide emissions as a result of improving only appliance efficiencies is quite small. Significantly larger reductions can be obtained by improving house envelopes and heating/cooling systems in addition to improving appliance efficiencies. Fuel substitution for space and domestic hot water heating can also present a potential to reduce carbon dioxide emissions depending on the fuel substitution scenario adopted. (author)

  10. Common challenge in resource efficiency improvement

    International Nuclear Information System (INIS)

    La Motta, Sergio; Peronaci, Marcello

    2015-01-01

    Energy efficiency and technology improvements on their own will not achieve the Low Carbon Societies (LCS) goals. Thus, resource efficiency and a circular economy are keys to a low carbon society. Resource efficiency improvement potential has been analysed from the industrial and territorial management perspectives. Exploring synergies between LCS and the larger area of sustainable development and green economy, highlighting co-benefits and trade-offs, is of utmost importance to pave the way to a more equitable and largely participated low carbon transition.

  11. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  12. Integrated hospital emergency care improves efficiency.

    Science.gov (United States)

    Boyle, A A; Robinson, S M; Whitwell, D; Myers, S; Bennett, T J H; Hall, N; Haydock, S; Fritz, Z; Atkinson, P

    2008-02-01

    There is uncertainty about the most efficient model of emergency care. An attempt has been made to improve the process of emergency care in one hospital by developing an integrated model. The medical admissions unit was relocated into the existing emergency department and came under the 4-hour target. Medical case records were redesigned to provide a common assessment document for all patients presenting as an emergency. Medical, surgical and paediatric short-stay wards were opened next to the emergency department. A clinical decision unit replaced the more traditional observation unit. The process of patient assessment was streamlined so that a patient requiring admission was fully clerked by the first attending doctor to a level suitable for registrar or consultant review. Patients were allocated directly to specialty on arrival. The effectiveness of this approach was measured with routine data over the same 3-month periods in 2005 and 2006. There was a 16.3% decrease in emergency medical admissions and a 3.9% decrease in emergency surgical admissions. The median length of stay for emergency medical patients was reduced from 7 to 5 days. The efficiency of the elective surgical services was also improved. Performance against the 4-hour target declined but was still acceptable. The number of bed days for admitted surgical and medical cases rose slightly. There was an increase in the number of medical outliers on surgical wards, a reduction in the number of incident forms and formal complaints and a reduction in income for the hospital. Integrated emergency care has the ability to use spare capacity within emergency care. It offers significant advantages beyond the emergency department. However, improved efficiency in processing emergency patients placed the hospital at a financial disadvantage.

  13. Does Competition Improve Public School Efficiency? A Spatial Analysis

    Science.gov (United States)

    Misra, Kaustav

    2010-01-01

    Proponents of educational reform often call for policies to increase competition between schools. It is argued that market forces naturally lead to greater efficiencies, including improved student learning, when schools face competition. In many parts of the country, public schools experience significant competition from private schools; however,…

  14. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, Elisa [Fondazione Eni Enrico Mattei (Italy); Verdolini, Elena, E-mail: elena.verdolini@feem.it [Fondazione Eni Enrico Mattei (Italy); Universita Cattolica, del Sacro Cuore di Milano (Italy); Hascic, Ivan [OECD Environment Directorate (France)

    2011-11-15

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: > We study innovation in efficiency-improving electricity generation technologies. > Relevant patents are identified and used as an indicator of innovation. > We show that there is significant technology transfer in this field. > Most patents are first filed in OECD countries and then in non-OECD countries. > Patents in non-OECD countries are mostly marketed domestically.

  15. Improving health and energy efficiency through community-based housing interventions.

    Science.gov (United States)

    Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff

    2011-12-01

    Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.

  16. Frontier technologies to improve efficiency

    International Nuclear Information System (INIS)

    Kalhammer, F.R.

    1992-01-01

    The author discusses conservation technology to improve the efficiency of energy production. Although coal is seen as the largest source of fuel for producing electricity until the year 2040, the heating value of coal is expected to be increased by using Integrated Gasification Combined Cycle (IGCC) technology. Use of fuel cells to produce electricity will be a viable option only if costs can be reduced to make the technology competitive. By coupling IGCC with fuel cells it may be possible to increase total conversion efficiency of coal to electricity at 50%. Photovoltaics technology is more likely to be used in developing countries. Electric utilities target power electronics, lighting fixtures, heat pumps, plasma processing, freeze concentration and application of superconductivity as electricity end use technologies that have the most potential for efficiency improvement. The impact of these technologies in coping with the greenhouse effect was not addressed

  17. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  18. Efficiency and hospital effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems ratings.

    Science.gov (United States)

    Al-Amin, Mona; Makarem, Suzanne C; Rosko, Michael

    2016-01-01

    Efficiency has emerged as a central goal to the operations of health care organizations. There are two competing perspectives on the relationship between efficiency and organizational performance. Some argue that organizational slack is a waste and that efficiency contributes to organizational performance, whereas others maintain that slack acts as a buffer, allowing organizations to adapt to environmental demands and contributing to organizational performance. As value-based purchasing becomes more prevalent, health care organizations are incented to become more efficient and, at the same time, improve their patients' experiences and outcomes. Unused slack resources might facilitate the timely implementation of these improvements. Building on previous research on organizational slack and inertia, we test whether efficiency and other organizational factors predict organizational effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings. We rely on data from the American Hospital Association and HCAHPS. We estimate hospital cost-efficiency by Stochastic Frontier Analysis and use regression analysis to determine whether efficiency, competition, hospital size, and other organizational factors are significant predictors of hospital effectiveness. Our findings indicate that efficiency and hospital size have a significant negative association with organizational ability to improve HCAHPS ratings. Although achieving organizational efficiency is necessary for health care organizations, given the changes that are currently occurring in the U.S. health care system, it is important for health care managers to maintain a certain level of slack to respond to environmental demands and have the resources needed to improve their performance.

  19. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    International Nuclear Information System (INIS)

    Lanzi, Elisa; Verdolini, Elena; Hascic, Ivan

    2011-01-01

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: → We study innovation in efficiency-improving electricity generation technologies. → Relevant patents are identified and used as an indicator of innovation. → We show that there is significant technology transfer in this field. → Most patents are first filed in OECD countries and then in non-OECD countries. → Patents in non-OECD countries are mostly marketed domestically.

  20. Efficiency improvement opportunities for personal computer monitors. Implications for market transformation programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-08-15

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that PC monitor efficiency will likely improve by over 40 % by 2015 with saving potential of 4.5 TWh per year in 2015, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost-effectiveness of three of them, at least one of which improves efficiency by at least 20 % cost effectively beyond the ongoing market trends. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus-powered liquid crystal display monitors and find that the current technology available and deployed in them has the potential to deeply and cost effectively reduce energy consumption by as much as 50 %. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy saving potential from PC monitors which we estimate to be 9.2 TWh per year in 2015.

  1. Improving the energy efficiency of mine fan assemblages

    International Nuclear Information System (INIS)

    De Souza, Euler

    2015-01-01

    Energy associated with ventilating an underground operation comprises a significant portion of a mine operation's base energy demand and is consequently responsible for a large percentage of the total operating costs. Ventilation systems may account from 25 to 40% of the total energy costs and 40–50% of the energy consumption of a mine operation. Fans are the most important mechanical devices used to ventilate underground mines and the total fan power installed in a single mine operation can easily exceed 10,000 kW. Investigations of a number of mine main fan installations have determined their assemblage to be, in general, very energy inefficient. The author has found that 40–80% of the energy consumed by a main fan is used to overcome the resistance of fan assemblage components. This paper presents how engineering design principles can be applied to improve the performance and efficiency of fan installations, resulting in substantial reductions in power consumption, operating cost and greenhouse gas emissions. A detailed case study is presented to demonstrate that, by designing fan assemblages using proper engineering concepts of fluid physics and industrial ventilation design, main fan systems will operate at efficiencies well above 80–90% (compared to common operating efficiencies of between 20 and 65%), resulting in a drastic reduction in a mine's overall costs and base electrical and energy loads. - Highlights: • Increases in fan assemblage efficiencies with minimum capital investment. • Improved designs for substantial fan power and operating cost savings. • General solutions and tactics for improving existing main fan installations. • Case study presented to demonstrate proper design of fan assemblages.

  2. Improving extraction efficiency of the third integer resonant extraction using higher order multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tomizawa, M. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2017-03-09

    The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theory of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.

  3. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  4. Impact of lean six sigma process improvement methodology on cardiac catheterization laboratory efficiency.

    Science.gov (United States)

    Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R

    2016-03-01

    Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trendprocess improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  6. Efficiency Improvement Opportunities for Personal Computer Monitors. Implications for Market Transformation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-29

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that display efficiency will likely improve by over 40% by 2015 compared to today’s technology. We evaluate the cost effectiveness of a key technology which further improves efficiency beyond this level by at least 20% and find that its adoption is cost effective. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus (USB) powered liquid crystal display (LCD) monitors and find that the current technology available and deployed in USB powered monitors has the potential to deeply reduce energy consumption by as much as 50%. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to capture global energy saving potential from PC monitors which we estimate to be 9.2 terawatt-hours [TWh] per year in 2015.

  7. Importance of organized energy efficiency introduction and improvement in PE EPS

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2015-01-01

    Full Text Available The energy management system (EnMS introduction into companies that are significant energy consumers has been initiated after adoption of the Law of efficient energy usage. Due to the fact that sectors for production, transmission and distribution of electrical and heat energy are also implied by this law, it is clear that PE EPS is also obligated to implement EnMS and to carry out the requirements defined by legislation. In this paper, the results of first-phase introduction of the system for supervision and improvement of energy efficiency in PE EPS in production of coal, and production and distribution of electrical and heat energy, are given. Recommended measures for energy efficiency improvement with stress on larger energy, financial savings and a lower rate of investment return are emphasised. Such systematic measures should also serve as a good basis for further stages of energy management introduction and implementation.

  8. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    Science.gov (United States)

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  9. Energy Audit as a Tool for Improving System Efficiency in Industrial Sector

    OpenAIRE

    Gopi Srinath,; N. Uday Kumar

    2014-01-01

    This paper presents the characteristics of energy consumption in industrial sector, the methodology and results of energy audits (EA) performed in industrial sites and potentials for energy efficiency (EE) improvements. The present state of industrial energy in India could be characterized by significant technological out-of–date, low energy efficiency and low level of environmental protection. Presented analysis of the results of conducted energy audits in selected industrial...

  10. Improving primary health care facility performance in Ghana: efficiency analysis and fiscal space implications.

    Science.gov (United States)

    Novignon, Jacob; Nonvignon, Justice

    2017-06-12

    Health centers in Ghana play an important role in health care delivery especially in deprived communities. They usually serve as the first line of service and meet basic health care needs. Unfortunately, these facilities are faced with inadequate resources. While health policy makers seek to increase resources committed to primary healthcare, it is important to understand the nature of inefficiencies that exist in these facilities. Therefore, the objectives of this study are threefold; (i) estimate efficiency among primary health facilities (health centers), (ii) examine the potential fiscal space from improved efficiency and (iii) investigate the efficiency disparities in public and private facilities. Data was from the 2015 Access Bottlenecks, Cost and Equity (ABCE) project conducted by the Institute for Health Metrics and Evaluation. The Stochastic Frontier Analysis (SFA) was used to estimate efficiency of health facilities. Efficiency scores were then used to compute potential savings from improved efficiency. Outpatient visits was used as output while number of personnel, hospital beds, expenditure on other capital items and administration were used as inputs. Disparities in efficiency between public and private facilities was estimated using the Nopo matching decomposition procedure. Average efficiency score across all health centers included in the sample was estimated to be 0.51. Also, average efficiency was estimated to be about 0.65 and 0.50 for private and public facilities, respectively. Significant disparities in efficiency were identified across the various administrative regions. With regards to potential fiscal space, we found that, on average, facilities could save about GH₵11,450.70 (US$7633.80) if efficiency was improved. We also found that fiscal space from efficiency gains varies across rural/urban as well as private/public facilities, if best practices are followed. The matching decomposition showed an efficiency gap of 0.29 between private

  11. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  12. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  13. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-04-20

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.

  14. Low Impedance Voice Coils for Improved Loudspeaker Efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In modern audio systems utilizing switch-mode amplifiers the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 4 to 8 Ohms is obtained, despite modern audio amplifiers, using switch-mode techno...... responses are estimated. For this woofer it is shown that the sensitivity can be improved approximately 1 dB, corresponding to a 30% efficiency improvement, just by increasing the fill factor using a low impedance voice coil with rectangular wire....

  15. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  16. Improved Efficient Routing Strategy on Scale-Free Networks

    Science.gov (United States)

    Jiang, Zhong-Yuan; Liang, Man-Gui

    Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.

  17. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    International Nuclear Information System (INIS)

    Li Da-Rang; Jiang Lan; Yin Jian-Hua; Lin Nai; Tan Yuan-Yuan

    2012-01-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P + PINN + -structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63 Ni-radiation GaAs batteries with PIN and P + PINN + structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P + PINN + structure is about 1.45 times higher than that with the traditional PIN structure. (cross-disciplinary physics and related areas of science and technology)

  18. Discontinuous interleaving of parallel inverters for efficiency improvement

    DEFF Research Database (Denmark)

    Rannestad, Bjørn; Munk-Nielsen, Stig; Gadgaard, Kristian

    2017-01-01

    Interleaved switching of parallel inverters has previously been proposed for efficiency/size improvements of grid connected three-phase inverters. This paper proposes a novel interleaving method which practically eliminates insulated gate bipolar transistor (IGBT) turn-on losses and drastically...... overall power module losses are reduced. The modulation strategy is suited for converters with doubly fed induction generators (DFIG) for wind turbines, but are not limited hereto. Improvement of switching performance are measured and operational efficiency improvements are calculated and verified...

  19. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    Directory of Open Access Journals (Sweden)

    Florian Hiermeier

    2017-11-01

    Full Text Available Valveless pumping phenomena (peristalsis, Liebau-effect can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  1. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Trucks, Daimler [Daimler Trucks North America Llc, Portland, OR (United States)

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  2. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  3. Renewable energy: An efficient mechanism to improve GDP

    International Nuclear Information System (INIS)

    Chien Taichen; Hu Jinli

    2008-01-01

    This article analyzes the effects of renewable energy on GDP for 116 economies in 2003 through Structural Equation Modeling (SEM) approach. In order to decipher the mechanism of how the use of renewables improves macroeconomic efficiency, we decompose GDP by the 'expenditure approach'. Although previous theory predicts positive effects of renewables on capital formation and trade balance, the SEM results show that renewables have a significant positive influence on capital formation only. The result that renewables do not have a significant impact on trade balance implies that renewables do not have an import substitution effect. Thus, we confirm the positive relationship between renewable energy and GDP through the path of increasing capital formation, but not for the path of increasing trade balance

  4. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  5. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  6. EFFICIENT USE OF BIOMASS IN IMPROVED COOKSTOVES

    Directory of Open Access Journals (Sweden)

    R. K. PAL

    2016-12-01

    Full Text Available Traditional biomass cookstoves have very low efficiency. The improved cookstoves have very high efficiency. These improved cookstoves with high efficiency saves biomass fuels. Biomass can be saved in case of rocket elbow cookstoves. The amount of biomass which can be saved in case of rocket elbow cookstoves is 65.88 MT. More biomass can be saved in case of gasifier fan cookstoves. The amount of biomass which can be saved is 155.71 MT. The pollutants like particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission is lesser in case of rocket elbow cookstoves. The pollutants are least in case of gasifier fan cookstoves. The reduction in particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission in gasifier fan cookstoves is 1.77 MT, 0.24 MT, 0.71 MT & 151.64 MT respectively in comparison to traditional cookstoves. Therefore indoor air pollution is greatly reduced in case of improved cookstoves especially in case of gasifier fan cookstoves as compared to traditional cookstoves.

  7. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  8. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  9. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  10. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment

    International Nuclear Information System (INIS)

    Lee, Ya-Ju; Chen, Yi-Ching; Lu, Tien-Chang

    2011-01-01

    The effects of pre-trimethlyindium (TMIn) flow on the improved electrical characteristics and highly stable temperature properties of InGaN green light-emitting diodes (LEDs) are discussed. For the LED sample with a pre-TMIn flow treatment, the tunnelling of injected carriers associated with threading defects is significantly reduced, which promotes the diffusion-recombination of injected carriers, as well as the overall emission efficiency of the LED. In addition, the pre-TMIn flow treatment evidently reduces the dependence of external quantum efficiency on temperature and efficiency droop of green LEDs. As a result, we conclude that the pre-TMIn flow treatment is a promising scheme for the improvement of output performance of InGaN-based green LEDs.

  12. A Novel Design for Drug-Drug Interaction Alerts Improves Prescribing Efficiency.

    Science.gov (United States)

    Russ, Alissa L; Chen, Siying; Melton, Brittany L; Johnson, Elizabette G; Spina, Jeffrey R; Weiner, Michael; Zillich, Alan J

    2015-09-01

    Drug-drug interactions (DDIs) are common in clinical care and pose serious risks for patients. Electronic health records display DDI alerts that can influence prescribers, but the interface design of DDI alerts has largely been unstudied. In this study, the objective was to apply human factors engineering principles to alert design. It was hypothesized that redesigned DDI alerts would significantly improve prescribers' efficiency and reduce prescribing errors. In a counterbalanced, crossover study with prescribers, two DDI alert designs were evaluated. Department of Veterans Affairs (VA) prescribers were video recorded as they completed fictitious patient scenarios, which included DDI alerts of varying severity. Efficiency was measured from time-stamped recordings. Prescribing errors were evaluated against predefined criteria. Efficiency and prescribing errors were analyzed with the Wilcoxon signed-rank test. Other usability data were collected on the adequacy of alert content, prescribers' use of the DDI monograph, and alert navigation. Twenty prescribers completed patient scenarios for both designs. Prescribers resolved redesigned alerts in about half the time (redesign: 52 seconds versus original design: 97 seconds; p<.001). Prescribing errors were not significantly different between the two designs. Usability results indicate that DDI alerts might be enhanced by facilitating easier access to laboratory data and dosing information and by allowing prescribers to cancel either interacting medication directly from the alert. Results also suggest that neither design provided adequate information for decision making via the primary interface. Applying human factors principles to DDI alerts improved overall efficiency. Aspects of DDI alert design that could be further enhanced prior to implementation were also identified.

  13. Quality and Efficiency Improvement Tools for Every Radiologist.

    Science.gov (United States)

    Kudla, Alexei U; Brook, Olga R

    2018-03-20

    In an era of value-based medicine, data-driven quality improvement is more important than ever to ensure safe and efficient imaging services. Familiarity with high-value tools enables all radiologists to successfully engage in quality and efficiency improvement. In this article, we review the model for improvement, strategies for measurement, and common practical tools with real-life examples that include Run chart, Control chart (Shewhart chart), Fishbone (Cause-and-Effect or Ishikawa) diagram, Pareto chart, 5 Whys, and Root Cause Analysis. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  15. Tariff-based incentives for improving coal-power-plant efficiencies in India

    International Nuclear Information System (INIS)

    Chikkatur, Ananth P.; Sagar, Ambuj D.; Abhyankar, Nikit; Sreekumar, N.

    2007-01-01

    Improving the efficiency of coal-based power plants plays an important role in improving the performance of India's power sector. It allows for increased consumer benefits through cost reduction, while enhancing energy security and helping reduce local and global pollution through more efficient coal use. A focus on supply-side efficiency also complements other ongoing efforts on end-use efficiency. The recent restructuring of the Indian electricity sector offers an important route to improving power plant efficiency, through regulatory mechanisms that allow for an independent tariff setting process for bulk purchases of electricity from generators. Current tariffs based on normative benchmarks for performance norms are hobbled by information asymmetry (where regulators do not have access to detailed performance data). Hence, we propose a new incentive scheme that gets around the asymmetry problem by setting performance benchmarks based on actual efficiency data, rather than on a normative basis. The scheme provides direct tariff-based incentives for efficiency improvements, while benefiting consumers by reducing electricity costs in the long run. This proposal might also be useful for regulators in other countries to incorporate similar incentives for efficiency improvement in power generation

  16. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  17. The improving efficiency frontier of religious not-for-profit hospitals.

    Science.gov (United States)

    Harrison, Jeffrey P; Sexton, Christopher

    2006-01-01

    By using data-envelopment analysis (DEA), this study evaluates the efficiency of religious not-for-profit hospitals. Hospital executives, healthcare policy makers, taxpayers, and other stakeholders benefit from studies that improve hospital efficiency. Results indicate that overall efficiency in religious hospitals improved from 72% in 1998 to 74% in 2001. What is more important is that the number of religious hospitals operating on the efficiency frontier increased from 40 in 1998 to 47 in 2001. This clearly documents that religious hospitals are becoming more efficient in the management of resources. From a policy perspective, this study highlights the economic importance of encouraging increased efficiency throughout the healthcare industry.

  18. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  19. Improved efficiency in OLEDs with a thin Alq3 interlayer

    International Nuclear Information System (INIS)

    Lian Jiarong; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Zhou Yunfei; Zhou Xiang

    2007-01-01

    We demonstrate an improved efficiency in OLEDs with a thin Alq 3 interlayer, which is inserted into the hole-transport layer for adjusting the hole-injection and transport, and improving the hole-electron balance. The thin Alq 3 interlayer can effectively influence the electrical performance and electroluminescence (EL) efficiency of the devices. The devices with an optimum Alq 3 interlayer exhibit a maximum EL efficiency of around 3.3 cd/A, which is improved by a factor of two over the conventional devices (1.6 cd/A) without the interlayer

  20. Improving STEM Undergraduate Education with Efficient Learning Design

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    2018-01-01

    The project investigates the potential of Learning Design for efficiently improving STEM undergraduate education with technology. In order to investigate this potential, the project consists of two main studies at Aarhus University: a study of the perspectives of the main stakeholders on Learning...... Design uptake. The project concludes that it is possible to improve STEM undergraduate education with Learning Design for technology-enhanced learning efficiently and that Efficient Learning Design provides a useful concept for qualifying educational decisions....... provided by technology-enhanced learning based on Learning Design, and in particular students’ learning was of a high common interest. However, only the educators were directly interested in Learning Design and its support for design, reuse in their practice and to inform pedagogy. A holistic concept...

  1. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  2. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  3. Targeting utility customers to improve energy savings from conservation and efficiency programs

    International Nuclear Information System (INIS)

    Taylor, Nicholas W.; Jones, Pierce H.; Kipp, M. Jennison

    2014-01-01

    Highlights: • Improving DSM program impacts by targeting high energy users. • DSM energy savings potential hinges on pre-participation performance. • Targeting can benefit different utilities and energy efficiency programs. • Overall performance can be improved by up to 250% via targeting strategies. - Abstract: Electric utilities, government agencies, and private interests in the US have committed and continue to invest substantial resources – including billions of dollars of financial capital – in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. While most of these programs are deemed to be cost effective, and therefore in the public interest, opportunities exist to improve cost effectiveness by targeting programs to those customers with the greatest potential for energy savings. This article details an analysis of three DSM programs offered by three Florida municipal electric utilities to explore such opportunities. First, we estimate programs’ energy savings impacts; second, we measure and compare energy savings across subgroups of program participants as determined by their pre-intervention energy performance, and third, we explore potential changes in program impacts that might be realized by targeting specific customers for participation in the DSM programs. All three programs resulted in statistically significant average (per-participant) energy savings, yet average savings varied widely, with the customers who performed best (i.e., most efficient) before the intervention saving the least energy and those who performed worst (i.e., least efficient) before the intervention saving the most. Assessment of alternative program participation scenarios with varying levels of customer targeting suggests that program impacts could be increased by as much as 80% for a professional energy audit program, just over 100% for a high-efficiency heat pump upgrade program, and nearly 250% for an attic insulation

  4. Transcriptome Analysis of Maize Immature Embryos Reveals the Roles of Cysteine in Improving Agrobacterium Infection Efficiency

    Science.gov (United States)

    Liu, Yan; Zhang, Zhiqiang; Fu, Junjie; Wang, Guoying; Wang, Jianhua; Liu, Yunjun

    2017-01-01

    Maize Agrobacterium-mediated transformation efficiency has been greatly improved in recent years. Antioxidants, such as, cysteine, can significantly improve maize transformation frequency through improving the Agrobacterium infection efficiency. However, the mechanism underlying the transformation improvement after cysteine exposure has not been elucidated. In this study, we showed that the addition of cysteine to the co-cultivation medium significantly increased the Agrobacterium infection efficiency of hybrid HiII and inbred line Z31 maize embryos. Reactive oxygen species contents were higher in embryos treated with cysteine than that without cysteine. We further investigated the mechanism behind cysteine-related infection efficiency increase using transcriptome analysis. The results showed that the cysteine treatment up-regulated 939 genes and down-regulated 549 genes in both Z31 and HiII. Additionally, more differentially expressed genes were found in HiII embryos than those in Z31 embryos, suggesting that HiII was more sensitive to the cysteine treatment than Z31. GO analysis showed that the up-regulated genes were mainly involved in the oxidation reduction process. The up-regulation of these genes could help maize embryos to cope with the oxidative stress stimulated by Agrobacterium infection. The down-regulated genes were mainly involved in the cell wall and membrane metabolism, such as, aquaporin and expansin genes. Decreased expression of these cell wall integrity genes could loosen the cell wall, thereby improving the entry of Agrobacterium into plant cells. This study offers insight into the role of cysteine in improving Agrobacterium-mediated transformation of maize immature embryos. PMID:29089955

  5. Improving Reliability, Security, and Efficiency of Reconfigurable Hardware Systems (Habilitation)

    NARCIS (Netherlands)

    Ziener, Daniel

    2017-01-01

    In this treatise,  my research on methods to improve efficiency, reliability, and security of reconfigurable hardware systems, i.e., FPGAs, through partial dynamic reconfiguration is outlined. The efficiency of reconfigurable systems can be improved by loading optimized data paths on-the-fly on an

  6. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  7. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  8. System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System

    Directory of Open Access Journals (Sweden)

    Chengming Zhang

    2017-12-01

    Full Text Available To improve the endurance mileage of electric vehicles (EVs, it is important to decrease the energy consumption of the Permanent Magnet Synchronous Motor (PMSM drive system. This paper proposes a novel loss optimization control strategy named system efficiency improvement control which can optimize both inverter and motor losses. A nonlinear power converter loss model is built to fit the nonlinear characteristics of power devices. This paper uses double Fourier integral analysis to analytically calculate the fundamental and harmonic components of motor current by which the fundamental motor loss and harmonic motor loss can be accurately analyzed. From these loss models, a whole-frequency-domain system loss model is derived and presented. Based on the system loss model, the system efficiency improvement control method applies the genetic algorithm to adjust the motor current and PWM frequency together to optimize the inverter and motor losses by which the system efficiency can be significantly improved without seriously influence on the system stability over the whole operation range of EVs. The optimal effects of system efficiency is verified by the experimental results in both Si-IGBT-based PMSM system and SiC-MOSFET-based system.

  9. Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells

    International Nuclear Information System (INIS)

    Borole, Abhijeet P.

    2010-01-01

    Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

  10. Efficiency improvements in transport

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Christensen, Linda; Jensen, Thomas C. [Technical Univ. of Denmark. DTU Transport, Kgs. Lyngby (Denmark)

    2012-11-15

    Transport of people, personal belongings and goods in private cars is fundamental to our modern welfare society and economic growth, and has grown steadily over many decades. Motor fuels have been based almost entirely on crude oil for the last century. During the last couple of decades engines built for traditional fuels have become more advanced and efficient; this has reduced fuel consumption by around 40% and emissions by more than 90%. Only in the same time span have we begun to look at alternatives to fossil fuels. Biofuels such as biodiesel, bioethanol, biomethanol and biogas can replace petrol and diesel, and in recent years algae have shown a new potential for diesel fuel. Natural gas is also becoming an interesting fuel due to its large resources worldwide. GTL, CTL and BTL are liquid fuels produced from solid or gaseous sources. GTL and CTL are expensive to produce and not very CO{sub 2}-friendly, but they are easily introduced and need little investment in infrastructure and vehicles. DME is an excellent fuel for diesel engines. Methanol and DME produced from biomass are among the most CO{sub 2}-reducing fuels and at the same time the most energy-efficient renewable fuels. Fuel cell vehicles (FCVs) are currently fuelled by hydrogen, but other fuels are also possible. There are, however, several barriers to the implementation of fuel cell vehicles. In particular, a hydrogen infrastructure needs to be developed. Electric vehicles (EVs) have the advantage that energy conversion is centralised at the power plant where it can be done at optimum efficiency and emissions. EVs have to be charged at home, and also away from home when travelling longer distances. With an acceptable fast charging infrastructure at least 85% of the one-car families in Denmark could be potential EV customers. Range improvements resulting from better batteries are expected to create a large increase in the number of EVs in Denmark between 2020 and 2030. The hybrid electric vehicle

  11. Improvement of the Dehulling Efficiency of Sorghum and Millet using ...

    African Journals Online (AJOL)

    Conditioning of grain with heat and moisture is known to loosen the adhesion of the seed coat from the endosperm and therefore improve the dehulling efficiency of some grains such as beans, cowpea and canola. This study investigated the effect of hydrothermal treatment on the improvement of dehulling efficiency of ...

  12. A two-factor method for appraising building renovation and energy efficiency improvement projects

    International Nuclear Information System (INIS)

    Martinaitis, Vytautas; Kazakevicius, Eduardas; Vitkauskas, Aloyzas

    2007-01-01

    The renovation of residential buildings usually involves a variety of measures aiming at reducing energy and building maintenance bills, increasing safety and market value, and improving comfort and aesthetics. A significant number of project appraisal methods in current use-such as calculations of payback time, net present value, internal rate of return or cost of conserved energy (CCE)-only quantify energy efficiency gains. These approaches are relatively easy to use, but offer a distorted view of complex modernization projects. On the other hand, various methods using multiple criteria take a much wider perspective but are usually time-consuming, based on sometimes uncertain assumptions and require sophisticated tools. A 'two-factor' appraisal method offers a compromise between these two approaches. The main idea of the method is to separate investments into those related to energy efficiency improvements, and those related to building renovation. Costs and benefits of complex measures, which both influence energy consumption and improve building constructions, are separated by using a building rehabilitation coefficient. The CCE is used for the appraisal of energy efficiency investments, while investments in building renovation are appraised using standard tools for the assessment of investments in maintenance, repair and rehabilitation

  13. Improving the efficiency of cognitive-behavioural therapy by using formal client feedback.

    Science.gov (United States)

    Janse, Pauline D; De Jong, Kim; Van Dijk, Maarten K; Hutschemaekers, Giel J M; Verbraak, Marc J P M

    2017-09-01

    Feedback from clients on their view of progress and the therapeutic relationship can improve effectiveness and efficiency of psychological treatments in general. However, what the added value is of client feedback specifically within cognitive-behavioural therapy (CBT), is not known. Therefore, the extent to which the outcome of CBT can be improved is investigated by providing feedback from clients to therapists using the Outcome Rating Scale (ORS) and Session Rating Scale (SRS). Outpatients (n = 1006) of a Dutch mental health organization either participated in the "treatment as usual" (TAU) condition, or in Feedback condition of the study. Clients were invited to fill in the ORS and SRS and in the Feedback condition therapists were asked to frequently discuss client feedback. Outcome on the SCL-90 was only improved specifically with mood disorders in the Feedback condition. Also, in the Feedback condition, in terms of process, the total number of required treatment sessions was on average two sessions fewer. Frequently asking feedback from clients using the ORS/SRS does not necessarily result in a better treatment outcome in CBT. However, for an equal treatment outcome significantly fewer sessions are needed within the Feedback condition, thus improving efficiency of CBT.

  14. Does automation improve stock market efficiency in Ghana ...

    African Journals Online (AJOL)

    The automation of the Ghana Stock Exchange (GSE) in 2008, among other reforms, was expected to improve the efficiency of the market. The extent of this truism has, however, not been empirically established for the GSE. In this study, we attempt to assess the impact of the automation on the efficiency of the GSE within the ...

  15. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  16. Energy conservation assessment of fixed-asset investment projects: An attempt to improve energy efficiency in China

    International Nuclear Information System (INIS)

    Hu Yuan

    2012-01-01

    Fast economic growth in China has generated energy and environmental problems. Fixed-asset investments have contributed significantly to energy consumption. In China, an energy conservation assessment (ECA), a mechanism similar to the existing environmental impact assessment (EIA), has been applied to improve the energy efficiency of new fixed-asset investment projects. In this paper the origin and development of the ECA system is analyzed and the major features of ECA are discussed. To identify the success and failure of the ECA system, case studies are analyzed and comparison between ECA and EIA, which has been used in China for over 30 years, is made. Based on the analysis, recommendations are provided for the improvement of the ECA system in China. Despite the ECA system only being established for a relatively short time, it has clearly achieved significant success. With further efforts it could play an important role in achieving the goals of improving China’s energy efficiency and reducing green house gas emissions. - Highlights: ► We examine origin and development of energy conservation assessment (ECA) in China. ► ECA has great potential in energy efficiency improvement and GHGs reduction. ► Compared with EIA, ECA is still in its early stages. More efforts are needed. ► Improvements of legal system, assessment procedure, etc. are essential for next step.

  17. Improving Energy Efficiency in Idle Listening of IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan

    2016-01-01

    Full Text Available This paper aims to improve energy efficiency of IEEE 802.11 wireless local area networks (WLANs by effectively dealing with idle listening (IL, which is required for channel sensing and is unavoidable in a contention-based channel access mechanism. Firstly, we show that IL is a dominant source of energy drain in WLANs and it cannot be effectively alleviated by the power saving mechanism proposed in the IEEE 802.11 standard. To solve this problem, we propose an energy-efficient mechanism that combines three schemes in a systematic way: downclocking, frame aggregation, and contention window adjustment. The downclocking scheme lets a station remain in a semisleep state when overhearing frames destined to neighbor stations, whereby the station consumes the minimal energy without impairing channel access capability. As well as decreasing the channel access overhead, the frame aggregation scheme prolongs the period of semisleep time. Moreover, by controlling the size of contention window based on the number of stations, the proposed mechanism decreases unnecessary IL time due to collision and retransmission. By deriving an analysis model and performing extensive simulations, we confirm that the proposed mechanism significantly improves the energy efficiency and throughput, by up to 2.8 and 1.8 times, respectively, compared to the conventional power saving mechanisms.

  18. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  19. Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery?

    Science.gov (United States)

    Schwartz, H C

    2014-05-01

    The purpose of this study was to compare the efficiency of bimaxillary orthognathic surgery using computer-aided surgical simulation (CASS), with cases planned using traditional methods. Total doctor time was used to measure efficiency. While costs vary widely in different localities and in different health schemes, time is a valuable and limited resource everywhere. For this reason, total doctor time is a more useful measure of efficiency than is cost. Even though we use CASS primarily for planning more complex cases at the present time, this study showed an average saving of 60min for each case. In the context of a department that performs 200 bimaxillary cases each year, this would represent a saving of 25 days of doctor time, if applied to every case. It is concluded that CASS offers great potential for improving efficiency when used in the planning of bimaxillary orthognathic surgery. It saves significant doctor time that can be applied to additional surgical work. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Improving computational efficiency of Monte Carlo simulations with variance reduction

    International Nuclear Information System (INIS)

    Turner, A.; Davis, A.

    2013-01-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  1. Improving biological efficiency of Oyster mushroom, Pleurotus ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences ... Yield improvement were observed in both pigeon pea and sunflower seed cake supplemented treatments with the highest mycelium vigor (91.65%) and biological ... Keywords: biological efficiency, compost, mycelium vigor, pigeon pea, sunflower seed cake

  2. Evaluating games console electricity use : technologies and policy options to improve energy efficiency.

    OpenAIRE

    Webb, Amanda E.

    2016-01-01

    Energy efficiency regulations and standards are increasingly being used as an approach to reduce the impact of appliances on climate change. Each new generation of games consoles is significantly different to the last and their cumulative electricity use has risen due to improved performance and functionality and increasing sales. As a result, consoles have been identified in the EU, US and Australia as a product group with the potential for significant electricity savings. However, there is ...

  3. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  4. Improving the Efficiency of Solid State Light Sources

    International Nuclear Information System (INIS)

    Joanna McKittrick

    2003-01-01

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths (λ=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range (λ=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution

  5. Method for calculating annual energy efficiency improvement of TV sets

    International Nuclear Information System (INIS)

    Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.

    2006-01-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification

  6. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2006-10-15

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  7. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  8. Beyond centrality-classifying topological significance using backup efficiency and alternative paths

    International Nuclear Information System (INIS)

    Shavitt, Yuval; Singer, Yaron

    2007-01-01

    In complex networks characterized by broad degree distribution, node significance is often associated with its degree or with centrality metrics which relate to its reachability and shortest paths passing through it. Such measures do not consider availability of efficient backup of the node and thus often fail to capture its contribution to the functionality and resilience of the network operation. In this paper, we suggest the quality of backup (QoB) and alternative path centrality (APC) measures as complementary methods which enable analysis of node significance in a manner which considers backup. We examine the theoretical significance of these measures and use them to classify nodes in social interaction networks and in the Internet AS (autonomous system) graph while applying the valley-free routing restrictions which reflect the economic relationships between the AS nodes in the Internet. We show that both node degree and node centrality are not necessarily evidence of its significance. In particular, we show that social structures do not necessarily depend on highly central nodes and that medium degree nodes with medium centrality measure prove to be crucial for efficient routing in the Internet AS graph

  9. Scaling production and improving efficiency in DEA: an interactive approach

    Science.gov (United States)

    Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas

    2017-10-01

    DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.

  10. Enabling factors for the improvement of nitride-based LED efficiency

    International Nuclear Information System (INIS)

    Laubsch, Ansgar; Bergbauer, Werner; Sabathil, Matthias; Peter, Matthias; Meyer, Tobias; Bruederl, Georg; Linder, Norbert; Streubel, Klaus; Oberschmid, Raimund; Hahn, Berthold; Wagner, Joachim

    2008-01-01

    Recent progress in the epitaxial growth of LEDs with InGaN/GaN quantum-well heterostructures has led to a significant enhancement of output power. In this talk, we will discuss the mechanisms limiting the devices' internal efficiency and identify enabling factors for further improvements. We compare samples with different Indium content as well as different design of the active layer. Although heteroepitaxial growth of GaN on sapphire generates high defect densities, non-radiative defect-related Shockley-Read-Hall recombination does not seem to substantially limit the efficiency of standard InGaN/GaN LED structures. We rather discuss a supplemental Auger-like non-radiative path for carrier recombination that becomes dominant at quantum-well carrier densities typical for LED operation. Additionally, the piezo-field induced reduced overlap of electron and hole wavefunction in standard c-plane grown InGaN quantum wells reduces the radiative recombination rate

  11. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  12. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction of microlenses was increased up to 0.34 by reducing the spin speed.

  13. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  14. Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China

    International Nuclear Information System (INIS)

    Lu, Yingying; Liu, Yu; Zhou, Meifang

    2017-01-01

    This paper explores the rebound effect of different energy types in China based on a static computable general equilibrium model. A one-off 5% energy efficiency improvement is imposed on five different types of energy, respectively, in all the 135 production sectors in China. The rebound effect is measured both on the production level and on the economy-wide level for each type of energy. The results show that improving energy efficiency of using electricity has the largest positive impact on GDP among the five energy types. Inter-fuel substitutability does not affect the macroeconomic results significantly, but long-run impact is usually greater than the short-run impact. For the exports-oriented sectors, those that are capital-intensive get big negative shock in the short run while those that are labour-intensive get hurt in the long run. There is no “backfire” effect; however, improving efficiency of using electricity can cause negative rebound, which implies that improving the energy efficiency of using electricity might be a good policy choice under China's current energy structure. In general, macro-level rebound is larger than production-level rebound. Primary energy goods show larger rebound effect than secondary energy goods. In addition, the paper points out that the policy makers in China should look at the rebound effect in the long term rather than in the short term. The energy efficiency policy would be a good and effective policy choice for energy conservation in China when it still has small inter-fuel substitution. - Highlights: • Primary energy goods show larger rebound effect than secondary energy goods. • Improving efficiency of using electricity can cause negative rebound. • The energy efficiency policy would be an effective policy choice for China. • Policy-makers should consider the rebound effect in the longer term.

  15. Barriers to efficiency improvement and fuel switching in Karnataka, India

    International Nuclear Information System (INIS)

    Reddy, A.

    1991-01-01

    Implementing energy efficiency changes requires a wide range measures. Improvements, therefore, require actions at the lowest level of the consumer, through the highest level of the global agencies. Due to the multiplicity of participants, however, barriers to achieving these improvements can arise at every level. The major barriers to improving energy efficiency in developing countries are defined and paths to overcome these challenges are identified. Topics of discussion include: energy consumers; end-use equipment manufacturers; end-use equipment providers; energy carrier producers and distributors; actual/potential cogenerators; financial institutions; government; and international, multilateral and industrialized country funding/aid agencies

  16. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  17. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  18. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  19. Using silicon nanostructures for the improvement of silicon solar cells' efficiency

    International Nuclear Information System (INIS)

    Torre, J. de la; Bremond, G.; Lemiti, M.; Guillot, G.; Mur, P.; Buffet, N.

    2006-01-01

    Silicon nanostructures (ns-Si) show interesting optical and electrical properties as a result of the band gap widening caused by quantum confinement effects. Along with their potential utilization for silicon-based light emitters' fabrication, they could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using their luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. In this work, we report on the morphological and optical studies of non-stoichiometric silica (SiO x ) and silicon nitride (SiN x ) layers containing silicon nanostructures (ns-Si) in view of their application for solar cell's efficiency improvement. The morphological studies of the samples performed by transmission electron microscopy (TEM) unambiguously show the presence of ns-Si in a crystalline form for high temperature-annealed SiO x layers and for low temperature deposition of SiN x layers. The photoluminescence emission (PL) shows a rather high efficiency in both kind of layers with an intensity of only a factor ∼ 100 lower than that of porous silicon (pi-Si). The photocurrent spectroscopy (PC) shows a significant increase of absorption at high photon energy excitation most probably related to photon absorption within ns-Si quantized states. Moreover, the absorption characteristics obtained from PC spectra show a good agreement with the PL emission states unambiguously demonstrating a same origin, related to Q-confined excitons within ns-Si. Finally, the major asset of this material is the possibility to incorporate it to solar cells manufacturing processing for an insignificant cost

  20. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  1. Method of improving the decontaminating efficiency of ruthenium in evaporating treatment of nitric acid

    International Nuclear Information System (INIS)

    Kubota, Kanya; Yamana, Hajime; Takeda, Seiichiro.

    1984-01-01

    Purpose: To significantly improve the ruthenium removing efficiency in a nitric acid solution in an acid recovery system for the recovery of nitric acid from nitric acid liquid wastes through evaporating condensation. Method: Upon evaporating treatment of nitric acid solution containing ruthenium by supplying and heating the solution to a nitric acid evaporating device, hydrazine is previously added to the nitric acid solution. Hydrazine and intermediate reaction product of hydrazine such as azide causes a reduction reaction with intermediate reaction product of ruthenium tetraoxide to suppress the oxidation of ruthenium and thereby improve the decontaminating efficiency of ruthenium. The amount of hydrazine to be added is preferably between 20 - 500 mg/l and most suitably between 200 - 2000 mg/l per one liter of the liquid in the evaporating device. (Seki, T.)

  2. Improving operating room efficiency in academic children's hospital using Lean Six Sigma methodology.

    Science.gov (United States)

    Tagge, Edward P; Thirumoorthi, Arul S; Lenart, John; Garberoglio, Carlos; Mitchell, Kenneth W

    2017-06-01

    Lean Six Sigma (LSS) is a process improvement methodology that utilizes a collaborative team effort to improve performance by systematically identifying root causes of problems. Our objective was to determine whether application of LSS could improve efficiency when applied simultaneously to all services of an academic children's hospital. In our tertiary academic medical center, a multidisciplinary committee was formed, and the entire perioperative process was mapped, using fishbone diagrams, Pareto analysis, and other process improvement tools. Results for Children's Hospital scheduled main operating room (OR) cases were analyzed, where the surgical attending followed themselves. Six hundred twelve cases were included in the seven Children's Hospital operating rooms (OR) over a 6-month period. Turnover Time (interval between patient OR departure and arrival of the subsequent patient) decreased from a median 41min in the baseline period to 32min in the intervention period (p<0.0001). Turnaround Time (interval between surgical dressing application and subsequent surgical incision) decreased from a median 81.5min in the baseline period to 71min in the intervention period (p<0.0001). These results demonstrate that a coordinated multidisciplinary process improvement redesign can significantly improve efficiency in an academic Children's Hospital without preselecting specific services, removing surgical residents, or incorporating new personnel or technology. Prospective comparative study, Level II. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Improving efficiency in bilateral emission trading

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.W.; Turner, P.

    1998-01-01

    When environmental damages from emissions are spatially nonuniform, permit trading has been modeled most often as a 'pollution offset program' in which emission permits are traded between agents, subject to constraints on ambient air quality. To date the institution envisioned to implement such a program involves trading on a bilateral and sequential basis. However, simulation studies indicate that the sequence of trades may alter the outcome and undermine the cost savings from a pollution offset program. This paper identifies a design for the trading institution that tends to overcome this phenomenon and improve the efficiency of equilibria obtained in a simulation model. We model a bilateral trading process for the reduction of sulfur dioxide emissions with a stochastic description of the sequence of trades within groups of nations in Europe. When trading takes place between disaggregated, stylistic representations of economic enterprises, rather than between national governments, a significantly greater portion of potential savings is achieved. In fact, under most sets of assumptions, approximate first order stochastic dominance is achieved wherein the more decentralized the trading agents, the greater the expected savings from a trading program. 4 figs., 2 tabs., 31 refs

  4. Does Automation Improve Stock Market Efficiency? Evidence from Ghana

    OpenAIRE

    Mensah, Justice T.; Pomaa-Berko, Maame; Adom, Philip Kofi

    2012-01-01

    As a burgeoning capital market in an emerging economy, automation of the stock market is regarded as a major step towards integrating the financial market as a conduit for economic growth. The automation of the Ghana Stock Exchange (GSE) in 2008 is expected among other things to improve the efficiency of the market. This paper therefore investigates the impact of the automation on the efficiency of the GSE within the framework of the weak-form Efficient Market Hypothesis (EMH) using daily mar...

  5. Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Shumei; Qiang, Jiaxi; Yang, Lin; Zhao, Xiaowei

    2016-01-01

    To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalization, the standard deviation of final SOC is improved by 78.7% while energy efficiency is improved by 6.01% and equalization time is decreased by 20% for AGA equalization of extreme dispersion. Additionally, AGA improves the battery uniformity by 30.77% with shortening equalization time by 16.29% and saving energy loss by 1.51% compared with FLC for equalization of regular dispersion. For further validation, the equalization optimization is verified by experiment based on the data-driven parameter identification method which is used to enhance the real-time capability of AGA. For AGA equalization of extreme dispersion, the standard deviation of final SOC is just 0.41% while equalization time prolongs only 14 min and energy efficiency is decreased by 0.81% compared with simulation results. Moreover, not only the standard deviation of final SOC is just 0.28% but also the energy efficiency is decreased by 0.69% and equalization time prolongs by 10.4 min compared with the simulation results for equalization of regular dispersion. - Highlights: • Issues of over equalization, time consumption and energy loss are addressed. • A SOC-based equalization is proposed based on adaptive genetic algorithm. • The equalization aims to improve battery uniformity, efficiency of energy and time. • Data-driven parameter identification is used to enhance the real-time capability.

  6. Improving the Efficiency of Organic Solar Cells upon Addition of Polyvinylpyridine

    Directory of Open Access Journals (Sweden)

    Rita Rodrigues

    2014-12-01

    Full Text Available We report on the efficiency improvement of organic solar cells (OPVs based on the low energy gap polyfluorene derivative, APFO-3, and the soluble C60 fullerene PCBM, upon addition of a residual amount of poly (4-vinylpyridine (PVP. We find that the addition of 1% by weight of PVP with respect to the APFO-3 content leads to an increase of efficiency from 2.4% to 2.9%. Modifications in the phase separation details of the active layer were investigated as a possible origin of the efficiency increase. At high concentrations of PVP, the blend morphology is radically altered as observed by Atomic Force Microscopy. Although the use of low molecular weight additives is a routine method to improve OPVs efficiency, this report shows that inert polymers, in terms of optical and charge transport properties, may also improve the performance of polymer-based solar cells.

  7. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density

  8. Economic effects of energy efficiency improvements in the Finnish building stock

    International Nuclear Information System (INIS)

    Tuominen, Pekka; Forsström, Juha; Honkatukia, Juha

    2013-01-01

    This study estimates the economic effects of investing in energy efficiency in buildings on a national level. First conservation potentials in space heating for two different scenarios with different levels of investment in energy efficiency are quantified. This was done relying on statistical data and future projections of the development of the building stock. Then economic modeling was used to estimate the effects on energy sector and the economy at large. The results show that a rather modest increase resulting in a few percent rise in annual construction and renovation investments can decrease total primary energy consumption 3.8–5.3% by 2020 and 4.7–6.8% by 2050 compared to a baseline scenario. On the short term a slight decrease in the level of GDP and employment is expected. On the medium to long term, however, the effects on both would be positive. Furthermore, a significant drop in harmful emissions and hence external costs is anticipated. Overall, a clear net benefit is expected from improving energy efficiency. - Highlights: ► The possible cut in energy consumption: 3.8–5.3% by 2020 and 4.7–6.8% by 2050. ► Short term negative effects to GDP and long term positive effects are expected. ► A significant drop in harmful emissions and hence external costs is anticipated.

  9. Improving radiation use efficiency in greenhouse production systems

    OpenAIRE

    Li, Tao

    2015-01-01

    SUMMARY A large increase in agricultural production is needed to feed the increasing world population with their increasing demand per capita. However, growing competition for arable land, water, energy, and the degradation of the environment impose challenges to improve crop production. Hence agricultural production efficiency needs to increase. Greenhouses provide the possibility to create optimal growth conditions for crops, thereby improving production and product quality. Light is the dr...

  10. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  11. An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance.

    Science.gov (United States)

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K

    2016-09-06

    Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10

  12. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  13. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  14. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO 2 ) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO 2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca 2+ decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO 2 . Humic acid could largely low Tl removal efficiency during nMnO 2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO 2 and then removed accompanying with nMnO 2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Efficient Adoption and Assessment of Multiple Process Improvement Reference Models

    Directory of Open Access Journals (Sweden)

    Simona Jeners

    2013-06-01

    Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.

  16. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    Science.gov (United States)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  17. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    Science.gov (United States)

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  18. Efficiency improvement for a sustainable agriculture : the integration of agronomic and farm economics approaches

    OpenAIRE

    Koeijer, de, T.J.

    2002-01-01

    Keywords: Sustainable farming systems, Agronomic efficiency, Economic efficiency, Environmental efficiency, Sustainability index, Interdisciplinary analysis.

    The objective of the research described in this thesis was to determine what role improved agronomic efficiency can play in the transition towards more sustainable production systems. Agronomic efficiency measures the technical performance. If it could be improved, environmental damage could be reduced while, at the sam...

  19. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  20. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing.

    Science.gov (United States)

    Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong

    2018-03-15

    Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of

  1. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  2. Improving the efficiency of aerodynamic shape optimization

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1994-01-01

    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  3. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Grigg, Reid B.

    2002-01-01

    A three-year contract, DOE Contract No. DE-FG26-01BC15364 ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering January 1, 2002 through June 30, 2002 that covers the second and third fiscal quarters of the project's first year. Paper SPE 75178, ''Cost Reduction and Injectivity Improvements for CO 2 Foams for Mobility Control,'' has been presented and included in the proceedings of the SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, producer survey on injectivity, and surfactant adsorption on quarried and reservoir core

  4. Quantum entanglement helps in improving economic efficiency

    International Nuclear Information System (INIS)

    Du Jiangfeng; Ju Chenyong; Li Hui

    2005-01-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character

  5. Quantum entanglement helps in improving economic efficiency

    Science.gov (United States)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  6. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  7. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  8. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  9. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  10. Quantifying and improving the efficiency of Gamma Knife treatment plans for brain metastases: results of a 1-year audit.

    Science.gov (United States)

    Wright, Gavin; Hatfield, Paul; Loughrey, Carmel; Reiner, Beatrice; Bownes, Peter

    2014-12-01

    A method for quantifying the efficiency of Gamma Knife treatment plans for metastases was previously implemented by the authors to retrospectively identify the least efficient plans and has provided insights into improved planning strategies. The aim of the current work was to ascertain whether those insights led to improved treatment plans. Following completion of the initial study, a 1-year audit of metastasis plans created at St. James's Institute of Oncology was carried out. Audited recent plans were compared with the earlier plans of the initial study, in terms of their efficiency and dosimetric quality. The statistical significance of any differences between relevant plan parameters was quantified by Mann-Whitney U-tests. Comparisons were made between all plans and repeated for a reduced set of plans from which the smallest lesions treated with a single 4-mm shot were excluded. The plan parameters compared were a plan efficiency index (PEI), the number of shots, Paddick conformity index (PCI), gradient index (GI), and percent coverage (of the lesion by the prescription isodose). A total of 157 metastatic lesions were included in the audit and were compared with 241 in the initial study. In a comparison of all cases, the audited plans achieved a higher median PEI score than did the earlier plans from the initial study (1.08 vs 1.02), indicating improved efficiency of the audited plans. When the smallest lesions (for which there was little scope for varying plan strategy) were discounted, the improvement in median PEI score was greater (1.23 vs 1.03, p planning strategy yielding these efficiency improvements did not rely on the use of significantly fewer shots (median 11 vs 11 shots, p = 0.924), nor did it result in significant detriment to dosimetric quality (median coverage 99% vs 99%, median PCI 0.84 vs 0.83, p = 0.449, and median GI 2.72 vs 2.67, p = 0.701, audited plans vs initial plans, respectively). Choice of planning strategy can substantially affect

  11. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    Science.gov (United States)

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p mice from BPD group were significantly improved, as compared with the control (p mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p mice in vivo.

  12. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Van Velde, AA. de; Burtak, F.

    2000-01-01

    In this paper authors deals with nuclear fuel cycle and their economic aspects. At Siemens, the developments focusing on the reduction of fuel cycle costs are currently directed on .further batch average burnup increase, .improvement of fuel reliability, .enlargement of fuel operation margins, .improvement of methods for fuel design and core analysis. These items will be presented in detail in the full paper and illustrated by the global operating experience of Siemens fuel for both PWRs and BWRs. (authors)

  13. Efficient Work Team Scheduling: Using Psychological Models of Knowledge Retention to Improve Code Writing Efficiency

    Directory of Open Access Journals (Sweden)

    Michael J. Pelosi

    2014-12-01

    Full Text Available Development teams and programmers must retain critical information about their work during work intervals and gaps in order to improve future performance when work resumes. Despite time lapses, project managers want to maximize coding efficiency and effectiveness. By developing a mathematically justified, practically useful, and computationally tractable quantitative and cognitive model of learning and memory retention, this study establishes calculations designed to maximize scheduling payoff and optimize developer efficiency and effectiveness.

  14. Improving labeling efficiency in automatic quality control of MRSI data.

    Science.gov (United States)

    Pedrosa de Barros, Nuno; McKinley, Richard; Wiest, Roland; Slotboom, Johannes

    2017-12-01

    To improve the efficiency of the labeling task in automatic quality control of MR spectroscopy imaging data. 28'432 short and long echo time (TE) spectra (1.5 tesla; point resolved spectroscopy (PRESS); repetition time (TR)= 1,500 ms) from 18 different brain tumor patients were labeled by two experts as either accept or reject, depending on their quality. For each spectrum, 47 signal features were extracted. The data was then used to run several simulations and test an active learning approach using uncertainty sampling. The performance of the classifiers was evaluated as a function of the number of patients in the training set, number of spectra in the training set, and a parameter α used to control the level of classification uncertainty required for a new spectrum to be selected for labeling. The results showed that the proposed strategy allows reductions of up to 72.97% for short TE and 62.09% for long TE in the amount of data that needs to be labeled, without significant impact in classification accuracy. Further reductions are possible with significant but minimal impact in performance. Active learning using uncertainty sampling is an effective way to increase the labeling efficiency for training automatic quality control classifiers. Magn Reson Med 78:2399-2405, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    Science.gov (United States)

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  16. SU-F-T-163: Improve Proton Therapy Efficiency: Report of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Flanz, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pankuch, M; Kreydick, B [Northwestern Medicine Proton Center, Warrenville, IL (United States); Beltran, C [Mayo Clinic, Rochester, MN (United States); Robison, B; Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2016-06-15

    Purpose: The technology of proton therapy, especially the pencil beam scanning technique, is evolving very quickly. However, the efficiency of proton therapy seems to lag behind conventional photon therapy. The purpose of the abstract is to report on the findings of a workshop on improvement of QA, planning and treatment efficiency in proton therapy. Methods: A panel of physicists, clinicians, and vendor representatives from over 18 institutions in the United States and internationally were convened in Knoxville, Tennessee in November, 2015. The panel discussed several topics on how to improve proton therapy efficiency, including 1) lean principle and failure mode and effects analysis, 2) commissioning and machine QA, 3) treatment planning, optimization and evaluation, 4) patient positioning and IGRT, 5) vendor liaison and machine availability, and 6) staffing, education and training. Results: The relative time needed for machine QA, treatment planning & check in proton therapy was found to range from 1 to 2.5 times of that in photon therapy. Current status in proton QA, planning and treatment was assessed. Key areas for efficiency improvement, such as elimination of unnecessary QA items or steps and development of efficient software or hardware tools, were identified. A white paper to summarize our findings is being written. Conclusion: It is critical to improve efficiency by developing reliable proton beam lines, efficient software tools on treatment planning, optimization and evaluation, and dedicated proton QA device. Conscious efforts and collaborations from both industry leaders and proton therapy centers are needed to achieve this goal and further advance the technology of proton therapy.

  17. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  18. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  19. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    Science.gov (United States)

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  20. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  1. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  2. CFD Analysis of The Hydraulic Turbine Draft Tube to Improve System Efficiency

    Directory of Open Access Journals (Sweden)

    Chakrabarty Spandan

    2016-01-01

    Full Text Available Demand of the power is increasing day by day with the development of the science and technology. Development of the renewable energy sector has become essential issue at the present situation due to the limited source of the non-renewable energy. Hydro energy power generation sector is superior over the other renewable sector due to the high efficiency, ability to continuous generation and low generation cost. In India a great amount of the power generation is taken care by the hydro power system but still some more potential have unexplored. The efficiency improvement of the hydro turbine system can be done for the new installation or installed system by the improvement in component level. The system can be installed by the state of the art equipment, like modern inlet guide vane (IGV control system, improved design of the runner, IGV system, draft tube, penstock to reduce the loss, hence improve the efficiency. The energy recovery in the draft tube depends on the design of draft tube. In the present work the optimized design of the draft tube shape through computational fluid dynamics (CFD simulation has been carried out in ANSYS FLUENT platform. The design objective of the draft tube is to reduce the flow loss and improve the energy recovery, hence to improve the efficiency.

  3. Improvements to the solar cell efficiency and production yields of low-lifetime wafers with effective phosphorus gettering

    International Nuclear Information System (INIS)

    Lu, Jiunn-Chenn; Chen, Ping-Nan; Chen, Chih-Min; Wu, Chung-Han

    2013-01-01

    Highlights: • Variable-temperature gettering improves efficiencies when the wafer quality is poor. • High-quality wafers need not be used for variable-temperature gettering. • The proposed gettering method is based on an existing diffusion process. • It has a potential interest for hot-spot prevention. -- Abstract: This research focuses on the improvement of solar cell efficiencies in low-lifetime wafers by implementing an appropriate gettering method of the diffusion process. The study also considers a reduction in the value of the reverse current at −12 V, an important electrical parameter related to the hot-spot heating of solar cells and modules, to improve the product's quality during commercial mass production. A practical solar cell production case study is examined to illustrate the use of the proposed method. The results of this case study indicate that variable-temperature gettering significantly improves solar cell efficiencies by 0.14% compared to constant-temperature methods when the wafer quality is poor. Moreover, this study finds that variable-temperature gettering raises production yields of low quality wafers by more than 30% by restraining the measurement value of the reverse current at −12 V during solar cell manufacturing

  4. Improving the global efficiency in small hydropower practice

    Science.gov (United States)

    Razurel, P.; Gorla, L.; Crouzy, B.; Perona, P.

    2015-12-01

    The global increase in energy production from renewable sources has seen river exploitation for small hydropower plants to also grow considerably in the last decade. River intakes used to divert water from the main course to the power plant are at the base of such practice. A key issue concern with finding innovative concepts to both design and manage such structures in order to improve classic operational rules. Among these, the Minimal Flow Release (MFR) concept has long been used in spite of its environmental inconsistency.In this work, we show that the economical and ecological efficiency of diverting water for energy production in small hydropower plants can be improved towards sustainability by engineering a novel class of flow-redistribution policies. We use the mathematical form of the Fermi-Dirac statistical distribution to define non-proportional dynamic flow-redistribution rules, which broadens the spectrum of dynamic flow releases based on proportional redistribution. The theoretical background as well as the economic interpretation is presented and applied to three case studies in order to systematically test the global performance of such policies. Out of numerical simulations, a Pareto frontier emerges in the economic vs environmental efficiency plot, which show that non-proportional distribution policies improve both efficiencies with respect to those obtained from some traditional MFR and proportional policies. This picture is shown also for long term climatic scenarios affecting water availability and the natural flow regime.In a time of intense and increasing exploitation close to resource saturation, preserving natural river reaches requires to abandon inappropriate static release policies in favor of non-proportional ones towards a sustainable use of the water resource.

  5. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  6. Improved entropy encoding for high efficient video coding standard

    Directory of Open Access Journals (Sweden)

    B.S. Sunil Kumar

    2018-03-01

    Full Text Available The High Efficiency Video Coding (HEVC has better coding efficiency, but the encoding performance has to be improved to meet the growing multimedia applications. This paper improves the standard entropy encoding by introducing the optimized weighing parameters, so that higher rate of compression can be accomplished over the standard entropy encoding. The optimization is performed using the recently introduced firefly algorithm. The experimentation is carried out using eight benchmark video sequences and the PSNR for varying rate of data transmission is investigated. Comparative analysis based on the performance statistics is made with the standard entropy encoding. From the obtained results, it is clear that the originality of the decoded video sequence is preserved far better than the proposed method, though the compression rate is increased. Keywords: Entropy, Encoding, HEVC, PSNR, Compression

  7. Impact of the Local Public Hospital Reform on the Efficiency of Medium-Sized Hospitals in Japan: An Improved Slacks-Based Measure Data Envelopment Analysis Approach.

    Science.gov (United States)

    Zhang, Xing; Tone, Kaoru; Lu, Yingzhe

    2018-04-01

    To assess the change in efficiency and total factor productivity (TFP) of the local public hospitals in Japan after the local public hospital reform launched in late 2007, which was aimed at improving the financial capability and operational efficiency of hospitals. Secondary data were collected from the Ministry of Internal Affairs and Communications on 213 eligible medium-sized hospitals, each operating 100-400 beds from FY2006 to FY2011. The improved slacks-based measure nonoriented data envelopment analysis models (Quasi-Max SBM nonoriented DEA models) were used to estimate dynamic efficiency score and Malmquist Index. The dynamic efficiency measure indicated an efficiency gain in the first several years of the reform and then was followed by a decrease. Malmquist Index analysis showed a significant decline in the TFP between 2006 and 2011. The financial improvement of medium-sized hospitals was not associated with enhancement of efficiency. Hospital efficiency was not significantly different among ownership structure and law-application system groups, but it was significantly affected by hospital location. The results indicate a need for region-tailored health care policies and for a more comprehensive reform to overcome the systemic constraints that might contribute to the decline of the TFP. © Health Research and Educational Trust.

  8. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities

    Directory of Open Access Journals (Sweden)

    Beatrice Marchi

    2017-10-01

    Full Text Available Energy efficiency represents a key resource for economic and social development, providing substantial benefits to different stakeholders, ranging from the entities which develop energy efficient measures to everyone in society. In addition to cost savings, multiple benefits can be achieved by supporting a better alignment between energy issues and strategic business priorities: e.g., improved competitiveness, profitability, quality, etc. Thus, energy efficiency can be a strategic advantage, not just a marginal issue, for companies. However, most firms, especially small and medium enterprises (SMEs, face many problems and, in some cases, hostility when trying to effectively implement energy efficiency actions. The most dominant barriers are the access to capital and the lack of awareness (especially in terms of life cycle cost effects. The supply chain viewpoint represents one of the main opportunities for overcoming those barriers and improving energy performance even for weaker companies. Since the current literature on energy efficiency and practical approaches to ensure energy efficiency mainly focus on energy performance on a single-firm basis, this paper aims to provide a systematic review of papers on the integration of energy efficiency in supply chain design and management published in academic journal, thereby defining potential research streams to close the gaps in the literature. A number of literature reviews have been published focusing on specific aspects of sustainable or on green supply chain management; however, to the best of our knowledge, no review has focused on the energy efficiency issue. Firstly, the present paper shows how considering energy consumption in supply chain management can contribute to more energy-efficient processes from a systemic point of view. Then, the review methodology used is defined and the sampled papers are analyzed and categorized based on the different approaches they propose. From these

  9. Future energy efficiency improvements within the US department of defense: Incentives and barriers

    International Nuclear Information System (INIS)

    Umstattd, Ryan J.

    2009-01-01

    The present work describes the military impact of improved efficiency and then highlights existing technological, political, and financial barriers for improving overall energy efficiency. As the largest user of energy within the US government, the Department of Defense (DOD) is rightly concerned that any disruption to the nation's energy supply may have an extremely adverse impact on its military capabilities. The total solution to providing energy security will be multi-faceted with progress required on many fronts. Increasing the use of renewable energy sources and improving energy storage capabilities are gradually creating a positive impact, but investing in improving the overall efficiency of the military effort provides both immediate and long-lasting payback. One might suppose that a decrease in the energy used by the DOD should lead to a decrease in military capability, but historical data proves otherwise. It is shown that the military has additional impetus, compared to civilian consumers, to pursue energy-efficiency improvements. Many tools are available to help the DOD along this path, yet there remain obstacles which must first be identified and analyzed as discussed herein.

  10. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  11. Improving the efficiency of aerodynamic shape optimization procedures

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1992-01-01

    The computational efficiency of an aerodynamic shape optimization procedure which is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit (ADI) methodology to calculate the highly converged flow solutions which are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. A substantial factor of 8 decrease in computational time for the optimization process was achieved by implementing both of the design improvements.

  12. Improving energy efficiency of an Olefin plant – A new approach

    International Nuclear Information System (INIS)

    Tahouni, Nassim; Bagheri, Narges; Towfighi, Jafar; Hassan Panjeshahi, M.

    2013-01-01

    Highlights: • The retrofit of an Olefin plant is studied to improve the overall energy efficiency. • Three levels of retrofit and optimization of this process are suggested. • A simultaneous method is presented to optimize low-temperature separation processes. - Abstract: Low-temperature gas separation processes are the most important gas separation routes. There is a complex interaction between core process (separation columns), associated heat exchanger network and refrigeration cycles in sub ambient processes. The aim of this paper is performing a comprehensive retrofit study of an Olefin plant (as an industrial example) to improve the overall energy efficiency. In this regard, the effect of improving column operating parameters and refrigeration cycles are first evaluated separately. Then, column operating parameters and refrigeration cycles as well as heat exchanger network are optimized simultaneously using genetic algorithm or simulated annealing. Having compared all results, one can conclude that simultaneous optimization leads to higher efficiency of the overall system

  13. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  14. To cool a sweltering earth: Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus, E-mail: adua.1@buckeyemail.osu.ed [Rural Sociology Graduate Program, School of Environment and Natural Resources, Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle.

  15. To cool a sweltering earth. Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus [Rural Sociology Graduate Program, School of Environment and Natural Resources, The Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle. (author)

  16. Improvement of powertrain efficiency through energy breakdown analysis

    International Nuclear Information System (INIS)

    Damiani, Lorenzo; Repetto, Matteo; Prato, Alessandro Pini

    2014-01-01

    Highlights: • Energy breakdown analysis for the vehicular powertrain. • Model for road vehicles simulation in different missions. • Implemented powertrain management strategies: intelligent gearbox, Stop and Start, free wheel. • Innovative hybrid powertrain turned to engine thermodynamic cycles minimization. • Evaluation of fuel savings associated to each management strategy. - Abstract: A vehicular powertrain can be thought as an energy conversion chain, each component being characterized by its efficiency. Significant global efficiency improvements can be achieved once is identified the system energy breakdown, individuating the losses connected to each powertrain component; it is then possible to carry out the most appropriate interventions. This paper presents a simulation study of a diesel-fuelled commercial vehicle powertrain based on the above summarized point of view. The work aims at individuating the energy flows involved in the system during different missions, proposing an intelligent combination of technical solutions which minimize fuel consumption. Through a validated Matlab–Simulink model, able to indicate the powertrain energy breakdown, simulations are carried out to evaluate the fuel saving associated to a series of powertrain management logics which lead to the minimization of engine losses, the recovery of reverse power in deceleration and braking, the elimination of useless engine cycles. Tests were performed for different real missions (urban, extra-urban and highway). The results obtained point out a –23% fuel consumption (average value for urban, extra-urban and highway missions) compared to the traditional powertrain. Clearly, such result affects positively the CO 2 emission

  17. An Efficient Method for Image and Audio Steganography using Least Significant Bit (LSB) Substitution

    Science.gov (United States)

    Chadha, Ankit; Satam, Neha; Sood, Rakshak; Bade, Dattatray

    2013-09-01

    In order to improve the data hiding in all types of multimedia data formats such as image and audio and to make hidden message imperceptible, a novel method for steganography is introduced in this paper. It is based on Least Significant Bit (LSB) manipulation and inclusion of redundant noise as secret key in the message. This method is applied to data hiding in images. For data hiding in audio, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) both are used. All the results displayed prove to be time-efficient and effective. Also the algorithm is tested for various numbers of bits. For those values of bits, Mean Square Error (MSE) and Peak-Signal-to-Noise-Ratio (PSNR) are calculated and plotted. Experimental results show that the stego-image is visually indistinguishable from the original cover-image when nsteganography process does not reveal presence of any hidden message, thus qualifying the criteria of imperceptible message.

  18. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    Science.gov (United States)

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  19. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Oh, Seungjin; Ang, Li; Shahzad, Muhammad Wakil; Ismail, Azhar Bin

    2015-01-01

    -driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent

  20. Improving thermoelectric energy harvesting efficiency by using graphene

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-05-01

    Full Text Available This study is aimed at enhancing the efficiency of a thermoelectric (TE energy harvesting system by using a thick graphene layer. This method is a simple yet effective way to increase the temperature gradient across a conventional TE module by accelerating heat dissipation on the cold side of the system. Aqueous dispersions of graphene were used to prepare a 112-μm thick graphene layer on the cold side of the TE system with aluminum as the substrate material. The maximum efficiency of the proposed system was improved by 25.45 %, as compared to the conventional TE system, which does not have a graphene layer. Additionally, the proposed system shows very little performance deterioration (2.87 % in the absence of enough air flow on the cold side of the system, compared to the case of the conventional system (10.59 %. Hence, the proposed system, when coupled with the latest research on high performance TE materials, presents a groundbreaking improvement in the practical application of the TE energy harvesting systems.

  1. Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment

    International Nuclear Information System (INIS)

    Viholainen, J.; Grönman, K.; Jaatinen-Värri, A.; Grönman, A.; Ukkonen, P.; Luoranen, M.

    2015-01-01

    Highlights: • Energy performance and environmental impact of the compressor operation was studied. • Diffusers can offer significant energy savings in aeration compressor tasks. • Diffusers used in compressors reduce the environmental impact of the machine use. • The influence of additional material and diffuser manufacturing is insignificant. - Abstract: Energy costs typically dominate the life-cycle costs of centrifugal compressors used in various industrial and municipal processes, making the compressor an attractive target for energy efficiency improvements. This study considers the achievable energy savings of using three different diffuser types in a centrifugal compressor supporting a typical end-use process in a waste water treatment plant. The effect of the energy efficiency improvements on the annual energy use and the environmental impacts are demonstrated with energy calculations and life-cycle assessment considering the selected compressor task in the waste water aeration. Besides the achievable energy saving benefits in the wastewater aeration process, the presented study shows the influence of the additional material needed in the diffuser manufacturing on the total greenhouse gas emissions of the compressor life-cycle. According to the calculations and assessment results, the studied diffuser types have a significant effect on the compressor energy use and environmental impacts when the compressor is operated in the aeration task. The achievable annual energy savings in this case were 2.5–4.9% in comparison with the baseline scenario. Also, the influence of the additional material and energy use for manufacturing the diffuser are insignificant compared with the avoided greenhouse gas reduction potential

  2. Tuning Monotonic Basin Hopping: Improving the Efficiency of Stochastic Search as Applied to Low-Thrust Trajectory Optimization

    Science.gov (United States)

    Englander, Jacob A.; Englander, Arnold C.

    2014-01-01

    Trajectory optimization methods using monotonic basin hopping (MBH) have become well developed during the past decade [1, 2, 3, 4, 5, 6]. An essential component of MBH is a controlled random search through the multi-dimensional space of possible solutions. Historically, the randomness has been generated by drawing random variable (RV)s from a uniform probability distribution. Here, we investigate the generating the randomness by drawing the RVs from Cauchy and Pareto distributions, chosen because of their characteristic long tails. We demonstrate that using Cauchy distributions (as first suggested by J. Englander [3, 6]) significantly improves monotonic basin hopping (MBH) performance, and that Pareto distributions provide even greater improvements. Improved performance is defined in terms of efficiency and robustness. Efficiency is finding better solutions in less time. Robustness is efficiency that is undiminished by (a) the boundary conditions and internal constraints of the optimization problem being solved, and (b) by variations in the parameters of the probability distribution. Robustness is important for achieving performance improvements that are not problem specific. In this work we show that the performance improvements are the result of how these long-tailed distributions enable MBH to search the solution space faster and more thoroughly. In developing this explanation, we use the concepts of sub-diffusive, normally-diffusive, and super-diffusive random walks (RWs) originally developed in the field of statistical physics.

  3. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    Science.gov (United States)

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.

  4. General surgery residents improve efficiency but not outcome of trauma care.

    Science.gov (United States)

    Offner, Patrick J; Hawkes, Allison; Madayag, Robert; Seale, Fred; Maines, Charles

    2003-07-01

    Current American College of Surgeons Level I trauma center verification requires the presence of a residency program in which trauma care is an integral part of the training. The rationale for this requirement remains unclear, with no scientific evidence that resident participation improves the quality of trauma care. The purpose of this study was to determine whether quality or efficiency of trauma care is influenced by general surgery residents. Our urban Level I trauma center has traditionally used 24-hour in-house postgraduate year-4 general surgery residents in conjunction with at-home trauma attending backup to provide trauma care. As of July 1, 2000, general surgery residents no longer participated in trauma patient care, leaving sole responsibility to an in-house trauma attending. Data regarding patient outcome and resource use with and without surgery resident participation were tabulated and analyzed. Continuous data were compared using Student's t test if normally distributed and the Mann-Whitney U test if nonparametric. Categorical data were compared using chi2 analysis or Fisher's exact test as appropriate. During the 5-month period with resident participation, 555 trauma patients were admitted. In the identical time period without residents, 516 trauma patients were admitted. During the period without housestaff, patients were older and more severely injured. Mechanism was not different during the two time periods. Mortality was not affected; however, time in the emergency department and hospital lengths of stay were significantly shorter with residents. Multiple regression confirmed these findings while controlling for age, mechanism, and Injury Severity Score. Although resident participation in trauma care at a Level I trauma center does not affect outcome, it does significantly improve the efficiency of trauma care delivery.

  5. 75 FR 27341 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Science.gov (United States)

    2010-05-14

    ..., ramp rates, and network topology), flexible dispatch, settlement calculations, transmission switching... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference To Discuss Increasing Market and Planning Efficiency Through Improved Software May 7, 2010. Take notice that Commission...

  6. Adaptation to climate change in industry: improving resource efficiency through sustainable production applications.

    Science.gov (United States)

    Alkayal, Emrah; Bogurcu, Merve; Ulutas, Ferda; Demirer, Göksel Niyazi

    2015-01-01

    The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented. Significant water savings (849,668 m3/year) were achieved as a result of the applications that targeted reduction of water use. In addition to water savings, the energy consumption was reduced by 3,607 MWh, which decreased the CO2 emissions by 904.1 tons/year. Moreover, the consumption of 278.4 tons/year of chemicals (e.g., NaCl, CdO, NaCN) was avoided, thus the corresponding pollution load to the wastewater treatment plant was reduced. Besides the tangible improvements, other gains were achieved, such as improved product quality, improved health and safety conditions, reduced maintenance requirements, and ensured compliance with national and EU regulations. To the best of the authors' knowledge, this study is the first ever activity in Turkey devoted to climate change adaptation in the private sector. This study may serve as a building block in Turkey for the integration of climate change adaptation and mitigation approach in the industry, since water efficiency (adaptation) and carbon reduction (mitigation) are achieved simultaneously.

  7. A new cooperative MIMO scheme based on SM for energy-efficiency improvement in wireless sensor network.

    Science.gov (United States)

    Peng, Yuyang; Choi, Jaeho

    2014-01-01

    Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.

  8. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.

    1998-02-01

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  9. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  10. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    Energy Technology Data Exchange (ETDEWEB)

    Michael Killian

    2009-09-30

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have

  11. Tape write-efficiency improvements in CASTOR

    International Nuclear Information System (INIS)

    Murray, S; Bahyl, V; Cancio, G; Cano, E; Lo Presti, G; Lo Re, G; Ponce, S; Kotlyar, V

    2012-01-01

    The CERN Advanced STORage manager (CASTOR) is used to archive to tape the physics data of past and present physics experiments. For reasons of physical storage space, all of the tape resident data in CASTOR are repacked onto higher density tapes approximately every two years. Improving the performance of writing files smaller than 2GB to tape is essential in order to keep the time needed to repack all of the tape resident data within a period of no more than 1 year. This paper reports on the solution to writing efficiently to tape that is currently in its early deployment phases at CERN.

  12. Efficiency improvement for a sustainable agriculture : the integration of agronomic and farm economics approaches

    NARCIS (Netherlands)

    Koeijer, de T.J.

    2002-01-01

    Keywords: Sustainable farming systems, Agronomic efficiency, Economic efficiency, Environmental efficiency, Sustainability index, Interdisciplinary analysis.

    The objective of the research described in this thesis was to determine what role improved agronomic efficiency can play in

  13. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  14. Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-01

    Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technical feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by

  15. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites.

    Science.gov (United States)

    Ma, Sanyuan; Liu, Yue; Liu, Yuanyuan; Chang, Jiasong; Zhang, Tong; Wang, Xiaogang; Shi, Run; Lu, Wei; Xia, Xiaojuan; Zhao, Ping; Xia, Qingyou

    2017-04-01

    Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid

    2015-06-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis-free, scan-independent, and stabilized devices with an efficiency of 16.1%. Electron-rich, nitrogen-doped ZnO (N:ZnO) NR-based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the -nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron-rich high aspect ratio N:ZnO NR arrays is -successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state-of-the-art PCE of ZnO-based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modified paraffin wax for improvement of histological analysis efficiency.

    Science.gov (United States)

    Lim, Jin Ik; Lim, Kook-Jin; Choi, Jin-Young; Lee, Yong-Keun

    2010-08-01

    Paraffin wax is usually used as an embedding medium for histological analysis of natural tissue. However, it is not easy to obtain enough numbers of satisfactory sectioned slices because of the difference in mechanical properties between the paraffin and embedded tissue. We describe a modified paraffin wax that can improve the histological analysis efficiency of natural tissue, composed of paraffin and ethylene vinyl acetate (EVA) resin (0, 3, 5, and 10 wt %). Softening temperature of the paraffin/EVA media was similar to that of paraffin (50-60 degrees C). The paraffin/EVA media dissolved completely in xylene after 30 min at 50 degrees C. Physical properties such as the amount of load under the same compressive displacement, elastic recovery, and crystal intensity increased with increased EVA content. EVA medium (5 wt %) was regarded as an optimal composition, based on the sectioning efficiency measured by the numbers of unimpaired sectioned slices, amount of load under the same compressive displacement, and elastic recovery test. Based on the staining test of sectioned slices embedded in a 5 wt % EVA medium by hematoxylin and eosin (H&E), Masson trichrome (MT), and other staining tests, it was concluded that the modified paraffin wax can improve the histological analysis efficiency with various natural tissues. (c) 2010 Wiley-Liss, Inc.

  18. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  19. Enhanced policies for the improvement of electricity efficiencies

    International Nuclear Information System (INIS)

    Blok, Kornelis

    2005-01-01

    Energy-efficiency improvement is considered as an important option to limit greenhouse gas emissions. In this paper, the possibilities to implement new policies to improve the efficiency of electricity end-use are explored. The following policy actions are considered: - introduction of a '1 W standard' for standby power consumption of appliances;- incremental standards for large electric appliances;- design guidelines for small electric appliances;- a technology-forcing standard for lighting;- a motor-drive program;- a program directed at the reduction of electricity use during empty-office hours;- actual energy performance requirements for service-sector buildings. The implementation of these programs will contribute substantially to reaching greenhouse gas emission targets in the European Union (total estimated effect to be 200-350 Mton CO 2 emission reduction in the year 2020). However, to reach these targets a very substantial effort is required, both in terms of policy ambition, force of the applied instruments, and implementation efforts. In the case of electric appliances, regulatory instruments may need wider application. And, in order to attain the substantial potential savings in motor-drive systems, an effort comparable to the effort to promote renewable electricity in the European Union may be both justified and necessary

  20. Improved production efficiency in cattle to reduce their carbon ...

    African Journals Online (AJOL)

    p2492989

    Keywords: Methane, global warming, greenhouse gas, crossbreeding, residual feed intake, feed efficiency. #Corresponding ... improved production per constant unit, crossbreeding and selection for residual feed intake. ... convert such a measure into kg calf produced per kg CO2 equivalent (CH4 can be converted to a CO2.

  1. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  2. Assembly Line Efficiency Improvement by Using WITNESS Simulation Software

    Science.gov (United States)

    Yasir, A. S. H. M.; Mohamed, N. M. Z. N.

    2018-03-01

    In the nowadays-competitive world, efficiencies and the productivity of the assembly line are essential in manufacturing company. This paper demonstrates the study of the existing production line performance. The actual cycle time observed and recorded during the working process. The current layout was designed and analysed using Witness simulation software. The productivity and effectiveness for every single operator are measured to determine the operator idle time and busy time. Two new alternatives layout were proposed and analysed by using Witness simulation software to improve the performance of production activities. This research provided valuable and better understanding of production effectiveness by adjusting the line balancing. After analysing the data, simulation result from the current layout and the proposed plan later been tabulated to compare the improved efficiency and productivity. The proposed design plan has shown an increase in yield and productivity compared to the current arrangement. This research has been carried out in company XYZ, which is one of the automotive premises in Pahang, Malaysia.

  3. Using Ecophysiology to Improve Farm Efficiency: Application in Temperate Dairy Grazing Systems

    Directory of Open Access Journals (Sweden)

    David F. Chapman

    2016-04-01

    Full Text Available Information on the physiological ecology of grass-dominant pastures has made a substantial contribution to the development of practices that optimise the amount of feed harvested by grazing animals in temperate livestock systems. However, the contribution of ecophysiology is often under-stated, and the need for further research in this field is sometimes questioned. The challenge for ecophysiolgists, therefore, is to demonstrate how ecophysiological knowledge can help solve significant problems looming for grassland farming in temperate regions while also removing constraints to improved productivity from grazed pastures. To do this, ecophysiological research needs to align more closely with related disciplines, particularly genetics/genomics, agronomy, and farming systems, including systems modelling. This review considers how ecophysiological information has contributed to the development of grazing management practices in the New Zealand dairy industry, an industry that is generally regarded as a world leader in the efficiency with which pasture is grown and utilised for animal production. Even so, there are clear opportunities for further gains in pasture utilisation through the refinement of grazing management practices and the harnessing of those practices to improved pasture plant cultivars with phenotypes that facilitate greater grazing efficiency. Meanwhile, sub-optimal persistence of new pastures continues to constrain productivity in some environments. The underlying plant and population processes associated with this have not been clearly defined. Ecophysiological information, placed in the context of trait identification, grounded in well-designed agronomic studies and linked to plant improvements programmes, is required to address this.

  4. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.

    Science.gov (United States)

    Oh, Pyung Chun; Koh, Kwang Kon; Sakuma, Ichiro; Lim, Soo; Lee, Yonghee; Lee, Seungik; Lee, Kyounghoon; Han, Seung Hwan; Shin, Eak Kyun

    2014-10-20

    Experimental studies demonstrate that higher intake of omega-3 fatty acids (n-3 FA) improves insulin sensitivity, however, we reported that n-3 FA 2g therapy, most commonly used dosage did not significantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated the effects of different dosages of n-3 FA in patients with hypertriglyceridemia. This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients (about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n-3 FA 1 (O1), 2 (O2), or 4 g (O4), respectively daily for 2 months. n-3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cholesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n-3 FA therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, compared with placebo. O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 significantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with placebo, each n-3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the metabolic syndrome. n-3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation. Nonetheless, n-3 FA therapy did not significantly improve acute-phase reactants and insulin sensitivity in patients with hypertriglyceridemia, regardless of dosages. Copyright © 2014. Published by Elsevier Ireland Ltd.

  5. 77 FR 19280 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Science.gov (United States)

    2012-03-30

    ... concerns that current system data quality might not allow for an AC optimal power flow model to be properly... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference: Increasing Real-Time and Day- Ahead Market Efficiency Through Improved Software Take notice that Commission staff will...

  6. Improving Light Outcoupling Efficiency for OLEDs with Microlens Array Fabricated on Transparent Substrate

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available Low light outcoupling efficiency restricts the wide application of organic light-emitting diodes in solid state light market although the internal quantum efficiency of the device could reach near to 100%. In order to improve the output efficiency, different kinds of microlens array on the substrate emission surface were designed and simulated using light tracing method. Simulation results indicate that the microlens array on the substrate could efficiently improve the light output efficiency and an enhancement of 1.8 could be obtained with optimized microlens structure design. The microlens array with semicircle shape using polymer material was fabricated on glass substrate by a facile approach. Finally, the organic device with microlens array substrate was manufactured and the light output of the device with surface microlens structure could increase to 1.64 times comparing with the device without microlens.

  7. Management efficiency improvement promotion of SS; SS no unei koritsuka sokushin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Full amount fund petroleum product marketer and Sumisyo petroleum of Sumitomo accelerate management efficiency improvement of service station (SS). National about 300 places have been developed in within the year Within SS, it aims at break-even point achievement of gasoline, coarse advantage 10 yen per light oil of 1 liter in 84 all tied SS stores. SS which has realized the system of 10 yen in the current is whole about 50%. But, by doing personnel configurations and operational procedures, that they reexamine the balance management, etc. in half remaining SS 12 yen-13 yen; the efficiency improvement is done thoroughly. (translated by NEDO)

  8. Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions

    International Nuclear Information System (INIS)

    Lee, Jungyoon; Kim, Miae; Shim, Kyuchol; Kim, Jibeom; Jeon, Joonhyeon

    2013-01-01

    Lithium-ammonia (Li-NH 3 ) solutions are possible to be successfully made under the vacuum condition but there still remains a problem of undergoing stable and reliable decomposition in vacuum for high-efficiency thermoelectric power generation. This paper describes a new method for improving the thermoelectric conversion efficiency of Li-NH 3 solutions in vacuum. The proposed method uses a ‘U’-shaped Pyrex vacuum tube for the preparation and decomposition of pure fluid Li-NH 3 solutions. The tube is shaped so that a gas passageway (‘U’) connecting both legs of the ‘U’ helps to balance pressure inside both ends of the tube (due to NH 3 gasification) during decomposition on the hot side. Thermoelectric experimental results show that solution reaction in the ‘U’-shaped tube proceeds more stably and efficiently than in the ‘U’-shaped tube, and consequently, thermoelectric conversion efficiency is improved. It is also proved that the proposed method can provide a reversible reaction, which can rotate between synthesis and decomposition in the tube, for deriving the long-time, high-efficiency thermoelectric power

  9. MPACT Subgroup Self-Shielding Efficiency Improvements

    International Nuclear Information System (INIS)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.

    2016-01-01

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as ''Lumped Parameter MOC''. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  10. Improving Energy Efficiency of Micro-Networks Connected to a Smart Grid

    Directory of Open Access Journals (Sweden)

    Grzegorz Błajszczak

    2014-12-01

    Full Text Available Technological development of distribution and transmission grids and building a so called smart grid also enable improving the efficiency of microgrids and microgenerators. Better coordination and scheduling of microgenerators operation make more effective adjustment to local conditions and achieving better overall energy efficiency possible. Due to smart communication interfaces the microgrids and microgenerators can also contribute to ancillary services.

  11. Predictive control strategy of a gas turbine for improvement of combined cycle power plant dynamic performance and efficiency.

    Science.gov (United States)

    Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan

    2016-01-01

    This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.

  12. An efficient optimization method to improve the measuring accuracy of oxygen saturation by using triangular wave optical signal

    Science.gov (United States)

    Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling

    2017-09-01

    The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.

  13. Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency

    Science.gov (United States)

    Soderquist, Peter; Leeser, Miriam E.

    1999-01-01

    Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.

  14. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    Science.gov (United States)

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  15. Improving the thermodynamic efficiency of steam turbine condensers with partial tube replacement and an advanced tube bundle design

    International Nuclear Information System (INIS)

    Drosdziok, A.; Zorner, W.

    1989-01-01

    Many different problems have been experienced with power plant condensers all over the world. It has become apparent that plant availability and cost-effectiveness are significantly influenced by the thermodynamic design of the condensers and the materials selected. This paper reports that by refitting older condensers in operating plants it has proven possible to improve thermodynamic efficiency by changing the tube bundle design. In conjunction with the replacement of the cooper-bearing tubing in these condensers, which became necessary because of the introduction of high AVT (All Volatile Treatment) conditioning in the secondary circuit, it has generally been possible to fulfil the requirements imposed on the condensers without a deterioration of plant efficiency. By experience, best results have been obtained by replacing the condenser bundle with an advanced tube bundle design. Apart from solving all problems, this further improves the thermodynamic efficiency of the condensers. In nuclear power plants constructed by the Siemens KWU Group the condensers are tailored to present-day requirements

  16. Identifying entry points to improve fertilizer use efficiency in Taihu Basin, China

    NARCIS (Netherlands)

    Ma, Li; Feng, S.; Reidsma, P.; Qu, F.; Heerink, N.

    2014-01-01

    Overuse of fertilizers in China causes environmental problems and high costs for farmers. In this paper we aim to identify entry points to improve fertilizer use efficiency in Taihu Basin, China. We use stochastic frontier analysis to estimate the technical and fertilizer use efficiency of rice

  17. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  18. Efficient Generation and Selection of Combined Features for Improved Classification

    KAUST Repository

    Shono, Ahmad N.

    2014-05-01

    This study contributes a methodology and associated toolkit developed to allow users to experiment with the use of combined features in classification problems. Methods are provided for efficiently generating combined features from an original feature set, for efficiently selecting the most discriminating of these generated combined features, and for efficiently performing a preliminary comparison of the classification results when using the original features exclusively against the results when using the selected combined features. The potential benefit of considering combined features in classification problems is demonstrated by applying the developed methodology and toolkit to three sample data sets where the discovery of combined features containing new discriminating information led to improved classification results.

  19. Integration of quality improvement and cost-efficiency through industrial improvement techniques

    Directory of Open Access Journals (Sweden)

    Vink JP

    2016-06-01

    Full Text Available Jasper P Vink,1 Maxime T Rigaudy,1,2 Karl O Elmqvist11Imperial College Business School, Imperial College London, London, 2Hull York Medical School, York, UKIn this journal, Crema and Verbano1 discussed the importance of defining quality of health care and how quality can be improved through various industrial instruments and techniques. Quality of health care is a heavily debated topic that requires a wide scope of considerations across the many stakeholders of the health system. We acknowledge Crema and Verbano’s arguments that patient safety is a basic pillar of quality, upon which we would like to expand by highlighting the clinical effectiveness and patient-reported outcomes, which are the two further crucial components of quality. The arguments made regarding quality improvement techniques and cost efficiency in health care provision are insightful, yet appear to make a distinction between efforts to improve quality, eliminate waste from processes, and cut costs in health care provision. We would argue that in fact these achievements are all closely related and can be achieved simultaneously, if the industrial techniques of quality management are applied adequately.View the original paper by Crema and Verbano.

  20. Energy efficiency improvement and fuel savings in water heaters using baffles

    International Nuclear Information System (INIS)

    Moeini Sedeh, Mahmoud; Khodadadi, J.M.

    2013-01-01

    Highlights: ► Thermal efficiency improved by simple/novel design of baffles inside water reservoir. ► Noticeable steady-state natural gas savings of about 5%. ► Extensive 3-D numerical investigations followed by experimental verifications. ► Baffle designs prototyped in identical water heaters for ANSI/US DOE test protocols. ► Numerical/experimental results verified thermal efficiency improvement and fuel savings. -- Abstract: Thermal efficiency improvement of a water heater was investigated numerically and experimentally in response to presence of a baffle, particularly designed for modifying the flow field within the water reservoir and enhancing heat transfer extracted into the water tank. A residential natural gas-fired water heater was selected for modifying its water tank through introducing a baffle for lowering natural gas consumption by 5% as a target. Based on the geometric features of the selected water heater, three-dimensional models of the water heater subsections were developed. Upon detailed studies of flow and heat transfer in each subsection, various sub-models were integrated to a complete model of the water heater. Thermal performance of the selected water heater was investigated numerically using computational fluid dynamics analysis. Prior to baffle design process and in order to verify the developed model of the water heater, time-dependent numerically-predicted temperatures were compared to the experimentally-measured temperatures under the same conditions at six (6) different locations inside the water tank and good agreement was observed. Upon verifying the numerical model, the fluid flow and heat transfer patterns were characterized for the selected water heater. The overall design of the baffle and its location and orientation were finalized based on the numerical results and a set of parametric studies. Finally, two baffle designs were proposed, with the second design being an optimized version of the first design. The

  1. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  2. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  3. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  4. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  5. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  6. IMPROVING THE EFFICIENCY OF SPRAY TYPE DEVICES WHEN SOLVING PROBLEMS IN INDUSTRIAL ECOLOGY

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. This carried out work is aimed enhancing the efficiency of the spray scrubber by combining processes and improving hydraulic conditions in the device. The problem of treating waste gases is often characterized by unique features and the significant factor that makes it difficult to find a solution to the problem of treatment is the low and/or variable concentration of the pollutant. With a removal efficiency of up to 98 %, wet treatment technology in scrubber type devices is the only practical method advantageous to the treatment of waste gases. The set objective is solved by developing a two-stage treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. A drift eliminator of the developed device is located on the case unit and a chain is suspended from a clamp mounted on the lower part of the tube neck by pins and two detachable joints. The operation of the scrubber was checked in compliance with the absorption gas treatment of sulfur dioxide. A chemical sorbent, calcium carbonate which is produced as a by-product in the manufacture of nitroammophos at JSC “Minudobrenia” factory is used. Preliminary results indicate that the stiochiometric inlet ratio of Ca/S equals about 2.0 and SO2 emissions reduce by 80-90 %, significantly larger than the planned 70 % and subsequently corresponds to the residue concentration of less than 30 mg/m3 . This is explained by the greater degree of capture and deposition of the sorbent on the chain curtain (not more than 20 mg/m3 . The proposed device for treating gases enables: improvement in the efficiency of gas treatment; increased reliability; increase in the degree of treatment of the gas flow without the use of additional equipment; reduction in metal and design complexity; reduction on the cost of the treatment process and simplification in the device design.

  7. A history of industrial statistics and quality and efficiency improvement

    NARCIS (Netherlands)

    de Mast, J.; Coleman, S.; Greenfield, T.; Stewardson, D.; Montgomery, D.C.

    2008-01-01

    The twentieth century witnessed incredible increases in product quality, while in the same period product priced dropped dramatically. These important improvements in quality and efficiency in industry were the result of innovations in management and engineering. But these developments were

  8. Energy efficiency improvements in electric motors and drives

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldi, P. [Commission of the European Communities, Brussels (Belgium). Directorate General for Energy; Ameida, A.T. de [Coimbra Univ. (Portugal). Dept. de Engenharia Electrotecnica; Falkner, H. [eds.] [AEA Technolgy, Harwell (United Kingdom). ETSU

    2000-07-01

    This book covers the state of the art of energy-efficient electric motor technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. Recent developments in advanced motor technologies by some of the largest manufacturers of motors and drives are also presented. Although energy-efficient motor technologies can save a huge amount of electricity, they still have not been widely adopted. The barriers which can hinder the adoption of those technologies are presented. Policies and programmes to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the European Union, North America, Latin America, Japan, Australia and New Zealand. (orig.)

  9. CSA: An efficient algorithm to improve circular DNA multiple alignment

    Directory of Open Access Journals (Sweden)

    Pereira Luísa

    2009-07-01

    Full Text Available Abstract Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment

  10. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  11. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  12. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    Science.gov (United States)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  13. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    Science.gov (United States)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  14. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    Science.gov (United States)

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  15. Improved district heating substation efficiency with a new control strategy

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2010-01-01

    In this paper, we describe a new alternative control approach for indirectly connected district heating substations. Simulations results showed that the new approach results in an increased ΔT across the substation. Results were obtained for both ideal and non-ideal operation of the system, meaning that less water must be pumped through the district heating network, and a higher overall fuel efficiency can be obtained in the district heating power plants. When a higher fuel efficiency is achieved, the usage of primary fuel sources can be reduced. Improved efficiency also increases the effective heat transfer capacity of a district heating network, allowing more customers to be connected to an existing network without increasing the heating plant or network capacity. Also, if combined heat and power plants are used to produce the heat, the increased ΔT will result in a further improved overall fuel efficiency, as more electricity can be produced with colder cooling water. The idea behind the new control method is to consider the temperature of the water supplying the district heating substation with heat, often referred to as the primary supply temperature. This represents a logical next step, as currently, the only parameter generally taken into account or measured when controlling the temperature level of the radiator circuit is the local outdoor temperature. In this paper we show how the primary supply temperature together with thermodynamic knowledge of the building can be used to maximize the ΔT across the district heating substation.

  16. 24% efficient PERL structure silicon solar cells

    International Nuclear Information System (INIS)

    Zhao, J.; Wang, A.; Green, M.A.

    1990-01-01

    This paper reports that the performance of silicon solar cells have been significantly improved using an improved PERL (passivated emitter, rear locally-diffused) cell structure. This structure overcomes deficiencies in an earlier PERC (passivated emitter and rear cell) cell structure by locally diffusing boron into contact areas at the rear of the cells. Terrestrial energy conversion efficiencies up to 24% are reported for silicon cells for the first time. Air Mass O efficiencies approach 21%. The first batches of concentrator cells using the new structure have demonstrated significant improvement with 29% efficient concentrator silicon cells expected in the near future

  17. From energy efficiency towards resource efficiency within the Ecodesign Directive

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie; Mosgaard, Mette; Remmen, Arne

    2017-01-01

    on the most significant environmental impact has often resulted in a focus on energy efficiency in the use phase. Therefore, the Ecodesign Directive should continue to target resource efficiency aspects but also consider environ- mental aspects with a large improvement potential in addition to the most...... significant environmental impact. For the introduction of resource efficiency requirements into the Ecodesign Directive, these requirements have to be included in the preparatory study. It is therefore recommended to broaden the scope of the Methodology for the Ecodesign of Energy-related products and the Eco......The article examines the integration of resource efficiency into the European Ecodesign Directive. The purpose is to analyse the processes and stakeholder interactions, which formed the basis for integrating resource efficiency requirements into the implementing measure for vacuum cleaners...

  18. Improved production operating efficiencies through automation: Wascana Energy`s SCADA system implementation in southeast Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, R; Foord, T; Bartle, A

    1996-12-31

    Supervisory control and data acquisition (SCADA) systems covering Wascana Energy`s whole southeast Saskatchewan operating area were implemented in 1994-95. The benefits of this automation were described. Operations practices were reviewed and a brief description of the system was provided. Main features of the system described included data storage/retrieval, data display, alarm group organization, alarm call out monitoring, dynagraph display, and the Microsoft SQL server computer. Automation was found to significantly change the operator`s traditional role and altered operation practices in general. SCADA systems were found to improve operating efficiencies and production performance significantly, when properly implemented and utilized. 6 refs., 3 figs.

  19. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells

    Directory of Open Access Journals (Sweden)

    Ogris Manfred

    2010-03-01

    Full Text Available Abstract Background The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP and directed into a 2000 bp long matrix attachment region sequence (MARS derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. Results Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P element that is known to be less affected by epigenetic silencing events. Conclusions The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.

  20. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  1. Significantly High Modulation Efficiency of Compact Graphene Modulator Based on Silicon Waveguide.

    Science.gov (United States)

    Shu, Haowen; Su, Zhaotang; Huang, Le; Wu, Zhennan; Wang, Xingjun; Zhang, Zhiyong; Zhou, Zhiping

    2018-01-17

    We theoretically and experimentally demonstrate a significantly large modulation efficiency of a compact graphene modulator based on a silicon waveguide using the electro refractive effect of graphene. The modulation modes of electro-absorption and electro-refractive can be switched with different applied voltages. A high extinction ratio of 25 dB is achieved in the electro-absorption modulation mode with a driving voltage range of 0 V to 1 V. For electro-refractive modulation, the driving voltage ranges from 1 V to 3 V with a 185-pm spectrum shift. The modulation efficiency of 1.29 V · mm with a 40-μm interaction length is two orders of magnitude higher than that of the first reported graphene phase modulator. The realisation of phase and intensity modulation with graphene based on a silicon waveguide heralds its potential application in optical communication and optical interconnection systems.

  2. Improvement in the diffraction efficiency of a polymer using an ionic liquid

    Directory of Open Access Journals (Sweden)

    Kim Sung Ho

    2018-01-01

    Full Text Available In this paper, photosensitive materials for information storage devices are presented. The polymers were prepared using surface relief-grating (SRG fabrication with a diode-pumped solid-state (DPSS laser of 532 nm, and the diffraction efficiency (DE of the polymers were assessed with a low-power DPSS laser at 633 nm. However, the diffraction efficiency of the azo-functionalized epoxy-based polymer was low, even after 15 min of exposure. To improve the efficiency and reduce the time it takes for the DE measurements of the photosensitive polymer, the polymer was combined ionic liquids (ILs. Various ILs, i.e., 1-methylimidazolium chloride ([Mim]Cl from the imidazolium family of ILs and diethylammonium dihydrogen phosphate (DEAP, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA and tributylmethylammonium methyl sulphate (TBMS from the ammonium family of ILs, were investigated. For the first time, it was observed that DE dramatically increased the DEAP–polymer mixture in 4 min compared to the polymer (alone and other polymer–IL mixtures. Therefore, DEAP IL could help improve the efficiency of DE measurements in a shorter time.

  3. Improved color purity and efficiency by a coguest emitter system in doped red light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: mdg1014@ciac.jl.cn

    2007-01-15

    We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H -(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq{sub 3}) host. It was found that the C545T dopant did not by itself emit but assisted the carrier trapping from the host Alq{sub 3} to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12cd/A at a current density of 0.3mA/cm{sup 2} and 10lm/W at a current density of 0.02mA/cm{sup 2}, which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq{sub 3}, and a stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.

  4. Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Lars Stoumann

    2013-01-01

    The objective of this study was to investigate the comparative effects of alternative partial root-zone irrigation (PRI) and deficit irrigation (DI) on fertilizer-N use efficiency in tomato plants under mineral N and organic N fertilizations. The plants were grown in split-root pots in a climate......-controlled glasshouse and were subjected to PRI and DI treatments during early fruiting stage. When analyzed across the N fertilizer treatments, PRI treatment led to significantly higher N yield, agronomic N use efficiency (ANUE), and apparent N recovery efficiency (ANRE) as compared with the DI treatment, indicating...... significantly higher fertilizer-N use efficiency and soil N availability as well as enhanced plant’s N acquisition ability in the PRI treatment. Analysis across the irrigation treatments showed that the mineral N fertilizer treatment (MinN) significantly increased N yield, ANUE and ANRE relative to the organic...

  5. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    International Nuclear Information System (INIS)

    Herrero Sola, Antonio Vanderley; Mota, Caroline Maria de Miranda; Kovaleski, Joao Luiz

    2011-01-01

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: → Lack of decision model in industrial motor system is the main motivation of the research. → A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. → The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  6. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Sola, Antonio Vanderley, E-mail: sola@utfpr.edu.br [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil); Mota, Caroline Maria de Miranda, E-mail: carolmm@ufpe.br [Federal University of Pernambuco, Cx. Postal 7462, CEP 50630-970, Recife (Brazil); Kovaleski, Joao Luiz [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil)

    2011-06-15

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: > Lack of decision model in industrial motor system is the main motivation of the research. > A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. > The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  7. Applying Lean Six Sigma methodologies to improve efficiency, timeliness of care, and quality of care in an internal medicine residency clinic.

    Science.gov (United States)

    Fischman, Daniel

    2010-01-01

    Patients' connectedness to their providers has been shown to influence the success of preventive health and disease management programs. Lean Six Sigma methodologies were employed to study workflow processes, patient-physician familiarity, and appointment compliance to improve continuity of care in an internal medicine residency clinic. We used a rapid-cycle test to evaluate proposed improvements to the baseline-identified factors impeding efficient clinic visits. Time-study, no-show, and patient-physician familiarity data were collected to evaluate the effect of interventions to improve clinic efficiency and continuity of medical care. Forty-seven patients were seen in each of the intervention and control groups. The wait duration between the end of triage and the resident-patient encounter was statistically shorter for the intervention group. Trends toward shorter wait times for medical assistant triage and total encounter were also seen in the intervention group. On all measures of connectedness, both the physicians and patients in the intervention group showed a statistically significant increased familiarity with each other. This study shows that incremental changes in workflow processes in a residency clinic can have a significant impact on practice efficiency and adherence to scheduled visits for preventive health care and chronic disease management. This project used a structured "Plan-Do-Study-Act" approach.

  8. Lean Maintenance Applied to Improve Maintenance Efficiency in Thermoelectric Power Plants

    OpenAIRE

    Orlando Duran; Andrea Capaldo; Paulo Andrés Duran Acevedo

    2017-01-01

    Thermoelectric power plants consist of a set of critical equipment that require high levels of availability and reliability. Due to this, maintenance of these physical assets is gaining momentum in industry. Maintenance is considered as an activity that contributes to improving the availability, efficiency and productivity of each piece of equipment. Several techniques have been used to achieve greater efficiencies in maintenance, among which we can find the lean maintenance philosophy. Despi...

  9. Logistics costs evaluation as a way of company’s efficiency improvement

    OpenAIRE

    Galina VOLOSCENCO; Natalia SESTENCO-DIACEK

    2015-01-01

    In Logistic systems, besides the usual costs for work forces, material and supplies, there are specific costs which are not always identified with the term classic meaning. These are transaction costs which influence on financial indicators of the company and on its efficiency and competitiveness accordingly. These costs classification, factors influencing on their amount, allows to find ways for their reduction methods and so that to improve the efficiency of the company.

  10. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  12. Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model

    International Nuclear Information System (INIS)

    Clinch, J. Peter; Healy, John D.

    2003-01-01

    There are a number of stimuli behind energy efficiency, not least the Kyoto Protocol. The domestic sector has been highlighted as a key potential area. Improving energy efficiency in this sector also assists alleviating fuel poverty, for research is now demonstrating the strong relationship between poor domestic thermal efficiency, high fuel poverty and poor health and comfort status. Previous research has modelled the energy consumption and technical potential for energy saving resulting from energy-efficiency upgrades in this sector. However, there is virtually no work evaluating the economic benefit of improving households' thermal comfort post-retrofit. This paper does this for Ireland using a computer-simulation program. A dynamic modelling process is employed which projects into the future predicting the extent to which energy savings are forgone for improvements in comfort

  13. Potential benefits from improved energy efficiency of key electrical products: The case of India

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie E.; McMahon, James E.

    2008-01-01

    The economy of the world's second most populous country continues to grow rapidly, bringing prosperity to a growing middle class while further straining an energy infrastructure already stretched beyond capacity. At the same time, efficiency policy initiatives have gained a foothold in India, and promise to grow in number over the coming years. This paper considers the maximum cost-effective potential of efficiency improvement for key energy-consuming products in the Indian context. The products considered are: household refrigerators, window air conditioners, motors and distribution transformers. Together, these products account for about 27% of delivered electricity consumption in India. The analysis estimates the minimum Life-Cycle Cost option for each product class, according to use patterns and prevailing customer marginal rates in each sector. This option represents an efficiency improvement ranging between 12% and 60%, depending on product class. If this level of efficiency was achieved starting in 2010, we estimate that total electricity consumption in India could be reduced by 4.7% by 2020, saving over 74 million tons of oil equivalent and over 246 million tons of carbon dioxide emissions. Net present financial savings of this efficiency improvement totals 8.1 billion dollars

  14. Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain

    International Nuclear Information System (INIS)

    Cansino, José M.; Román, Rocío

    2017-01-01

    Structural improvements in aircraft design, seeking to improve energy efficiency, can significantly reduce greenhouse gas emissions (GHG) by reducing reduced fuel consumption. This research reviews improvements with the introduction of a structural component known as 'winglet;' these are positioned at the top of the aircraft wing, and increased Airbus Group A320 sales. Data used are taken from air traffic in Spain for the 2010–2014 period with projections being made for 2020. The results show that winglets reduce CO_2 equivalent emissions associated with Spain's air transport for the 2015–2020 period between 66.29 and 59.56 Gg. depending on the scenario considered in 2020. - Highlights: • Spanish air traffic is considered a key-GHG emission sector. • The aviation industry has drastically reduced its emissions. • To what extent could improved model to reduce fuel consumption and polluting emissions? • A320 Neo, A330 Neo and A380 Neo models are in the process of industrialisation. • Objectives fixed by Air Transport Action Group for 2020 are relevant.

  15. The efficiency of SAP in improving the HR performance case study ...

    African Journals Online (AJOL)

    The efficiency of SAP in improving the HR performance case study: Masdar ... administrative and strategic levels, as well as identifying the contribution of ... Keywords: SAP, human resources management, Masdar Building Materials Company ...

  16. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  17. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  18. Efficient preloading of the ventricles by a properly timed atrial contraction underlies stroke work improvement in the acute response to cardiac resynchronization therapy

    Science.gov (United States)

    Hu, Yuxuan; Gurev, Viatcheslav; Constantino, Jason; Trayanova, Natalia

    2013-01-01

    Background The acute response to cardiac resynchronization therapy (CRT) has been shown to be due to three mechanisms: resynchronization of ventricular contraction, efficient preloading of the ventricles by a properly timed atrial contraction, and mitral regurgitation reduction. However, the contribution of each of the three mechanisms to the acute response of CRT, specifically stroke work improvement, has not been quantified. Objective The goal of this study was to use an MRI-based anatomically accurate 3D model of failing canine ventricular electromechanics to quantify the contribution of each of the three mechanisms to stroke work improvement and identify the predominant mechanisms. Methods An MRI-based electromechanical model of the failing canine ventricles assembled previously by our group was further developed and modified. Three different protocols were used to dissect the contribution of each of the three mechanisms to stroke work improvement. Results Resynchronization of ventricular contraction did not lead to significant stroke work improvement. Efficient preloading of the ventricles by a properly timed atrial contraction was the predominant mechanism underlying stroke work improvement. Stroke work improvement peaked at an intermediate AV delay, as it allowed ventricular filling by atrial contraction to occur at a low diastolic LV pressure but also provided adequate time for ventricular filling before ventricular contraction. Diminution of mitral regurgitation by CRT led to stroke work worsening instead of improvement. Conclusion Efficient preloading of the ventricles by a properly timed atrial contraction is responsible for significant stroke work improvement in the acute CRT response. PMID:23928177

  19. Operational Efficiency and Productivity Improvement Initiatives in a Large Cardiac Catheterization Laboratory.

    Science.gov (United States)

    Reed, Grant W; Hantz, Scott; Cunningham, Rebecca; Krishnaswamy, Amar; Ellis, Stephen G; Khot, Umesh; Rak, Joe; Kapadia, Samir R

    2018-02-26

    This study sought to report outcomes from an efficiency improvement project in a large cardiac cath lab. Operational inefficiencies are common in the cath lab, yet solutions are challenging. A detailed report describing and providing solutions for these inefficiencies may be valuable in guiding improvements in productivity. In this observational study, the authors report metrics of efficiency before and after a cath lab quality improvement program in June 2014. Main outcomes included lab room start times, room turnaround times, laboratory use, and employee satisfaction. Time series analysis was used to assess trend over time. Chi-square testing and analysis of variance were used to assess change before and after the initiative. The principal changes included implementation of a pyramidal nursing schedule, increased use of an electronic scheduling system, and increased utilization of a preparation and recovery area. Comparing before with after the program, start times improved an average of 17 min, and on-time starts improved from 61.8% to 81.7% (p = 0.0024). Turnaround times improved from 20.5 min to 16.4 min (trend p productivity. This knowledge may be helpful in assisting other cath labs in similar efficiency improvement initiatives. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  1. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    Science.gov (United States)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  2. Improving the Eco-Efficiency of High Performance Computing Clusters Using EECluster

    Directory of Open Access Journals (Sweden)

    Alberto Cocaña-Fernández

    2016-03-01

    Full Text Available As data and supercomputing centres increase their performance to improve service quality and target more ambitious challenges every day, their carbon footprint also continues to grow, and has already reached the magnitude of the aviation industry. Also, high power consumptions are building up to a remarkable bottleneck for the expansion of these infrastructures in economic terms due to the unavailability of sufficient energy sources. A substantial part of the problem is caused by current energy consumptions of High Performance Computing (HPC clusters. To alleviate this situation, we present in this work EECluster, a tool that integrates with multiple open-source Resource Management Systems to significantly reduce the carbon footprint of clusters by improving their energy efficiency. EECluster implements a dynamic power management mechanism based on Computational Intelligence techniques by learning a set of rules through multi-criteria evolutionary algorithms. This approach enables cluster operators to find the optimal balance between a reduction in the cluster energy consumptions, service quality, and number of reconfigurations. Experimental studies using both synthetic and actual workloads from a real world cluster support the adoption of this tool to reduce the carbon footprint of HPC clusters.

  3. Improving the Solar Panel Efficiency by Using Cooling and Cleaning Techniques

    Directory of Open Access Journals (Sweden)

    Anmar Khalil Ibrahim

    2017-11-01

    Full Text Available This paper is a contribution to research work which aims at ending the electricity crisis in Iraq. The electric power stations, which use conventional fuel, are unable to provide the growing population with electricity all day-long. Moreover, electric distribution lines are sometimes exposed to attacks by terrorists. This paper recommends solar energy as the optimum solution to the electricity problem in Iraq, since it is both renewable and friendly to the environment. The paper also concentrated on reliability techniques to improve the efficiency of the solar energy system. This was achieved by means of designing and constructing a cooling system that consists of fans, sprinklers and wipers to eliminate excessive heat from solar panels when temperature rises to maximum levels. Sprinklers and wipers are also useful for cleaning the panels because dust is a negative factor which undermines the generation capacity of solar panels.   The cooling system is operated by means of a microcontroller that is programmed through Proteus 8, Arduino, and Matlab2016. Statistics reveal that a cooling system has significantly improved the productive capacity of the solar system and it can achieve an energy gain of (34.55%.

  4. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  5. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    Science.gov (United States)

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  6. Improving efficiency in the radiology department

    Energy Technology Data Exchange (ETDEWEB)

    Towbin, Alexander J.; Perry, Laurie A. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2017-06-15

    The modern radiology department is built around the flow of information. Ordering providers request imaging studies to be performed, technologists complete the work required to perform the imaging studies, and radiologists interpret and report on the imaging findings. As each of these steps is performed, data flow between multiple information systems, most notably the radiology information system (RIS), the picture archiving and communication system (PACS) and the voice dictation system. Even though data flow relatively seamlessly, the majority of our systems and processes are inefficient. The purpose of this article is to describe the radiology value stream and describe how radiology informaticists in one department have worked to improve the efficiency of the value stream at each step. Through these examples, we identify and describe several themes that we believe have been crucial to our success. (orig.)

  7. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  8. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  9. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  10. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  11. An efficiency improvement in warehouse operation using simulation analysis

    Science.gov (United States)

    Samattapapong, N.

    2017-11-01

    In general, industry requires an efficient system for warehouse operation. There are many important factors that must be considered when designing an efficient warehouse system. The most important is an effective warehouse operation system that can help transfer raw material, reduce costs and support transportation. By all these factors, researchers are interested in studying about work systems and warehouse distribution. We start by collecting the important data for storage, such as the information on products, information on size and location, information on data collection and information on production, and all this information to build simulation model in Flexsim® simulation software. The result for simulation analysis found that the conveyor belt was a bottleneck in the warehouse operation. Therefore, many scenarios to improve that problem were generated and testing through simulation analysis process. The result showed that an average queuing time was reduced from 89.8% to 48.7% and the ability in transporting the product increased from 10.2% to 50.9%. Thus, it can be stated that this is the best method for increasing efficiency in the warehouse operation.

  12. Efficiency Improvements of Antenna Optimization Using Orthogonal Fractional Experiments

    Directory of Open Access Journals (Sweden)

    Yen-Sheng Chen

    2015-01-01

    Full Text Available This paper presents an extremely efficient method for antenna design and optimization. Traditionally, antenna optimization relies on nature-inspired heuristic algorithms, which are time-consuming due to their blind-search nature. In contrast, design of experiments (DOE uses a completely different framework from heuristic algorithms, reducing the design cycle by formulating the surrogates of a design problem. However, the number of required simulations grows exponentially if a full factorial design is used. In this paper, a much more efficient technique is presented to achieve substantial time savings. By using orthogonal fractional experiments, only a small subset of the full factorial design is required, yet the resultant response surface models are still effective. The capability of orthogonal fractional experiments is demonstrated through three examples, including two tag antennas for radio-frequency identification (RFID applications and one internal antenna for long-term-evolution (LTE handheld devices. In these examples, orthogonal fractional experiments greatly improve the efficiency of DOE, thereby facilitating the antenna design with less simulation runs.

  13. Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2015-01-01

    Full Text Available This paper proposes a new scheme to improve the standby efficiency of the high-power half-bridge line level control (LLC resonant converter. This new circuit is applicable to improving the efficiency of the renewable energy generation system in distributed power systems. The main purpose is to achieve high-efficiency solar and wind power and stable output under different load conditions. In comparison with the traditional one, this novel method can improve standby efficiency at standby. The system characteristics of this proposed method have been analyzed through detailed simulations, which prove its feasibility.

  14. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Radhika V Seimon

    Full Text Available Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change ÷ [(total energy intake of mice on CD or ID-(total average energy intake of controls]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05. There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01. Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative

  15. INFLUENCE OF DYNAMIC MAGNETIZATION TO IMPROVE THE EFFICIENCY OF ELECTROMAGNETIC-ACOUSTIC TRANSFORMATION WITH WAVEGUIDE CONTROL RODS

    Directory of Open Access Journals (Sweden)

    D. V. Zlobin

    2017-01-01

    Full Text Available The disadvantage of the electromagnetic-acoustic (EMA method receiving ultrasonic waves are low efficiency. The traditional way to enhance its effectiveness is increase the bias field. The aim of the study was research the way to improve the efficiency of the EMA transformation, using a time-varying bias field.The researches held with the help of a specially designed installation that allows the magnetization to be performed by a constant and alternating magnetic field (dynamic bias, synchronously with the passage of the received pulse. The object of the study were rods made of different grades of steel with a diameter of 4–6 mm, in which the symmetrical zero mode S0 of the rod wave was excited by the EMA method (in the frequency range of about 40 kHz. A comparative analysis of the amplitudes and form pulses of multiple reflections during static and dynamic reversal of magnetization and with a full cycle of magnetization reversal conducted.The result of the efficiency measurements EMA reception during static and dynamic bias found a significant (up to 5 times increase in the signal amplitude on the receiving transducer. Taking into account that the main contribution to the excitation mechanism and the reception mechanism made the magnetostrictive effect on low frecuncy, it can assumed that using a dynamic bias field is impacting significant on the effective mobility of magnetic domains (that is changes the dynamic magnetic susceptibility of the material. It is established that it is possible to monitor steel at lower values of the bias field, and, consequently, to reduce the mass dimensions of the magnetic system.Thus, in the course of the researchers found of effect of dynamic bias and effect of dynamic bias increase acoustic pulse amplitude of the signal of the received EMA method. Using this method will improve the quality EMA testing by creating more efficient EMA transducer. Taking into account that the value of the detected effect

  16. Inhaler Reminders Significantly Improve Asthma Patients' Use of Controller Medications

    Science.gov (United States)

    ... controller medications Share | Inhaler reminders significantly improve asthma patients’ use of controller medications Published Online: July 22, ... the burden and risk of asthma, but many patients do not use them regularly. This poor adherence ...

  17. Dividing wall column: Improving thermal efficiency, energy savings and economic performance

    International Nuclear Information System (INIS)

    Aurangzeb, Md; Jana, Amiya K.

    2016-01-01

    Highlights: • A rigorous model is developed for a dividing wall column. • Heat transfer model for metal wall is proposed. • Performance improvement is quantified for a ternary system. • Thermal efficiency, energy savings and cost are three used indices. - Abstract: This work aims at investigating the performance improvement of a dividing wall column (DWC) for the separation of a ternary system. It is true that for fractionating a ternary mixture, at least a sequence of two conventional distillation columns is required. To improve energetic and economic potential, and reduce space requirement, two columns are proposed to merge into one shell with a dividing wall. For developing the mathematical model of a distillation column, we consider the effect of heat transfer through the metal wall placed at an intermediated position inside the cylindrical column. The simulated DWC model is verified using the Aspen Plus flowsheet simulator with a wide variety of phase equilibrium models. The superiority of this proposed heat integrated configuration is shown for a ternary hydrocarbon system over a conventional distillation sequence (CDS) in terms of mainly three performance indexes, namely thermal efficiency, energy savings and total annual cost (TAC). It is investigated that the dividing wall distillation scheme can secure a 37.5% energy efficiency, and a 22.6% savings in energy consumption and 23.23% in TAC. The promising performance can also be quantified in terms of a reasonably low payback period of 2.11 years.

  18. The European Academy laparoscopic “Suturing Training and Testing’’ (SUTT) significantly improves surgeons’ performance

    Science.gov (United States)

    Sleiman, Z.; Tanos, V.; Van Belle, Y.; Carvalho, J.L.; Campo, R.

    2015-01-01

    The efficiency of suturing training and testing (SUTT) model by laparoscopy was evaluated, measuring the suturingskill acquisition of trainee gynecologists at the beginning and at the end of a teaching course. During a workshop organized by the European Academy of Gynecological Surgery (EAGS), 25 participants with three different experience levels in laparoscopy (minor, intermediate and major) performed the 4 exercises of the SUTT model (Ex 1: both hands stitching and continuous suturing, Ex 2: right hand stitching and intracorporeal knotting, Ex 3: left hand stitching and intracorporeal knotting, Ex 4: dominant hand stitching, tissue approximation and intracorporeal knotting). The time needed to perform the exercises is recorded for each trainee and group and statistical analysis used to note the differences. Overall, all trainees achieved significant improvement in suturing time (p psychomotor skills, surgery, teaching, training suturing model. PMID:26977264

  19. The Well of the Well (WOW) system: an efficient approach to improve embryo development

    DEFF Research Database (Denmark)

    Vajta, G; Korösi, T; Du, Y

    2008-01-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including the increased implantation rates and decreased risks of multiple pregnancies, however, it requires an efficient and reliable in vitro embryo culture system. In our study, the effect of the Well of the Well...... (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species including humans. The WOW system has resulted in significant improvement compared the drops for culture of in vitro matured and parthenogenetically activated porcine oocytes or in vivo...

  20. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  1. LSB steganography with improved embedding efficiency and undetectability

    OpenAIRE

    Khalind, Omed; Aziz, Benjamin Yowell Yousif

    2015-01-01

    In this paper, we propose a new method of non-adapt ive LSB steganography in still images to improve the embedding efficiency from 2 to 8/3 rand om bits per one embedding change even for the embedding rate of 1 bit per pixel. The method t akes 2-bits of the secret message at a time and compares them to the LSBs of the two chosen pix el values for embedding, it always assumes a single mismatch between the two and uses the seco nd LSB o...

  2. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  3. Application of Lean Healthcare methodology in a urology department of a tertiary hospital as a tool for improving efficiency.

    Science.gov (United States)

    Boronat, F; Budia, A; Broseta, E; Ruiz-Cerdá, J L; Vivas-Consuelo, D

    To describe the application of the Lean methodology as a method for continuously improving the efficiency of a urology department in a tertiary hospital. The implementation of the Lean Healthcare methodology in a urology department was conducted in 3 phases: 1) team training and improvement of feedback among the practitioners, 2) management by process and superspecialisation and 3) improvement of indicators (continuous improvement). The indicators were obtained from the Hospital's information systems. The main source of information was the Balanced Scorecard for health systems management (CUIDISS). The comparison with other autonomous and national urology departments was performed through the same platform with the help of the Hospital's records department (IASIST). A baseline was established with the indicators obtained in 2011 for the comparative analysis of the results after implementing the Lean Healthcare methodology. The implementation of this methodology translated into high practitioner satisfaction, improved quality indicators reaching a risk-adjusted complication index (RACI) of 0.59 and a risk-adjusted mortality rate (RAMR) of 0.24 in 4 years. A value of 0.61 was reached with the efficiency indicator (risk-adjusted length of stay [RALOS] index), with a savings of 2869 stays compared with national Benchmarking (IASIST). The risk-adjusted readmissions index (RARI) was the only indicator above the standard, with a value of 1.36 but with progressive annual improvement of the same. The Lean methodology can be effectively applied to a urology department of a tertiary hospital to improve efficiency, obtaining significant and continuous improvements in all its indicators, as well as practitioner satisfaction. Team training, management by process, continuous improvement and delegation of responsibilities has been shown to be the fundamental pillars of this methodology. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Process efficiency. Redesigning social networks to improve surgery patient flow.

    Science.gov (United States)

    Samarth, Chandrika N; Gloor, Peter A

    2009-01-01

    We propose a novel approach to improve throughput of the surgery patient flow process of a Boston area teaching hospital. A social network analysis was conducted in an effort to demonstrate that process efficiency gains could be achieved through redesign of social network patterns at the workplace; in conjunction with redesign of organization structure and the implementation of workflow over an integrated information technology system. Key knowledge experts and coordinators in times of crisis were identified and a new communication structure more conducive to trust and knowledge sharing was suggested. The new communication structure is scalable without compromising on coordination required among key roles in the network for achieving efficiency gains.

  5. Indoor climate quality after renovation for improved energy efficiency

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Løck, Sebastian; Kolarik, Barbara

    2016-01-01

    The building sector is responsible for approximately 40 % of the Danish energy consumption. As every year less than 1 % of the building stock is rebuild after demolition of old buildings, improved energy efficiency of existing buildings are in focus. In the late seventies to mid-eighties unwise...... performance. The indoor quality classifications show minor improvements. By using design tools beyond the simple legal requirements, the rental dwelling marked is a far step ahead of most retrofitting of owner-occupied dwellings and houses. The fear of indoor climate degradation from retrofitted energy saving...... measures may be countered by the use of modern design tools and attention to inner moisture membranes and needs for renovation of ventilation systems....

  6. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  7. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    Science.gov (United States)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  8. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  9. Dynamic water allocation policies improve the global efficiency of storage systems

    Science.gov (United States)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  10. Use of automated rendezvous trajectory planning to improve spacecraft operations efficiency

    Science.gov (United States)

    Mulder, Tom A.

    1991-01-01

    The current planning process for space shuttle rendezvous with a second Earth-orbiting vehicle is time consuming and costly. It is a labor-intensive, manual process performed pre-mission with the aid of specialized maneuver processing tools. Real-time execution of a rendezvous plan must closely follow a predicted trajectory, and targeted solutions leading up to the terminal phase are computed on the ground. Despite over 25 years of Gemini, Apollo, Skylab, and shuttle vehicle-to-vehicle rendezvous missions flown to date, rendezvous in Earth orbit still requires careful monitoring and cannot be taken for granted. For example, a significant trajectory offset was experienced during terminal phase rendezvous of the STS-32 Long Duration Exposure Facility retrieval mission. Several improvements can be introduced to the present rendezvous planning process to reduce costs, produce more fuel-efficient profiles, and increase the probability of mission success.

  11. Possible improvements of efficiency by the use of new coal conversion technologies

    International Nuclear Information System (INIS)

    Krieb, K.H.

    1976-01-01

    Following a comparison of the efficiencies of conventional steam power processes, the gas fuel cell and the combined gas steam turbine processes are introduced as new coal utilization technologies. Coal conversion processes which can be coupled to combined gas-steam turbine processes such as the fluidized-bed firing, the solid bed gasification, the dust part-gasification and the fluidized-bed gasification are more closely mentioned and their coupling efficiencies discussed. The decoupling of third energy, such as low-temperature heat, high-temperature heat and chemical energy are briefly dealt with as third possibility for the improvement of the efficiency. (GG/LH) [de

  12. THE IMPROVEMENT OF THE CONCEPT OF THE EFFICIENCY OF VENTURE BUSINESS'S ATTRACTION

    Directory of Open Access Journals (Sweden)

    А. Cherednik

    2017-08-01

    Full Text Available The concept of the efficiency of venture business’s attraction was improved in the article. The theoretical foundations of venture business’s concept were explored, four approaches to venture business’s understanding were singled out, and its own definition which fully reflects the essence was developed in the investigation. The author examines the existing approaches to the concepts of effect and efficiency and revealed that efficiency is the ratio of the effect obtained to the costs incurred to achieve it. Also, the author developed the concept of effectiveness of venture business’s attraction.

  13. Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2014-03-01

    Full Text Available Improving energy efficiency has been widely regarded as one of the most cost-effective ways to improve sustainability and mitigate climate change. This paper presents a sequential slack-based efficiency measure (SSBM application to model total-factor energy efficiency with undesirable outputs. This approach simultaneously takes into account the sequential environmental technology, total input slacks, and undesirable outputs for energy efficiency analysis. We conduct an empirical analysis of energy efficiency incorporating greenhouse gas emissions of Korean power companies during 2007–2011. The results indicate that most of the power companies are not performing at high energy efficiency. Sequential technology has a significant effect on the energy efficiency measurements. Some policy suggestions based on the empirical results are also presented.

  14. Strategies of Transition to Sustainable Agriculture in Iran I- Improving Resources Use Efficiency

    Directory of Open Access Journals (Sweden)

    Alireza Koocheki

    2017-12-01

    Full Text Available Introduction Fast switch to sustainable agriculture patterns is not impossible for many farmers. However to achieve perfect sustainable in agro-ecosystems which are friendly with environment, changing conventional to sustainable agriculture should be carried slowly. For this purpose, three effective steps were mentioned: first level is increasing of inputs efficiency such as fertilizer and chemical pesticides which used in conventional agriculture now. Second level is related to changing inputs by friendly environmental inputs as alternative inputs and the final level is redesigning of the agro-ecosystems that its function is based on series of ecological process. On the other hand, achieving sustainable agriculture requires higher efficiency of inputs and many process should be replaced by friendly environmental inputs with chemical inputs and new system is designed based on ecological principles. The objective of this study was to offer approaches for improving inputs use efficiency as first step to transition from conventional to sustainable agriculture. Material and Methods In order to evaluate the transition status from conventional to sustainable agriculture in agro-ecosystems of Iran, scientific resource and researches that was performed about increasing of inputs efficiency as first step to transition from conventional to sustainable agriculture was studied. For this purpose, 177 studies that had been performed about using different inputs and its efficiency in various crops were assessed. Applied inputs included water, nitrogen and herbicides and studied plants included cereals (wheat, barley, rice, maize and sorghum, beans (bean, pea and lentil, oil crops (canola, sunflower, safflower and sesame, medicinal plants, potato, sugar beet and cotton. In this study, average and range of inputs use efficiency in different crops and also the relationship between increasing of inputs application with their use efficiency was assessed. In the

  15. Reluctance motor of new design with improved efficiency and power factor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen-Goos, P; Pieper, W

    1981-09-01

    Improvement of operating conditions and efficiency by development of new configurations of lamination and production methods for reluctance motors. Investigations during the starting-up period and of the operating behaviour in connection with variable frequency. Reluctance motors are designed in the range from 0,6-4kW with 4-pole winding. They are due to the following identification: 1. The power of motors is in accordance with VDE 42673. 2. The volume of lamination is equal to asynchronous motors of the same IED size. 3. Synchronous pull-out torque is in compliance with VDE 0530: Msub(K)sub(S) > 1,35 Mn (nominal torque). As against standard reluctance motors the following improvements with the new ones have been realized: 4. Increase of nominal power by approx. 100%. 5. Increase of quality factor by approx. 50%. 6. The efficiency is equal to asynchronous motors of the same IEC size.

  16. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    Science.gov (United States)

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  17. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars

    Directory of Open Access Journals (Sweden)

    Sahoo Khirod K

    2011-12-01

    Full Text Available Abstract Background Rice genome sequencing projects have generated remarkable amount of information about genes and genome architecture having tremendous potential to be utilized in both basic and applied research. Success in transgenics is paving the way for preparing a road map of functional genomics which is expected to correlate action of a gene to a trait in cellular and organismal context. However, the lack of a simple and efficient method for transformation and regeneration is a major constraint for such studies in this important cereal crop. Results In the present study, we have developed an easy, rapid and highly efficient transformation and regeneration protocol using mature seeds as explants and found its successful applicability to a choice of elite indica rice genotypes. We have optimized various steps of transformation and standardized different components of the regeneration medium including growth hormones and the gelling agent. The modified regeneration medium triggers production of large number of shoots from smaller number of calli and promotes their faster growth, hence significantly advantageous over the existing protocols where the regeneration step requires maximum time. Using this protocol, significantly higher transformation efficiency (up to 46% and regeneration frequency (up to 92% for the untransformed calli and 59% for the transformed calli were achieved for the four tested cultivars. We have used this protocol to produce hundreds of independent transgenic lines of different indica rice genotypes. Upon maturity, these transgenic lines were fertile thereby indicating that faster regeneration during tissue culture did not affect their reproductive potential. Conclusions This speedy, yet less labor-intensive, protocol overcomes major limitations associated with genetic manipulation in rice. Moreover, our protocol uses mature seeds as the explant, which can easily be obtained in quantity throughout the year and kept

  18. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    Science.gov (United States)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  19. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    International Nuclear Information System (INIS)

    Aziz, Nur Liyana Afiqah Abdul; Yap, Keem Siah; Bunyamin, Muhammad Afif

    2013-01-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of c omputing the word . The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  20. Evaluation and Improvement of Lighting Efficiency in Working Spaces

    Directory of Open Access Journals (Sweden)

    Ana Castillo-Martinez

    2018-04-01

    Full Text Available Lighting is an essential element for modern life, promoting a sense of wellbeing for users. However, bad illumination may produce health problems such as headaches and fatigue, among other vision problems. For that reason, this paper proposes the development of a smartphone-based application to help in lighting evaluation to guarantee the compliance of illumination regulations and to help increase illuminance efficiency, reducing its energy consumption. To perform this evaluation, the smartphone can be used as a lighting measurement tool, evaluating those measurements through an intelligent agent based in rules capable of guiding the decision-making process. As a result, this tool allows the evaluation of the real working environment to guarantee lighting requirements, helping in the prevention of health problems derived from bad illumination and improving the lighting efficiency at the same time.

  1. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  2. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    Science.gov (United States)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which

  3. Integrated Circuit Chip Improves Network Efficiency

    Science.gov (United States)

    2008-01-01

    Prior to 1999 and the development of SpaceWire, a standard for high-speed links for computer networks managed by the European Space Agency (ESA), there was no high-speed communications protocol for flight electronics. Onboard computers, processing units, and other electronics had to be designed for individual projects and then redesigned for subsequent projects, which increased development periods, costs, and risks. After adopting the SpaceWire protocol in 2000, NASA implemented the standard on the Swift mission, a gamma ray burst-alert telescope launched in November 2004. Scientists and developers on the James Webb Space Telescope further developed the network version of SpaceWire. In essence, SpaceWire enables more science missions at a lower cost, because it provides a standard interface between flight electronics components; new systems need not be custom built to accommodate individual missions, so electronics can be reused. New protocols are helping to standardize higher layers of computer communication. Goddard Space Flight Center improved on the ESA-developed SpaceWire by enabling standard protocols, which included defining quality of service and supporting plug-and-play capabilities. Goddard upgraded SpaceWire to make the routers more efficient and reliable, with features including redundant cables, simultaneous discrete broadcast pulses, prevention of network blockage, and improved verification. Redundant cables simplify management because the user does not need to worry about which connection is available, and simultaneous broadcast signals allow multiple users to broadcast low-latency side-band signal pulses across the network using the same resources for data communication. Additional features have been added to the SpaceWire switch to prevent network blockage so that more robust networks can be designed. Goddard s verification environment for the link-and-switch implementation continuously randomizes and tests different parts, constantly anticipating

  4. Improving the Efficiency of Photon Collection by Compton Rescue

    Science.gov (United States)

    2011-03-01

    burnished by vibratory shot peening,” Acta Physica Polonica , vol. A 110, pp. 739–46, 2006. [4] M. Cunningham et al., “First-generation hybrid compact...Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright...R. Kowash (Member) Date AFIT/GAP/ENP/11-M10 Abstract A method to improve the efficiency of photon collection in thin planar HPGe de- tectors was

  5. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  6. A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-02-01

    Full Text Available The key to control the range extender generation system is to improve the efficiency and reduce the emissions of the electric vehicle (EV. In this paper, based on the purpose of efficiency optimization, both engine and generator are matched to get a public high efficiency region, and a partial power following control strategy was presented. The engine speed is constant in the defined power range, so the output power regulation of the range extender is only realized by the adjustment of the torque of the generator. Engine speed and generator torque were decoupled. An improved proportional resonant (PR controller is adopted to achieve fast output power regulation. In order to ensure the response characteristics of the control system and to improve the robustness, the impacts on system’s characteristics and stability caused by PR controller and parameters in the inner-current loop were analyzed via frequency response characteristics. A pre-Tustin with deviation compensation is proposed for PR controller’s discretization. A stable and robust power following control method is obtained for the range extender control system. Finally, simulation and experiment of the proposed control strategy illustrated its feasibility and correctness.

  7. Improving the efficiency of a chemotherapy day unit: Applying a business approach to oncology

    NARCIS (Netherlands)

    van Lent, W.A.M.; Goedbloed, N.; van Harten, Willem H.

    2009-01-01

    Aim: To improve the efficiency of a hospital-based chemotherapy day unit (CDU). - Methods: The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean

  8. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    Directory of Open Access Journals (Sweden)

    Jenna eJarvis

    2013-06-01

    Full Text Available How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat’s echoes, but additional mechanisms are needed to explain the bat sonar system’s exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other’s pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat’s emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  9. Improved contact metallization for high efficiency EFG polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Dube, C.E.; Gonsiorawski, R.C.

    1990-01-01

    Improvements in the performance of polycrystalline silicon solar cells based on a novel, laser patterned contact process are described. Small lots of cells having an average conversion efficiency of 14 + %, with several cells approaching 15%, are reported for cells of 45 cm 2 area. The high efficiency contact design is based on YAG laser patterning of the silicon nitride anti-reflection coating. The Cu metallization is done using light-induced plating, with the cell providing the driving voltage for the plating process. The Cu electrodeposits into the laser defined windows in the AR coating for reduced contact area, following which the Cu bridges on top of the Ar coating to form a continuous finger pattern. The higher cell conversion efficiency is attributed to reduced shadow loss, higher junction quality, and reduced metal-semiconductor interfacial area

  10. Improving the relevance and efficiency of human exposure assessments within the process of regulatory risk assessment.

    Science.gov (United States)

    Money, Chris

    2018-01-24

    The process for undertaking exposure assessments varies dependent on its purpose. But for exposure assessments to be relevant and accurate, they are reliant on access to reliable information on key exposure determinants. Acquiring such information is seldom straightforward and can take significant time and resources. This articles examines how the application of tiered and targeted approaches to information acquisition, within the context of European human health risk assessments, can not only lead to improvements in the efficiency and effectiveness of the process but also in the confidence of stakeholders in its outputs. The article explores how the benefits might be further improved through the coordination of such activities, as well as those areas that represent barriers to wider international harmonisation.

  11. PROSPECTS OF ENERGY EFFICIENCY IMPROVEMENT AND DEVELOPMENT OF THE RENEWABLE ENERGY SOURCES IN PROVINCE OF VOJVODINA

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdenac, D.; Ciric, R.; Tesic, M.

    2007-07-01

    The paper presents the outcome of the research in the field of energy efficiency improvement and development of the renewable energy sources in province of Vojvodina (Serbia). The summarized results of the paper are: - Potentials for energy efficiency improvement in Vojvodina, - Potentials for development of renewable energy sources in Vojvodina, - Proposal of measures of the energy policy for the promotion of research and development (R and D) which will use local scientific and technical potentials in the field of renewable energy sources and energy efficiency and improve the sustainability on the long run. - Proposal of measures for the energy policy in the domain of renewable energy sources development and energy efficiency and estimation of potentials for improvements by applying proposed measures in order to accomplish established tasks. - Synthesizing findings and proposals in the Action Plan of the Executive Council of the Autonomous Province of Vojvodina for the realization of the medium term program as well as the establishment of the monitoring plan for the assessment of program objectives progress. (auth)

  12. Bedtime Blood Pressure Chronotherapy Significantly Improves Hypertension Management.

    Science.gov (United States)

    Hermida, Ramón C; Ayala, Diana E; Fernández, José R; Mojón, Artemio; Crespo, Juan J; Ríos, María T; Smolensky, Michael H

    2017-10-01

    Consistent evidence of numerous studies substantiates the asleep blood pressure (BP) mean derived from ambulatory BP monitoring (ABPM) is both an independent and a stronger predictor of cardiovascular disease (CVD) risk than are daytime clinic BP measurements or the ABPM-determined awake or 24-hour BP means. Hence, cost-effective adequate control of sleep-time BP is of marked clinical relevance. Ingestion time, according to circadian rhythms, of hypertension medications of 6 different classes and their combinations significantly improves BP control, particularly sleep-time BP, and reduces adverse effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. National Emergency Preparedness and Response: Improving for Incidents of National Significance

    National Research Council Canada - National Science Library

    Clayton, Christopher M

    2006-01-01

    The national emergency management system has need of significant improvement in its contingency planning and early consolidation of effort and coordination between federal, state, and local agencies...

  14. SCM: A method to improve network service layout efficiency with network evolution

    Science.gov (United States)

    Zhao, Qi; Zhang, Chuanhao

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299

  15. ANALYSIS AND IMPROVEMENT OF PRODUCTION EFFICIENCY IN A CONSTRUCTION MACHINE ASSEMBLY LINE

    Directory of Open Access Journals (Sweden)

    Alidiane Xavier

    2016-07-01

    Full Text Available The increased competitiveness in the market encourages the ongoing development of systems and production processes. The aim is to increase production efficiency to production costs and waste be reduced to the extreme, allowing an increased product competitiveness. The objective of this study was to analyze the overall results of implementing a Kaizen philosophy in an automaker of construction machinery, using the methodology of action research, which will be studied in situ the macro production process from receipt of parts into the end of the assembly line , prioritizing the analysis time of shipping and handling. The results show that the continuous improvement activities directly impact the elimination of waste from the assembly process, mainly related to shipping and handling, improving production efficiency by 30% in the studied processes.

  16. SCM: A method to improve network service layout efficiency with network evolution.

    Science.gov (United States)

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.

  17. Application of porous medium for efficiency improvement of a concentrated solar air heating system

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.

  18. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.

  19. Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate

    Science.gov (United States)

    Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi

    2018-04-01

    One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.

  20. Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.K.; Rietbergen, M.; Van der Gaast, W.

    2009-01-01

    In this paper we examine the implementation of a combined policy scheme that consists of a traditional instrument, the voluntary agreements (VAs), and an innovative one, the white certificates (WhC). The basic structure of this scheme is that energy suppliers who undertake an energy efficiency obligation under a white certificate scheme can make use of voluntary actions to enhance investments in innovative energy savings projects. Energy suppliers and other market parties can additionally or in parallel participate in voluntary agreements and set energy efficiency targets. For fulfilling their voluntary agreement target, these market parties can receive tax exemptions or receive white certificates that they can sell in the market. Transaction costs and baseline definition for demonstrating energy efficiency improvement deserve special attention. This policy can assist a country to enhance energy efficiency improvement while it stimulates innovation. Cost effectiveness can be higher than the case of stand-alone policy instruments, since more financing options are available for more expensive projects. Nevertheless, the added value of the scheme lies more in the implementation of innovative measures for enhanced energy efficiency. Furthermore, market parties can discover more business opportunities in energy efficiency and establish a green image; hence an integrated scheme should achieve higher political acceptability. (author)

  1. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    Science.gov (United States)

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  2. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  3. Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from Bacillus licheniformis in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jian-Rong Wang

    2015-01-01

    Full Text Available α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis, the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.

  4. Improved energy efficiency in sawmill drying system

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2014-01-01

    Highlights: • A heating system at a sawmill was investigated and improved. • Different impacts of external technologies at the energy usage were explored. • The heat and electricity consumption was analysed separate between technologies type. • The result point out a significant decrease of the biomass consumptions. - Abstract: The worldwide use of biomass has increased drastically during the last decade. At Swedish sawmills about half of the entering timber becomes lumber, with the remainder considered as by-product (biomass). A significant part of this biomass is used for internal heat production, mainly for forced drying of lumber in drying kilns. Large heat losses in kilns arise due to difficulties in recovering evaporative heat in moist air at low temperatures. This paper addresses the impact of available state-of-the-art technologies of heat recycling on the most common drying schemes used in Swedish sawmills. Simulations of different technologies were performed on an hourly basis to compare the heat and electricity demand with the different technologies. This was executed for a total sawmill and finally to the national level to assess the potential effects upon energy efficiency and biomass consumption. Since some techniques produce a surplus of heat the comparison has to include the whole sawmill. The impact on a national level shows the potential of the different investigated techniques. The results show that if air heat exchangers were introduced across all sawmills in Sweden, the heat demand would decrease by 0.3 TWh/year. The mechanical heat pump technology would decrease the heat demand by 5.6 TWh/year and would also produce a surplus for external heat sinks, though electricity demand would increase by 1 TWh/year. The open absorption system decreases the heat demand by 3.4 TWh/year on a national level, though at the same time there is a moderate increase in electricity demand of 0.05 TWh/year. Introducing actual energy prices in Sweden gives an

  5. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field

    Science.gov (United States)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-10-01

    A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  7. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  8. Quality initiatives: lean approach to improving performance and efficiency in a radiology department.

    Science.gov (United States)

    Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M

    2012-01-01

    Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development. © RSNA, 2012.

  9. Process improvement methods increase the efficiency, accuracy, and utility of a neurocritical care research repository.

    Science.gov (United States)

    O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor

    2012-08-01

    Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.

  10. Eco-Efficient Process Improvement at the Early Development Stage: Identifying Environmental and Economic Process Hotspots for Synergetic Improvement Potential.

    Science.gov (United States)

    Piccinno, Fabiano; Hischier, Roland; Seeger, Stefan; Som, Claudia

    2018-05-15

    We present here a new eco-efficiency process-improvement method to highlight combined environmental and costs hotspots of the production process of new material at a very early development stage. Production-specific and scaled-up results for life cycle assessment (LCA) and production costs are combined in a new analysis to identify synergetic improvement potentials and trade-offs, setting goals for the eco-design of new processes. The identified hotspots and bottlenecks will help users to focus on the relevant steps for improvements from an eco-efficiency perspective and potentially reduce their associated environmental impacts and production costs. Our method is illustrated with a case study of nanocellulose. The results indicate that the production route should start with carrot pomace, use heat and solvent recovery, and deactivate the enzymes with bleach instead of heat. To further improve the process, the results show that focus should be laid on the carrier polymer, sodium alginate, and the production of the GripX coating. Overall, the method shows that the underlying LCA scale-up framework is valuable for purposes beyond conventional LCA studies and is applicable at a very early stage to provide researchers with a better understanding of their production process.

  11. Applying industrial process improvement techniques to increase efficiency in a surgical practice.

    Science.gov (United States)

    Reznick, David; Niazov, Lora; Holizna, Eric; Siperstein, Allan

    2014-10-01

    The goal of this study was to examine how industrial process improvement techniques could help streamline the preoperative workup. Lean process improvement was used to streamline patient workup at an endocrine surgery service at a tertiary medical center utilizing multidisciplinary collaboration. The program consisted of several major changes in how patients are processed in the department. The goal was to shorten the wait time between initial call and consult visit and between consult and surgery. We enrolled 1,438 patients enrolled in the program. The wait time from the initial call until consult was reduced from 18.3 ± 0.7 to 15.4 ± 0.9 days. Wait time from consult until operation was reduced from 39.9 ± 1.5 to 33.9 ± 1.3 days for the overall practice and to 15.0 ± 4.8 days for low-risk patients. Patient cancellations were reduced from 27.9 ± 2.4% to 17.3 ± 2.5%. Overall patient flow increased from 30.9 ± 5.1 to 52.4 ± 5.8 consults per month (all P process improvement methodology, surgery patients can benefit from an improved, streamlined process with significant reduction in wait time from call to initial consult and initial consult to surgery, with reduced cancellations. This generalized process has resulted in increased practice throughput and efficiency and is applicable to any surgery practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Assessing global resource utilization efficiency in the industrial sector

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2013-01-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. - Highlights: ► The global industrial sector and its industries are assessed by using energy and exergy methods. ► Global industrial sector efficiencies are evaluated as 51% based on energy and 30% based on exergy. ► Exergy analysis shows global industrial energy to be less efficient than does energy analysis. ► A misleadingly low margin for efficiency improvement is indicated by energy analysis. ► A significant and rational margin for efficiency improvement exists from an exergy perspective

  13. Prospects for Genetic Improvement in Internal Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2017-10-01

    Full Text Available While improving the efficiency at which rice plants take up fertiliser nitrogen (N will be critical for the sustainability of rice (Oryza sativa L. farming systems in future, improving the grain yield of rice produced per unit of N accumulated in aboveground plant material (agronomic N use efficiency; NUEagron through breeding may also be a viable means of improving the sustainability of rice cropping. Given that NUEagron (grain yield/total N uptake is a function of harvest index (HI; grain yield/crop biomass × crop biomass/total N uptake, and that improving HI is already the target of most breeding programs, and specific improvement in NUEagron can only really be achieved by increasing the crop biomass/N uptake. Since rice crops take up around 80% of total crop N prior to flowering, improving the biomass/N uptake (NUEveg prior to, or at, flowering may be the best means to improve the NUEagron. Ultimately, however, enhanced NUEagron may come at the expense of grain protein unless the N harvest index increases concurrently. We investigated the relationships between NUEagron, total N uptake, grain yield, grain N concentration (i.e., protein and N harvest index (NHI in 16 rice genotypes under optimal N conditions over two seasons to determine if scope exists to improve the NHI and/or grain protein, while maintaining or enhancing NUEagron in rice. Using data from these experiments and from an additional experiment with cv. IR64 under optimum conditions at an experimental farm to establish a benchmark for NUE parameters in high-input, high yielding conditions, we simulated theoretical potential improvements in NUEveg that could be achieved in both low and high-input scenarios by manipulating target NHIs and grain protein levels. Simulations suggested that scope exists to increase grain protein levels in low yielding scenarios with only modest (5–10% reductions in current NUEagron by increasing the current NHI from 0.6 to 0.8. Furthermore

  14. Improving solar-pumped laser efficiency by a ring-array concentrator

    Science.gov (United States)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  15. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  16. Strategies for improving water use efficiency of livestock production in rain-fed systems.

    Science.gov (United States)

    Kebebe, E G; Oosting, S J; Haileslassie, A; Duncan, A J; de Boer, I J M

    2015-05-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall water use efficiency of agriculture. Previous studies have reported significant variation in livestock water productivity (LWP) within and among farming systems. Underlying causes of this variation in LWP require further investigation. The objective of this paper was to identify the factors that explain the variation in LWP within and among farming systems in Ethiopia. We quantified LWP for various farms in mixed-crop livestock systems and explored the effect of household demographic characteristics and farm assets on LWP using ANOVA and multilevel mixed-effect linear regression. We focused on water used to cultivate feeds on privately owned agricultural lands. There was a difference in LWP among farming systems and wealth categories. Better-off households followed by medium households had the highest LWP, whereas poor households had the lowest LWP. The variation in LWP among wealth categories could be explained by the differences in the ownership of livestock and availability of family labor. Regression results showed that the age of the household head, the size of the livestock holding and availability of family labor affected LWP positively. The results suggest that water use efficiency could be improved by alleviating resource constraints such as access to farm labor and livestock assets, oxen in particular.

  17. Improving robustness and computational efficiency using modern C++

    International Nuclear Information System (INIS)

    Paterno, M; Kowalkowski, J; Green, C

    2014-01-01

    For nearly two decades, the C++ programming language has been the dominant programming language for experimental HEP. The publication of ISO/IEC 14882:2011, the current version of the international standard for the C++ programming language, makes available a variety of language and library facilities for improving the robustness, expressiveness, and computational efficiency of C++ code. However, much of the C++ written by the experimental HEP community does not take advantage of the features of the language to obtain these benefits, either due to lack of familiarity with these features or concern that these features must somehow be computationally inefficient. In this paper, we address some of the features of modern C+-+, and show how they can be used to make programs that are both robust and computationally efficient. We compare and contrast simple yet realistic examples of some common implementation patterns in C, currently-typical C++, and modern C++, and show (when necessary, down to the level of generated assembly language code) the quality of the executable code produced by recent C++ compilers, with the aim of allowing the HEP community to make informed decisions on the costs and benefits of the use of modern C++.

  18. Significant performance improvement obtained in a wireless mesh network using a beamswitching antenna

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-09-01

    Full Text Available mesh network operated in a fixed 11 Mbps mode. The throughput improvement in multi-hop communication obtained in the presence of an interferer is tenfold, from 0.2 Mbps to 2 Mbps. Index Terms?antenna, smart antenna, wireless mesh network, WMN... efficiency in the communications, and active research and development of new methods and technologies enabling this at the physical layer, including multiple antenna techniques, such as multiple input multiple output (MIMO) and smart antennas...

  19. Application of heterogeneous blading systems is the way for improving efficiency of centrifugal energy pumps

    Science.gov (United States)

    Pochylý, F.; Haluza, M.; Fialová, S.; Dobšáková, L.; Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Druzhinin, A. A.

    2017-11-01

    The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient n s engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of n s are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1-4% (in the experiments for the pumps with n s = 33 and 55) and to extend its efficient working zone approximately by 15-20% (in the experiment for the pumps with n s = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.

  20. Improving The Efficiency Of Ammonia Electrolysis For Hydrogen Production

    Science.gov (United States)

    Palaniappan, Ramasamy

    Given the abundance of ammonia in domestic and industrial wastes, ammonia electrolysis is a promising technology for remediation and distributed power generation in a clean and safe manner. Efficiency has been identified as one of the key issues that require improvement in order for the technology to enter the market phase. Therefore, this research was performed with the aim of improving the efficiency of hydrogen production by finding alternative materials for the cathode and electrolyte. 1. In the presence of ammonia the activity for hydrogen evolution reaction (HER) followed the trend Rh>Pt>Ru>Ni. The addition of ammonia resulted in lower rates for HER for Pt, Ru, and Ni, which have been attributed to competition from the ammonia adsorption reaction. 2. The addition of ammonia offers insight into the role of metal-hydrogen underpotential deposition (M-Hupd) on HER kinetics. In addition to offering competition via ammonia adsorption it resulted in fewer and weaker M-Hupd bonds for all metals. This finding substantiates the theory that M-Hupd bonds favor HER on Pt electrocatalyst. However, for Rh results suggest that M-Hupd bond may hinder the HER. In addition, the presence of unpaired valence shell electrons is suggested to provide higher activity for HER in the presence of ammonia. 3. Bimetals PtxM1-x (M = Ir, Ru, Rh, and Ni) offered lower overpotentials for HER compared to the unalloyed metals in the presence of ammonia. The activity of HER in the presence of ammonia follows the trend Pt-Ir>Pt-Rh>Pt-Ru>Pt-Ni. The higher activity of HER is attributed to the synergistic effect of the alloy, where ammonia adsorbs onto the more electropositive alloying metal leaving Pt available for Hupd formation and HER to take place. Additionally, this supports the theory that the presence of a higher number of unpaired electrons favors the HER in the presence of ammonia. 4. Potassium polyacrylate (PAA-K) was successfully used as a substitute for aqueous KOH for ammonia

  1. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2004-01-01

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs'', was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. The project has received a one-year, no-cost extension to September 27, 2005. During this extra time additional deliverables will be (1) the version of MASTER that has been debugged and a foam option added for CO 2 mobility control and (2) adsorption/desorption data on pure component minerals common in reservoir rock that will be used to improve predictions of chemical loss to adsorption in reservoirs. This report discusses the activity during the six-month period covering October 1, 2003 through March 31, 2004 that comprises the first and second fiscal quarters of the project's third year. During this period of the project several areas have advanced: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. Presentations and papers included: a papers covered in a previous report was presented at the fall SPE ATCE in Denver in October 2003, a presentation at the Southwest ACS meeting in Oklahoma City, presentation on CO 2 flood basic behavior at the Midland Annual CO 2 Conference December 2003; two papers prepared for the biannual SPE/DOE Symposium on IOR, Tulsa, April 2004; one paper accepted for the fall 2004 SPE ATCE in Houston; and a paper submitted to an international journal Journal of Colloid and Interface Science which is being revised after peer review

  2. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  3. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...

  4. Improving the efficiency of a chemotherapy day unit: applying a business approach to oncology.

    Science.gov (United States)

    van Lent, Wineke A M; Goedbloed, N; van Harten, W H

    2009-03-01

    To improve the efficiency of a hospital-based chemotherapy day unit (CDU). The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean thinking, was performed. An integrated set of interventions was implemented, among them a new planning system. The results were evaluated using pre- and post-measurements. We observed 24% growth of treatments and bed utilisation, a 12% increase of staff member productivity and an 81% reduction of overtime. The used method improved process design and led to increased efficiency and a more timely delivery of care. Thus, the business approaches, which were adapted for healthcare, were successfully applied. The method may serve as an example for other oncology settings with problems concerning waiting times, patient flow or lack of beds.

  5. Improving the efficiency of deconvolution algorithms for sound source localization

    DEFF Research Database (Denmark)

    Lylloff, Oliver Ackermann; Fernandez Grande, Efren; Agerkvist, Finn T.

    2015-01-01

    of the unknown acoustic source distribution and the beamformer's response to a point source, i.e., point-spread function. A significant limitation of deconvolution is, however, an additional computational effort compared to beamforming. In this paper, computationally efficient deconvolution algorithms...

  6. Energy efficiency improving opportunities in a large Chinese shoe-making enterprise

    International Nuclear Information System (INIS)

    Ming Yang

    2010-01-01

    Energy consumption and energy intensity reduction opportunities are quite different from one enterprise to another. It is necessary to understand how much energy is used at individual enterprise, where the most energy is consumed and what the best opportunities are to invest in energy efficiency. Auditing energy efficiency was recently undertaken in one of the top 1000 largest Chinese enterprises. The objectives of this paper are to fill a gap in the literature of auditing energy efficiency for a Chinese manufacturing enterprise and to share the audited energy efficiency results. This paper concludes that if the enterprise invests USD 1.9 million to improve energy efficiency, the investment will be recovered in about 18 months. The net present value of the investment would be about USD 9.8 million at a discount rate of 12%. The investment will reduce a large amount of energy consumption at the enterprise based on its figures in 2008, including 15% of electricity, 40% of fuel oil, and 54% of diesel. Carbon reduction is also very cost-effective. Investment of one dollar in the enterprise will help cut carbon emission by 7.95 kg per year and generate $5.3 net revenue in the economic lifetime of the invested technology.

  7. Commonalty initiatives in US nuclear power plants to improve radiation protection culture and worker efficiency

    International Nuclear Information System (INIS)

    Wood, W.; Miller, D.

    2003-01-01

    Many US nuclear power plants have learned that common procedures, policies, instrumentation, tools and work practices achieve improvements to the radiation protection culture. Significant worker efficiency achievements are accomplished especially during refuelling outages. This paper discusses commonalty initiatives currently being implemented at many US Plants to address management challenges presented by deregulation of the US electric industry, reduction in the pool of outage contractors and aging of the experienced radiation worker population. The new INPO 2005 dose goals of 650 person-mSv/year for PWRs and 1200 person-mSv/yr for PWRs will require new approaches to radiation protection management to achieve these challenging goals by 2005. (authors)

  8. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  9. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  10. Double-Grating Displacement Structure for Improving the Light Extraction Efficiency of LEDs

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2012-01-01

    Full Text Available To improve the light extraction efficiency of light-emitting diodes (LEDs, grating patterns were etched on GaN and silver film surfaces. The grating-patterned surface etching enabled the establishment of an LED model with a double-grating displacement structure that is based on the surface plasmon resonance principle. A numerical simulation was conducted using the finite difference time domain method. The influence of different grating periods for GaN surface and silver film thickness on light extraction efficiency was analyzed. The light extraction efficiency of LEDs was highest when the grating period satisfied grating coupling conditions. The wavelength of the highest value was also close to the light wavelength of the medium. The plasmon resonance frequencies on both sides of the silver film were affected by silver film thickness. With increasing film thickness, plasmon resonance frequency tended toward the same value and light extraction efficiency reached its maximum. When the grating period for the GaN surface was 365 nm and the silver film thickness was 390 nm, light extraction efficiency reached a maximum of 55%.

  11. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong [Korea Testing and Research Institute, Kwachun (Korea, Republic of)

    2015-03-15

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  12. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    International Nuclear Information System (INIS)

    Park, Dae Woong

    2015-01-01

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  13. Improved efficiency of organic light-emitting diodes based on a europium complex by fluorescent dye

    Energy Technology Data Exchange (ETDEWEB)

    You Han [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Fang Junfeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Gao Jia [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: mdg1014@ciac.jl.cn

    2007-01-15

    Improved efficiency of organic light-emitting diodes (OLEDs) based on europium complexes have been realized by using a fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl))-4H-pyran (DCJTB) doping .The luminous efficiency of the devices with a fluorescent dye in the emissive layer was found to improve two times of that in devices without fluorescent dye. The devices showed pure red light, which is the characteristic emission of trivalent europium ion with a full-width at half-maximum of 3 nm.The maximum brightness and luminous efficiency reached 1200 cd/m{sup 2} at 23 V and 7.3 cd/A (2.0 lm/w), respectively, at a current density of 0.35 mA/cm{sup 2}.

  14. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    International Nuclear Information System (INIS)

    Kaoma, J.; Kasali, G.B.; Ellegaard, A.

    1994-01-01

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO 2 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO 2 did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  15. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kaoma, J; Kasali, G B [Building and Industrial Minerals Research Unit, National Council for Scientific Research, (Zambia); Ellegaard, A [Stockholm Environment Inst. (Sweden)

    1994-12-31

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO{sub 2} did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  16. Feeding Supplementation And Radioimmunoassay (RIA) Technique For The Improvement Of artificial Insemination (AI) Efficiency

    International Nuclear Information System (INIS)

    Tjiptosumirat, Totti; Supandi, Dadang; Firsoni

    2002-01-01

    Recent research activities have showed that RIA techniques may be use as a tool in the improvement of dairy cattle AI in . Cisurupan district, Garut. Although already indicate in the previous research, with a small number of dairy cattle tested, a more in depth study on the utilization of RIA for the improvement of AI efficiency is still required. It is indicated from the previous experiment results that administration of feeding supplementation might improved the efficiency of reproductive performance of dairy cattle. The current Study is a continuation from the previous study with a larger number of dairy cattle and wider area covered. The experiment is aimed to monitor the impact of feeding supplementation on the reproductive performance of dairy cattle using Artificial Insemination Database Application (AIDA) and RIA technique. Result from this study indicated that feeding supplementation improved conception rate between pre-supplemented and post-supplemented dairy cattle; 25% vs 40%, respectively, therefore improve ratio of Service per Conception of 4.0 vs 2.3, respectively for pre-supplemented and post-supplemented dairy cattle. Result of this experiment also showed that RIA might be use as an effective tool in monitoring the early failure of AI compared to if just relying on the conventional method, the rectal palpation. However, due to an increase in milk production as a result of feeding supplementation, tanners tend to lengthen the lactation period from 10.20 ± 0.5 months to 11.8 ± 0.6 months, respectively in dairy cattle pre-supplemented and post-supplemented. It can be conclude from this study that supplementation feeding improve reproductive performance. However, even AIDA and RIA may be of effective tool in monitoring the reproductive performance of dairy cattle, as an holistic approach for an improvement dairy farm management is still required due to other factors play important role for AI efficiency

  17. Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica Oprea

    2018-01-01

    Full Text Available Although in 2012 the European Union (EU has promoted energy efficiency in order to ensure a gradual 20% reduction of energy consumption by 2020, its targets related to energy efficiency have increased and extended to new time horizons. Therefore, in 2016, a new proposal for 2030 of energy efficiency target of 30% has been agreed. However, during the last years, even if the electricity consumption by households decreased in the EU-28, the largest expansion was recorded in Romania. Taking into account that the projected consumption peak is increasing and energy consumption management for residential activities is an important measure for energy efficiency improvement since its ratio from total consumption can be around 25–30%, in this paper, we propose an informatics solution that assists both electricity suppliers/grid operators and consumers. It includes three models for electricity consumption optimization, profiles, clustering and forecast. By this solution, the daily operation of appliances can be optimized and scheduled to minimize the consumption peak and reduce the stress on the grid. For optimization purpose, we propose three algorithms for shifting the operation of the programmable appliances from peak to off-peak hours. This approach enables the supplier to apply attractive time-of-use tariffs due to the fact that by flattening the consumption peak, it becomes more predictable, and thus improves the strategies on the electricity markets. According to the results of the optimization process, we compare the proposed algorithms emphasizing the benefits. For building consumption profiles, we develop a clustering algorithm based on self-organizing maps. By running the algorithm for three scenarios, well-delimited profiles are obtained. As for the consumption forecast, highly accurate feedforward artificial neural networks algorithm with backpropagation is implemented. Finally, we test these algorithms using several datasets showing their

  18. What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to China in developing policies and programs to motivate enterprises to improve energy efficiency.

  19. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  20. Evaluating and Directions for Improving the Efficiency of Use of the Main Production Assets of Enterprise

    Directory of Open Access Journals (Sweden)

    Chumak Larysa F.

    2017-04-01

    Full Text Available The article is aimed at studying the existing approaches to evaluation, as well as analyzing and determining the relevant directions for improving the efficiency of use of the enterprise’s main production assets. The article explores the issues such as development of the theoretical-methodical approaches to evaluating and improving the efficiency of use, finding practical ways and forms to implement innovations and upgrade the main production assets. It has been found that ensuring the efficient use of the main production assets goes along with application of technical, organizational-productive and organizational-administrative activities that are not only related to the technical side of the use, but also require the involvement and training of highly qualified professionals capable of providing with the appropriate productivity a high level of all the types of the work needed. The introduction of modern achievements in the sphere of management automation, production, advanced technologies, and the development of an optimal structure of the main assets would improve the efficiency of use of the main production assets.

  1. Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China

    International Nuclear Information System (INIS)

    Fan Ying; Liao Hua; Wei Yiming

    2007-01-01

    Since China accelerated its market oriented economic reforms at the end of 1992, its energy intensity has declined 3.6% annually over 1993-2005. However, its energy intensity declined 4.2% annually during its first reform period 1979-1992. Therefore, can we conclude that the accelerated marketization since the end of 1992 has made no contribution to its energy efficiency improvement? In order to answer this challenging question, we examine the changes of energy own-price elasticity, as well as the elasticities of substitution between energy and non-energy (capital and labor) in China during the periods of 1979-1992 and 1993-2003. Generally, in transition or developing economies, holding the technology and output level fixed, if the energy own-price elasticity (algebraic value) declines or the substitution elasticity between factors rises, they will contribute to energy efficiency improvement. Our empirical study finds that: (1) during 1979-1992, the energy own-price elasticity is positive (0.285), and capital-energy, labor-energy are both Morishima complementary; which indicates a distorted energy price and inefficient allocation; and (2) during 1993-2003, the own-price elasticity for energy is negative (-1.236), and capital-energy and labor-energy are both Morishima substitute. All factor demands become more elastic, and all elasticities of substitution increase. The implication is that the accelerated marketization contributes substantially to energy efficiency improvement since 1993

  2. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    field monitoring. Vibration prediction diminishes the importance of trial-and-error procedures such as drill-off tests, which are valid only for short sections. It also solves an existing lapse in Mechanical Specific Energy (MSE) real-time drilling control programs applying the theory of Teale, which states that a drilling system is perfectly efficient when it spends the exact energy to overcome the in situ rock strength. Using the proprietary software tool this paper will examine the resonant vibration modes that may be initiated while drilling with different BHA's and drill string designs, showing that the combination of a proper BHA design along with the correct selection of input parameters results in an overall improvement to drilling efficiency. Also, being the BHA predictively analyzed, it will be reduced the potential for vibration or stress fatigue in the drill string components, leading to a safer operation. In the recent years there has been an increased focus on vibration detection, analysis, and mitigation techniques, where new technologies, like the Drilling Dynamics Data Recorders (DDDR), may provide the capability to capture high frequency dynamics data at multiple points along the drilling system. These tools allow the achievement of drilling performance improvements not possible before, opening a whole new array of opportunities for optimization and for verification of predictions calculated by the drill string dynamics modeling software tool. The results of this study will identify how the dynamics from the drilling system, interacting with formation, directly relate to inefficiencies and to the possible solutions to mitigate drilling vibrations in order to improve drilling performance. Software vibration prediction and downhole measurements can be used for non-drilling operations like drilling out casing or reaming, where extremely high vibration levels - devastating to the cutting structure of the bit before it has even touched bottom - have

  3. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  4. Energy efficiency improvement of medical electric tools and devices

    Directory of Open Access Journals (Sweden)

    Meshkov Aleksandr S.

    2014-01-01

    Full Text Available With the ever-increasing volume of applications of various kinds of electric drives in all spheres of human activity, the issues in improving the efficiency of the electromechanical converters of electric energy, one of the most important components of the electric drive (ED, are becoming increasingly important. Such issues include reducing their weight and size, improving the functional characteristics of these devices to increase their operational life and reducing the cost of manufacture. Taking full advantage of these opportunities relates to the AC and DC single-phase commutator motor (SCM, which is widely used in regulated and high-speed motor drives in medical electric hand tools. The SCM is used in machinery where the load torque has a hyperbolic dependence on the rotational speed and the need to work with a large motor overload due to the “soft” mechanical characteristics of such motors.

  5. Improvement of uranium production efficiency to meet China's nuclear power requirements

    International Nuclear Information System (INIS)

    Zhang, R.

    1997-01-01

    Recently China put the Qinshan Nuclear Power Plant, with an installed capacity of 300 MW, in the province of Zhejiang and the Daya Bay Nuclear Power Plant, with a total installed capacity of 2 x 900 MW, in commercial operation. China plans a rapid growth in nuclear power from 1995 to 2010. China's uranium production will therefore also enter a new period with nuclear power increasing. In order to meet the demand of nuclear power for uranium special attention has been paid to both technical progress improvement using management with the aim of reducing the cost of uranium production. The application of the trackless mining technique has enhanced the uranium mining productivity significantly. China has produced a radiometric sorter, model 5421-2 for pre-concentrating uranium run-of-mine ore. This effectively increases the uranium content in mill feed and decreases the operating cost of hydrometallurgical treatment. The in situ leach technique after blasting is applied underground in the Lantian Mine, in addition to the surface heap leaching, and has obtained a perfect result. The concentrated acid-curing, and ferric sulphate trickle leaching process, will soon be used in commercial operation for treating uranium ore grading -5 to -7 mm in size. The annual production capability of the Yining Mine will be extended to 100 tonnes U using improving in situ leaching technology. For the purpose of improving the uranium production efficiency much work has been done optimizing the distribution of production centres. China plans to expand its uranium production to meet the uranium requirements of the developing nuclear power plants. (author). 4 tabs

  6. [Improvement of Phi bodies stain and its clinical significance].

    Science.gov (United States)

    Gong, Xu-Bo; Lu, Xing-Guo; Yan, Li-Juan; Xiao, Xi-Bin; Wu, Dong; Xu, Gen-Bo; Zhang, Xiao-Hong; Zhao, Xiao-Ying

    2009-02-01

    The aim of this study was to improve the dyeing method of hydroperoxidase (HPO), to analyze the morphologic features of Phi bodies and to evaluate the clinical application of this method. 128 bone marrow or peripheral blood smears from patients with myeloid and lymphoid malignancies were stained by improved HPO staining. The Phi bodies were observed with detection rate of Phi bodies in different leukemias. 69 acute myeloid leukemia (AML) specimens were chosen randomly, the positive rate and the number of Phi bodies between the improved HPO and POX stain based on the same substrate of 3, 3'diaminobenzidine were compared. The results showed that the shape of bundle-like Phi bodies was variable, long or short. while the nubbly Phi bodies often presented oval and smooth. Club-like Phi bodies were found in M(3). The detection rates of bundle-like Phi bodies in AML M(1)-M(5) were 42.9% (6/14), 83.3% (15/18), 92.0% (23/25), 52.3% (11/21), 33.3% (5/15) respectively, and those of nubbly Phi bodies were 28.6% (4/14), 66.7% (12/18), 11.1% (3/25), 33.3% (7/21), 20.0% (3/15) respectively. The detection rate of bundle-like Phi bodies in M(3) was significantly higher than that in (M(1) + M(2)) or (M(4) + M(5)) groups. The detection rate of nubbly Phi bodies in (M(1) + M(2)) group was higher than that in M(3) group. In conclusion, after improvement of staining method, the HPO stain becomes simple, the detection rate of Phi bodies is higher than that by the previous method, the positive granules are more obvious, and the results become stable. This improved method plays an important role in differentiating AML from ALL, subtyping AML, and evaluating the therapeutic results.

  7. ALTERNATIVES TO IMPROVE HYBRIDIZATION EFFICIENCY IN Eucalyptus BREEDING PROGRAMS

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2002-01-01

    Full Text Available Simple and quick hybridization procedures and ways to keep pollen grains viable for long periods are sought in plant breeding programs to provide greater work flexibility. The presentstudy was carried out to assess the efficiency of pollinations made shortly after flower emasculationand the viability of stored pollen from Eucalyptus camaldulensis and Eucalyptus urophylla clones cultivated in Northwestern Minas Gerais State. Controlled pollinations were carried out at zero, one,three, five and seven days after emasculation. Hybridization efficiency was assessed by thepercentage of viable fruits, number of seeds produced per fruit, percentage of viable seeds and also bycytological observation of the pollen development along the style. Flower buds from clones of the twospecies were collected close to anthesis to assess the viability of pollen grain storage. Pollen was thencollected and stored in a freezer (-18oC for 1, 2 and 3 months. Pollen assessed was carried out by invitro and in vivo germination tests. The efficiency of the pollinations varied with their delay and alsobetween species. The greatest pollination efficiency was obtained when they were carried out on thethird and fifth day after emasculation, but those performed simultaneously with emasculationproduced enough seeds to allow this practice in breeding programs. The decrease in pollen viabilitywith storage was not sufficiently significant to preclude the use of this procedure in artificialhybridization.

  8. Improving quantum efficiency and spectral resolution of a CCD through direct manipulation of the depletion region

    Science.gov (United States)

    Brown, Craig; Ambrosi, Richard M.; Abbey, Tony; Godet, Olivier; O'Brien, R.; Turner, M. J. L.; Holland, Andrew; Pool, Peter J.; Burt, David; Vernon, David

    2008-07-01

    Future generations of X-ray astronomy instruments will require position sensitive detectors in the form of charge-coupled devices (CCDs) for X-ray spectroscopy and imaging with the ability to probe the X-ray universe with greater efficiency. This will require the development of CCDs with structures that will improve their quantum efficiency over the current state of the art. The quantum efficiency improvements would have to span a broad energy range (0.2 keV to >15 keV). These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth's magnetosphere. This study outlines the most recent work carried out at the University of Leicester focused on improving the quantum efficiency of an X-ray sensitive CCD through direct manipulation of the device depletion region. It is also shown that increased spectral resolution is achieved using this method due to a decrease in the number of multi-pixel events. A Monte Carlo and analytical models of the CCD have been developed and used to determine the depletion depths achieved through variation of the device substrate voltage, Vss. The models are also used to investigate multi-pixel event distributions and quantum efficiency as a function of depletion depth.

  9. Improving laboratory efficiencies to scale-up HIV viral load testing.

    Science.gov (United States)

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  10. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  11. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network

    International Nuclear Information System (INIS)

    Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto

    2014-01-01

    Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat

  12. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue

    2018-06-06

    The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.

  13. Modeling energy efficiency to improve air quality and health effects of China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Krol, Maarten; Bruine, Marco de; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Highlights: • An integrated model was used to model the co-benefits for China’s cement industry. • PM_2_._5 would decrease by 2–4% by 2030 through improved energy efficiency. • 10,000 premature deaths would be avoided per year relative to the baseline scenario. • Total benefits are about two times higher than the energy efficiency costs. - Abstract: Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China’s cement industry is the second largest energy consumer and key emitter of CO_2 and air pollutants, which accounts for 7% of China’s total energy consumption, 15% of CO_2, and 14% of PM_2_._5, respectively. In this study, a state-of-the art modeling framework is developed that comprises a number of different methods and tools within the same platform (i.e. provincial energy conservation supply curves, the Greenhouse Gases and Air Pollution Interactions and Synergies, ArcGIS, the global chemistry Transport Model, version 5, and Health Impact Assessment) to assess the potential for energy savings and emission mitigation of CO_2 and PM_2_._5, as well as the health impacts of pollution arising from China’s cement industry. The results show significant heterogeneity across provinces in terms of the potential for PM_2_._5 emission reduction and PM_2_._5 concentration, as well as health impacts caused by PM_2_._5. Implementation of selected energy efficiency measures would decrease total PM_2_._5 emissions by 2% (range: 1–4%) in 2020 and 4% (range: 2–8%) by 2030, compared to the baseline scenario. The reduction potential of provincial annual PM_2_._5 concentrations range from 0.03% to 2.21% by 2030 respectively, when compared to the baseline scenario. 10,000 premature deaths are avoided by 2020 and 2030 respectively relative to baseline scenario. The

  14. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  15. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  16. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  17. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  18. Identification of barriers and research opportunities to improve the effective and efficient application of adjunct UVC surface disinfection in healthcare

    Science.gov (United States)

    Martinello, Richard A.; Miller, Shelly L.; Fabian, M. Patricia; Peccia, Jordan

    2018-02-01

    Healthcare associated infections (HAI) affect approximately 1 of every 25 hospitalized patients, lead to substantial morbidity and mortality, degrade patient experience and are costly. Risks for HAI are multifactorial and it is known that microbial contamination of the healthcare environment increases risk for HAI. Portable ultraviolet-C (UVC) surface disinfection as an adjunct to standard hospital disinfection has been shown to decrease both surface microbial contamination and HAI. However, there remain significant gaps in the understanding of the efficient and effective application of UVC in healthcare. Specific barriers identified are: 1) the variability in size, shape, and surface materials of hospital rooms as well as the presence of medical devices and furniture, which impacts the amount of UVC energy delivered to surfaces and its disinfection efficiency; 2) the significant resources needed to acquire and efficiently use UVC equipment and achieve the desired patient benefits- a particular challenge for complex healthcare facilities with limited operating margins; and 3) the lack of implementation guidance and industry standard methods for measuring the UVC output and antimicrobial effects from the multiple commercial UVC options available. An improved understanding of the efficient and effective use of UVC surface disinfection in healthcare and the implementation of standard device industry metrics may lead to increased use and decrease the burden of HAI.

  19. Strategies for Improving siRNA-Induced Gene Silencing Efficiency.

    Science.gov (United States)

    Safari, Fatemeh; Rahmani Barouji, Solmaz; Tamaddon, Ali Mohammad

    2017-12-01

    Purpose: Human telomerase reverse transcriptase (hTERT) plays a crucial role in tumorigenesis and progression of cancers. Gene silencing of hTERT by short interfering RNA (siRNA) is considered as a promising strategy for cancer gene therapy. Various algorithms have been devised for designing a high efficient siRNA which is a significant issue in the clinical usage. Thereby, in the present study, the relation of siRNA designing criteria and the gene silencing efficiency was evaluated. Methods: The siRNA sequences were designed and characterized by using on line soft wares. Cationic co-polymer (polyethylene glycol-g-polyethylene imine (PEG-g-PEI)) was used for the construction of polyelectrolyte complexes (PECs) containing siRNAs. The cellular uptake of the PECs was evaluated. The gene silencing efficiency of different siRNA sequences was investigated and the effect of observing the rational designing on the functionality of siRNAs was assessed. Results: The size of PEG-g-PEI siRNA with N/P (Nitrogen/Phosphate) ratio of 2.5 was 114 ± 0.645 nm. The transfection efficiency of PECs was desirable (95.5% ± 2.4%.). The results of Real-Time PCR showed that main sequence (MS) reduced the hTERT expression up to 90% and control positive sequence (CPS) up to 63%. These findings demonstrated that the accessibility to the target site has priority than the other criteria such as sequence preferences and thermodynamic features. Conclusion: siRNA opens a hopeful window in cancer therapy which provides a convenient and tolerable therapeutic approach. Thereby, using the set of criteria and rational algorithms in the designing of siRNA remarkably affect the gene silencing efficiency.

  20. Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115. Deduced Xyl10E shares the highest identities of 62% and 57% with characterized family GH10 xylanases from Talaromyces leycettanus and Penicillium canescens (structure 4F8X, respectively. Xyl10E was most active at 93 to 95°C and pH 4.0, retained more than 75% or 48% of the initial activity when heated at 80°C or 90°C for 30 min, respectively, and hardly lost activity at pH 1.0 to 7.0, but was completely inhibited by SDS. Two residues, A160 and A161, located on loop 4, were identified to play roles in catalysis. Mutants A160D/E demonstrated higher affinity to substrate with lower Km values, while mutants A161D/E mainly displayed elevated Vmax values. All of these mutants had significantly improved catalytic efficiency. According to the molecular dynamics simulation, the mutation of A160E was able to affect the important substrate binding site Y204 and then improve the substrate affinity, and the mutation of A161D was capable of forming a hydrogen bond with the substrate to promote the substrate binding or accelerate the product release. This study introduces a highly thermophilic fungal xylanase and reveals the importance of loop 4 for catalytic efficiency.

  1. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    International Nuclear Information System (INIS)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-01-01

    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  2. Improving the computation efficiency of COBRA-TF for LWR safety analysis of large problems

    International Nuclear Information System (INIS)

    Cuervo, D.; Avramova, M. N.; Ivanov, K. N.

    2004-01-01

    A matrix solver is implemented in COBRA-TF in order to improve the computation efficiency of both numerical solution methods existing in the code, the Gauss elimination and the Gauss-Seidel iterative technique. Both methods are used to solve the system of pressure linear equations and relay on the solution of large sparse matrices. The introduced solver accelerates the solution of these matrices in cases of large number of cells. The execution time is reduced in half as compared to the execution time without using matrix solver for the cases with large matrices. The achieved improvement and the planned future work in this direction are important for performing efficient LWR safety analyses of large problems. (authors)

  3. Improving efficiency and effectiveness in natural gas regulation : discussion paper

    International Nuclear Information System (INIS)

    Rounding, M.C.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper discusses the impact that natural gas regulation has had on the efficiency and competitiveness of the industry and its affect on customers and other stakeholders. It focuses on the efficiency of the regulatory process and examines regulatory objectives, best practices and performance indicators. The factors that determine the efficiency of natural gas regulation include alternative regulatory models, structure of the regulatory agency, regulatory framework approaches, and outcomes for the natural gas industry. The relationship between the government and the regulator was also examined in terms of their abilities to implement policy. A comparative evaluation between energy regulators in Canada, the United States, Australia and the United Kingdom was presented. The balancing of short-term and long-term objectives for gas supply and planning issues was also addressed. 17 refs

  4. Rational Formations of a Metro Train Improve Its Efficiencies of Both Traction Energy Utilization and Passenger Transport

    Directory of Open Access Journals (Sweden)

    Xuesong Feng

    2013-01-01

    Full Text Available Based on simulations of passenger transports of two representative types of metro trains in China, this study analyzes efficiencies of energy consumption and passenger transport of a metro train in the effect of its target speed, formation scale (FS (i.e., length and mass of the formation, relative traction capacity (RTC (i.e., ratio of the motoring cars to all its cars, and so forth. It is found that increasing energy cost efficiency of a metro train with decreasing its target speed is evidently accelerated with reducing its RTC below 0.50 at the expense of obviously lowering its passenger transport efficiency. Moreover, if the passenger capacity of the train is sufficiently utilized, increasing its FS for the same RTC is easy to have its passenger transport efficiency improved significantly even for a meanwhile much decreased target speed with consuming energy less intensively. Therefore, metro trains in peak hours may take comparatively big FSs, relatively high target speeds, and RTCs over 0.50 to meet usually urgent and large-scale travel demands in such time. In contrast, trains in nonpeak hours ought to have small FSs, relatively low target speeds, and RTCs smaller than 0.50 for mainly avoiding energy waste.

  5. Trade-offs between Energy Efficiency improvements and additional Renewable Energy supply: A review of international experiences

    DEFF Research Database (Denmark)

    Baldini, Mattia; Klinge Jacobsen, Henrik

    improvements made in the energy saving field. Indeed, less attention has been paid to implement energy efficiency measures in energy systems modeling, which has resulted in scenarios where expedients for a wise use of energy (e.g. energy savings and renewables’ share) are unbalanced and cost......-savings opportunities are missed. The aim of this paper is to review and evaluate international experiences on finding the optimal trade-off between efficiency improvements and additional renewable energy supply. A critical review of each technique, focusing on purposes, methodology and outcomes, is provided along......-makers, informations useful for identify a suitable analysis for investigate on the optimal trade-off between renewables and energy efficiency measures in energy-systems under different objectives....

  6. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  7. Efficient training schemes that improve the forecast quality of a supermodel

    Science.gov (United States)

    Schevenhoven, Francine; Selten, Frank; Duane, Gregory; Keenlyside, Noel

    2017-04-01

    Weather and climate models have improved steadily over time as witnessed by objective skill scores, although they remain imperfect. Given these imperfect models, predictions might be improved by combining them dynamically into a so-called "supermodel". In contrast to the standard multi-model ensemble approach, the models exchange information during the simulation, which leads to new solutions. In this study we explore different techniques to create such a supermodel. The techniques are applied to global climate models. The results indicate that the techniques are computationally efficient and lead to supermodels with superior forecast quality and climatology compared to the individual models or the standard multi-model ensemble approach.

  8. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs; ANNUAL

    International Nuclear Information System (INIS)

    Grigg, Reid B.; Schechter, David S.

    1999-01-01

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results)

  9. An investigation of various wavelength-shifting compounds for improving counting efficiency when 32P-Cerenkov radiation is measured in aqueous samples

    International Nuclear Information System (INIS)

    Ginkel, G. van

    1980-01-01

    Various water-soluble wavelength-shifting compounds were investigated to assess their suitability for the improvement of counting efficiency when Cerenkov radiation from phosphorous-32 is measured in a liquid scintillation counter. Of these compounds esculin, β-methyl-umbelliferon and sodium salicylate led to the greatest improvement in counting efficiency. Especially esculin and β-methyl-umbelliferon are fairly stable under a variety of experimental conditions and improve counting efficiencies by a factor of about 1.3 and 1.2 respectively. The use of ethanol as a water-miscible solvent combined with wavelength shifters soluble in both solvents does not improve counting efficiency. (author)

  10. Improving Energy Efficiency Through Technology. Trends, Investment Behaviour and Policy Design

    Energy Technology Data Exchange (ETDEWEB)

    Florax, R.J.G.M. [Purdue University, West Lafayette, IN (United States); De Groot, H.L.F. [VU University, Amsterdam (Netherlands); Mulder, P. [Tinbergen Institute, Amsterdam (Netherlands)] (eds.)

    2011-10-15

    This innovative book explores the adoption of energy-saving technologies and their impact on energy efficiency improvements. It contains a mix of theoretical and empirical contributions, and combines and compares economic and physical indicators to monitor and analyse trends in energy efficiency. The authors pay considerable attention to empirical research on the determinants of energy-saving investment including uncertainty, energy-price volatility and subsidies. They also discuss the role of energy modelling in policy design and the potential effect of energy policies on technology diffusion in energy-extensive sectors. Written from a multi-disciplinary perspective, this book will appeal to academics and graduates in the areas of energy-saving technologies, energy economics and natural resource economics, as well as policy makers - particularly those in energy policy.

  11. Environmental Efficiency Analysis of Listed Cement Enterprises in China

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2016-05-01

    Full Text Available China’s cement production has been the highest worldwide for decades and contributes significant environmental pollution. Using a non-radical DEA model with slacks-based measure (SBM, this paper analyzes the environmental efficiency of China’s listed cement companies. The results suggest that the average mean of the environmental efficiency for the listed cement enterprises shows a decreasing trend in 2012 and 2013. There is a significant imbalance in environmental efficiency in these firms ranging from very low to very high. Further investigation finds that enterprise size and property structure are key factors. Increasing production concentration and decreasing the share of government investment could improve the environmental efficiency. The findings also suggest that effectively monitoring pollution products can improve environmental efficiency quickly, whereas pursuit for excessive profitability without keeping the same pace in energy saving would cause a sharp drop in environmental efficiency. Based on these findings, we proposed that companies in the Chinese cement sector might consider restructuring to improve environmental efficiency. They also need to make a trade-off between profitability and environmental protection. Finally, the Chinese government should reduce ownership control and management interventions in cement companies.

  12. Gender and relative economic efficiency in improved cassava farms ...

    African Journals Online (AJOL)

    Educational level and extension contact were positive and significant at 5% for both gender farmer groups. Credit was negative but significant at 5% amongst female farmer groups. Gender participation in improved new cassava showed that those energy sapping operations were dominated by male folk while light operation ...

  13. The German way to an energy efficient future. Process and cross cutting technology improvements for CO{sub 2} reductions and a competitive economy

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, P.

    1999-07-01

    The aim of the paper is to show how Germany tries to improve the energy efficiency of the economy and reduce carbon dioxide emissions without affecting the competitiveness of the industry. Between 1990 to 1995 Germany has reduced its CO{sub 2} emission from 1029 to 933 million tonnes, which is equivalent to an emission reduction of 9%. To analyse and compare different options to reach the emission reduction target, multiple tools have been developed and can be used to help in setting policy priorities. The IKARUS model and database together with the use of energy efficiency indicators helps to keep the development of energy consumption and emission reduction on track to the reduction target. Voluntary agreements between industry and government had been worked out, to limit the emissions in the energy intensive sectors of the German industry. Results from the monitoring of this efforts will be presented together with a short evaluation of the factors influencing the improvements in energy efficiency. As energy related emissions can be reduced significantly by closing energy and material flows, the effect of recycling of energy intensive materials such as steel, glass, plastics, and paper is discussed. The possible role of renewables as energy carrier and feedstock is evaluated for the production of surfactants. If more oleochemical surfactants could be applied, this will help to reduce the CO{sub 2} emissions from the use of fossil fuels as feedstock. The efficiency improvement by cross cutting technologies will be discussed for furnaces, compressed air systems and electric motors. Most of these improvement potentials are economic at present energy prices, but some barriers for their application has to be overcome. One way to help decision makers in industry is the use of energy benchmarking. Benchmarking helps to analyse the energy efficiency of the own company in comparison to the competitors and to set appropriate targets and to prepare a road map of measures to

  14. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  15. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  16. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2017-09-01

    Full Text Available The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI and energy efficiency operational indicator (EEOI aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  17. An improved routine for the fast estimate of ion cyclotron heating efficiency in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1992-02-01

    The subroutine ICEVAL for the rapid simulation of Ion Cyclotron Heating in tokamak plasmas is based on analytic estimates of the wave behaviour near resonances, and on drastic but reasonable simplifications of the real geometry. The subroutine has been rewritten to improve the model and to facilitate its use as input in transport codes. In the new version the influence of quasilinear minority heating on the damping efficiency is taken into account using the well-known Stix analytic approximation. Among other improvements are: a) the possibility of considering plasmas with more than two ion species; b) inclusion of Landau, Transit Time and collisional damping on the electrons non localised at resonances; c) better models for the antenna spectrum and for the construction of the power deposition profiles. The results of ICEVAL are compared in detail with those of the full-wave code FELICE for the case of Hydrogen minority heating in a Deuterium plasma; except for details which depend on the excitation of global eigenmodes, agreement is excellent. ICEVAL is also used to investigate the enhancement of the absorption efficiency due to quasilinear heating of the minority ions. The effect is a strongly non-linear function of the available power, and decreases rapidly with increasing concentration. For parameters typical of Asdex Upgrade plasmas, about 4 MW are required to produce a significant increase of the single-pass absorption at concentrations between 10 and 20%. (orig.)

  18. The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea

    International Nuclear Information System (INIS)

    Jin, Sang-Hyeon

    2007-01-01

    The government of South Korea considers an energy efficiency improvement policy an effective economic measure for climate change like many other governments. But it is unaware of any 'rebound effect', the unexpected result of energy efficiency improvement. So the rebound effect of residential electricity use in South Korea was estimated using two different scales in this paper. At the macro level, the rebound effect was estimated indirectly by using price elasticity, and at the micro level, the rebound effect of individual home appliances was estimated directly by using a non-linear relationship between energy efficiency and energy use. At the macro level, the long- and short-term results of rebound effect were estimated at 30% and 38%, respectively. Also at the micro level, the rebound effect of air conditioners was 57-70%; while refrigerators showed only a composite of rebound and income effects. Finally, there was no backfire effect, and efficiency improvement brought energy reduction. In conclusion, these suggest that rebound effect is an important factor that the government of South Korea must consider when planning its energy efficiency improvement policy. (author)

  19. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  20. Efficiency improvements by Metal Wrap Through technology for n-type Si solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Wenchao, Zhao; Jianming, Wang; Yanlong, Shen; Ziqian, Wang; Yingle, Chen; Shuquan, Tian; Zhiliang, Wan; Bo, Yu; Gaofei, Li; Zhiyan, Hu; Jingfeng, Xiong [Yingli Green Energy Holding Co., Ltd, 3399 North Chaoyang Avenue, Baoding (China); Guillevin, N.; Heurtault, B.; Aken, B.B. van; Bennett, I.J.; Geerligs, L.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    N-type Metal Wrap Through (n-MWT) is presented as an industrially promising back-contact technology to reach high performance of silicon solar cells and modules. It can combine benefits from both n-type base and MWT metallization. In this paper, the efficiency improvements of commercial industrial n-type bifacial Si solar cells (239 cm{sup 2}) and modules (60 cells) by the integration of the MWT technique are described. For the cell, after the optimization of integration, over 0.3% absolute efficiency gain was achieved over the similar non-MWT technology, and Voc gain and Isc gain up to 0.9% and 3.5%, respectively. These gains are mainly attributed to reduced shading loss and surface recombination. Besides the front pattern optimization, a 0.1m{Omega} reduction of Rs in via part will induce further 0.06% absolute efficiency improvement. For the module part, a power output of n-MWT module up to 279W was achieved, corresponding to a module efficiency of about 17.7%.

  1. Nanoscale Dimples for Improved Absorption in and Efficiency of Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr

    Organic solar cells (OSC’s) have attracted much attention in the past years due to their low costs, light weight and mechanical flexibility. A promising method for improving the power conversion efficiencies of the devices is by incorporating structured electrodes in the solar cell architecture....... That way light absorption in the active layers of the devices can be improved. A cheap and large-scale production compatible method for structuring the electrodes in OSC’s is by the use of Anodic Alumina Oxide (AAO) membranes. Here, nano-scale pores of controlled dimensions are formed through anodic...

  2. Improving recovery efficiency of water-drive channel sandstone reservoir by drilling wells laterally

    Energy Technology Data Exchange (ETDEWEB)

    Zhiguo, F.; Quinglong, D.; Pingshi, Z.; Bingyu, J.; Weigang, L. [Research Institute of Exploration and Development, Daqing (China)

    1998-12-31

    Example of drilling a horizontal well in reservoir rock of only four meter thick by using existing casing pipe of low efficiency vertical wells to induce production in the top remaining reservoir is described. The experience shows that drilling horizontal wells laterally in thin bodies of sandstone reservoirs and improve their productivity is a feasible proposition. Productivity will still be low, but it can be improved by well stimulation. 3 refs., 3 figs.

  3. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  4. Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study

    Science.gov (United States)

    Byrne, N M; Sainsbury, A; King, N A; Hills, A P; Wood, R E

    2018-01-01

    Background/Objectives: The MATADOR (Minimising Adaptive Thermogenesis And Deactivating Obesity Rebound) study examined whether intermittent energy restriction (ER) improved weight loss efficiency compared with continuous ER and, if so, whether intermittent ER attenuated compensatory responses associated with ER. Subjects/Methods: Fifty-one men with obesity were randomised to 16 weeks of either: (1) continuous (CON), or (2) intermittent (INT) ER completed as 8 × 2-week blocks of ER alternating with 7 × 2-week blocks of energy balance (30 weeks total). Forty-seven participants completed a 4-week baseline phase and commenced the intervention (CON: N=23, 39.4±6.8 years, 111.1±9.1 kg, 34.3±3.0 kg m−2; INT: N=24, 39.8±9.5 years, 110.2±13.8 kg, 34.1±4.0 kg m−2). During ER, energy intake was equivalent to 67% of weight maintenance requirements in both groups. Body weight, fat mass (FM), fat-free mass (FFM) and resting energy expenditure (REE) were measured throughout the study. Results: For the N=19 CON and N=17 INT who completed the intervention per protocol, weight loss was greater for INT (14.1±5.6 vs 9.1±2.9 kg; Penergy balance blocks was minimal (0.0±0.3 kg). While reduction in absolute REE did not differ between groups (INT: -502±481 vs CON: −624±557 kJ d−1; P=0.5), after adjusting for changes in body composition, it was significantly lower in INT (INT: −360±502 vs CON: −749±498 kJ d−1; Penergy balance ‘rest periods’ may reduce compensatory metabolic responses and, in turn, improve weight loss efficiency. PMID:28925405

  5. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  6. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  7. Implementing electronic handover: interventions to improve efficiency, safety and sustainability.

    Science.gov (United States)

    Alhamid, Sharifah Munirah; Lee, Desmond Xue-Yuan; Wong, Hei Man; Chuah, Matthew Bingfeng; Wong, Yu Jun; Narasimhalu, Kaavya; Tan, Thuan Tong; Low, Su Ying

    2016-10-01

    Effective handovers are critical for patient care and safety. Electronic handover tools are increasingly used today to provide an effective and standardized platform for information exchange. The implementation of an electronic handover system in tertiary hospitals can be a major challenge. Previous efforts in implementing an electronic handover tool failed due to poor compliance and buy-in from end-users. A new electronic handover tool was developed and incorporated into the existing electronic medical records (EMRs) for medical patients in Singapore General Hospital (SGH). There was poor compliance by on-call doctors in acknowledging electronic handovers, and lack of adherence to safety rules, raising concerns about the safety and efficiency of the electronic handover tool. Urgent measures were needed to ensure its safe and sustained use. A quality improvement group comprising stakeholders, including end-users, developed multi-faceted interventions using rapid PDSA (P-Plan, D-Do, S-Study, A-Act ) cycles to address these issues. Innovative solutions using media and online software provided cost-efficient measures to improve compliance. The percentage of unacknowledged handovers per day was used as the main outcome measure throughout all PDSA cycles. Doctors were also assessed for improvement in their knowledge of safety rules and their perception of the electronic handover tool. An electronic handover tool complementing daily clinical practice can be successfully implemented using solutions devised through close collaboration with end-users supported by the senior leadership. A combined 'bottom-up' and 'top-down' approach with regular process evaluations is crucial for its long-term sustainability. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  9. Self-assessment as an approach to improvement of efficient implementation of Ukrainian NPP operational experience

    International Nuclear Information System (INIS)

    Pecheritsya, L.M.; Lyigots'kij, O.Yi.; Pecheritsya, O.V.; Tarasenko, V.M.

    2012-01-01

    the paper contains a brief description of the procedure for implementation of operational experience, focuses on the role of self -assessment in efficient use of operational experience, presents a review of international and national practices of self-assessment and review of the main features, issues and ways to improve self-assessment of efficient use of operational experience in Ukraine

  10. Evaluation of economic efficiency of process improvement in food packaging

    Directory of Open Access Journals (Sweden)

    Jana Hron

    2012-01-01

    Full Text Available In general, we make gains in process by the three fundamental ways. First, we define or redefine our process in a strategic sense. Second, once defined or redefined, we commence process operations and use process control methods to target and stabilize our process. Third, we use process improvement methods, as described in this paper, along with process control to fully exploit our process management and/or technology. Process improvement is focused primarily in our subprocesses and sub-subprocesses. Process leverage is the key to process improvement initiatives. This means that small improvements of the basic manufacturing operations can have (with the assumption of mass repetition of the operation a big impact on the functioning of the whole production unit. The complexity within even small organizations, in people, products, and processes, creates significant challenges in effectively and efficiently using these initiatives tools. In this paper we are going to place process purposes in the foreground and initiatives and tools in the background as facilitator to help accomplish process purpose. Initiatives and tools are not the ends we are seeking; result/outcomes in physical, economics, timeliness, and customer service performance matter. In the paper process boundaries (in a generic sense are set by our process purpose and our process definition. Process improvement is initiated within our existing process boundaries. For example, in a fast-food restaurant, if we define our cooking process around a frying technology, then we provide process improvements within our frying technology. On the other hand, if we are considering changing to a broiling technology, then we are likely faced with extensive change, impacting our external customers, and a process redefinition may be required. The result / aim of the paper are based on the example of the process improving of a food packaging quality. Specifically, the integration of two approaches

  11. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  12. Improvement of Energy Efficiency and Environmental Safety of Thermal Energy Through the Implementation of Contact Energy Exchange Processes

    Science.gov (United States)

    Varlamov, Gennadii Borysovich; Romanova, Kateryna Alexandrovna; Nazarova, Iryna; Daschenko, Olga; Kapustiansky, Andry

    2017-12-01

    Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation `Aquarius' and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m3 and to 5 mg/m3, respectively. Moreover, the plants additionally `generate' the clean water, which can be used for technical purposes.

  13. Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences

    DEFF Research Database (Denmark)

    Baldini, Mattia; Klinge Jacobsen, Henrik

    2016-01-01

    the improvements made in the energy saving field. Indeed, little attention has been paid to implement energy efficiency measures, which has resulted in scenarios where expedients for a wise use of energy (e.g. energy savings and renewables share) are unbalanced. The aim of this paper is to review and evaluate...... international experiences on finding the optimal trade-off between efficiency improvements and additional renewable energy supply. A critical review of each technique, focusing on purposes, methodology and outcomes, is provided along with a review of tools adopted for the analyses. The models are categorized...... trade-off between renewables and energy efficiency measures in energy-systems under different objectives....

  14. Efficiency improvements in pipeline transportation systems. Technical report, Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. H.

    1977-01-01

    This report identifies those potential energy-conservative pipeline innovations that are most energy- and cost-effective, and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight programs recommended for pursuit are: gas-fired combined-cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cycle pump station; internal coatings in pipelines; and drag-reducing additives in liquid pipelines.

  15. Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes

    International Nuclear Information System (INIS)

    Geng, ZhiQiang; Dong, JunGen; Han, YongMing; Zhu, QunXiong

    2017-01-01

    Highlights: •An improved environment DEA cross-model method is proposed. •Energy and environment efficiency analysis framework of complex chemical processes is obtained. •This proposed method is efficient in energy-saving and emission reduction of complex chemical processes. -- Abstract: The complex chemical process is a high pollution and high energy consumption industrial process. Therefore, it is very important to analyze and evaluate the energy and environment efficiency of the complex chemical process. Data Envelopment Analysis (DEA) is used to evaluate the relative effectiveness of decision-making units (DMUs). However, the traditional DEA method usually cannot genuinely distinguish the effective and inefficient DMU due to its extreme or unreasonable weight distribution of input and output variables. Therefore, this paper proposes an energy and environment efficiency analysis method based on an improved environment DEA cross-model (DEACM) method. The inputs of the complex chemical process are divided into energy and non-energy inputs. Meanwhile, the outputs are divided into desirable and undesirable outputs. And then the energy and environment performance index (EEPI) based on the cross evaluation is used to represent the overall performance of each DMU. Moreover, the improvement direction of energy-saving and carbon emission reduction of each inefficiency DMU is quantitatively obtained based on the self-evaluation model of the improved environment DEACM. The results show that the improved environment DEACM method has a better effective discrimination than the original DEA method by analyzing the energy and environment efficiency of the ethylene production process in complex chemical processes, and it can obtain the potential of energy-saving and carbon emission reduction of ethylene plants, especially the improvement direction of inefficient DMUs to improve energy efficiency and reduce carbon emission.

  16. Improving the Efficiency of Medical Services Systems: A New Integrated Mathematical Modeling Approach

    Directory of Open Access Journals (Sweden)

    Davood Shishebori

    2013-01-01

    Full Text Available Nowadays, the efficient design of medical service systems plays a critical role in improving the performance and efficiency of medical services provided by governments. Accordingly, health care planners in countries especially with a system based on a National Health Service (NHS try to make decisions on where to locate and how to organize medical services regarding several conditions in different residence areas, so as to improve the geographic equity of comfortable access in the delivery of medical services while accounting for efficiency and cost issues especially in crucial situations. Therefore, optimally locating of such services and also suitable allocating demands them, can help to enhance the performance and responsiveness of medical services system. In this paper, a multiobjective mixed integer nonlinear programming model is proposed to decide locations of new medical system centers, link roads that should be constructed or improved, and also urban residence centers covered by these medical service centers and link roads under investment budget constraint in order to both minimize the total transportation cost of the overall system and minimize the total failure cost (i.e., maximize the system reliability of medical service centers under unforeseen situations. Then, the proposed model is linearized by suitable techniques. Moreover, a practical case study is presented in detail to illustrate the application of the proposed mathematical model. Finally, a sensitivity analysis is done to provide an insight into the behavior of the proposed model in response to changes of key parameters of the problem.

  17. Energetic and exergetic efficiency modeling of a cargo aircraft by a topology improving neuro-evolution algorithm

    International Nuclear Information System (INIS)

    Baklacioglu, Tolga; Aydin, Hakan; Turan, Onder

    2016-01-01

    An aircraft is a complex system that requires methodologies for an efficient thermodynamic design process. So, it is important to gain a deeper understanding of energy and exergy use throughout an aircraft. The aim of this study is to propose a topology improving NE (neuro-evolution) algorithm modeling for assessing energy and exergy efficiency of a cargo aircraft for the phases of a flight. In this regard, energy and exergy data of the aircraft achieved from several engine runs at different power settings have been utilized to derive the ANN (artificial neural network) models optimized by a GA (genetic algorithm). NE of feed-forward networks trained by a BP (backpropagation) algorithm with momentum has assured the accomplishment of optimum initial network weights as well as the improvement of the network topology. The linear correlation coefficients very close to unity obtained for the derived ANN models have proved the tight fitting of the real data and the estimated values of the efficiencies provided by the models. Finally, compared to the trial-and-error case, evolving the networks by GAs has enhanced the accuracy of the modeling simply further as the reduction in the MSE (mean squared errors) for the energy and exergy efficiencies indicates. - Highlights: • Optimization using neuro-evolution algorithm. • Improved backpropagation algorithm using momentum factor. • Turboprop parameters as independent variables. • Energy and exergy efficiency modeling of a cargo aircraft.

  18. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  19. Advanced cycle efficiency: Generating 40% more power from the nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.; Leung, Laurence

    2010-09-15

    The introduction of supercritical water (SCW) nuclear power plants (NPPs) would improve the overall plant efficiency significantly compared to currently deployed systems. This improvement is attributed to the increase in plant operating conditions. In addition, the implementation of the reheat-channel option into the CANDU SCW NPPs would further enhance the efficiency. Overall, the combination of higher operating conditions and reheat-channel option would lead to overall plant efficiency of about 50% for the CANDU SCW NPPs, compared to 33--35% for currently deployed systems. This represents a whopping 40% improvement in efficiency.

  20. Semiconductor technology for reducing emissions and increasing efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, B.; Frank, R. [Motorola Semiconductor Products Sector, Phoenix, AZ (United States)

    1997-12-31

    The cooperation and support of all industries are required to significantly impact a worldwide reduction in gaseous emissions that may contribute to climate change. Each industry also is striving to more efficiently utilize the resources that it consumes since this is both conservation for good citizenship and an intelligent approach to business. The semiconductor industry is also extremely concerned with these issues. However, semiconductor manufacturer`s products provide solutions for reduced emissions and increased efficiency in their industry, other industries and areas that can realize significant improvements through control technology. This paper will focus on semiconductor technologies of digital control, power switching and sensing to improve efficiency and reduce emissions in automotive, industrial, and office/home applications. 10 refs., 13 figs.

  1. Improving the Efficient of Ernie Turner Center. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredeen, Amy

    2011-03-21

    The objective of this project was to complete the specifications and drawings for a variable speed kitchen exhaust system and the boiler heating system which when implemented will improve the heating efficiency of the building. The design work was focused in two key areas: kitchen ventilation and heating for the Ernie Turner Center building (ETC). RSA completed design work and issued a set of 100% drawings. RSA also worked with a cost estimator to put together a detailed cost estimate for the project. The design components are summarized.

  2. White certificates for energy efficiency improvement with energy taxes : A theoretical economic model

    NARCIS (Netherlands)

    Oikonomou, V.; Jepma, C.J.; Becchis, F.; Russolillo, D.

    2008-01-01

    In this paper we analyze interactions of two energy policy instruments, namely a White Certificates (WhC) scheme as an innovative policy instrument for energy efficiency improvement and energy taxation. These policy instruments differ in terms of objectives and final impacts on the price of

  3. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25 µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  4. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning

    International Nuclear Information System (INIS)

    Kim, Hojin; Becker, Stephen; Lee, Rena; Lee, Soonhyouk; Shin, Sukyoung; Candès, Emmanuel; Xing Lei; Li Ruijiang

    2013-01-01

    Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of the objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments

  5. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hojin [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 and Department of Electrical Engineering, Stanford University, Stanford, California 94305-9505 (United States); Becker, Stephen [Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curie, Paris 6, 75005 France (France); Lee, Rena; Lee, Soonhyouk [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul 158-710 (Korea, Republic of); Shin, Sukyoung [Medtronic CV RDN R and D, Santa Rosa, California 95403 (United States); Candes, Emmanuel [Department of Statistics, Stanford University, Stanford, California 94305-4065 (United States); Xing Lei; Li Ruijiang [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5304 (United States)

    2013-07-15

    Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of the objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments

  6. Does integration of HIV and sexual and reproductive health services improve technical efficiency in Kenya and Swaziland? An application of a two-stage semi parametric approach incorporating quality measures.

    Science.gov (United States)

    Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna

    2016-02-01

    Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of

  7. Improving Eco-Efficiency through Waste Reduction beyond the Boundaries of a Firm: Evidence from a Multiplant Case in the Ceramic Industry

    Directory of Open Access Journals (Sweden)

    Guido J. L. Micheli

    2018-01-01

    Full Text Available To pursue eco-efficiency, one of the most important principles is the sustainable use of resources. The challenge in resource use improvement lies in a clear assessment of resource utilization. However, this evaluation is currently performed within the scope of a company and such an approach is not sustainable anymore in a world with increasingly complex production systems. This paper provides a decision support system (DSS to disclose where wastes absorb resource capacity of a whole production system beyond the boundaries of a firm. In this way, an intervention priority plan can be established to effectively improve the eco-efficiency of production systems by considering interactions among players of a multiplant or supply chain context. An implementation of the DSS is proposed for the ceramic industry to test it and explore the potential benefits. Results confirm that the DSS can effectively enable different actors to understand how significant inter-firm saving opportunities can be identified.

  8. Fiscal 2000 achievement report. Model project for international energy consumption efficiency improvement (Model project for improvement of boiler and turbine efficiency); 2000 nendo seika hokoku. Kokusai energy shohi koritsuka tou model jigyo (Boira tabin koritsu kojo model jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    A project was implemented for Japan to transfer its energy conservation technologies for helping Indonesia conserve energy and reduce CO2 emissions, which occurred at Muara Karang Thermal Power Plant of an Indonesian power company named PT PJB. Items to be introduced are condenser tubes (material change from cupro-nickel to titanium), ball cleaning equipment, turbine gland seal improvement, air preheater improvement, thermal efficiency management system, and so forth. In this fiscal year, turbine gland seals and air preheater elements were manufactured, and the thermal efficiency management system was designed. As an dissemination activity, 10 engineers were invited to Japan from the Indonesian Ministry of Energy and Mineral Resources, PT PLN, and PT PJB. They attended a training program lasting approximately two weeks, which included study tours to the factories actually building the equipment to be introduced and field/classroom training/education on thermal efficiency management and others. The engineers actively performed their boiler improvement work back in Indonesia. (NEDO)

  9. Expectation-Based Efficiency and Quality Improvements in Research Administration: Multi-Institutional Case Studies

    Science.gov (United States)

    Saha, Dhanonjoy C.; Ahmed, Abrar; Hanumandla, Shailaja

    2011-01-01

    Conventional wisdom may support the presumed notion that higher expectations increase efficiency and improve quality. However, this claim may only be validated when workers are equipped with appropriate tools, training, and a conducive work environment. This study implements various interventions, observes outcomes, and analyzes data collected in…

  10. Coal-fired boiler houses in Cracow present state and possibilities to improve their efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cyklis, P. [Institute of Industrial Equipment and Power Engineering, Cracow (Poland); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-31

    A significant amount of heat energy both for heating and process purposes is generated in Cracow, Poland in small-and medium size local boiler houses. The operating procedure of these boiler houses is most often economically and ecologically ineffective because of the bad condition of boilers and lack of funds to install automation, control and measurement equipment. Within the Polish-American Program of Elimination of Low Emission Sources financed by the US Department of Energy, the ENERGOEKSPERT Co., Ltd. investigated chosen boiler houses in Cracow, commissioned by the Cracow Development Office. The results of these investigations were subject of engineering analysis carried out at the Institute of Industrial Equipment and Power Engineering, Technical University, Cracow. The analysis proved that the low-cost improvement of economic efficiency and reduction of air pollutant emission is feasible for combustion of coal fuels.

  11. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    Science.gov (United States)

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  12. Strategies to improve the efficiency and utility of multidisciplinary team meetings in urology cancer care: a survey study.

    Science.gov (United States)

    Lamb, Benjamin W; Jalil, Rozh T; Sevdalis, Nick; Vincent, Charles; Green, James S A

    2014-09-08

    The prevalence of multidisciplinary teams (MDT) for the delivery of cancer care is increasing globally. Evidence exists of benefits to patients and healthcare professionals. However, MDT working is time and resource intensive. This study aims to explore members' views on existing practices of urology MDT working, and to identify potential interventions for improving the efficiency and productivity of the MDT meeting. Members of urology MDTs across the UK were purposively recruited to participate in an online survey. Survey items included questions about the utility and efficiency of MDT meetings, and strategies for improving the efficiency of MDT meetings: treating cases by protocol, prioritising cases, and splitting the MDT into subspeciality meetings. 173 MDT members participated (Oncologists n = 77, Cancer Nurses n = 54, Urologists n = 30, other specialities n = 12). 68% of respondents reported that attending the MDT meeting improves efficiency in care through improved clinical decisions, planning investigations, helping when discussing plans with patients, speciality referrals, documentation/patient records. Participants agreed that some cases including low risk, non-muscle invasive bladder cancer and localised, low-grade prostate cancer could be managed by pre-agreed pathways, without full MDT review. There was a consensus that cases at the MDT meeting could be prioritised by complexity, tumour type, or the availability of MDT members. Splitting the MDT meeting was unpopular: potential disadvantages included loss of efficiency, loss of team approach, unavailability of members and increased administrative work. Key urology MDT members find the MDT meeting useful. Improvements in efficiency and effectiveness may be possible by prioritising cases or managing some low-risk cases according to previously agreed protocols. Further research is needed to test the effectiveness of such strategies on MDT meetings, cancer care pathways and patient outcomes in clinical

  13. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    Science.gov (United States)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  14. Improved efficiency in clinical workflow of reporting measured oncology lesions via PACS-integrated lesion tracking tool.

    Science.gov (United States)

    Sevenster, Merlijn; Travis, Adam R; Ganesh, Rajiv K; Liu, Peng; Kose, Ursula; Peters, Joost; Chang, Paul J

    2015-03-01

    OBJECTIVE. Imaging provides evidence for the response to oncology treatment by the serial measurement of reference lesions. Unfortunately, the identification, comparison, measurement, and documentation of several reference lesions can be an inefficient process. We tested the hypothesis that optimized workflow orchestration and tight integration of a lesion tracking tool into the PACS and speech recognition system can result in improvements in oncologic lesion measurement efficiency. SUBJECTS AND METHODS. A lesion management tool tightly integrated into the PACS workflow was developed. We evaluated the effect of the use of the tool on measurement reporting time by means of a prospective time-motion study on 86 body CT examinations with 241 measureable oncologic lesions with four radiologists. RESULTS. Aggregated measurement reporting time per lesion was 11.64 seconds in standard workflow, 16.67 seconds if readers had to register measurements de novo, and 6.36 seconds for each subsequent follow-up study. Differences were statistically significant (p workflow-integrated lesion management tool, especially for patients with multiple follow-up examinations, reversing the onetime efficiency penalty at baseline registration.

  15. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    Science.gov (United States)

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  17. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    buildings, and by issuing an annual “premier’s report card,” making public the progress on province-wide efficiency efforts. For a province that continues to enjoy growth in business and population, updated guidelines around new building codes have been proven to improve energy efficiency. And there remains a significant opportunity for Alberta to improve efficiency in its commercial and industrial sectors, the largest users of energy, by providing government incentives to replace ageing equipment with more efficient technology. Alberta is also well suited for a shift toward more combined heat and power generation plants, which can repurpose generated heat that is otherwise wasted, significantly reducing energy demand and costs. And in a province awash in natural gas, incentives to encourage travel using compressed or liquefied natural gas vehicles could serve to boost energy efficiency in the transportation sector as well. Alberta is fortunate in that it has abundant energy and prosperity, making improved energy efficiency a matter of choice, rather than — as in some jurisdictions — one of urgent necessity. It is, however, a choice that Alberta has enough reasons, and resources, to make. All it requires is the will.

  18. Exploring the efficiency potential for an active magnetic regenerator

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Haffenden Bahl, Christian Robert

    2016-01-01

    A novel rotary state of the art active magnetic regenerator refrigeration prototype was used in an experimental investigation with special focus on efficiency. Based on an applied cooling load, measured shaft power, and pumping power applied to the active magnetic regenerator, a maximum second-la...... and replacing the packed spheres with a theoretical parallel plate regenerator. Furthermore, significant potential efficiency improvements through optimized regenerator geometries are estimated and discussed......., especially for the pressure drop, significant improvements can be made to the machine. However, a large part of the losses may be attributed to regenerator irreversibilities. Considering these unchanged, an estimated upper limit to the second-law efficiency of 30% is given by eliminating parasitic losses...

  19. LEAN SIX SIGMA TECHNIQUES TO IMPROVE OPHTHALMOLOGY CLINIC EFFICIENCY.

    Science.gov (United States)

    Ciulla, Thomas A; Tatikonda, Mohan V; ElMaraghi, Yehya A; Hussain, Rehan M; Hill, Amanda L; Clary, Julie M; Hattab, Eyas

    2017-07-18

    Ophthalmologists serve an increasing volume of a growing elderly population undergoing increasingly complex outpatient medical care, including extensive diagnostic testing and treatment. The resulting prolonged patient visit times ("patient flow times") limit quality, patient and employee satisfaction, and represent waste. Lean Six Sigma process improvement was used in a vitreoretinal practice to decrease patient flow time, demonstrating that this approach can yield significant improvement in health care. Process flow maps were created to determine the most common care pathways within clinic. Three months' visits from the electronic medical record system, which tracks patient task times at each process step in the office were collected. Care tasks and care pathways consuming the greatest time and variation were identified and modified. Follow-up analysis from 6 weeks' visits was conducted to assess improvement. Nearly all patients took one of five paths through the office. Patient flow was redesigned to reduce waiting room time by having staff members immediately start patients into one of those five paths; staffing was adjusted to address high demand tasks, and scheduling was optimized around derived predictors of patient flow times. Follow-up analysis revealed a statistically significant decline in mean patient flow time by 18% and inpatient flow time SD by 4.6%. Patient and employee satisfaction scores improved. Manufacturing industry techniques, such as Lean and Six Sigma, can be used to improve patient care, minimize waste, and enhance patient and staff satisfaction in outpatient clinics.

  20. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    Science.gov (United States)

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Lean Maintenance Applied to Improve Maintenance Efficiency in Thermoelectric Power Plants

    Directory of Open Access Journals (Sweden)

    Orlando Duran

    2017-10-01

    Full Text Available Thermoelectric power plants consist of a set of critical equipment that require high levels of availability and reliability. Due to this, maintenance of these physical assets is gaining momentum in industry. Maintenance is considered as an activity that contributes to improving the availability, efficiency and productivity of each piece of equipment. Several techniques have been used to achieve greater efficiencies in maintenance, among which we can find the lean maintenance philosophy. Despite the wide diffusion of lean maintenance, there is no structured method that supports the prescription of lean tools applied to the maintenance function. This paper presents the experience gathered in two lean maintenance projects in thermoelectric power plants. The application of lean techniques was based on using a previously developed multicriterial decision making process that uses the Fuzzy Analytic Hierarchy Process (AHP methodology to carry out a diagnosis and prescription tasks. That methodology allowed the prescription of the appropriated lean techniques to resolve the main deficiencies in maintenance function. The results of applying such lean tools show that important results can be obtained, making the maintenance function in thermoelectric power plants more efficient and lean.

  2. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking

    International Nuclear Information System (INIS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Song, Jian; He, Kai; Li, Chenfeng

    2016-01-01

    Highlights: • Downshift is effective in improving the energy efficiency of electric vehicles. • Energy improvement of downshift varies with vehicle speed and brake strength. • The designed nonlinear sliding mode observer is accurate in estimating bake torque. • The proposed resembling PWM method is practical to regulate hydraulic pressure. • The effect of downshift on braking safety and comfort can be restrained by control. - Abstract: Downshift during regenerative braking helps to improve the energy efficiency of electric vehicles. Two main problems are involved in the downshift process. One is the determination of optimal downshift point, and the other is the cooperative control of regenerative braking and hydraulic braking. In order to achieve a systemic solution to these problems, a hierarchical control strategy is brought forward for an electric vehicle with a two-speed automated mechanical transmission. For the upper controller, an off-line calculation and on-line look-up table method is adopted to obtain the optimal downshift point, and a series regenerative braking distribution strategy is designed. For the medium controller, a nonlinear sliding mode observer is designed to obtain the actual hydraulic brake torque. For the lower controller, cooperative control of regenerative braking and hydraulic braking is given to ensure brake safety during downshift process, and a resembling pulse width modulation method is proposed to regulated the hydraulic brake torque. Simulation results and hardware-in-loop test show that the proposed algorithm is effective in improving the energy efficiency of electric vehicles.

  3. Incorporating fan control into air-conditioning systems to improve energy efficiency and transient response

    International Nuclear Information System (INIS)

    Yeh, T.-J.; Chen, Yun-Jih; Hwang, Wei-Yang; Lin, Jin-Long

    2009-01-01

    Modern air-conditioners frequently incorporate variable-speed compressors and variable-opening expansion valves with feedback control to improve performance and power efficiency. Because making the fan speeds adjustable adds flexibility to the control design and thus can lead to further improvements in performance and efficiency, this paper proposes two control algorithms, respectively, incorporating the outdoor fan and the indoor fan as the additional control inputs for air-conditioning systems. Both of the control algorithms are designed based on a low-order, linear model obtained from system identification. The first algorithm, which modulates the outdoor fan speed, can reduce the steady state power consumption if the temperature difference between the condenser and the outdoor environment is controlled properly. The second algorithm, which adds one more degree of freedom to control by modulating the indoor fan speed, can improve the transient response because actuator saturations become less likely to occur. The two control algorithms are implemented on a split-type residential air-conditioner and their respective performance is validated experimentally.

  4. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  5. Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine

    International Nuclear Information System (INIS)

    Ibrik, I.H.; Mahmoud, M.M.

    2005-01-01

    Energy conservation in utilities has played a vital role in improving energy efficiency in the industrial, commercial and residential sectors. The electrical energy consumption in Palestine has increased sharply in the past few years and achieved by the end of 2001 to 10% per year. It is expected that this percentage will increase to about 12% if the current political situation will end hopefully with peace. Modern energy efficient technologies are needed for the national energy policy. Such technologies are investigated in this paper. Implementing of a national 3 years project aiming at energy efficiency improvement in residential and industrial sectors as well as in public utilities, which include wide range of diversified audits and power measurements, had led to creating this paper. Measurement and audit results had shown that the total conservation potential in these sectors is around 15% of the total energy consumption. The associated costs of the investment in this field are relatively low and correspond to a pay back period varying in the range from 6 to 36 months. Consequently, the energy conservation policy will be seriously improved in the forthcoming years. It is estimated that 10% of the new energy purchasing capacity will be reduced accordingly

  6. Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach.

    Science.gov (United States)

    Tanha, Jamshid; Nguyen, Thanh-Dung; Ng, Andy; Ryan, Shannon; Ni, Feng; Mackenzie, Roger

    2006-11-01

    The antibody V(H) domains of camelids tend to be soluble and to resist aggregation, in contrast to human V(H) domains. For immunotherapy, attempts have therefore been made to improve the properties of human V(H)s by camelization of a small set of framework residues. Here, we have identified through sequence comparison of well-folded llama V(H) domains an alternative set of residues (not typically camelid) for mutation. Thus, the solubility and thermal refolding efficiency of a typical human V(H), derived from the human antibody BT32/A6, were improved by introduction of two mutations in framework region (FR) 1 and 4 to generate BT32/A6.L1. Three more mutations in FR3 of BT32/A6.L1 further improved the thermal refolding efficiency while retaining solubility and cooperative melting profiles. To demonstrate practical utility, BT32/A6.L1 was used to construct a phage display library from which were isolated human V(H)s with good antigen binding activity and solubility. The engineered human V(H) domains described here may be useful for immunotherapy, due to their expected low immunogenicity, and in applications involving transient high temperatures, due to their efficient refolding after thermal denaturation.

  7. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  8. Postharvest Ultrasound-Assisted Freeze-Thaw Pretreatment Improves the Drying Efficiency, Physicochemical Properties, and Macamide Biosynthesis of Maca (Lepidium meyenii).

    Science.gov (United States)

    Chen, Jin-Jin; Gong, Peng-Fei; Liu, Yi-Lan; Liu, Bo-Yan; Eggert, Dawn; Guo, Yuan-Heng; Zhao, Ming-Xia; Zhao, Qing-Sheng; Zhao, Bing

    2018-04-01

    A novel technique of ultrasound-assisted freeze-thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze-thaw cycles. Samples with freeze-thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10 -9 m 2 /s). This result was further supported by low-field nuclear magnetic resonance (LF-NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5- and 10-fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products. © 2018 Institute of Food Technologists®.

  9. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Materials Approach to Fuel Efficient Tires

    Energy Technology Data Exchange (ETDEWEB)

    Votruba-Drzal, Peter [PPG Industries, Monroeville, PA (United States); Kornish, Brian [PPG Industries, Monroeville, PA (United States)

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  11. A 12-Week Physical and Cognitive Exercise Program Can Improve Cognitive Function and Neural Efficiency in Community-Dwelling Older Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Nishiguchi, Shu; Yamada, Minoru; Tanigawa, Takanori; Sekiyama, Kaoru; Kawagoe, Toshikazu; Suzuki, Maki; Yoshikawa, Sakiko; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Aoyama, Tomoki; Tsuboyama, Tadao

    2015-07-01

    To investigate whether a 12-week physical and cognitive exercise program can improve cognitive function and brain activation efficiency in community-dwelling older adults. Randomized controlled trial. Kyoto, Japan. Community-dwelling older adults (N = 48) were randomized into an exercise group (n = 24) and a control group (n = 24). Exercise group participants received a weekly dual task-based multimodal exercise class in combination with pedometer-based daily walking exercise during the 12-week intervention phase. Control group participants did not receive any intervention and were instructed to spend their time as usual during the intervention phase. The outcome measures were global cognitive function, memory function, executive function, and brain activation (measured using functional magnetic resonance imaging) associated with visual short-term memory. Exercise group participants had significantly greater postintervention improvement in memory and executive functions than the control group (P cognitive exercise program can improve the efficiency of brain activation during cognitive tasks in older adults, which is associated with improvements in memory and executive function. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  12. The better growth phenotype of DvGS1-transgenic arabidopsis thaliana is attributed to the improved efficiency of nitrogen assimilation

    Directory of Open Access Journals (Sweden)

    Zhu Chenguang

    2015-01-01

    Full Text Available The overexpression of the algal glutamine synthetase (GS gene DvGS1 in Arabidopsis thaliana resulted in higher plant biomass and better growth phenotype. The purpose of this study was to recognize the biological mechanism for the growth improvement of DvGS1-transgenic Arabidopsis. A series of molecular and biochemical investigations related to nitrogen and carbon metabolism in the DvGS1-transgenic line was conducted. Analysis of nitrogen use efficiency (NUE-related gene transcription and enzymatic activity revealed that the transcriptional level and enzymatic activity of the genes encoding GS, glutamate synthase, glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase, were significantly upregulated, especially from leaf tissues of the DvGS1-transgenic line under two nitrate conditions. The DvGS1-transgenic line showed increased total nitrogen content and decreased carbon: nitrogen ratio compared to wild-type plants. Significant reduced concentrations of free nitrate, ammonium, sucrose, glucose and starch, together with higher concentrations of total amino acids, individual amino acids (glutamate, aspartate, asparagine, methionine, soluble proteins and fructose in leaf tissues confirmed that the DvGS1-transgenic line demonstrated a higher efficiency of nitrogen assimilation, which subsequently affected carbon metabolism. These improved metabolisms of nitrogen and carbon conferred the DvGS1-transgenic Arabidopsis higher NUE, more biomass and better growth phenotype compared with the wild-type plants.

  13. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  14. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  15. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    Science.gov (United States)

    Madani, Nima; Kimball, John S.; Running, Steven W.

    2017-11-01

    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.

  16. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-04-15

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function.

  17. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles

    International Nuclear Information System (INIS)

    Qiu, Chengqun; Wang, Guolin

    2016-01-01

    Highlights: • Two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. • Methodologies for calculating the contribution made by regenerative brake to improve vehicle energy efficiency are proposed. • Road test results imply that the proposed parameters are effective. - Abstract: Comprehensive research is conducted on the design and control of a regenerative braking system for electric vehicles. The mechanism and evaluation methods of contribution brought by regenerative braking to improve electric vehicle’s energy efficiency are discussed and analyzed by the energy flow. Methodologies for calculating the contribution made by regenerative brake are proposed. Additionally a new regenerative braking control strategy called “serial 2 control strategy” is introduced. Moreover, two control strategies called “parallel control strategy” and “serial 1 control strategy” are proposed as the comparative control strategy. Furthermore, two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. Finally, road tests are carried out under China typical city regenerative driving cycle standard with three different control strategies. The serial 2 control strategy offers considerably higher regeneration efficiency than the parallel strategy and serial 1 strategy.

  18. Improving efficiency of polystyrene concrete production with composite binders

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhina, A. A.

    2018-03-01

    According to leading marketing researchers, the construction market in Russia and CIS will continue growing at a rapid rate; this applies not only to a large-scale major construction, but to a construction of single-family houses and small-scale industrial facilities as well. Due to this, there are increased requirements for heat insulation of the building enclosures and a significant demand for efficient walling materials with high thermal performance. All these developments led to higher requirements imposed on the equipment that produces such materials.

  19. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  20. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    Science.gov (United States)

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  1. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  2. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  3. Efficient perturbation theory to improve the density matrix renormalization group

    Science.gov (United States)

    Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej

    2017-02-01

    The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.

  4. The Well-of-the-Well system: an efficient approach to improve embryo development.

    Science.gov (United States)

    Vajta, Gábor; Korösi, Tamás; Du, Yutao; Nakata, Kumiko; Ieda, Shoko; Kuwayama, Masashige; Nagy, Zsolt Peter

    2008-07-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including an increased implantation rate and a decreased risk of multiple pregnancies; however, blastocyst culture requires an efficient and reliable in-vitro embryo culture system. In this study, the effect of the Well-of-the-Well (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species, including humans. The WOW system resulted in significant improvement when comparing the drops for culture of in-vitro-matured and parthenogenetically activated porcine oocytes, and in-vivo-derived mouse zygotes. In human embryos, using a sibling oocyte design, embryos cultured in WOW developed to the blastocyst stage in a significantly higher proportion than did embryos cultured traditionally (55% in WOW and 37% in conventional culture; P WOW system or in microdrops. Transferable quality blastocyst development (48.9% of cultured zygotes) was observed in the WOW system. Ninety-four blastocysts transferred to 45 patients resulted in clinical pregnancy rates of 48.9%, including nine twin pregnancies, seven single pregnancies, five miscarriages and one ectopic pregnancy. The results indicate that the WOW system provides a promising alternative for microdrop culture of mammalian embryos, including human embryos.

  5. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark

    International Nuclear Information System (INIS)

    Dalgaard, Tommy; Hutchings, Nicholas J; Olesen, Jørgen E; Sillebak Kristensen, Ib; Graversgaard, Morten; Hansen, Birgitte; Hasler, Berit; Hertel, Ole; Termansen, Mette; Jacobsen, Brian H; Stoumann Jensen, Lars; Schjørring, Jan K; Kronvang, Brian; Vejre, Henrik

    2014-01-01

    With more than 60% of the land farmed, with vulnerable freshwater and marine environments, and with one of the most intensive, export-oriented livestock sectors in the world, the nitrogen (N) pollution pressure from Danish agriculture is severe. Consequently, a series of policy action plans have been implemented since the mid 1980s with significant effects on the surplus, efficiency and environmental loadings of N. This paper reviews the policies and actions taken and their ability to mitigate effects of reactive N (N r ) while maintaining agricultural production. In summary, the average N-surplus has been reduced from approximately 170 kg N ha −1 yr −1 to below 100 kg N ha −1 yr −1 during the past 30 yrs, while the overall N-efficiency for the agricultural sector (crop + livestock farming) has increased from around 20–30% to 40–45%, the N-leaching from the field root zone has been halved, and N losses to the aquatic and atmospheric environment have been significantly reduced. This has been achieved through a combination of approaches and measures (ranging from command and control legislation, over market-based regulation and governmental expenditure to information and voluntary action), with specific measures addressing the whole N cascade, in order to improve the quality of ground- and surface waters, and to reduce the deposition to terrestrial natural ecosystems. However, there is still a major challenge in complying with the EU Water Framework and Habitats Directives, calling for new approaches, measures and technologies to mitigate agricultural N losses and control N flows. (paper)

  6. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  7. Rehearsal significantly improves immediate and delayed recall on the Rey Auditory Verbal Learning Test.

    Science.gov (United States)

    Hessen, Erik

    2011-10-01

    A repeated observation during memory assessment with the Rey Auditory Verbal Learning Test (RAVLT) is that patients who spontaneously employ a memory rehearsal strategy by repeating the word list more than once achieve better scores than patients who only repeat the word list once. This observation led to concern about the ability of the standard test procedure of RAVLT and similar tests in eliciting the best possible recall scores. The purpose of the present study was to test the hypothesis that a rehearsal recall strategy of repeating the word list more than once would result in improved scores of recall on the RAVLT. We report on differences in outcome after standard administration and after experimental administration on Immediate and Delayed Recall measures from the RAVLT of 50 patients. The experimental administration resulted in significantly improved scores for all the variables employed. Additionally, it was found that patients who failed effort screening showed significantly poorer improvement on Delayed Recall compared with those who passed the effort screening. The general clear improvement both in raw scores and T-scores demonstrates that recall performance can be significantly influenced by the strategy of the patient or by small variations in instructions by the examiner.

  8. Determinants of eco-efficiency in the Chinese industrial sector.

    Science.gov (United States)

    Fujii, Hidemichi; Managi, Shunsuke

    2013-12-01

    This study measures productive inefficiency within the context of multi-environmental pollution (eco-efficiency) in the Chinese industrial sector. The weighted Russell directional distance model is applied to measure eco-efficiency using production technology. The objective is to clarify how external factors affect eco-efficiency. The major findings are that both foreign direct investment and investment for pollution abatement improve eco-efficiency as measured by air pollutant substances. A levy system for wastewater discharge improves eco-efficiency as measured by wastewater pollutant substances. However, an air pollutant levy does not significantly affect eco-efficiency as measured by air pollutants. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    Science.gov (United States)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  10. Improved Light Extraction Efficiency by Photonic Crystal Arrays on Transparent Contact Layer Using Focused Ion Beams

    International Nuclear Information System (INIS)

    Wu, G.M.; Tsai, B.H.; Kung, S.F.; Wu, C.F.

    2011-01-01

    Nitride-based thin-film materials have become increasingly important for the high brightness light-emitting diode applications. The improvements in light extraction and lower power consumption are highly desired. Although the internal quantum efficiency of GaN-based LED has been relatively high, only a small fraction of light can be extracted. In this study, a new design of two-dimensional photonic crystal array has been prepared on the top transparent contact layer of indium-tin oxide film to improve the light extraction efficiency using focused ion beam. The acceleration voltage of the Ga dual-beam nanotechnology system SMI 3050 was 30 kV and the ion beam current was 100 pA. The cylindrical air holes had the diameter of 150 nm and depth of 100 nm. The micro photoluminescence analysis results showed that the light output intensity could be 1.5 times of that of the non-patterned control sample. In addition, the structural damage from the focused ion beam drilling of GaN step could be eliminated. The excellent I-V characteristics have been maintained, and the external light extraction efficiency would be still improved for the LED devices. (author)

  11. Efficiency improvement of technological preparation of power equipment manufacturing

    Science.gov (United States)

    Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.

    2017-11-01

    Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.

  12. Efficiency improvement of flat plate solar collector using reflector

    Directory of Open Access Journals (Sweden)

    Himangshu Bhowmik

    2017-11-01

    Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.

  13. Efficient convolutional sparse coding

    Science.gov (United States)

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  14. A model to improve efficiency and effectiveness of safeguards measures

    International Nuclear Information System (INIS)

    D'Amato, Eduardo; Llacer, Carlos; Vicens, Hugo

    2001-01-01

    verification of nuclear material inventories complemented by containment and surveillance measures and by non- traditional safeguard it is understood the qualitative measures stated in the A.P. The implementation of this integrated system will impact directly in the inspection effort, which will be limited by budget constraints. Besides, considering that the implementation of the new qualitative measures merely added to the traditional ones will substantially increase inspection costs related, not necessarily improving efficiency; it seems reasonable to attempt finding new ways of maintaining an adequate level of detection and deterrence. As a conclusion, an optimization in the distribution of a nearly fix budget must be strongly considered. A nuclear fuel cycle model is proposed where the nuclear power plants are fed with only natural uranium fuels assemblies. The model stated describes some generic sequential stages to be covered. In addition, a generic acquisition path of nuclear material with their strategic value associated is assumed. Many factors had been considered in this analysis, such as the diversion at any stage of the nuclear fuel cycle, the strategic value of the nuclear material and the cost related to make this hypothesis true. In our approach the cost of the detection measure, considerably vary from one stage to another in the nuclear fuel cycle. In this exercise some general bounded conditions are assumed and they are combined with the factors already mentioned. To carry on this study the stages at which the lowest detection probability is got are identified. Once these points had been found, it is possible to define the stages at which the traditional safeguards measures had better been complemented to the non traditional ones without getting as a result any significant decrease of the confidence in the total detection probability, improving safeguard effectiveness and efficiency. (author)

  15. Do Energy Efficiency Standards Improve Quality? Evidence from a Revealed Preference Approach

    Energy Technology Data Exchange (ETDEWEB)

    Houde, Sebastien [Univ. of Maryland, College Park, MD (United States); Spurlock, C. Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Minimum energy efficiency standards have occupied a central role in U.S. energy policy for more than three decades, but little is known about their welfare effects. In this paper, we employ a revealed preference approach to quantify the impact of past revisions in energy efficiency standards on product quality. The micro-foundation of our approach is a discrete choice model that allows us to compute a price-adjusted index of vertical quality. Focusing on the appliance market, we show that several standard revisions during the period 2001-2011 have led to an increase in quality. We also show that these standards have had a modest effect on prices, and in some cases they even led to decreases in prices. For revision events where overall quality increases and prices decrease, the consumer welfare effect of tightening the standards is unambiguously positive. Finally, we show that after controlling for the effect of improvement in energy efficiency, standards have induced an expansion of quality in the non-energy dimension. We discuss how imperfect competition can rationalize these results.

  16. Global energy efficiency improvement in the log term: a demand- and supply-side perspective

    NARCIS (Netherlands)

    Graus, W.H.J.; Blomen, E.; Worrell, E.

    2011-01-01

    This study assessed technical potentials for energy efficiency improvement in 2050 in a global context. The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and assumptions regarding gross domestic product developments after 2030. In the

  17. Study on improvement of energy efficiency of walking robots by spring -installed leg design

    International Nuclear Information System (INIS)

    Shin, Eung Soo; Song, Heuy Gap

    1993-01-01

    Although a walking robot is potentially useful in nuclear industry, its application has not been successful so far due to poor energy efficiency. In this paper, dynamic spring balancing of a swinging leg is proposed for improving energy efficiency. Since the fluctuation of internal energy is unavoidable due to leg oscillation, springs can be used for storing energy that is otherwise dissipated at the end of the return phase of the leg. Based of approximation to harmonic oscillation, an optimum trajectory and spring parameters are simultaneously synthesized for the leg in the return phase. (Author)

  18. Improving the ecohydrological and economic efficiency of Small Hydropower Plants with water diversion

    Science.gov (United States)

    Razurel, Pierre; Gorla, Lorenzo; Tron, Stefania; Niayifar, Amin; Crouzy, Benoît; Perona, Paolo

    2018-03-01

    Water exploitation for energy production from Small Hydropower Plant (SHP) is increasing despite human pressure on freshwater already being very intense in several countries. Preserving natural rivers thus requires deeper understanding of the global (i.e., ecological and economic) efficiency of flow-diversion practice. In this work, we show that the global efficiency of SHP river intakes can be improved by non-proportional flow-redistribution policies. This innovative dynamic water allocation defines the fraction of water released to the river as a nonlinear function of river runoff. Three swiss SHP case studies are considered to systematically test the global performance of such policies, under both present and future hydroclimatic regimes. The environmental efficiency is plotted versus the economic efficiency showing that efficient solutions align along a (Pareto) frontier, which is entirely formed by non-proportional policies. On the contrary, other commonly used distribution policies generally lie below the Pareto frontier. This confirms the existence of better policies based on non-proportional redistribution, which should be considered in relation to implementation and operational costs. Our results recommend abandoning static (e.g., constant-minimal-flow) policies in favour of non-proportional dynamic ones towards a more sustainable use of the water resource, also considering changing hydroclimatic scenarios.

  19. The cost efficiency of improved roof windows in two well-lit nearly zero-energy houses in Copenhagen

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker; Svendsen, Svend

    2017-01-01

    .The aim of this study was to quantify the scope for investing in improved roof window solutions inbuildings insulated to consume nearly zero-energy. Based on two single-family houses in Copenhagenwith typical roof windows and adequate daylighting, the study identified the prices at which various typesof......Roof windows are efficient and flexible daylight sources that are essential in certain types of houses if theyare to achieve sufficient daylighting throughout. Previous studies have indicated that, for such buildingsto meet nearly zero-energy targets in an easy and robust way without compromising...... roof window improvements would have to be made available to achieve the same cost efficiency asimproved insulation. If the improvements can be made available for less than these prices, the installationof improved roof windows would make it cheaper to construct well-lit and comfortable nearly zero...

  20. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib; Ko, Sangwon; Norton, Joseph E.; Miyaki, Nobuyuki; Becerril, Hector A.; Verploegen, Eric; Toney, Michael F.; Bré das, Jean-Luc; McGehee, Michael D.; Bao, Zhenan

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  1. Customer system efficiency improvement assessment: Supply curves for transmission and distribution conservation options

    Energy Technology Data Exchange (ETDEWEB)

    Tepel, R.C.; Callaway, J.W.; De Steese, J.G.

    1987-11-01

    This report documents the results of Task 6 in the Customer System Efficiency Improvement (CSEI) Assessment Project. A principal objective of this project is to assess the potential for energy conservation in the transmission and distribution (TandD) systems of electric utilities in the BPA service area. The scope of this assessment covers BPA customers in the Pacific Northwest region and all non-federal TandD systems, including those that currently place no load on the BPA system. Supply curves were developed to describe the conservation resource potentially available from TandD-system efficiency improvements. These supply curves relate the levelized cost of upgrading existing equipment to the estimated amount of energy saved. Stated in this form, the resource represented by TandD loss reductions can be compared with other conservation options and regional electrical generation resources to determine the most cost-effective method of supplying power to the Pacific Northwest. The development of the supply curves required data acquisition and methodology development that are also described in this report. 11 refs., 11 figs., 16 tabs.

  2. Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-10-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable advances in the performance of pressurized irrigation networks. Nowadays, the use of micro hydropower in water systems is being analysed to improve the overall energy efficiency. In this line, the present research is focused on the proposal and development of a novel optimization strategy for increasing the energy efficiency in pressurized irrigation networks by energy recovering. The recovered energy is maximized considering different objective functions, including feasibility index: the best energy converter must be selected, operating in its best efficiency conditions by variation of its rotational speed, providing the required flow in each moment. These flows (previously estimated through farmers’ habits are compared with registered values of flow in the main line with very suitable calibration results, getting a Nash–Sutcliffe value above 0.6 for different time intervals, and a PBIAS index below 10% in all time interval range. The methodology was applied to a Vallada network obtaining a maximum recovered energy of 58.18 MWh/year (41.66% of the available energy, improving the recovered energy values between 141 and 184% when comparing to energy recovery considering a constant rotational speed. The proposal of this strategy shows the real possibility of installing micro hydropower machines to improve the water–energy nexus management in pressurized systems.

  3. The Relationship between Quality Measurement and Efficiency Improvement in Health Care Systems

    OpenAIRE

    Gilbert Roland; Dr. Jane Marry Gill

    2017-01-01

    Quality measurement in health care organisation is most often considered as measures for cost-saving and error reduction in the clinical procedures. The concept of quality measurement in health care organisations is the analysis of effectiveness and accuracy in procedures for patients’ diagnosis and treatment. This study aimed to find the relationship between quality measurement and efficiency improvements in the healthcare sector of Mauritius. This was executed by using mixed methodological ...

  4. Cash efficiency for bank branches.

    Science.gov (United States)

    Cabello, Julia García

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.

  5. The acknowledge project: toward improved efficiency in the knowledge acquisition process

    International Nuclear Information System (INIS)

    Marty, J.C.; Ramparany, F.

    1990-01-01

    This paper presents a general overview of the ACKnowledge Project (Acquisition of Knowledge). Knowledge Acquisition is a critical and time-consuming phase in the development of expert systems. The ACKnowledge project aims at improving the efficiency of knowledge acquisition by analyzing and evaluating knowledge acquisition techniques, and developing a Knowledge Engineering Workbench that supports the Knowledge Engineer from the early stage of knowledge aquisition up to the implementation of the knowledge base in large and complex application domains such as the diagnosis of dynamic computer networks

  6. Unified Health Gamification can significantly improve well-being in corporate environments.

    Science.gov (United States)

    Shahrestani, Arash; Van Gorp, Pieter; Le Blanc, Pascale; Greidanus, Fabrizio; de Groot, Kristel; Leermakers, Jelle

    2017-07-01

    There is a multitude of mHealth applications that aim to solve societal health problems by stimulating specific types of physical activities via gamification. However, physical health activities cover just one of the three World Health Organization (WHO) dimensions of health. This paper introduces the novel notion of Unified Health Gamification (UHG), which covers besides physical health also social and cognitive health and well-being. Instead of rewarding activities in the three WHO dimensions using different mHealth competitions, UHG combines the scores for such activities on unified leaderboards and lets people interact in social circles beyond personal interests. This approach is promising in corporate environments since UHG can connect the employees with intrinsic motivation for physical health with those who have quite different interests. In order to evaluate this approach, we realized an app prototype and we evaluated it in two corporate pilot studies. In total, eighteen pilot users participated voluntarily for six weeks. Half of the participants were recruited from an occupational health setting and the other half from a treatment setting. Our results suggest that the UHG principles are worth more investigation: various positive health effects were found based on a validated survey. The mean mental health improved significantly at one pilot location and at the level of individual pilot participants, multiple other effects were found to be significant: among others, significant mental health improvements were found for 28% of the participants. Most participants intended to use the app beyond the pilot, especially if it would be further developed.

  7. Efficiency improvement of flexible fluorescent and phosphorescent organic light emitting diodes by inserting a spin-coating buffer layer

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Shen-Yaur; Su, Shin-Yuan; Juang, Fuh-Shyang

    2009-01-01

    We dissolved hole transport materials α-NPD and NPB in THF solvent, and spin-coated the α-NPD + THF or NPB + THF solution onto ITO anode surface to improve the luminance efficiency and lifetime of flexible fluorescent and phosphorescent organic light emitting diodes. Then the BCP and TPBi were employed as hole blocking layer (HBL) of phosphorescent device and its thickness was optimized. From the experimental results, the maximum luminance efficiency is 4.4 cd/A at 9 V of fluorescent device and 24.4 cd/A of phosphorescent device, respectively. Such an improvement in the device performance was attributed to the smoother surface and good contact between the interface of spin-coated HTL/ITO, the hole were effectively injected from the anode into the organic layer. And the deposited HTL can block excitons from diffusing into the anode to quench, thus improving the luminance efficiency and lifetime greatly.

  8. Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China

    International Nuclear Information System (INIS)

    Wang, Ke; Wang, Shanshan; Liu, Lei; Yue, Hui; Zhang, Ruiqin; Tang, Xiaoyan

    2016-01-01

    Highlights: • Pollutant surcharge is considered in Energy Conservation Supply Curve. • Intake Fraction method is incorporated into Energy Conservation Supply Curve. • Health benefits contribute 97% of co-benefits of energy efficiency improvement. - Abstract: The coal-fired power sector is one of the major contributors to environmental problems and has great potential of air pollution abatement. This study employs Energy Conservation Supply Curves (ECSCs) combined with pollutant surcharge and health benefits to evaluate the environmental co-benefits of energy efficiency improvement in the coal-fired power sector. Health benefits and the pollution surcharge are considered as the environmental co-benefits that reduce costs of conserved energy (CCEs) in ECSCs. The health benefits of energy efficiency improvement are quantified using Intake Fraction method, while the pollutant surcharge is calculated based on the regulation. Three scenarios including a Business As Usual (BAU) scenario, an Energy Efficiency Improvement (EEI) scenario, and an Upgrading Standards and Incentive (USI) scenario is considered in a case study for Henan Province of China. Our results show that costs of conserved energy (CCEs) are reduced by 0.56 and 0.29 USD/GJ under the EEI and USI scenarios due to health benefits and pollutant surcharge reductions related to energy efficient technologies, respectively. In particular, health benefits account for 97% of the reductions in CCEs, while the pollutant surcharge only contributes 3%. Under the EEI and USI scenarios, in 2020, energy efficiency improvement reduces energy consumption in Henan’s coal-fired power sector by 3.3% and 3.5% compared with the BAU scenario, respectively. The EEI and USI scenarios indicates that health benefits of 1.5 × 10"9 and 2.4 × 10"9 USD are gained and the reductions of pollutant surcharges of 197 and 226 million USD are realized in 2020, respectively.

  9. Template-Directed Instrumentation Reduces Cost and Improves Efficiency for Total Knee Arthroplasty: An Economic Decision Analysis and Pilot Study.

    Science.gov (United States)

    McLawhorn, Alexander S; Carroll, Kaitlin M; Blevins, Jason L; DeNegre, Scott T; Mayman, David J; Jerabek, Seth A

    2015-10-01

    Template-directed instrumentation (TDI) for total knee arthroplasty (TKA) may streamline operating room (OR) workflow and reduce costs by preselecting implants and minimizing instrument tray burden. A decision model simulated the economics of TDI. Sensitivity analyses determined thresholds for model variables to ensure TDI success. A clinical pilot was reviewed. The accuracy of preoperative templates was validated, and 20 consecutive primary TKAs were performed using TDI. The model determined that preoperative component size estimation should be accurate to ±1 implant size for 50% of TKAs to implement TDI. The pilot showed that preoperative template accuracy exceeded 97%. There were statistically significant improvements in OR turnover time and in-room time for TDI compared to an historical cohort of TKAs. TDI reduces costs and improves OR efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Modeling energy efficiency to improve air quality and health effects of China's cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst|info:eu-repo/dai/nl/106856715; Crijns-Graus, Wina|info:eu-repo/dai/nl/308005015; Krol, Maarten|info:eu-repo/dai/nl/078760410; de Bruine, Marco|info:eu-repo/dai/nl/411965085; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China's cement industry is the second largest energy

  11. Frameworks for improvement: clinical audit, the plan-do-study-act cycle and significant event audit.

    Science.gov (United States)

    Gillam, Steve; Siriwardena, A Niroshan

    2013-01-01

    This is the first in a series of articles about quality improvement tools and techniques. We explore common frameworks for improvement, including the model for improvement and its application to clinical audit, plan-do-study-act (PDSA) cycles and significant event analysis (SEA), examining the similarities and differences between these and providing examples of each.

  12. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Masticatory efficiency contributing to the improved dynamic postural balance: A cross-sectional study.

    Science.gov (United States)

    Hwang, Hae-Yun; Choi, Jun-Seon; Kim, Hee-Eun

    2018-05-28

    To evaluate whether masticatory efficiency is associated with dynamic postural balance. Masticatory dysfunction can cause deterioration of general health due to nutritional imbalances, thereby negatively affecting postural balance. However, few studies have investigated the association between masticatory efficiency and postural balance. The masticatory efficiency of 74 participants was evaluated by calculating mixing ability index (MAI) using a wax cube. The timed up and go test (TUGT) was used to measure dynamic balance. Participants with an MAI above or below the median value of 1.05 were defined as having high or low masticatory efficiency, respectively. An independent samples t-test was used to identify significant differences in TUGT, according to masticatory efficiency. Analysis of covariance was performed to adjust for confounding factors. Logistic regression analysis was used to assess the correlation between masticatory efficiency and postural balance. The high masticatory efficiency group could complete the TUGT exercise approximately 1.67 seconds faster while maintaining the postural balance, compared to the low masticatory efficiency group (P = .005). Furthermore, the postural imbalance odds of the group with high mastication efficiency decreased by 0.14-fold, relative to the group with low mastication efficiency (95% confidence interval: 0.04-0.46). With some reservations about statistical power, the association found between masticatory efficiency and postural balance justifies further investigations to confirm the strength of the associations, and possibly to identify causal relationships between mastication and posture in old age. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  14. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  15. Assessing global resource utilization efficiency in the industrial sector.

    Science.gov (United States)

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Improving Remote Species Identification through Efficient Training Data Collection

    Directory of Open Access Journals (Sweden)

    Claire A. Baldeck

    2014-03-01

    Full Text Available Plant species identification and mapping based on remotely-sensed spectral signatures is a challenging task with the potential to contribute enormously to ecological studies. Success in this task rests upon the appropriate collection and use of costly field-based training data, and researchers are in need of ways to improve collection efficiency based on quantitative evidence. Using imaging spectrometer data collected by the Carnegie Airborne Observatory for hundreds of field-identified tree crowns in Kruger National Park, South Africa, we developed woody plant species classification models and evaluated how classification accuracy increases with increasing numbers of training crowns. First, we show that classification accuracy must be estimated while respecting the crown as the basic unit of data; otherwise, accuracy will be overestimated and the amount of training data needed to perform successful classification will be underestimated. We found that classification accuracy and the number of training crowns needed to perform successful classification varied depending on the number and spectral separability of species in the model. We also used a modified Michaelis-Menten function to describe the empirical relationship between training crowns and model accuracy, and show how this function may be useful for predicting accuracy. This framework can assist researchers in designing field campaigns to maximize the efficiency of field data collection, and thus the amount of biodiversity information gained from remote species identification models.

  17. Improving Gas Flooding Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability

  18. Using a Fuzzy Light Sensor to Improve the Efficiency of Solar Panels

    Science.gov (United States)

    Suryono; Suseno, Jatmiko Endro; Sulistiati, Ainie Khuriati Riza; Prahara, Tahan

    2018-02-01

    Solar panel efficiency can be increased by improving the quality of photovoltaic material, the effectiveness of electronic circuit, and the light source tracking model. This research is aimed at improving the quality of solar panels by tracking light source using a fuzzy logic sensor. A fuzzy light sensor property is obtained from two LDR (light dependent resistor) light sensors installed in parallel to each other and is given a light separator in between them. Both sensors are mounted on a solar panel. Sensor output is acquired using a 12 bit ADC from an ATSAM3XE microcontroller and is then sent to a computer using WIFI radio. A PID (Proportional-Integral-Derivative) control algorithm is used to manage the position of the solar panel in line with the input given by the fuzzy light sensor. This control mechanism works based on the margin of fuzzy membership from both sensors that is used to move a motor DC that in turn moves the solar panel. Experimental results show a characteristically symmetrical fuzzy membership of both sensors with a reflected correlation of R=0.9981 after gains from both sensors are arranged with a program. Upon being tested in the field, this system was capable of improving the performance of solar panels in gaining power compared to their original fixed position. The discrepancy was evident when the angle of incoming sunlight approached both 0° and 180°. Further calculations of data acquired by the fuzzy light sensor show increased solar panel power efficiency by up to 5.6%.

  19. Improving Efficiency of Evaporated Cu2ZnSnS4 Thin Film Solar Cells by a Thin Ag Intermediate Layer between Absorber and Back Contact

    Directory of Open Access Journals (Sweden)

    Hongtao Cui

    2015-01-01

    Full Text Available A 20 nm Ag coating on Mo back contact was adopted to improve the back contact of evaporated Cu2ZnSnS4 (CZTS solar cells. The Ag layer helped reduce the thickness of MoS2 which improves fill factor (FF significantly; additionally, it reduced secondary phases ZnS and SnS2−x, which may help carrier transport; it was also involved in the doping of the absorber layer, which compensated the intrinsic p-type doping and therefore drags down the doping level. The doping involvement may enlarge the depletion region and improve lifetime of the absorber, which led to enhancing open circuit voltage (VOC, short circuit current density (JSC, and efficiency significantly. However, it degrades the crystallinity of the material slightly.

  20. AltaLink uses interactive voice response to improve call centre efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tellerman, N.; Sutherland, T.

    2010-11-15

    This article discussed an automated check-in/check-out system implemented by a transmission provider to improve efficiency and worker safety. The system, known as SEEN (Substation Entry/Exit Notification), replaced an inefficient process in which individuals entering or leaving a substation checked in or out by telephoning a control centre. With the increase in maintenance work resulting from aging infrastructure and increased power consumption, the call centre became overburdened with entry/exit calls, which created inefficient wait times for workers. The SEEN system allows crews to check in and out of substations through an Interactive Voice Response (IVR) server that communicates to the Staff-on-Site system through a web service interface. Employees or contractors follow automated voice instructions to check in and out of stations. Dedicated 10-digit phone numbers allow for automatic employee recognition. Each caller is prompted to enter a site number, the reason the site is being accessed, and, for solitary workers, a contact number. The system verifies the worker is qualified to enter the site and allows the control centre to identify hazardous sites. The new system resulted in improved efficiency for both crews and control centre operators. In the first operating year, the system reduced the number of entrance/exit calls by 70 percent. The next phase of the project will link the system into the energy management system and will display icons on pertinent System Operator displays when workers are checked into a site. 3 figs.